KIT | KIT-Bibliothek | Impressum | Datenschutz

A Design Toolbox for the Development of Collaborative Distributed Machine Learning Systems

Jin, David 1; Kannengießer, Niclas ORCID iD icon 1; Rank, Sascha 1; Sunyaev, Ali 1
1 Institut für Angewandte Informatik und Formale Beschreibungsverfahren (AIFB), Karlsruher Institut für Technologie (KIT)

Abstract:

To leverage training data for the sufficient training of ML models from multiple parties in a confidentiality-preserving way, various collaborative distributed machine learning (CDML) system designs have been developed, for example, to perform assisted learning, federated learning, and split learning. CDML system designs show different traits, for example, high agent autonomy, machine learning (ML) model confidentiality, and fault tolerance. Facing a wide variety of CDML system designs with different traits, it is difficult for developers to design CDML systems with traits that match use case requirements in a targeted way. However, inappropriate CDML system designs may result in CDML systems failing their envisioned purposes. We developed a CDML design toolbox that can guide the development of CDML systems. Based on the CDML design toolbox, we present CDML system archetypes with distinct key traits that can support the design of CDML systems to meet use case requirements.


Volltext §
DOI: 10.5445/IR/1000162704
Veröffentlicht am 29.09.2023
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte Informatik und Formale Beschreibungsverfahren (AIFB)
Publikationstyp Forschungsbericht/Preprint
Publikationsdatum 28.09.2023
Sprache Englisch
Identifikator KITopen-ID: 1000162704
HGF-Programm 46.23.01 (POF IV, LK 01) Methods for Engineering Secure Systems
Externe Relationen Abstract/Volltext
Nachgewiesen in arXiv
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page