KIT | KIT-Bibliothek | Impressum | Datenschutz

Addressing the Sluggish Kinetics of Sulfur Redox for High‐Energy Mg–S Batteries

Li, Zhenyou 1; Welle, Alexander ORCID iD icon 2,3; Vincent, Smobin; Wang, Liping; Fuchs, Stefan 1; Riedel, Sibylle 1; Roy, Ananyo; Bosubabu, Dasari 1,4; García-Lastra, Juan Maria; Fichtner, Maximilian 1,4; Zhao-Karger, Zhirong 4
1 Helmholtz-Institut Ulm (HIU), Karlsruher Institut für Technologie (KIT)
2 Institut für Funktionelle Grenzflächen (IFG), Karlsruher Institut für Technologie (KIT)
3 Karlsruhe Nano Micro Facility (KNMF), Karlsruher Institut für Technologie (KIT)
4 Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT)

Abstract:

A key challenge for practical magnesium–sulfur (Mg–S) batteries is to overcome the sluggish conversion kinetics of sulfur cathodes, achieving a high energy density and long-lasting battery life. To address this issue, a doping strategy is demonstrated in a model Ketjenblack sulfur (KBS) cathode by introducing selenium with a high electronic conductivity. This leads to a significantly enhanced charge transfer in the resultant KBS$_{1−x}$Se$_x$ cathodes, giving rise to a higher S utilization and less polysulfide dissolution. Compared to the bare S cathode, the S-Se composite cathodes exhibit a higher capacity, smaller overpotentials, and improved efficiency, serving as better benchmark compounds for high-performance Mg–S batteries. First principles calculations reveal a charge transport mechanism via electron polaron diffusion in the redox end-products, that enhances the reaction kinetics. By suppressing polysulfide dissolution in the electrolyte, the use of the KBS$_{1−x}$Se$_x$ cathodes also enables a more uniform anode reaction, and thereby significantly extends the cyclability of the cells. To improve the performance, further efforts are made by implementing a Mo$_6$S$_8$ modified separator into the cell. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000162689
Veröffentlicht am 29.09.2023
Originalveröffentlichung
DOI: 10.1002/aenm.202302905
Scopus
Zitationen: 3
Web of Science
Zitationen: 3
Dimensions
Zitationen: 3
Cover der Publikation
Zugehörige Institution(en) am KIT Helmholtz-Institut Ulm (HIU)
Institut für Funktionelle Grenzflächen (IFG)
Institut für Nanotechnologie (INT)
Karlsruhe Nano Micro Facility (KNMF)
Zentrum für Angewandte Kulturwissenschaft und Studium Generale (ZAK)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2023
Sprache Englisch
Identifikator ISSN: 1614-6832, 1614-6840
KITopen-ID: 1000162689
HGF-Programm 43.33.11 (POF IV, LK 01) Adaptive and Bioinstructive Materials Systems
Erschienen in Advanced Energy Materials
Verlag Wiley-VCH Verlag
Band 13
Heft 42
Seiten Art.Nr.: 2302905
Vorab online veröffentlicht am 24.09.2023
Schlagwörter 2022-029-031549 ToF-SIMS
Nachgewiesen in Dimensions
Web of Science
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page