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Abstract
A class of heat operators over non-archimedean local fields acting on L2-function
spaces on holed discs in the local field are developed and seen as being operators
previously introduced by Zúñiga-Galindo, and if the underlying trees are regular,
they are associated here with certain finite Kronecker product graphs. L2-spaces and
integral operators invariant under the action of a finite group acting on a holed disc
are studied, and then applied to Mumford curves. It is found that the spectral gap in
families of Mumford curves can become arbitrarily small.

Keywords p-Adic numbers · Heat equation · Mumford curves · Wavelets

1 Introduction

Ever since the introduction of the Taibleson–Vladimirov operator, a pseudodifferential
operator on a non-archimedean local field [1–3], there has been active research on heat
equations on such a field, in particular the field of p-adic numbers, which studies this
operator or generalisations of it. Whereas in the classical case, heat equations are also
extensively studied on manifolds, there is according to [4] no comparable theory of
pseudodifferential operators over p-adic manifolds, not to say over manifolds defined
over a non-archimedean local field. A construction of a certain pseudodifferential
operator on a certain p-adic manifold invariant under the action of certain finite groups
wasundertaken in [5], however the generaliseddiffusionobtained cannot be considered
a heat equation, because it does not give rise to a stochastic semigroup. A study of how
p-adic pseudodifferential operators transform under group actions on the Bruhat–Tits
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tree was undertaken in [6]. A different approach was pursued in [7], where p-adic
integral operators on closed open (clopen) subsets of Qp were constructed which are
direct analogues of graph Laplacians. In fact, they can be seen as p-adic analogues of
graph Laplacians in light of the dictionary developed in [8].

A ‘nice’ theoryof p-adic heat equations is one inwhich the heat operator is diagonal-
isable by the p-adic Fourier transform [9]. More general operators can be diagonalised
usingwavelets on ultrametric spaces [10].Kozyrev’swell-known p-adicwaveletswere
found to diagonalise the Taibleson–Vladimirov operator [11]. More general wavelet
bases in the p-adic and also adelic setting are studied in [12]. Certain pseudodifferential
operators have eigenfunctions which are such wavelets [13]. Important applications
of p-adic diffusion can be found in p-adic physics, initiated by I. Volovich in [14],
and in which there has been extensive research in the last decades [15]. More recent
applications include porous media and fluid dynamics [16–18]. However, the graph-
based heat operators from the previous paragraph are not entirely diagonalisable by
Kozyrev wavelets, one also needs the eigenvectors of the graph Laplacian [7]. The
work ofW. Zúñiga-Galindo contains many classes of p-adic heat equations, for which
the Cauchy problem is solved in the affirmative. This includes those with graph-based
operators, like also those in [19].

The non-archimedean counterpart of Riemann surfaces are the Mumford curves
which are projective algebraic curves defined over non-archimedean fields allowing a
Schottky uniformisation [20]. Locally, they are holed discs inside the base field. That
means that if the base field is a non-archimedean local field, then the Haar measure
allows integration of functions defined on these local pieces. The question is, how to
glue together local operators on overlaps in a meaningful way. The stable reduction
theorem [21] states that there is amodel over a finite extension of the base field such that
the special fibre, aka the reduction curve over the residue field, is a singular projective
curve whose irreducible components are all rational curves, and the singularities are
ordinary double points. Consequently, the intersection graph of the reduction curve
of a Mumford curve has first Betti number equal to the genus of the curve. The rigid
analytic theory of Mumford curves [22] allows to construct the intersection graph
with the help of a covering of the curve by holed discs. This fact, together with the
rigid analytic proof of the stable reduction theorem from [23] gives insight into how
to obtain an integral operator on Mumford curves. Namely, these are graph-based
integral operators which can be viewed as Zúñiga-Galindo’s operators on the set of
K -rational points of a Mumford curve by taking disjoint covers by holed discs, and
where each maximal ball in each patch corresponds to a vertex in a graph associated
with the curve. This is one contribution of the present article.

Another contribution is that the action of a finite group of automorphisms of the
Mumford curve leads to integral operators on the space of invariant L2-functions on
the K -rational points of the curve via the induced graph automorphism invariance. The
invariant L2-functions on the curve (or, more precisely, its fundamental domain) then
decompose into eigenfunctions of our graph-based operators which consist of such
wavelets and of functions coming from eigenvectors of a graph Laplacian. It turns out
that if the residue field has at least two elements, then the spectrum of these operators
consist entirely of eigenvalues coming from wavelets.
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Finally, it is proven that the spectral gap of the new operators can be arbitrarily
small in families of Mumford curves with isomorphic stable reduction graphs. As an
example, the eigenvalues of the heat operator invariant under the involution of a Tate
curve are calculated explicitly.

We view the methods here are as a starting point for also investigating non-linear
integral equations on Mumford curves, in order to generalise the results obtained on
p-adic balls for p-adic non-linear evolution equations, like e.g. the p-adic analogue
of the porous medium equation [24, 25].

This article is subdivided into five numbered sections, the present one being the
introduction. The following Sect. 2 fixes some notation. This is followed in Sect. 3 by
a generalisation of the dictionary developed in [8] to the more general situation of this
article and now contains a correspondence between matrix eigenvalues and operator
eigenvalues. Section 4 studies the invariant heat equation on a holed disc. Section
5 applies the results of the previous section to the case of a Mumford curve and an
action of a group of automorphisms. It concludes with a study of the eigenvalues of
the operators invariant under the involution of a Tate curve.

2 Notation

Let K be a non-archimedean local field whose absolute value is denoted as |·|K . The
multiplicative group of K is denoted as K×. The unit ball of K is denoted as OK .
The Haar measure μ on K is chosen such that μ(OK ) = 1. It is known that OK is a
discrete valuation ring whose uniformiser is denoted as π . It has the property

|π |K = p− 1
e

for some e ≥ 1, and where p is a prime number. In the case that K is a p-adic number
field of degree n over Qp, then there is the well-known formula

n = e · f

where f is the degree of the residue field k over the finite field Fp with p elements.
Let

τ : k → OK

be a lift of the residuemapwhich takes a residue class moduloπOK to a representative
in OK . The Bruhat–Tits tree for the projective-linear group PGL2(K ) will be denoted
as TK . Its vertices are in one-one correspondence with discs of the projective line
P1(K ), where a disc is a subset of the form

{|x − a|K ≤ r} or {|x − a|K ≥ r} ∪ {∞}
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where a ∈ K and r ∈ ∣
∣K×∣

∣. When integrating a complex-valued function f (x) on
K , the Haar measure will be denoted as dx , so that the integral has the form

∫

K
f (x) dx

if it exists. Finally, we will make use of indicator functions which we will write as

�(x ∈ U ) =
{

1, x ∈ U

0, otherwise

where U is a measurable subset of K .

3 A �-Adic Dictionary

The aim of this section is to generalise the dictionary of [8, Sec. 2] to the setting of
this article.

Let Z ⊂ K be a compact measurable set, and U a finite covering of Z by disjoint
sets of finite measure. The space of continuous complex-valued functions on Z will
be denoted as C(Z ,C) or simply as C(Z). The space of bounded linear operators on
a Banach space F is denoted as B(F).

Let n = |U |, and let n × n-matrices be indexed by U . We call these U-matrices. If
A = (AUV ) is a U-matrix, then we define

‖A‖U =
√

∑

U ,V∈U
|AUV |2 μ(U )μ(V )

this defines a norm on the algebra of U-matrices, called U-norm.

Lemma 1 (Dictionary) There is an injective isometric homomorphism between alge-
bras

b : Cn×n → B(C(Z ,C))

A = (AUV ) 
→ A(x, y) =
∑

U ,V∈U
AUV�(x ∈ U )�(y ∈ V )

where the first space has the U-norm, and the second space the norm

‖A‖ :=
√

∫

Z

∫

Z
|A(x, y)|2 dy dx

where A ∈ B(C(Z)) has kernel A(x, y).
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Proof First observe that b(A) is indeed a bounded linear operator:

‖b(A)u‖22 =
∫

Z

∣
∣
∣
∣

∫

Z
A(x, y)u(y) dy

∣
∣
∣
∣

2

dx

≤
∑

U ,V∈U
|AUV |2

∫

Z
�(x ∈ U )

∫

V
|u(y)|2 dy dx

≤
∑

U ,V∈U
|AUV |2 μ(U )μ(V ) ‖u‖22

= ‖A‖2U ‖u‖22
Now, linearity and multiplicativity of b are straightforward calculations. In the case

of mutliplication, one may consult the corresponding part in the proof of [8, Prop.
2.2].

Isometry follows from the observation that

‖A‖2U =
∫

Z

∫

Z
|A(x, y)|2 dy dx = ‖A‖2

Thus the assertion is proven. ��
A U-vector is an n-tupel with entries inC indexed by U . If e = (eV ) is an U-vector,

then there is an associated function e(x) ∈ C(Z) defined as:

e(x) =
∑

V∈U
μ(V )−1eV �(x ∈ V )

There is a map

b : Cn → C(Z), e = (ev) 
→ e(x)

We are convinced that the same letter b as in Lemma 1 will not cause confusion.
Now, there is a product defining an action of B(C(Z)) on C(Z). Namely,

u 
→ Au(x) =
∫

Z
A(x, y)u(y) dy.

We will write this in the usual way as Au.

Lemma 2 Let A = (AUV ) be a U-matrix, and e = (eV ) a U-vector. Then

b(A)b(e) = b(Ae).

Proof We have

Ae = c = (cU )
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with

cU =
∑

V∈U
AUV eV .

Hence, b(c) is the function

c(x) =
∑

U∈U

∑

V∈U
AUV eV�(x ∈ U ).

On the other hand, b(A)b(e) is the function

∫

Z
A(x, y)e(y) dy =

∑

U ,V∈U
AUVμ(V )−1eV

∫

V
�(y ∈ V ) dy �(x ∈ U )

=
∑

U ,V∈U
AUV eV�(x ∈ U ) = b(Ae).

This proves the assertion. ��
Corollary 3 If e = (eV ) is an eigenvector of U-matrix A with eigenvalue λ ∈ C, then
b(e) is an eigenfunction of b(A) for the same eigenvalue.

Proof We have

b(A)b(e) = b(Ae) = b(λe) = λb(e)

where the first equality is due to Lemma 2. ��

4 Invariant Heat Equations Associated with Holed Discs

In this section, we introduce and study integral operators and heat equations on holed
discs, and also study the action of a finite group on holed discs. In the case that the
reduction tree of the holed disc is regular, then the operators turn out to be Zùñiga-
type operators on certain Kronecker product graphs, also in the invariant case, where
invariance becomes such under graph automorphisms.

4.1 Zúñiga Operators on Holed Discs

Let Z ⊂ K be a holed disc. It is a measurable subset, and the disjoint union of finitely
many balls in K . There is a tree TZ associated with Z , which is a subtree of the Bruhat–
Tits tree TK . Related to the the projective dendrogram for a finite set S consisting of
one point in K for each hole in Z from [26], it is given as follows: The projective
dendrogram T ∗(S) for S is the smallest subtree of the Bruhat–Tits tree TK having
the set S ∪ {∞} at its boundary. The finite part T (S) of T ∗(S) is the finite subtree
of TK whose vertices correspond to the joins of the geodesic lines in TK between ∞
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and x ∈ S. And TZ is the intermediate finite tree in T ∗(S) containing T (S), obtaind
by cutting off halflines such that the endpoints correspond to the holes of Z as disks
making up TK , and the root is the disc obtained by “filling” the holes of Z .

Each vertex v of TZ itself corresponds to a holed discUv ⊂ K obtained by removing
from the disc associated with v a maximal strict subdisk for each edge attached to v

leading away from the root. We call such a holed disc thin, and we can write

Z =
∐

v∈V (TZ )

Uv (1)

where V (G) denotes the vertex set of a graph G.
Now, let G be a weighted simple finite graph having TZ as a spanning tree. Its

adjacency matrix will be denoted as A = (Avw)v,w∈V (G). We assume that the weights
Avw are all non-negative, and that Avv = 0. This simply states thatG has no self-loops,
as it is simple. We consider the following operator:

Dα
A f (x) =

∫

Z
Aα
Z (x, y)( f (x) − f (y)) dy

whose kernel function is

Aα
Z (x, y) =

∑

v,w∈V (G)

Auv |x − y|α �(x ∈ Uv)�(y ∈ Uw)

and α ∈ C.

Definition 1 The operatorDα
A is called the Zúñiga operator for the weighted graph G

(or the matrix A).

Lemma 4 The operator Dα
A on L2(Z) is of the type introduced in [7] for a graph

whose vertices are represented by p-adic balls.

Proof Each thin holed disk Uv in (1) is itself a union of balls:

Uv =
mv∐

i=1

Bi,v. (2)

Let x, y be two points from Z . Then

x ∈ Bi,v, y ∈ Bj,w

where v,w ∈ V (G), and

i ∈ {1, . . . ,mv}, j ∈ {1, . . . ,mw}.

Since Avv = 0, we assume that v �= w. In this case,

|x − y|K = d(Bi,v, Bj,w)
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where d is the π -adic distance between disjoint sets in K . Hence, Dα
Z is the operator

from [7] associated with the matrix C = (C(i,v),( j,w)) ∈ RI×I with

C(i,v),( j,w) = Avw · d(Bi,v, Bj,w)α

with index set

I =
∐

v∈V (G)

{1, . . . ,mv} × V (G)

and the assertion follows. ��
The eigenvectors of the matrix C with

C(i,v),( j,w) = Avw · d(Bi,v, Bj,w) (3)

as an adjacency matrix of a graph whose n vertices are the balls Bi,v taken from the
proof of Lemma 4 occur in the eigendecomposition of L2(Z) for Dα

A:

Corollary 5 Let α ∈ R. Then there is an orthogonal decomposition

L2(Z) = L2
0(Z) ⊕ L2

A(Z)

where the Kozyrev wavelets supported in Z are an orthonormal basis of L2
0(Z), and

the functions

e(x) =
∑

v∈V (G)

mv∑

i=1

μ(Bi,v)
−1ei,v�(x ∈ Bi,v)

where (ei,v) ∈ R|I | is a normalised Laplacian eigenvector of the matrix C, are an
orthonormal basis of the finite-dimensional summand L2

A(Z).

Proof This is shown in [7, Thm. 10.1] for the operators defined there, and Lemma 4
states that Dα

A is such an operator, except that the balls are now in K instead of Qp,
but the proof of that theorem carries over to the field K . ��

Before we extend Zúñiga’s theory to the case of finite group actions in the next
subsection, we look at an example.

Example 1 Let K = Qp,U = pZp, V = 1+ pZp, and Z = U ∪V with the covering
U = {U , V }. Let

A =
(

0 1
1 0

)

.
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Even if U , V are not thin holed discs, we have a corresponding Zúñiga operator Dα
A

with kernel function

Aα
Z (x, y) = |x − y|αK �(x ∈ U )�(y ∈ V ) + |x − y|αK �(x ∈ V )�(y ∈ U ).

Let Wn = p2nZp with n ≥ 1. Then the wavelet

ψn(x) = pnχ(p−2n−1x)�(x ∈ Wn)

is an eigenfunction of Dα
A. Namely, we have

Aα
Zψn(x) =

∫

Wn

|x − y|αK ψn(y) dy �(x ∈ V )

= Cα
UV

∫

Wn

ψn(y) dy �(x ∈ V ) = 0

because the integral vanishes by [27, Thm. 3.29]. And we have

∫

Z
Aα
Z (x, y) dy ψn(x) =

∫

V
|x − y|αK dy ψn(x)

= μ(V )ψn(x).

Hence, ψWn (x) with n ≥ 1 is indeed an eigenfunction for eigenvalue −μ(V ).
This example shows that, in general, a Zúñiga operator cannot be expected to be a

compact operator, not even for α = 0.

4.2 Zúñiga Operators Invariant Under Finite Group Actions

Now, let H be a finite group acting as automorphisms on a finite graph G. Since the
vertices ofG are represented by thin holed discsUv , the group H acts on Z by permut-
ing the setsUv . We may and will assume that H acts by affine-linear transformations,
i.e. locally as

h(x) = ah + bhx

for h ∈ H . So, we can define

L2(Z)H =
{

f ∈ L2(Z) | ∀h ∈ H : f (hx) = f (x)
}

this is the space of H -invariant L2-functions on Z . An H -invariant operator is

Dα
A,H =

∑

h∈H
Dα

A,h
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where Dα
A,h is the operator

Dα
A,h( f )(x) = Dα

A( f )(hx)

for h ∈ H .

Lemma 6 Given the matrix Ah = (Ahv,w)v,w∈V (G) for h ∈ H, we have that

Dα
A,H = 1

|H |
∑

h∈H
Dα

Ah

as an operator on L2(Z).

Proof We calculate

Aα
Z ,h(x, y) =

∑

v,w∈V (G)

Avw |hx − y|αK �(x ∈ Uv)�(y ∈ Uw)

=
∑

v,w∈V (G)

Ahv,w |x − y|αK �(x ∈ Uv)�(y ∈ Uw).

This shows that Aα
Z ,h(x, y) is the kernel function of Dα

Ah
, which implies the

assertion. ��
Let ψ(x) be a Kozyrev wavelet for K . It is given as

ψ(x) = μ(B)
1
2 χK (p

d−1
e τ( j)x)�(x ∈ B)

where B ⊂ K is a ball of radius p− d
e , j ∈ k, and τ : k → OK a lift of the residue

field k. Now, we define the function

ψh(x) = ψ(hx)

Lemma 7 It holds true that

ψh(x) = χ(c)ψ(h)(x)

where c ∈ K, and ψ(h)(x) is a Kozyrev wavelet for K supported in the ball h−1(B).

Proof This is a simple calculation. ��
Define the matrices Ch = (Ch

(i,v),( j,w)) with

Ch
(i,v),( j,w) = Ahv,w d(Bi,hv, Bj,w)α

and the quantities

γ h
i,v = γi,hv =

∑

( j,w)

Ch
(i,v),( j,w) =

∑

w∈V (G)

mw∑

j=1

Ahv,w d(Bi,hv, Bj,w)α
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for h ∈ H . According to [7, Thm. 10.1], the quantity −γ h
i,v is an eigenvalue of the

Zúñiga operator Dα
Ah

corresponding to a Kozyrev wavelet supported in Bi,v .

Lemma 8 For h ∈ H, it holds true that−γ h
i,v is an eigenvalue of anyDα

Ag
with g ∈ H,

correspondong to wavelet ψ(h)(x) as an eigenfunction.

Proof This is clear by definition of ψ(h) and Zúñiga’s theorem [7, Thm. 10.1]. ��
Theorem 9 Let α ∈ R. The H-invariant space L2(Z)H has an orthogonal basis of
eigenfunctions of Dα

A,H of the following form:

from Kozyrev wavelets:
1

|H |
∑

h∈H
ψ(h)(x), eigenvalue: − 1

|H |
∑

h∈H
γ h
i,v

from a Laplacian matrix: eH (x), eigenvalue: λH

where

eH (x) =
∑

v∈V (G)

eHv �(x ∈ Uv)

and (eH )v∈V (G) is an H-invariant eigenvector for the common eigenvalue λH of all
the matrices Lh with h ∈ H, where Lh is the graph Laplacian associated with the
simple graph having adjacency matrix Ch. There is a decomposition

L(Z)H = L2
0(Z)H ⊕ L2

A(Z)H

where L2
0(Z) is spanned by the averages of H-orbits of Kozyrevwavelets, and L2

A(Z)H

by the H-invarant functions coming from the graph Laplacians.

Proof First, observe that Dα
A,H is the Zúñiga operator associated (in our sense) with

the matrix

AH = 1

|H |
∑

h∈H
Ah .

Hence, in Zùñiga’s sense, the operator is associated with the matrix

CH = 1

|H |
∑

h∈H
Ch = 1

|H | PHC

where

PH =
∑

h∈H
Ph
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and

Ph = (δ(i,hv),( j,w))

is a row permutation matrix associated with h ∈ H . The associated Laplacian matrix
is

LH = DH − CH

where

DH =
∑

h∈H
Dh

and Dh is the degree matrix of Ch . It follows that

LH =
∑

h∈H
Lh = 1

|H | PH L

where Lh is the Laplacian matrix of Ch , and L = L id.
An H -invariant vector u is an eigenvector of LH if and only if

LHu = λu ⇔ Lu = λ |H | P−1
H u ⇔ Lu = λu

where the latter equivalence holds true, because

|H | PHu = u ⇔ u = 1

|H | PHu = 1

|H |
∑

h∈H
Phu

(∗)= 1

|H | |H | u = u

where (∗) holds true, because u is H -invariant. This means that an H -invariant vector
u is an eigenvector of LH for eigenvalue λ, if and only if u is an eigenvector of the
Laplacian L = L id for the same eigenvalue λ. Actually even iff u is an eigenvector of
Lh for eigenvalue λ, because

LH = �H (Lh)

for any h ∈ H , where

�H (M) = 1

|H |
∑

h∈H
Mh

is the H -averaging operator. This proves the assertion in the Laplacian matrix case,
using Zúñiga’s Theorem (Corollary 5) for Dα

A,H in order to see that eigenvectors of
AH create by the dictionary (Lemma 2) eigenfunctions of Dα

A,H in the first place.
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As for the Kozyrev case, we do a calculation for

�(x) = 1

|H |
∑

h∈H
ψ(h)(x)

where ψ(h)(x) is a Kozyrev wavelet supported in h−1Bi,v , where Bi,v is a ball as in
(2), in order to see that with

γ H
i,v = 1

|H |
∑

h∈H
γ h
i,v

the quantity −γ H
i,v is an eigenvalue of Dα

A,H with eigenfunction �(x). Namely,

Dα
A,H�(x) = 1

|H |
∑

h∈H
Dα

A,Hψ(h)(x) = 1

|H |
∑

h∈H

1

|H |
∑

g∈H
Dα

A,gψ
(h)(x)

= − 1

|H |
∑

h∈H

1

|H |
∑

g∈H
γ h
i,vψ

(h)(x) = − 1

|H |
∑

g∈H
γ h
i,v

1

|H |ψ
(h)(x)

= −γ H
i,v�(x)

Since L2(Z)H is spanned by the H -averages (i.e. 1
|H | times the sum of the H -orbits) of

the elements of any orthonormal basis, the Kozyrev part of the assertion now follows.
The asserted decomposition of L2(Z)H now follows, using the decomposition of

Corollary 5. ��
Definition 2 The operatorDα

A,H is called the H -averaging Zúñiga operator associated
with α, matrix A or graph G (and group H ).

We learn from Theorem 9 that the spectrum of the H -averaging Zúñiga operator
Dα

A,H contains the H -averages of the Kozyrev part of the spectrum of the individual
Dα

A,h for h ∈ H . And the size of the graph Laplacian part of its spectrum depends on

the dimension of the part of the common eigenspaces of the matrices Ah , on which the
finite group H acts trivially. In other words, it depends on the linear representations
of H as permutation subgroups of GLn(R). But this is left for future research.

Notice that, if the tree TZ is m-regular, then the matrix C from (3) is a Kronecker
product:

C = Bα ⊗ 1r

with 1n the n × n-matrix of constant value 1, and Bα = (Bα
vw), where

Bα
vw = Avwd(Uv,Uw)α

and the sets Uv with v ∈ V (G) are thin holed disks covering the holed disc Z . If
m > 1, then the following result says that the Laplacian eigenvalues of C are all
vertex degree values.
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Lemma 10 Assume that all Uv for v ∈ V (G) contain at least mv > 1 maximal
balls. Then the Laplacian spectrum of C contains all the quantities degBα (v). with
multiplicity mv − 1 for given v ∈ V (G), i.e. if a vertex degree repeats itself 
 times,
then the multiplicity of degBα (v) is 
 · (mv − 1).

Proof The Laplacian ofC has the structure of a blockmatrix with constant rectangular
blocks of size mv ·mw with v �= w ∈ V (G) outside the diagonal, and for each vertex
v ∈ V (G) a diagonal block of size m2

v which is a diagonal matrix with constant
diagonal entry degBα (v). Hence, since all mv > 1, any vector e = (e(i,w)) with

e(i,w) = 0 for any w �= v, and with sum of entries zero (4)

is a non-zero eigenvector associated with eigenvalue degBα (v). The multiplicity of
such eigenspaces is clearly m · (mv − 1), where m is the multiplicity of the vertex
degree degBα (v), because condition (4) defines a co-dimension 1 subspace of Rmv .

��
Corollary 11 If p f − 1 is greater than the largest number of holes in some Uv as a
thin holed disc for v ∈ V (G), then the spectrum of Dα

A,H coming from a Laplacian
matrix contains the quantities

− 1

|H |
∑

h∈H
γ h
i,v

i.e. the wavelet eigenvalues of Dα
A,H .

Proof According to the proof of Theorem 9, the H -invariant eigenvectors of the Lapla-
cian L of C are the common eigenvectors of all Laplacians Lh having all the same
eigenvalue.Hence, byLemma10, the assertion follows, since eachUv containsmv > 1
maximal balls. Namely, the degree eigenvalues of

LH = 1

|H |
∑

h∈H
Lh

are also the wavelet eigenvalues of Dα
A,H . ��

We will just look at one kind of further decomposition of the finite-dimensional
part of L2(Z)H . Namely, there is a well-known exact sequence

0 c(G,C) A(G,C)
d

H(G,C)
φ

Cb0(G) 0 (5)

where b0(G) is the 0-th Betti number of G, and c(G,C) is the kernel of the linear
map d, cf. e.g. [28, Lemma 6.1], whose proof immediately generalises to the case of
disconnected graphs. The map d is defined as follows:

d(β) : v 
→
∑

e∈E(G)
e�v

β(e)
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where e � v means that edge e is attached to vertex v. Themap φ is defined as follows:

f 
→
(

∑

v∈C
f (v)

)

C∈C(G)

where C(G) is the set of all connected components of G.

Lemma 12 There is an exact sequence

0 c(G,C)H A(G,C)H
dH

H(G,C)H
φH (

Cb0(G)
)H

0

where H acts on functions via averaging.

Proof We first show that

d
(

A(G,C)H
)

⊂ H(G,C)H .

Namely, let

βH : e 
→ 1

|H |
∑

h∈H
βh(e)

with βh(e) = β(he). Then

d(βH ) = 1

|H |
∑

h∈H
d(βh)

takes v ∈ V (G) to

∑

e�v

1

|H |
∑

h∈H
β(he) = 1

|H |
∑

h∈H

∑

e�hv

β(e) = 1

|H |
∑

h∈H
d(β)h(v)

where again d(β)h(v) means d(β)(hv). This shows that there is a well-defined map

dH : A(G,C)H → H(G,C)H

which restricts the original d. Similary, one shows that φ restricts to

ϕH : H(G,C)H →
(

Cb0(G)
)H

.

Also, the exactness of the origina sequence descends to the exactness of this sequence.
Namely, ker φH consists of those elements of ker φ = d(A(G,C)) which are H -
invariant. So, we have

ker φH = d(A(G,C))H = d
(

A(G,C)H
)
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where the last equality is immediate. As

c(G,C)H = c(G,C) ∩ ker dH = ker dH

and
(

Cβ0(G)
)H

is the image of φH , the exactness of the sequeuence now
follows. ��

Furthermore, there is a linear map

σ : L2(Z) → H(G,C), f 
→
(

v 
→
∫

Uv

f (x) dx

)

which clearly induces a linear map

σ H : L2(Z)H → H(G,C)H

Lemma 13 The map σ H is surjective, and it holds true that

ker(φH ◦ σ H ) = L2
C(G)(Z)H

where

L2
C(G)(Z)H =

{

f ∈ L2(Z)H : ∀C ∈ C(G) :
∫

C
f (x) dx = 0

}

and, further,

ker(σ H ) = L2
0(Z)H

Proof This is immediate. ��
Corollary 14 It holds true that

L2
C(G)(Z)H/L2

U (Z)H ∼= d(A(G,C))H

and

L2(Z)H/L2
0(Z)H ∼= H(G,C)H .

In particular, it holds true that

L2(Z)H ∼= L2
0(Z)H ⊕ d(A(G,C))H ⊕

(

Cb0(G)
)H

∼= L2
0(Z)H ⊕ A(G,C)H

c(G,C)H
⊕

(

Cb0(G)
)H

.



Journal of Fourier Analysis and Applications            (2023) 29:62 Page 17 of 26    62 

Proof This follows from the exact sequence of Lemma 12 and from Lemma 13. In
particular, there is a decomposition

H(G,C) ∼= A(G,C)H

c(G,C)H
⊕

(

Cb0(G)
)H

from the exact sequence. ��

Remark 1 Notice that the invariant direct summand
(

Cb0(G)
)H

equals the eigenspace
of Dα

A,H for eigenvalue zero.

4.3 Heat Equations Invariant Under Finite Group Actions

In [29], there is a formulation of the Yosida-Hille-Ray Theorem which is valid in our
case only for the space C(K ). We formulate and prove a version which is valid also
for closed subspaces of C(E).

Proposition 15 Let D be a linear operator on C(Z), and Ā its closure, assumed to be
single-valued and generating a strongly continuous, positive contraction semigroup
{T (t)} on C(K ). Let E be a closed subspace invariant under A. Then the restriction
A |E : E → E generates a strongly continuous, positive contraction semigroup TB(t)
on E.

Proof The operator A |E inherits from A the following properties:

1. The domain of A |E is dense in E .
2. A |E is dissipative.
3. The resolvent set R(λ − A |E ) is dense in E for some λ > 0.

From [29, Thm. 1.2.12], it follows that

A |E = Ā |E
generates a strongly continuous semigroup {TE (t)}.

We now need to show that {TE (t)} is positive. But since

TE = T |E
and {T (t)} is a positve semigroup, it follows that {TE (t)} is positive. ��
Corollary 16 Let ε > 0. Then εDα

A,H with α ∈ R generates a strongly continuous,

positive contraction semigroup exp(tεDα
A,H ) on C(Z)H .

Proof According to [7, Lemma 4.1], εDα
A,H is a closed linear operator on C(Z)

generating a strongly continuous, positive contraction semigroup. It follows from
Proposition 15 that the restriction to the invariant closed subspace C(Z)H also gener-
ates a semigroup with the desired properties. ��
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We are now going to look at the following Cauchy problem which makes sense,
beacause C(Z)H is a closed subspace of C(Z):

Task 1 (Cauchy Problem) Find h(t, x) ∈ C1
(

(0,∞),C(Z)H
)

such that

(
∂

∂t
− εDα

A,�

)

h(t, x) = 0 (6)

for t ≥ 0, x ∈ Z which satisfies the initial condition

h(0, x) = h0(x)

where h0 ∈ C(Z)H is fixed.

As the corresponding semigroup is Feller, it describes a π -adic heat equation on Z .
Consequently there is a π -adic diffusion process in Z attached to the differential Eq.
(6)

Theorem 17 There exists an H-invariant probability measure pt (x, ·) with t ≥ 0,
x ∈ Z on the Borel σ -algebra of Z such that the Cauchy Problem (Task 1) has a
unique solution of the form

h(t, x) =
∫

Z
h0(y)pt (x, dy).

In addition,pt (x, ·) is the transition function of a Markov process whose paths are
right continuous and have no discontinuities other than jumps.

Proof The proof of [7, Thm. 4.2] carries over word for word. ��

5 Invariant Heat Equations onMumford Curves

5.1 Mumford Curves

Mumford curves were first constructed in [20] as a successful attempt to generalise
Tate’s analytic uniformisation of p-adic elliptic curves, which can be found in [30].
Through this construction, Mumford revealed a one-to-one correspondence between
conjugacy classes of Schottky groups in PGL2(K ) and a certain class of projective
algebraic curves defined over K .

In order to presentmore details of this correspondence,wewill give a brief summary
of [22, Ch. I, III, IV, V], adapted to the setting of a non-archimedean local field. The
slightly over two pages in [23, Ch. 5.4] also contain a brief overview over Mumford
curves.

A Möbius transformation γ ∈ PGL2(K ) is called hyperbolic, if

∣
∣Tr(Aγ )

∣
∣2
K > 1
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where Aγ ∈ SL2(K ) is the representative of γ as a special linear matrix.
A discrete subgroup of PGL2(K ) which is freely generated by g ≥ 1 hyperbolic

transformations is called a Schottky group.
A limit point of a subgroup � of PGL2(K ) is a point x ∈ P1(K ) such that there

exists a point x0 ∈ P1 and a sequence γn ∈ � such that

lim
n→∞ γn(x0) = x .

The set of limit points is denoted as L (�), and � = P1(K ) \ L (�) is the set of
regular points of �. A Schottky group � has the property

� �= ∅.

This is an open subset of P1(K ).
The Mumford curve associated with a Schottky group � with g ≥ 1 generators is

the quotient space

X = �/�.

It is a projective algebraic curve over K of genus g [22, Ch. III].
A rational affinoid domain is a holed disc in P1. A Mumford curve has a finite

covering U by rational affinoid domains [22, Ch. V]. In this covering, two overlapping
patchesU ∈ U are glued with another along a boundary component (which is a circle).

5.2 Finite Group Actions onMumford Curves

The theory of finitely generated groups of projective-linear transformations shows that
there are many finite quotients of Mumford curves:

Theorem 18 (Gerritzen, van der Put (1980)) Any finitely generated discrete subgroup
N of PGL2(K ) has a normal subgroup � of finite index which is a Schottky group.

Proof [22, Thm. I.3.1]. ��
Let H be a finite group acting on a Mumford curve X . According to the theory of

Mumford curves [22], the group H is part of the following diagram

�
�

N

X

H

X/H

(7)

where � ⊂ P1
K is the universal topological covering of X . The finite group H is

the quotient of a finitely generated discrete subgroup N of PGL2(K ), and a Schottky
group � which is normal and of finite index in N . For any such group N , there exists
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such a � by Theorem 18. Both groups � and N act on a subtreeTN of the Bruhat–Tits
treeTK of PGL2(K ). Its construction is given in [22]: the vertices are the intersection
vertices of TK of the geodesic lines between any three limit points of � (or N , which
does not matter). The quotient graphs are part of the following diagram:

TN
�

N

G

H

G/H

(8)

Definition 3 The graph G in (8) is called the reduction graph of the Mumford curve
X .

A fundamental domain of the tree action of � is given by lifting a spanning tree T
of G/H to TN . This tree corresponds to a holed disc F in P1(K ), We may assume
that ∞ is not a regular point of the N - or �-action. Thus we may and will assume that
F ⊂ K . The action of N on � then induces an action of the finite group H onF and
T . We have

F/H ∼= X(K )/H

because as K -analyticmanifolds the fundamental domainF is analytically isomorphic
to the K -rational points X(K ) of the Mumford curve X . This means that we are in
the situation of Sect. 4. Consequently, we can define an H -invariant Zùñiga operator
Dα

A,H on F , where A is a weighted adjacency matrix of the graph G, and view it as
an invariant operator on X(K ). The results for the H -invariant semigroup, Cauchy
problem for the associated heat equation, and probability measures for a Markov
process, i.e. Corollary 16 andTheorem17 are now interpreted as being on theMumford
curve X , or more precisely, on X(K ).

5.3 The Spectral Gap of Heat Operators onMumford Curves

In order to eliminate the dependence of the spectrum on the volume of the fundamental
domain F , we make the following assumption:

Assumption 1 We assume that for a givenMumford curve X , the fundamental domain
F is a holed disc inside OK containing an element of absolute value 1.

For the Zúñiga operator

Dα
X(K ) = Dα

A

on L2
s (�)H , we now assume that A is the combinatorial adjacency matrix of the graph

G in diagram (8).
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The decomposition of L2(F )H as in Theorem 9 allows us to say something about
the spectral gap of

Dα
X(K ) = Dα

X(K ),1

(i.e. H being the trivial group 1) if X varies over all Mumford curves having the same
combinatorial reduction graph.

A graph is called stable if every vertex not attached to a loop-edge is attached to at
least three edges. By the stable reduction Theorem [21], the stable intersection graph
is unique for a given Mumford curve X .

Corollary 19 Let α > 0, and let Mg(G) be the set of isomorphism classes of Mumford
curves of genus g ≥ 1 defined over K having fixed stable reduction graph G. Then,
under Assumption 1, for every ε > 0, MG contains a curve X = �/� such that the
spectral gap of the operator Dα

X(K ) is smaller than ε.

Proof From Corollary 5, we find that we can look at the quantities

γi,v =
∑

w∈V (G)

mw∑

j=1

Avw d(Bi,v, Bj,w)α

where v is a vertex of G, and Bi,v as in (1) (where Z = F , the fundamental domain
in question) and (2).

For each Mumford curve in Mg(G), choose a fundamental domain FX satisfying
Assumption 1, such that the reduction trees TX of FX are isomorphic after deleting
all vertices of degree 2. These are then spanning trees of the stable graph G. Denote
the actual reduction graph of X as GX . The trees TX are the trees TZ considered in
the beginning of Sect. 4.1. As they are finite subtrees of the Bruhat–Tits tree, we may
now vary X within Mg(G), such that the edges of GX become longer beyond any
bound. Under Assumption 1, this implies that there exists a vertex v ∈ V (GX ) having
neighbours w ∈ V (GX ) such that

Dv(X , α) = max
w : (v,w)∈E(GX )

{d(Uv,Uw)}

becomes smaller than any given bound. Since

γi,v ≤ (p f − 1) deg(v) · Dv(X , α)

because each Uw for w ∈ V (GX ) is a thin holed disc covered by at most p f − 1
maximal subballs, and since degv is bounded (by p f for fixed K ), it follows that
for some vertex v ∈ GX , the quantity γi,v becomes arbitrarily small in this family
of Mumford curves. This proves the assertion about the spectral gap, as −γi,v is an
eigenvalue of Dα

X(G) by Corollary 5. ��
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5.4 Degree Eigenvalues of Heat Operators on Tate Curves

It is well-known in graph theory that the spectral gap of the Laplacian of a connected
weighted graph, also known as the algebraic connectivity, is bounded from above by
theminimal vertex degree. In general, it is not known how the spectrum of a Kronecker
product depends on the spectra of its factors. For this reason, we look only at the degree
eigenvalues in the case of a Tate curve. From Corollary 19, we already know that the
algebraic connectivity of a Mumford curve with fixed stable graph can be arbitrarily
small, because there are arbitrarily small degree eigenvalues in such families of curves.

Here, we will exhibit an explicit calculation of the degree eigenvalues

γ H
i,v = 1

|H |
∑

h∈H
γ h
i,v

under Assumption 1 for Tate curves. Let X = K×/〈q〉 with |q| = p− d
e be a Tate

curve. A fundamental domainF ⊂ K× can be chosen of the form

F =
{

|π |dK < |x |K ≤ 1
}

so that it satisfies Assumption 1. The finite group H is here taken as the group of
order 2 generated by the involution σ on X . This exists, because an elliptic curve has
a Legendre equation of the form

y2 = x(x − 1)(x − λ)

with λ ∈ K \ {1}, and the involution σ on X takes a point (x, y) to the point (x,−y).
In fact, with the help of a Möbius transformation fixing the set {0, 1,∞}, we may

assume that |λ|K = 1. It is well-known that this equation gives a Tate elliptic curve,
if and only if

|λ − 1|K < 1.

Let us mention that in the case that K is of positive characteristic, the inequality
characterising Tate curves is

|λ − 1|K < |2|2K
according to [31, Example 3.8]. The diagram (7) becomes in our case

Gm
〈q〉

N

X

H

P1

where Gm is the multiplicative group. Its K -rational points are Gm(K ) = K×.
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We can describe the action of H onF as follows:

σ : F → F , x 
→
{

x
q , |x |K = |π |kK , k = 1, . . . , d − 1
1
x , |x |K = 1

A simple calculation yields that σ is does take F to itself, and is of order 2.
The annulus F has a disjoint covering by sets of the form

Uk =
{

|x |K = |π |kK
}

with k = 0, . . . , d − 1, and each circle Uk is covered by p f − 1 balls of radius |π |kK .
Let T be the reduction tree of F .

The Zúñiga operatorDα
A for the combinatorial adjacency matrix of T has the kernel

function

A(x, y) =
d−1
∑

k,
=0
k≡
±1mod d

p f −1
∑

i, j=1

d(Bi,k, Bj,
)
α �(x ∈ Bi,k)�(y ∈ Bj,
)

where

Bi,k =
{

x ∈ K :
∣
∣
∣x − πkτ(i)

∣
∣
∣
K

< |π |kK
}

for a given lift τ : OK /πOK → OK .

Lemma 20 It holds true that

d(Bi,k, Bj,
) =

⎧

⎪⎨

⎪⎩

|π |kK , k = 
 + 1, 
 ∈ {0, . . . , d − 2}
|π |
K , k = 
 − 1, 
 ∈ {1, . . . , d − 1}
1, {k, 
} = {0, d − 1}

for k ≡ 
 ± 1 mod d.

Proof This is a simple calculation. ��
Theorem 21 It holds true that

γ H
i,k =

⎧

⎪⎪⎨

⎪⎪⎩

1
2 (p

f − 1)
(

|π |kαK + 2 |π |(d−k)α
K + |π |(d−k−1)α

K

)

, k /∈ {0, d − 1}
2(p f − 1), k = 0
1
2 (p

f − 1)
(

|π |αK + |π |(d−2)α
K

)

, k = d − 1

where α > 0.
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Proof The involution σ induces the following map

σ : {0, . . . , d − 1} → {0, . . . , d − 1}, k 
→
{

d − k, k ∈ {1, . . . , d − 1}
0, k = 0

Assume first that k /∈ {0, d − 1}. We have

γi,k =
p f −1
∑

j=1

d(Bi,k, Bj,k+1)
α + d(Bi,k, Bj,k−1)

α

= (p f − 1)
(

|π |kαK + |π |(k−1)α
K

)

and, similarly,

γ σ
i,k = γi,d−1 = (p f − 1)

(

|π |(d−k)α
K + |π |(d−k−1)α

K

)

.

It follows that

γ H
i,k = 1

2
(p f − 1)(γi,k + γ σ

i,k)

is as asserted in this case.
Now, assume that k = 0. Then

γi,0 = (p f − 1) · 2 = γ σ
i,0 = γ H

i,0.

And now, assume that k = d − 1. Then

γi,d−1 = (p f − 1)
(

1 + |π |(d−2)α
K

)

γ σ
i,d−1 = γi,1 = (p f − 1)

(

1 + |π |αK
)

and the average γ H
i,d−1 is asserted. ��
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