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mein Dank den wissenschaftlichen Hilfskräften Huidi Zhu, Tim Ortkamp, Tim Seeberger,



ii

Nora Schneider und Yanting Liu, die ich in meiner Zeit am Lehrstuhl begleiten durfte
und die mich hervorragend unterstützt haben.
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Abstract

Copulas are functions that allow disentangling the dependence structure from the univari-
ate marginal distributions of a multivariate random variable and to model each separately.
Due to increasingly larger and more complex data sets, their importance in science and
application has grown exponentially in recent years. This work develops new methods
and applications based on copulas as well as it presents a theoretical contribution to the
estimation of the empirical copula process.
More specifically, we first consider the variability of the most widely used empirical
approximation of a copula, the empirical copula. In doing so, a new estimator of the
covariance of the empirical copula process in arbitrary d-dimensional boxes is developed.
The presented estimator is the first that does not require bootstrap procedures and
fast and precise statements about the uncertainty of the results derived from empirical
copulas are possible.
Subsequently, a multivariate extension of the Lorenz curve and Gini coefficient based
on a theoretically derived copula decomposition is proposed. The extension determines
inequality in multivariate distributions originating from both the individual marginal
distributions and their dependence structure. Unlike other extensions, the presented
approach can be interpreted directly and is economically tractable.
The third part results in a multivariate improvement of day-ahead price forecasts in
electricity markets. Here, univariate point forecasts are augmented with the distribution
of their historical errors, while a copula approach enforces the correct dependencies
between hourly prices. Thus, any simple point forecasting model can be extended to
forecast complex multivariate densities without much effort. Among others, this is of
great importance in the context of the current transformation of the energy system, e.g.,
for the risk management of energy providers.
Finally, the generation of images by randomly drawing in the latent space of an au-
toencoder is investigated. We compare copula models with other methodologies for
modeling the latent space and demonstrate how a powerful generative autoencoder can
be constructed using these statistical methods. In addition to image quality, aspects such
as image manipulation of the newly presented Empirical Beta Copula Autoencoder are
discussed.
The topics addressed in the thesis are illustrated using extensive examples with real-world
datasets and simulation studies where applicable or necessary. Further, ready-to-use
computer code is made available for all contributions.
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1. Introduction

“The world’s most valuable resource is no longer oil, but data.”

The Economist, May 6th 2017

The amount of data in a more and more interconnected world is constantly growing

(Bell et al., 2009; Dhar, 2013). Simultaneously with the rapid advancement of methods

for ’refining’ this often complex and multidimensional data (Donoho, 2017; Cao, 2017),

dependencies steadily gain importance in modern data analytics, statistics, and machine

learning. For example, one might be interested in the interaction of prices and demand,

treatment and effect, or various observations in the natural sciences. Copulas offer a

very flexible and universal way to cope with all such kinds of dependence structures in

multivariate data. This thesis contributes to the literature on copula theory and develops

new methodologies based on copulas. It explores new ideas to deal with dependence on

multivariate data and demonstrates how to use this rich information. To that end, it

marks an important step towards modern, data-driven solutions in business and research

while introducing copula theory to specialists in various fields of application.

The word ’copula’ originally stems from Latin meaning ’a link, tie or bond’ (Simpson,

1977) and was first mentioned in the statistical literature by Sklar (1959) to describe

a function that joins multiple one-dimensional distribution functions to a single

multivariate distribution function. Thus, copulas allow the modeling of each univariate

marginal distribution function independently from the mutual information of the joint

distribution. That said, copulas may be seen as the most general form of modeling

1



Introduction 2

dependence on multivariate data. Over the last few years, copulas gained much attention

due to their flexibility and simplicity while dealing with multivariate data. Copula

techniques are employed in a wide range of applications, such as, e.g., economics and

finance (Patton, 2012; Genest et al., 2009; Cherubini et al., 2004), energy modeling

(Pircalabu and Benth, 2017; He et al., 2017), natural sciences and engineering (Salvadori

et al., 2016; Coblenz et al., 2020), machine learning (Janke et al., 2021; Messoudi et al.,

2021; Tagasovska et al., 2019), or forecasting (Schefzik et al., 2013; Clark et al., 2004).

This thesis adds further copula-based methodologies to this non-extensive list while

deepening the overall understanding of copulas from a theoretical perspective.

In the following, the contributions of the thesis are shortly outlined and introduced

in more detail in the paragraphs below. In the next chapter, we establish some

relevant preliminaries of this work. Most important, we introduce copulas and their

estimation. Further, we introduce some notation and conventions which we follow

throughout this thesis. However, some additional notation is provided in most of

the chapters, enabling interested readers to study the chapters independently from

the rest of the thesis. In Chapter 3, we deal with a new plug-in estimator for the

variance of the empirical copula. Chapter 4 utilizes copula representations to construct a

multivariate extension of the well-known Gini index to measure multivariate inequality.

Then, in Chapter 5, we introduce a new copula method for probabilistic forecasting

of electricity prices based on univariate point forecasts. Last, Chapter 6 combines

copulas with autoencoders and investigates whether modeling the latent space via

copula methodologies is suitable for data generation before Chapter 7 concludes the thesis.

On a more detailed level, the contributions of each chapter are as follows. Chapter 3 is

based on joined work with Oliver Grothe and Melanie Schienle. There, we consider the

most common estimate of a copula, the empirical copula. Although the asymptotics of

the empirical copula process is widely known, only a few estimators for the covariance of

this process exist. In the chapter, we present a new plug-in estimator for the covariance
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of the empirical copula process. The estimator follows directly from the empirical copula

processes’ asymptotic behavior and uses a given sample from the empirical copula for

its estimate. Notably, the presented estimator is the first in the literature that works

without using bootstrap procedures. Additionally, we extend the estimator so that it

can be applied for estimating covariances of arbitrary partitions in the empirical copula.

Such an estimator can be used to determine the variability of any function based on

the empirical copula, e.g., the survival copula or orthant probabilities, as it is the case

in insurance or risk management applications. We illustrate the good finite sample

properties of the new estimator for dimensions d ≥ 2 in a simulation study and compare

the performance with existing but more burdensome competitors. Further, we provide

ready-to-use computer code to enable researchers and practitioners to easily work with

our rather complicated estimator.

Following in Chapter 4, we propose an extension of the univariate Lorenz curve

and the Gini coefficient to the multivariate case. These two measures are widely

spread and used to assess inequality in any kind of distribution, e.g., in income

or wealth. Our extensions allow measuring inequality in more than one variable

simultaneously and are based on copulas as well. The extensions measure inequality

stemming from inequality in every single variable as well as inequality stemming

from the dependence structure of the variables. Simple non-parametric estimators for

both instruments are derived and exemplary applied to data on individual income

and wealth for various countries. In contrast to other extensions, our approach is

easy to interpret and follows clear economic reasoning. The chapter is based on the

joint paper with Oliver Grothe and Friedrich Schmid published in the Journal of

Economic Inequality (Grothe et al., 2022a) and computer code is provided in the appendix.

Next, Chapter 5 deals with the topic of forecasting electricity prices and is based on

a joint work with Oliver Grothe and Fabian Krüger published in Energy Economics

(Grothe et al., 2023). There, we consider the probabilistic forecast of hourly day-ahead
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electricity prices, which naturally exhibit a temporal dependence structure during

the day. The method we propose is based on the historical errors of 24 univariate

point forecasts from each hour, while we include optional time series components

to adjust for systematic errors. A set of 24 univariate day-ahead point forecasts

is now supplemented by the previously learned distribution of individual errors to

form the multivariate probabilistic forecast for electricity prices of the next day.

Within this forecast distribution, the correct temporal dependencies across hours

are handled by an appropriate copula model. We illustrate the method for five

benchmark datasets, including different electricity markets in Europe and the United

States. Furthermore, we demonstrate the simplicity and superior performance of the

approach with an example of constructing realistic prediction intervals for the weighted

sum of consecutive electricity prices as needed for pricing individual load profiles.

Computer code and information to reproduce all results are also provided in the appendix.

Then, Chapter 6 is based on a joint work with Maximilian Coblenz and Oliver Grothe.In

the chapter, we combine copulas with autoencoders to craft a new, powerful model for

data generation and compare it to other methods paired with autoencoders. By sampling

from the latent space of an autoencoder and decoding the samples to the original data

space, any autoencoder can simply be turned into a generative model. To do so, it is

necessary to model the autoencoders’ latent space with a distribution from which samples

can be obtained. This is the first study, which aims to discuss, assess, and compare

various techniques, including copulas, that can be used to capture the latent space and

construct a powerful generative model. Among them, the new Empirical Beta Copula

Autoencoder, which combines non-parametric copula estimation with classical kernel

density estimation for the marginal distributions. Furthermore, we provide insights

into other aspects of the methods under investigation, such as targeted sampling or

synthesizing new data with specific features as well as computer code. Last, Chapter

7 concludes the thesis and additional insights for interested readers to all chapters are

given in the appendices.



2. Preliminaries on Copulas

This section shortly introduces the basic statistical concepts used in this thesis, mainly

copulas. Besides providing a comprehensive introduction to copulas, it is intended to

serve as a point of reference for the reader while coping with the single chapters of this

thesis. In this work, we will denote random variables in capital letters and corresponding

realizations in small letters. Further, vectors and matrices are written boldly. For

better readability, we use parenthesis in the given order, [{(·)}], within the thesis. For a

throughout theoretical treatment of copulas, we recommend the books by Nelsen (2006),

Joe (2014), and Durante and Sempi (2015). The section is based on the textbooks above.

2.1. Basics

Let X = (X1, . . . , Xd) be a d-variate random vector, d ≥ 2, defined on a probability space

(Ω,Σ,P). The joint distribution function is given by F (x) = P (X1 ≤ x1, . . . , Xd ≤ xd)

for x = (x1, . . . , xd) ∈ Rd and the marginal distribution functions Fk of Xk are given

by Fk(xk) = P (Xk ≤ xk) for xk ∈ R and k ∈ {1, . . . , d}, which are assumed to be

continuous. Sklar’s theorem (Sklar 1959) then states that for every d-dimensional

cumulative distribution function F (x) with continuous, univariate margins F1, . . . , Fd

there exists a unique copula C such that F (x) can be decomposed by

F (x1, . . . , xd) = C
{
F1(x1), . . . , Fd(xd)

}
(2.1)

for all xk ∈ R and k ∈ {1, . . . , d}. We see that the transformation
{
F1(x1), . . . , Fd(xd) =

(u1, . . . , ud)
}

maps each value of x = (x1, . . . , xd) ∈ R to its corresponding quantile level

5
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u = (u1, . . . , ud) ∈ [0, 1]d. Consequently, a second point of view on copulas is that copulas

are distribution functions with one-dimensional marginals, uniformly distributed over

[0, 1]d. From Equation (2.1) follows, that we can disentangle X ∈ Rd into its marginal

distribution functions Fk for k = 1, . . . , d and its dependence structure, which is fully

governed by the copula C. Further, the expression in Equation (2.1) can be rewritten by

C(u1, . . . , ud) = F
{
F−1
1 (u1), . . . , F

−1
d (ud)

}
(2.2)

with F−1
k denoting the quantile or percentile function function for k ∈ {1, . . . , d}. Note

that this simply corresponds to Equation (2.1) after using simple manipulations. Sklar’s

theorem consequently implies that any function F , which can be expressed by a copula C

and corresponding univariate distribution functions Fk with k = 1, . . . , d, is a distribution

function. We use both representations of a copula (Equation 2.1 and Equation 2.2) in

this thesis, whichever is more convenient. Another more technical definition can be given

by considering the properties of a copula. A copula is a function that is (1) grounded,

i.e., C(u1, . . . , ud) = 0 if at least one uk = 0 for k ∈ {1, . . . , d}, (2) has uniform marginal

distributions, i.e., C(1, . . . , 1, uk, 1, . . . , 1) = uk for all uk ∈ [0, 1] and k ∈ {1, . . . , d}, and

the (3) c-volume is non-negative. The c-volume is defined by

VC =
∑

v∈[{u1,v1}×···×{ud,vd}]

sgn(v) C(v) (2.3)

where

sgn(v) =

1, if vj = aj for an even number of indices,

−1, if vj = aj for an odd number of indices,

and [{u1, v1}× · · ·×{ud, vd}] is the set of vertices on [0, 1]d, with ui ≤ vk for k = 1, . . . , d.

Put simply, the c-volume can be interpreted as probability mass in any rectangular box

of the copula, which has to be non-negative. We use this volume-computation idea later

in Chapter 3 of this thesis to construct a flexible estimator for arbitrary boxes in the
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copula domain.

Any copula is limited pointwise perfect upper (M) and lower (W ) dependence in

the sense of W (u) ≤ C(u) ≤ M(u) for all u = (u1, . . . , ud) ∈ [0, 1]d. By perfect lower

dependence we mean the lower Fréchet-Hoeffding bound given by

W (u1, . . . , ud) = max

{ d∑
k=1

uk − d+ 1 ; 0

}
, (2.4)

which is a universal lower bound for copulas, but only a copula itself for d = 2. In

contrary, the upper Fréchet-Hoeffding bound is given by

M(u1, . . . , ud) = min

{
u1, . . . , ud

}
. (2.5)

Figure 2.1 visualizes both extremes in a two-dimensional setting, depicting scatter plots of

samples from both copulas with perfect lower (negative) and upper (positive) dependence.

In the middle of the figure, an example of the independence copula Π is depicted, which

reflects stochastic independence. This copula is also called product-copula since it is

constructed as the product of its arguments, i.e.,

Π(u1, . . . , ud) =
d∏

k=1

uk (2.6)

for uk ∈ [0, 1] and k ∈ {1, . . . , d}. Note that the two limits W and M are beneficial in

many situations, e.g., where they induce the minimal and maximal values of copula-based

measurements as for the multivariate Gini coefficient developed in Chapter 4 of this thesis.

In the following, we shortly introduce some basic parametric copula models. For a

throughout treatment of different copula models and families of copulas, we refer the

reader to Chapter 6 in Durante and Sempi (2015). The probably most common copula

is the Gaussian Copula, which is constructed using Equation (2.2) and the normal
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Figure 2.1.: From left to right: Samples from the lower Fréchet-Hoeffding bound W , the
independence copula Π and the upper Fréchet-Hoeffding bound M .

distribution. Let Φρ be the CDF of a multivariate normal distribution with standard

normal margins and d × d correlation matrix ρ, and ϕ−1 the inverse of the univariate

standard normal CDF. The Gaussian copula is then given for u = (u1, . . . , ud) ∈ [0, 1]d

by

C(u1, . . . , ud) = Φρ

{
ϕ−1(u1), . . . , ϕ

−1(ud)
}
. (2.7)

while its dependence is controlled by correlation matrix ρ. Similarly, the t-copula can be

constructed using the CDF of a multivariate Students-t distributed variable tΣ,v with v

degrees of freedom, the positive-definite scatter or dispersion matrix Σ and the inverse

CDF of t-distributed variables t−1
v , namely

C(u1, . . . , ud) = tΣ,v

{
t−1
v (u1), . . . , t

−1
v (ud)

}
(2.8)

for (u1, . . . , ud) ∈ [0, 1]d. Note in Figure 2.2, that similar to the Students-t distribution,

the t-copula depicts more probability mass in the tails, i.e., in non-diagonal areas,

compared to the Gaussian copula. Both copulas are considered as elliptical copula

models since their base distribution is elliptical.
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Figure 2.2.: Sample from the t-Copula with v = 1 degrees of freedom (left) compared to
a sample from a Gaussian copula (right), both with Spearman’s ρ = 0.8.

Another type of copulas used in this thesis are Archimedean Copulas. Archimedean

copulas are constructed for u = (u1, . . . , ud) ∈ [0, 1]d by

C(u1, . . . , ud) = ψ
{
ψ−1(u1) + . . . + ψ−1(ud)

}
, (2.9)

where we call ψ the generator, or generator-function. The generator is a continuous,

decreasing function from [0,+∞] to [0, 1]. It further fulfills (1) ψ(0) = 1 and (2)

ψ(+∞) = 0, while it (3) is strictly decreasing on [0, t], where t = inf{t > 0 : ψ(0) = 0}.

The most common Archimedean copula models are the Clayton copula, the Gumbel

copula and the Frank copula. Let θ be the parameter of the copula, the generator of

the Clayton copula is ψ(u) = (1 + u)
−1/θ for θ = (0,∞), the generator of the Gumbel

copula is ψ(u) = exp(−u1/θ) for θ = [1,∞) and the generator of the Frank copula is

ψ(u) = −1/θ ln
{

1− (1− eθ)e−u
}

for θ = (0,∞). Note that an increase in θ results in an

increase of rank-based measures of dependence like Spearmans’s ρ or Kendal’s τ . See,

e.g., Chapter 5 in Nelsen (2006) an overview of this and other copula-based dependence

measures and Hofert (2008) for details and challenges in sampling from Archimedean

copulas. Figure 2.3 visualizes samples from the three most common Archimedean copula

models mentioned above.



Preliminaries on Copulas 10

Figure 2.3.: From left to right: Sample from the Clayton copula, Frank copula and
Gumbel copula, all with a dependence of Kendal’s τ = 0.8.

2.2. Estimation of Copulas

In this section, we consider different approaches of estimating the copula C from

random vector X = (X1, . . . , Xd) of which we observe n samples X1, . . . ,Xn. The

estimation of C can be done in a fully parametric, semi-parametric, or non-parametric

way, which we will address shortly in the following. For an overview on estimation,

we recommend the excellent paper from Genest and Favre (2007a). In the following,

we focus on the more common two-step approach while we refer to Section 10 in

Joe (2014) for a treatment of the one-step, full parametric maximum-likelihood estimation.

In the two-step approach, we estimate the copula C of X based on pseudo-observations

ûj = (Ûj1, . . . , Ûjd) for j = 1, . . . , n. In the full and semi-parametric setting, the pseudo-

observations are calculated by assuming the estimated marginal distributions F̂1, . . . , F̂d

follow a given distribution,

ûj =
{
F̂1(Xj1), . . . , F̂d(Xjd)

}
(2.10)

where Xjk denotes the kth element within the jth observation Xj . This approach is

sometimes also called ’inference from margins’ (IFM). However, if the parametric models

of F̂1, . . . , F̂d are wrongly specified, resulting pseudo-observations and, consequently, C,
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is subject to miss-specification (Genest and Favre, 2007a).

Alternatively, pseudo-observations ûj for j = 1, . . . , n are estimated non-parametrically

by using ranks, i.e.,

ûj =
(
Ûj1, . . . , Ûjd

)
=

{
rk(Xj1)

n
, . . . ,

rk(Xjd)

n

}
, (2.11)

where rk(·) denotes the rank of each Xjk within all n observations (X1k, . . . , Xnk)

for k = 1, . . . , d. Note that this corresponds to replacing the unknown marginal

distribution functions Fk by their empirical marginal distribution functions

F̂k(xk) = 1
n

∑n
j=1 1{Xk ≤ xk} for k ∈ {1, . . . , d} and xk ∈ R. We use this fully

rank-based approach, e.g., in Chapter 5 of this thesis for predicting day-ahead electricity

prices. Further note that in applications, pseudo-observations ûj are often estimated

using n+ 1 in the denominator of Equation (2.11) for practical purposes. This is a slight

adjustment that prevents actually having to deal with the 100% quantile.

In the second step, C is estimated based on the previously computed pseudo-

observations and the estimator is called Ĉ in the following. The parametric estimation

approach of C utilizes the pseudo-observations from Equation (2.10) (or from Equation

2.11 in the semi-parametric case) and employs maximum-likelihood methods to

estimate copula parameters θ for a given parametric copula model (Genest et al., 1995).

Alternatively, copula parameters θ can be estimated via the method of moments, which

we later do in Chapter 5 using Spearman’s ρ to parameterize a Gaussian copula. See

Tsukahara (2005a) and Joe (2005) for details or Hofert et al. (2012) for estimation in the

case of archimedean copulas.

For the non-parametric estimator of C, we focus on the empirical copula denoted by

Ĉn. It does not assume any parametric form of the copula and is defined as the empirical



Preliminaries on Copulas 12

CDF of pseudo-observations from Equation (2.11), i.e.,

Ĉn(u) =
1

n

n∑
j=1

1{ûj ≤ u} (2.12)

for u ∈ [0, 1]d. This definition coincides with estimating Ĉn directly on the ranks of the

data by changing the condition in the indicator functions to ranks. Chapter 3 deals

with the variance related to the asymptotic process of this simple but widely spread

estimator. Further, it might be useful to work with a smoothed version of the resulting

step function given by Equation (2.12) as done by using the empirical beta copula in

Chapter 6 of this thesis.



3. Approximation of the Empirical

Copula Process Revisited: A new

Plug-In Estimator

The following chapter is based on joint work with Oliver Grothe and Melanie Schienle and

was already presented at the International Conference of Ordered Statistical Data 2022 in

Napoli (Italy) and at the German Probability and Statistic Days 2023 in Essen (Germany).

The chapter is the most theoretically orientated in this thesis but is still equipped with

an extensive simulation study and ready-to-use computer code for practitioners.

3.1. Introduction

When the true underlying copula C of data at hand is not known but of interest, the

copula has to be estimated. Several estimation procedures have been introduced in the

previous chapter (Chapter 2.2). In most cases, the empirical copula Ĉn is used as a

simple estimator for the unknown copula C. The related asymptotics of the empirical

copula process is known to weakly converge to a Gaussian field GC , as investigated by

several authors (Stute, 1984; Ruschendorf, 1976; Bücher and Volgushev, 2013; Fermanian

et al., 2004; Genest and Segers, 2009; Segers, 2012; Tsukahara, 2005b; Gaenssler and

Stute, 1987). However, its corresponding covariance structure includes the unknown

copula function and its derivatives. Therefore, estimating covariances is not easy, and

existing proposals are based on bootstrap procedures. See, e.g., Bücher and Dette (2010)

13
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for an overview and a comparative simulation study.

This chapter makes two contributions toward covariance estimation in empirical

copulas. First, we present a plug-in estimator for empirical copula process variances and

covariances. It is constructed using the well-known theory regarding the empirical copula

process. We illustrate its good finite sample properties in a simulation study and compare

it with results obtained in a study from Bücher and Dette (2010) for bootstrap procedures.

Secondly, we provide an expression for the exact computation and estimation of variances

and covariances from arbitrary partitions in the domain of an empirical copula process,

i.e., rectangles in the domain of a d-dimensional empirical copula [0, 1]d. The formula

emerges from the introduced covariance arithmetics and the elegant approach from

Cherubini and Romagnoli (2009) for the computation of copula partitions, i.e., the

volume as introduced in Chapter 2. The variance and covariance of such partitions in the

empirical copula process are of particular interest, e.g., for the computation of the variance

of a survival copula. Additionally, ready-to-use computer code is provided in the appendix.

The remainder of the chapter proceeds as follows. Section 3.2 reiterates and completes

some theoretical foundations and necessary notation from Chapter 2. Most important,

the empirical copula process and its covariance structure are introduced in this section. In

Section 3.3, we derive the plug-in estimator for the covariance of empirical copulas. Then,

in Section 3.4, an estimator for the variance of arbitrary partitions in the d-dimensional

empirical copula process is presented. Simulations demonstrate the practical ability of

the derived estimator in Section 3.5 and Section 3.6 concludes the chapter.

3.2. Preliminaries and Copulas

Be X = (X1, . . . , Xd) a d-variate random vector with d ≥ 2 defined on a probability space

(Ω,Σ,P) of which we observe n iid copies X1, . . . ,Xn. The joint distribution function of

X is given by F (x) = Pr(X1 ≤ x1, . . . , Xd ≤ xd) and the marginal distribution functions
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Fk of Xk are given by Fk(xk) = Pr(Xk ≤ xk) for x = (x1, . . . , xd) ∈ Rd. Throughout

the chapter, we use ⇝ to indicate weak convergence and ∧ to mark the element-wise

minimum of a vector.

As presented in Chapter 2, every d-dimensional cumulative distribution function F (x)

with continuous, univariate margins F1, . . . , Fd can be decomposed by F (x1, . . . , xd) =

C
{
F1(x1), . . . , Fd(xd)

}
for all xk ∈ R and k ∈ {1, . . . , d}, where C is the corresponding

copula (Sklar, 1959). Further, remember from Chapter 2 that the simplest non-parametric

estimator for the copula C is given by the empirical copula Ĉn. With a slightly different

notation than previously introduced, we estimate Ĉn based on (normalized) ranks, i.e.,

empirical quantile levels, of each marginal distribution (see Deheuvels 1979)

Ĉn(u) = 1/n
n∑

j=1

d∏
k=1

1

{
rj,k
n

≤ uk

}
, (3.1)

for any u = (u1, . . . , ud) ∈ [0, 1]d. Further, rj,k denotes ranks within the copies

X1k, . . . , Xnk i.e., rj,k =
∑n

i=1 1

{
Xi,k ≤ Xj,k

}
for k ∈ {1, . . . , d}. Generally, for the

empirical copula process

Cn(u) =
√
n
{
Ĉn(u) − C(u)

}
. (3.2)

holds a weak convergence result for n→ ∞ to a continuous centered Gaussian field GC

on [0, 1]d as stated in the following theorem.

Theorem 3.2.1. (Segers 2012) Assume that for each k ∈ {1, . . . , d} there exist a

continuous partial derivative ∂kC on the set Vd,k := {u ∈ [0, 1]d : 0 < uk < 1}, we get for

n→ ∞:

Cn(u) =
√
n
{
Ĉn(u) − C(u)

}
⇝ GC in l∞([0, 1]d), (3.3)
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where

GC(u) = B(u) −
d∑

k=1

∂kC(u)B(u(k)), (3.4)

with u(k) = (1, ..., 1, uk, 1, ..., 1) for k ∈ {1, . . . , d} and B is a tight limiting Gaussian

process on [0, 1]d with

cov

{
B(u),B(v)

}
= C(u ∧ v) − C(u)C(v) for any u,v ∈ [0, 1]d.

See Segers (2012) for further details and the proof of the theorem. Note that Bücher

and Volgushev (2013) further showed that the above result also holds for some copulas

under certain serial dependence. GC(u) in Equation (3.4) can be interpreted as follows.

B(u) characterizes the process if the true margins Fk were used instead of the empirical

version F̂k, i.e., estimating empirical quantile levels by using ranks. Thus, the product of

the partial derivatives ∂kC(u) and the ’marginalized’ process B(u(k)) can be referenced

as resulting ’discrepancy’ of not knowing the true marginal distributions Fk for k ∈
{1, . . . , d}.

3.3. Plug-in Estimator

We now introduce the proposed plug-in estimator for the covariance of the empirical

copula. For this purpose, we estimate the covariance of the empirical copula process,

where the true copula C is replaced by its empirical counterpart Ĉn. The covariance

of an empirical copula Ĉn is then estimated by the scaled estimated covariance of the

empirical copula process, i.e.,

ĉov

{
Ĉn(u), Ĉn(v)

}
:=

1

n
· ĉov

{
Cn(u),Cn(v)

}
. (3.5)

The covariance of the empirical copula process and its asymptotics are outlined in the

following. From the previous section, we know that the covariance of the empirical copula
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process Cn (see Equation 3.3 and Equation 3.4) can be expressed by

cov

{
GC(u),GC(v)

}
= cov

{
B(u) −

d∑
k1=1

∂k1C(u)B(u(k1)),B(v) −
d∑

k2=1

∂k2C(v)B(v(k2))

}
,

(3.6)

with u = (u1, . . . , ud) and v = (v1, . . . , vd) for d ∈ {1, . . . , d}. This can now be further

dissolved into:

cov

{
GC(u),GC(v)

}
= C(u ∧ v) − C(u)C(v)

+

d∑
k1=1

d∑
k2=1

∂k1C(u)∂k2C(v)

{
C(u(k1) ∧ v(k2)) − C(u(k1))C(v(k2))

}

+
d∑

k1=1

∂k1C(u)

{
C(u(k1) ∧ v) − C(u(k1))C(v)

}

+
d∑

k2=1

∂k2C(v)

{
C(u ∧ v(k2)) − C(u)C(v(k2))

}
.

Step-by-step transformations of the equation above are given in the appendix to this

chapter at the end of this thesis.

Note that cov
{
GC(u),GC(v)

}
still contains the true underlying copula C and, thus, is

not an estimator so far. To obtain the plug-in estimator ĉov
{
Cn(u),Cn(v)

}
, we estimate

the desired covariance by replacing the true copula C with its empirical counterpart Ĉn.

The partial derivatives ∂kC(u) are also approximated by their empirical counterparts

similar to Rémillard and Scaillet (2009), i.e.,

∂kCn(u)̂ =
Ĉn(u1, . . . , uk + h, . . . , ud) − Ĉn(u1, . . . , uk − h, . . . , ud)

2h
, (3.7)

for small h < 0, where we set h =: (1/
√
n) and k ∈ {1, . . . , d}.
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Consequently assuming the existence of continuous partial derivatives as defined in

3.2.1, an estimator for the asymptotic covariance of the empirical copula Ĉn is given by

ĉov

{
Cn(u),Cn(v)

}
:= Ĉn(u ∧ v) − Ĉn(u)Ĉn(v)

+
d∑

k1=1

d∑
k2=1

∂k1Cn(u)̂∂k2Cn(v)̂

{
Ĉn(u(k1) ∧ v(k2)) − Ĉn(u(k1))Ĉn(v(k2))

}

+
d∑

k2=1

∂k2Cn(v)̂

{
Ĉn(u ∧ v(k2)) − Ĉn(u)Ĉn(v(k2))

}
.

(3.8)

Theorem 3.3.1 below states the asymptotics of the presented estimator providing the

respective weak convergence results.

Theorem 3.3.1. Under assumption defined in Theorem 3.2.1, we get for n→ ∞ :

ĉov

{
Cn(u),Cn(v)

}
⇝ cov

{
Cn(u),Cn(v)

}
.

Proof. Since Ĉn(u) ⇝ C(u) and ∂kCn(u)̂ ⇝ ∂kC(u) for k ∈ {1, . . . , d} for n → ∞ in

u ∈ [0, 1]d, each element of the sum converges towards the true value (Rémillard and

Scaillet, 2009), which implies a weak convergence of the total estimator to the true value,

i.e., an element-wise convergence.

Example 3.3.1 illustrates the plug-in procedure and variance estimation in a two-

dimensional copula.
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Example 3.3.1. Consider a two-dimensional empirical copula Ĉn, d = 2, and derive the

estimator for the variance of its empirical copula process Cn at u = (u1, u2) ∈ [0, 1]2 by

cov

{
GC(u),GC(u)

}
= var

{
GC(u)

}
= var

{
B(u) −

2∑
i=1

∂iC(u)B(u(i))

}
= var

{
B(u)

}
+ var

{
∂1C(u)B(u1, 1)

}
+ var

{
∂2C(u)B(1, u2)

}
− 2 · cov

{
B(u), ∂1C(u)B(u1, 1)

}
− 2 · cov

{
B(u), ∂2Cn(u)B(1, u2)

}
+ 2 · cov

{
∂1C(u)B(u1, 1), ∂2C(u)B(1, u2)

}
.

(3.9)

Dissolve and plug-in the empirical copula Ĉn to obtain the estimator.

v̂ar

{
Cn(u)

}
=

{
Ĉn(u1, u2) − Ĉn(u1, u2)Ĉn(u1, u2)

}
+ ∂1Cn(u)̂

2
{
Ĉn(u1, 1) − Ĉn(u1, 1)Ĉn(u1, 1)

}
+ ∂2Cn(u)̂

2
{
Ĉn(1, u2) − Ĉn(1, u2)Ĉn(1, u2)

}
− 2∂1Cn(u)̂

{
Ĉn(u1, u2) − Ĉn(u1, u2)Ĉn(u1, 1)

}
− 2∂2Cn(u)̂

{
Ĉn(u1, u2) − Ĉn(u1, u2)Ĉn(1, u2)

}
+ 2∂1Cn(u)̂∂2Cn(u)̂

{
Ĉn(u1, u2) − Ĉn(u1, 1)Ĉn(1, u2)

}
.

(3.10)

Simulations have shown that in general covariance terms in Equation (3.9) and the

partial derivatives in Equation (3.10) can have substantial size effects on the resulting

estimate and should not be neglected.

Remark 3.3.1. Calculating the variance without the product of the partial derivatives

∂kC(u) and the ’marginalized’ process B(u(k)) for u ∈ [0, 1]d, i.e., assuming to know the

true marginal distributions Fk for k ∈ {1, . . . , d}, corresponds to calculating the variance
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of a Bernoulli distribution. More specifically, if p corresponds to the value of the underlying

copula model at u, the variance of the empirical copula process at u is calculated by p(1−p)

similar to a Bernoulli distribution with parameter p. Consequently, the simple plug-in

estimator for the case with known marginal distributions can be computed from a sample

with size n by estimating p via p̂(u) = 1/n
∑n

i=1 1{ui≤u}, where ui is the exact quantile

level vector for a observation Xi in the sample, i.e., ui =
{
F1(Xi1), F2(Xi2), . . . , Fd(Xid)

}
(note that this corresponds to the IFM estimation approach from Chapter 2.2 with known

marginal distributions). This can also be interpreted as the variance of getting exactly

p̂/n successes (single observation of copula sample is smaller or equal to the values of u

in each element) in n independent Bernoulli trials.

3.4. (Co-)Variance of Copula Partitions

Based on the plug-in estimator derived above, we introduce an algorithm for estimating

variances of arbitrary copula partitions, i.e., variances of the empirical copula process

in any d-dimensional rectangle of the empirical copula in [0, 1]d. Computation

of d−dimensional copula partitions, which are needed for the estimator, is very

cumbersome, and thus, we first recapitulate an elegant algorithm to do so based on

binary representations of integers. In the second step, we combine this algorithm with

the plug-in estimator to estimate variances for arbitrary copula partitions. Note that

resulting formulas and expressions include many terms stemming from pulling apart the

occurring covariances of sums, as illustrated in an example at the end of this section.

Due to this high resulting complexity, we provide ready-to-use computer code in the

appendix.

According to Cherubini and Romagnoli (2009), the volume of a d-dimensional partition

of a copula, defined by S = [u(low),u(up)] ∈ [0, 1]d with u(low) ≤ u(up) (element-wise), i.e.,
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a d-dimensional rectangle, is computed by

VC(S) =
2d−1∑
i=0

(−1)t(i)C
[
g
{
p(i)

}]
.

Here p(i) represents a d-dimensional vector of ones and zeros corresponding to the binary

representation of i, resulting in g
{
p(i)

}
a d-dimensional vector such that gj = u

(up)
j

if pj = 0 and gj = u
(low)
j if pj = 1. The index j denotes the j-th element of the

corresponding vector in u
(up)
j , u

(low)
j as well as in pj and gj . Last, t(i) = |p(i)| counts the

number of elements equal to one in p(i) and thereby determines the sign. For example,

in dimensions d = 2 follows the well-known formula

VC(S) =

3∑
i=0

(−1)t(i)C
[
g
{
p(i)

}]
= C

{
g(0, 0)

}
− C

{
g(1, 0)

}
− C

{
g(0, 1)

}
+ C

{
g(1, 1)

}
= C

(
u
(up)
1 , u

(up)
2

)
− C

(
u
(low)
1 , u

(up)
2

)
− C

(
u
(up)
1 , u

(low)
2

)
+ C

(
u
(low)
1 , u

(low)
2

)
.

Note that the same formula applies for the volume of the empirical copula by replacing

C by Ĉn, hence similarly for Cn (Equation 3.3) and GC (Equation 3.4). Thus, on these

d-dimensional partitions of [0, 1]d the empirical copula process Cn and the asymptotic

process approximation GC are computed by

VCn(S1) =
2d−1∑
i=0

(−1)t(i)Cn

[
g
{
p(i)

}]
.

and

VGC
(S) =

2d−1∑
i=0

(−1)t(i)GC

[
g
{
p(i)

}]
.

From now on, we replace the expression g{p(·)} by δ(i) for the sake of better readability.
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In the next step, we combine the volume computation with the derived plug-in

covariance estimator to approximate the covariance of two empirical copula partitions,

i.e., the covariance of the corresponding empirical copula processes in the given partitions.

Remember that both partitions are positioned within the same copula, and therefore,

strictly speaking, both copula processes actually represent the same process evaluated at

different points. The partitions are defined by arbitrary d-dimensional rectangles S1 and S2

in the domain of the empirical copula given by S1 = [u(low),u(up)] and S2 = [v(low),v(up)]

with u
(low)
k , u

(up)
k , v

(low)
k , v

(up)
k ∈ [0, 1] and u

(low)
k ≤ u

(up)
k , v

(low)
k ≤ v

(up)
k for k = 1, . . . , d.

Analogous to the previous section, we first consider the asymptotic covariance of the

empirical copula process before applying the plug-in principle for estimation. The

asymptotic covariance of the empirical copula process of copula partitions S1 and S2

emerges to

cov

{
VGC

(S1), VGC
(S2)

}
= cov

[ 2d−1∑
i=0

(−1)t(i)GC

{
δ(i)

}
,
2d−1∑
h=0

(−1)t(h)GC

{
δ(h)

}]

= cov

( 2d−1∑
i=0

(−1)t(i)
[
B
{
δ(i)

}
−

d∑
k1=1

∂k1C
{
δ(i)

}
B
{
δ(i)(k1)

}]
,

2d−1∑
h=0

(−1)t(h)
[
B
{
δ(h)

}
−

d∑
k2=1

∂k2C
{
δ(h)

}
B
{
δ(h)(k2)

}])
.

Again, δ, which subsumes functions p and g, is used to address the correct value of

ui and uh. The index k1, k2 = 0 indicates the absence of marginalization in B, i.e., it

indicates the ’full’ B(u1, u2, . . . , ud) while k1, k2 ≥ 1 addresses the marginalized input

vector B(1, . . . , 1, uk1/k2 , 1 . . . , 1) for k1, k2 ∈ {1, . . . , d}.

Next, the expression is further dissolved by decomposing the out covariance term and

rearranging the resulting terms. In favour of a short notation, two additional variables
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a(·) and t(·) are introduced and the formula results in

cov

{
VGC

(S1),VGC
(S2)

}
=

2d−1∑
i=0

2d−1∑
h=0

d∑
k1=0

d∑
k2=0

t(i,h,k1,k2)a(i,k1)a(h,k2)cov

[
B
{
δ(i)(k1)

}
,B

{
δ(h)(k2)

}]
.

(3.11)

Here, a(i,k1) encodes the partial derivatives defined by

a(i,k1) =

[
1{k1=0} + 1{k1>0}

∂C

{
δ(i)

}
∂uk1

]
, (3.12)

with a similar expression for a(h,k2) respectively. Note that indices k1 and k2 are extended

by 0, which now indicates the absence of the partial derivative, i.e., a(i,k1), a(h,k2) = 1.

Secondly, t(i,h,k1,k2) determines the sign of the summand by

t(i,h,k1,k2) = (−1)|p(i)|+|p(h)|+r1(k1)+r2(k2),

with |p(i)| and |p(h)| counting the number of elements equal to one in p(i) and p(h)

(d-dimensional vector of ones and zeros subsummized in δ(i)), and r1(k1) = 1{k1>0} as

well as r2(k2) = 1{k2>0}, respectively.

Remark 3.4.1. Equation (3.11) can be further decomposed in variance and covariance

terms (similar to Example 3.3.1) for computing the variance of an arbitrary box in the

copula’s domain, i.e., if S = S1 = S2. With the help of a(j,k0) defined similar as a(i,k1)
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and a(h,k2) follows

var

{
VGC

(S)

}
=

2d−1∑
j=0

d∑
k0=0

a2(j,k0)var

[
B
{
δ(j)(k0)

}]

+ 2

2d−1∑
i=0

2d−1∑
h=0

d∑
k1=0

∑
k2 ̸=k1

t(i,h,k1,k2)a(i,k1)a(h,k2)cov

[
B
{
δ(i)(k1)

}
,B

{
δ(h)(k2)

}]

+ 2
2d−1∑
i=0

∑
h̸=i

d∑
k1=0

∑
k1=k2

t(i,h,k1,k2)a(i,k1)a(h,k2)cov

[
B
{
δ(i)(k1)

}
,B

{
δ(h)(k2)

}]
.

Note that instead of aggregating the last two sums (setting k2 to k1), we decided to use

the given notation to make them more comprehensible.

Last, for the plug-in estimator, the expression is further dissolved by decomposing

the covariances and collecting the resulting terms. Then, C is estimated via Ĉn and

the partial derivatives ∂iC(u) are substituted by their empirical counterparts ∂iCn̂ for

i ∈ {1, . . . , d}. Under the assumption of existing continuous partial derivatives, we define

two arbitrary empirical copula partitions S1 and S2 defined as above. The resulting plug-

in estimator for the covariance of the empirical copula process of arbitrary rectangular

partitions is given by

ĉov

{
VCn(S1), VCn(S2)

}

:=

2d−1∑
i=0

2d−1∑
h=0

d∑
k1=0

d∑
k2=0

t(i,h,k1,k2)â(i,k1)â(h,k2)

[
Ĉn

{
δ(i)(k1)

}
∧ Ĉn

{
δ(h)(k2)

}

− Ĉn

{
δ(i)(k1)

}
Ĉn

{
δ(h)(k2)

}]
,

(3.13)

where â(·) is defined similarly to Equation (3.12), using the estimator for the partial

derivative from Equation (3.7).
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Corollary 3.4.1. Analogously to the estimator given in Theorem 3.3.1, the estimator

ĉov
{
VCn(S1), VCn(S2)

}
converges weakly to the true value of cov

{
VCn(S1), VCn(S2)

}
for

n→ ∞.

Proof. Follows directly from the proof of Theorem 3.3.1, i.e., the from the element-wise

weak convergence of the components of the sum.

Example 3.4.1 below (and continued in the appendix) computes the variance of a

two-dimensional empirical copula process in the upper right corner of the empirical

copula, i.e., the survival copula, step-by-step.

Example 3.4.1. Consider the following example of a two-dimensional copula, d = 2,

and focus on the grey marked rectangle S in the upper right corner of the copula domain

limited by u(up) = (u
(up)
1 , u

(up)
2 ) = (1, 1) and u(low) = (u

(low)
1 , u

(low)
2 ) as shown in Figure

3.1.

u1

u2

u(up)

u(low)

S

Figure 3.1.: Grey marked rectange S in the upper right corner of the copula domain

[0, 1]2 enclosed by u(up) = (u
(up)
1 , u

(up)
2 ) and u(low) = (u

(low)
1 , u

(low)
2 ).
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The asymptotic variance of the empirical copula process in the marked area S is

estimated in accordance with the computation of the volume of the area considered.

v̂ar

{
VCn(S)

}
=

var

{
BCn(u

(up)
1 , u

(up)
2 ) − ∂Cn(u

(up)
1 ,u

(up)
2 )

∂u
(up)
1̂

BCn(u
(up)
1 , 1) − ∂C(u

(up)
1 ,u

(up)
2 )

∂u
(up)
2̂

BCn(1, u
(up)
2 )

− BCn(u
(low)
1 , u

(up)
2 ) +

∂Cn(u
(low)
1 ,u

(up)
2 )

∂u
(low)
1̂

BCn(u
(low)
1 , 1) +

∂Cn(u
(low)
1 ,u

(up)
2 )

∂u
(up)
2̂

BCn(1, u
(up)
2 )

− BCn(u
(up)
1 , u

(low)
2 ) +

∂Cn(u
(up)
1 ,u

(low)
2 )

∂u
(up)
1̂

BCn(u
(up)
1 , 1) +

∂Cn(u
(up)
1 ,u

(low)
2 )

∂u
(low)
2̂

BCn(1, u
(low)
2 )

+ BCn(u
(low)
1 , u

(low)
2 ) − ∂Cn(u

(low)
1 ,u

(low)
2 )

∂u
(low)
1̂

BCn(u
(low)
1 , 1) − ∂Cn(u

(low)
1 ,u

(low)
2 )

∂u
(low)
2̂

BCn(1, u
(low)
2 )

}
Next, this expression of the variance is split up and further dissolved. The complete

dissolving of the term can be found in the appendix.

3.5. Simulation Results

In the following, we present simulation results in different dimensions and sample sizes.

First, we evaluate the plug-in estimator given in Section 3.3 and compare our results

with the results obtained by the bootstrap approximations of Bücher and Dette (2010).

Secondly, we perform simulations to estimate the variance of copula partitions for

dimensions d ≥ 2, i.e., d = 3, 4 and 5. Note that similar to Bücher and Dette (2010), we

present the scaled covariances, i.e., the covariance of the empirical copula process.

3.5.1. Two Dimensions

For the two-dimensional simulation study, we consider the Clayton copula (see Chapter 2)

with parameter θ = 1 (corresponds to Kendal’s τ = 1/3). Thus, we are able to compare

our results with the results of the simulation study from Bücher and Dette (2010) for

various bootstrap approximations of the empirical copula process. More precisely, we

report the true covariances of the limiting process
(
first row, calculated using Equation
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3.6
)

and the covariances of the simulated process (second row) based on a sample of size

n = 100 on four different points in the copula domain {( i
3 ,

j
3), i, j = 1, 2} in Table 3.1. The

simulated values, entitled Simulated in the table, demonstrate the quick approximation

of the limiting process and serve as a benchmark for the performance of our estimator.

They are obtained by calculating the variance/covariance out of 106 simulation runs.

The last row reports the results of the proposed plug-in estimator based on the average

of 1000 simulation runs, with the corresponding mean squared error (MSE) scaled by a

factor of 104 below.

n=100 (1/3,1/3) (1/3,2/3) (2/3,1/3) (2/3,2/3)
True (1/3,1/3) 0.0486 0.0202 0.0202 0.0100

(1/3,2/3) 0.0338 0.0093 0.0185
(2/3,1/3) 0.0338 0.0185
(2/3,2/3) 0.0508

Simulated (1/3,1/3) 0.0489 0.0198 0.0198 0.0097
(1/3,2/3) 0.0333 0.0089 0.0181
(2/3,1/3) 0.0334 0.0181
(2/3,2/3) 0.0510

Plug-in (1/3,1/3) 0.0509
0.5488

0.0198
0.4653

0.0201
0.4841

0.0091
0.3064

(1/3,2/3) 0.0348
0.8551

0.0087
0.1626

0.0181
0.2526

(2/3,1/3) 0.0349
0.8665

0.0178
0.2576

(2/3,2/3) 0.0539
0.4337

Table 3.1.: Sample covariances for the Clayton copula with θ = 1 and sample size n = 100.
Simulated values result from 106 simulation runs, and mean squared error
values (multiplied by 104) for the plug-in estimator are given below the
estimate (obtained from 1000 estimates).

For comparison, Table 3.2 displays the results from the multiplier bootstrap with

estimated partial derivative bootstrap estimators αpdm, which has proven to has the best

finite-sample performance in the study of Bücher and Dette (2010) and the standard

beta bootstrap αβ by Kiriliouk et al. (2021). The values of αpdm are copied from Table 1

and 3 in Bücher and Dette (2010), with MSE values given below. For the αβ , we report
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MSE values only, copied from Table 2.1 in Kiriliouk et al. (2021). Further, we report

results for the αpdm, the αβ and our plug-in estimator for a sample size of n = 200 in

Appendix B.

n=100 (1/3,1/3) (1/3,2/3) (2/3,1/3) (2/3,2/3)
αpdm (1/3,1/3) 0.0527

0.8887
0.0205
0.5210

0.0205
0.5222

0.0093
0.3716

(1/3,2/3) 0.0361
1.0112

0.0092
0.1799

0.0188
0.2988

(2/3,1/3) 0.0360
0.9899

0.0188
0.2818

(2/3,2/3) 0.0554
0.6250

αβ (1/3,1/3) −
0.9992

−
0.3402

−
0.3473

−
0.1956

(1/3,2/3) −
0.7887

−
0.1294

−
0.1889

(2/3,1/3) −
0.7644

−
0.1821

(2/3,2/3) −
0.7108

Table 3.2.: Sample covariances for the Clayton copula with θ = 1 and sample size n = 100.
Mean squared error values (multiplied by 104) for the bootstrap estimators
are given below the estimate (obtained from 1000 estimates).

In summary, we observe that the plug-in estimator yields a better result than the best

bootstrap method from the study of Bücher and Dette (2010) in absolute values and

measured by the MSE at all points. Comparing our plug-in estimator with bootstrap

procedure based on the empirical beta copula (Segers et al., 2017) results in a more

balanced conclusion. While αβ seems to have a slight advantage over the proposed plug-in

estimator in some cases (but not all), the plug-in estimator performs better in others.

However, αβ still relies on bootstrap methods.

3.5.2. Three, four, and five Dimensions

For dimensions d ≥ 2, we stick with our example and consider a Clayton copula with

parameter θ = 1 again. For the evaluation, we consider four different rectangular boxes
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with positions B1, B2, B3, B4 in the d-dimensional domain of the copula [0, 1]d:

B1 :=

{
u(low) =

(
0, 0, . . . , 0

)
,u(up) =

(
1

3
,
1

3
. . . ,

1

3

)}
B2 :=

{
u(low) =

(
2

3
,

2

3
, . . . ,

2

3

)
,u(up) =

(
1, 1, . . . , 1

)}
B3 :=

{
u(low) =

(
1

3
,

1

3
, . . . ,

1

3

)
,u(up) =

(
2

3
,
2

3
, . . . ,

2

3

)}
B4 :=

{
u(low) =

(
1

3
,

2

3
,
1

3
, . . .

)
,u(up) =

(
2

3
, 1,

2

3
, . . .

)}
.

The first position B1 represents the empirical copula, whereas the second position B2

corresponds to the empirical survival copula, looking upwards. Third, B3 is positioned

in the middle of the domain, and last, B4 is off-diagonal, more remotely positioned.

The positions are intended to represent structural different areas in the copula domain.

Again, values entitled Simulated in Table 3.3 are calculated out of 106 simulation runs

to show the approximation of the limiting process given in the first column (True).

Similarly, plug-in estimates, given in the third column, result from 1000 estimates with

the corresponding Mean Squared Error (MSE) below. We further report results for the

Gaussian copula (see Chapter 2) in Table 3.4 with Spearman’s ρ = 0.5, which roughly

corresponds to the same strength of dependence (τ = 1/3) as before and covariance and

correlation matrix

ρ =



1 ρ . . . ρ ρ

ρ 1
. . .

. . . ρ
...

. . .
. . .

. . .
...

ρ
. . .

. . . 1 ρ

ρ ρ . . . ρ 1


.
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True Simulated Plug-in
d = 3 n = 100 n = 1000 n = 100 n = 1000

B1 0.0579 0.0616 0.0561 0.0594
0.4989

0.0593
0.1531

B2 0.0512 0.0524 0.0541 0.0534
0.6927

0.0528
0.1272

B3 0.0356 0.0384 0.0359 0.0425
1.5936

0.0384
0.1933

B4 0.0316 0.0328 0.0342 0.0358
1.0425

0.0336
0.1219

d = 4 n = 100 n = 1000 n = 100 n = 1000
B1 0.0570 0.0553 0.0544 0.0582

0.61739
0.0583
0.1430

B2 0.0431 0.0426 0.0449 0.0452
0.8338

0.0444
0.1207

B3 0.0186 0.0191 0.0184 0.0239
1.3881

0.0202
0.1362

B4 0.01690 0.0185 0.0175 0.0190
0.9750

0.0179
0.1011

d = 5 n = 100 n = 1000 n = 100 n = 1000
B1 0.0535 0.0477 0.0502 0.0545

0.7602
0.0547
0.1380

B2 0.0351 0.0345 0.0346 0.0365
1.0824

0.0362
0.1323

B3 0.0088 0.0095 0.0091 0.0115
0.9083

0.0098
0.0862

B4 0.0074 0.0074 0.0068 0.0091
0.6127

0.0081
0.0559

Table 3.3.: Sample covariances for the Clayton copula with θ = 1 different sample sizes.
MSE values (multiplied by 104) for the estimators are given below the mean
estimate (obtained from 1000 estimates).

We observe that the plug-in estimator approximates the true values of the limiting

process quite well in all boxes regardless of dimensions d. This also confirms the

estimator’s overall applicability for dimensions ≥ 2. Regarding the MSE, the values are

comparable with the results from two dimensions and increase only slightly with growing

dimensions. Such an increase is not surprising, as each region in the copula domain is

becoming more sparse. Simultaneously, a significant improvement in the MSE can be

observed for growing sample sizes. As the magnitude of the improvement seems to be

independent of the dimensionality, we believe this is mainly driven by the improved

estimation of the partial derivatives.

Even more, insights can be found if we inspect the MSE relative to the actual value of

the variance in each box, i.e., the ratio of the MSE and actual value presented in Table

3.5 for the Clayton copula or Table 3.6 for the Gaussian copula. We observe that B1
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True Simulated Plug-in
d = 3 n = 100 n = 1000 n = 100 n = 1000

B1 0.0531 0.0529 0.0532 0.0556
0.4075

0.0545
0.0562

B2 0.0531 0.0529 0.0529 0.0554
0.3617

0.0545
0.0554

B3 0.0345 0.0363 0.0347 0.0410
1.4871

0.0370
0.1581

B4 0.0271 0.0278 0.0271 0.0311
1.0057

0.0288
0.1172

d = 4 n = 100 n = 1000 n = 100 n = 1000
B1 0.0489 0.0485 0.0486 0.0510

0.5552
0.0502
0.0602

B2 0.0489 0.0484 0.0491 0.0509
0.5576

0.0502
0.0570

B3 0.0173 0.0186 0.0176 0.0220
1.2400

0.0188
0.1221

B4 0.0133 0.0135 0.0133 0.0153
0.8278

0.0140
0.0853

d = 5 n = 100 n = 1000 n = 100 n = 1000
B1 0.0434 0.0426 0.0432 0.0452

0.7925
0.0444
0.0769

B2 0.0434 0.0428 0.0433 0.0447
0.7864

0.0445
0.0738

B3 0.0080 0.0087 0.0080 0.0106
0.8153

0.0087
0.0731

B4 0.0051 0.0054 0.0053 0.0063
0.4639

0.0057
0.0476

Table 3.4.: Sample covariances for the Gaussian copula with ρ = 0.5 and different sample
sizes. MSE values (multiplied by 104) for the estimators are given below the
mean estimate (obtained from 1000 estimates).

consistently yields the smallest relative MSE, closely followed by B2 and B4. B3 exhibits

the highest relative MSE over all boxes. We believe this order is mainly driven by the

number of copula estimations, which include the copula boundary, i.e., zero and one,

as an argument of the copula. In this case, the estimation is much more precise since

it directly implies a value of zero or eliminates the corresponding dimension fully from

the estimation. The difference between B1 and B2 is than solely based on the density

of observations within the specific box. The number of estimations at the boundaries

of the copula also explains the absence of a linear reduction in the MSE (assuming a

bias of 0) while the sample size is increased. In these cases, a higher number of samples

only affects some of the terms of the sum involved in the estimation; thus, the higher

precision does not fully emerge. Or put into another perspective, some of the terms are

already estimated very precisely (or perfectly) for small sample sizes, hence increasing
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the samples size does not benefit these terms and the overall estimator in the same way

as it would be the case without the estimations at the copula boundary.

d = 3 d = 4 d = 5
n = 100 n = 1000 n = 100 n = 1000 n = 100 n = 1000

B1 8.6165 2.6442 10.8314 2.5087 14.2093 2.5794
B2 13.5293 2.4844 19.3457 2.8005 30.8376 3.7692
B3 44.7640 5.4298 74.6290 7.3226 103.2159 9.7955
B4 32.9905 3.8576 57.6923 5.9822 82.7973 7.5541

Table 3.5.: Relative MSE of the plug-in estimator over boxes B1, B2, B3 and B4 for the
Clayton copula with θ = 1 and different sample sizes. The MSE is calculated
over 1000 simulation runs and multiplied by 104.

Relative MSE values for the Gaussian copula are given in Table 3.6, strengthening our

interpretation above. These values are also calculated as the ratio between the MSE and

true value reported in Table 3.4.

d = 3 d = 4 d = 5
n = 100 n = 1000 n = 100 n = 1000 n = 100 n = 1000

B1 7.6742 1.0584 11.3538 1.2311 18.2604 1.7719
B2 6.8117 1.0433 11.4029 1.1656 18.1198 1.7004
B3 43.1043 4.5826 71.6763 7.0578 101.9125 9.1375
B4 37.1107 4.3247 62.2406 6.4135 90.9607 9.3333

Table 3.6.: Relative MSE of the plug-in estimator over boxes B1, B2, B3 and B4 for
the Gaussian copula with ρ = 0.5 and different sample sizes. The MSE is
calculated over 1000 simulation runs and multiplied by 104.

3.6. Conclusion

In this chapter, we presented a new plug-in estimator for variances and covariances of

the empirical copula process, i.e., the empirical copula. We further introduced a formula

for calculating the estimated variance and covariance of the empirical copula process in

any arbitrary rectangle partition of the d-dimensional copula domain. We illustrated its

good finite sample properties in a simulation study, where the MSE seems mainly driven

by the sample size used for estimation. Further, a ready-to-use computer code for the
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estimator is provided. For future research, the given estimator could be enhanced and,

e.g., new testing methods for copulas could be developed on its basis.



4. A Multivariate Extension of the

Lorenz Curve

This chapter is based on Grothe et al. (2022a), published in Journal of Economic

Inequality. The article, as well as the figures, are under Creative Commons Attribution

4.0 International License, which grants permission to reuse them in this work. The chapter

deals with a multivariate extension of the Lorenz curve and enables the measurement of

inequality in more than one dimension, while providing a clear economic reasoning.

4.1. Introduction

The well-known Lorenz curve and Gini coefficient are still the most important tools for

representation and analysis of inequality in a distribution, such as the income and wealth

distribution. Both, however, are univariate instruments, i.e., they analyze the variables

individually, ignoring their dependence structure. Considering the example of income

and wealth, it is not possible to see the differences in the overall inequality if wealthy

people coincide with high-income people compared to a more balanced, eventually

compensating distribution of wealth over the income groups. Contrary to that, in this

chapter, we propose extensions of both tools based on copulas to study the inequality of

d variables X1, . . . , Xd simultaneously. By that, we explicitly capture the dependence

structure of these variables which gets lost if only one variable is considered at a time.

There had been some efforts to extend Lorenz curve and Gini coefficient to the

multivariate case before. The earliest suggestion in this direction we know of is

34
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Taguchi (1972a,b) who applied methods of differential geometry. Further suggestions

are by Arnold (1987), Arnold and Sarabia (2018), Gajdos and Weymark (2005) and

Koshevoy and Mosler (1996, 1997). We will not give an overview of these contributions

because this is - at least partially - done by Arnold and Sarabia (2018). We agree with

the view of the latter authors that all extensions are essentially determined by (el-

egant) mathematical considerations but may lack interpretability and economic reasoning.

Here, we propose direct and natural multivariate extensions of both, the (inverse) Lorenz

curve and the Gini coefficient. We exploit the fact that the inverse of a variable’s Lorenz

curve is the distribution function of a simple monotonically increasing transformation of

that variable. The multivariate inverse Lorenz curve of the d variables X1, . . . , Xd is then

defined as the joint distribution function of analogous univariate transformations of them.

The resulting Lorenz curve can explicitly be expressed using copulas. As presented in

Chapter 2, copulas decompose the joint distribution function of variables into marginal

distribution functions and their dependence structure. Consequently, for a given vector

X = (X1, . . . , Xd) of d variables, the copula-based multivariate Lorenz curve identifies

and captures two different sources of inequality:

a. inequality contained in the individual variables Xi, measured by the univariate

Lorenz curve Li or inverse Lorenz curve L−1
i for i ∈ {1, . . . , d}.

b. inequality due to the dependence structure of the variables X1, . . . , Xd which is

captured by the copula of these variables.

Based on the multivariate Lorenz curve, the formulation of a multivariate Gini coefficient

follows in a natural way analogously to the derivation of the univariate Gini coefficient

from the univariate Lorenz curve.

The mathematics we apply in the theoretical part of the chapter is some elementary

copula theory and - hopefully - is accessible to a broad readership. Later on in the

chapter, we derive simple nonparametric estimators for both instruments and provide
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ready-to-use computer code in the appendix of this thesis. We illustrate both instruments,

the multivariate Lorenz curve and Gini coefficient, on data sets consisting of individual

wealth and income data of various countries. The results are intuitive and show that

the two above-mentioned sources a. and b. of multivariate inequality are reflected in a

reasonable and interpretable way.

The structure of the chapter is the following. Section 4.2 introduces notation and

some definitions. The multivariate extension of the inverse Lorenz curve (MEILC) is

introduced in Section 4.3. Various properties of the MEILC are derived. Section 4.4

presents a multivariate extension of the Gini coefficient (MEGC) related to the MEILC

and considers the bivariate Gini (i.e., d = 2) as a special case. Nonparametric estimation

of MEILC and MEGC is considered in Section 4.5. In Section 4.6 we address some

aspects regarding multivariate transfers. The last section of the chapter contains the

empirical applications.

4.2. Notations and Definitions

We again consider a d-variate vector of random variables X = (X1, . . . , Xd) de-

fined on a probability space (Ω,Σ,P). The joint distribution function is given by

FX(x) = P (X1 ≤ x1, . . . , Xd ≤ xd) for x = (x1, . . . , xd) ∈ Rd and the marginal distribu-

tion functions Fi of Xi are given by Fi(xi) = P (Xi ≤ xi) for xi ∈ R and i ∈ {1, . . . , d}.

Throughout this chapter we assume that Xi ≥ 0 and 0 < µi = E(Xi) <∞ for i ∈ {1, .., d}.

Note the small additional X in the sub-index of F , which we added in this chapter of

the thesis for a more concise notation. Further note that all variables should fit together

in an economically meaningful way and should have a cardinal scale. For inequality

measurement in the case of ordinal or qualitative data we refer the interested reader

to Allison and Foster (2004), Gravel et al. (2021) or Kobus and Mi loś (2012) among others.
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From Chapter 2, we already now that there exists a copula C = CFX
, such

that FX(x1, .., xd) = C{F1(x1), . . . , Fd(xd)} for (x1, . . . , xd) ∈ Rd, which is uniquely

determined if the marginal distribution functions Fi are continuous. Besides our work,

copulas also have been applied in the context of income analysis by Aaberge et al.

(2018) recently. Remember that an important property of a copula from a random

vector X is that it is invariant with respect to strictly increasing transformations of

the marginal distributions and it is bounded by the Fréchet–Hoeffding bounds, i.e,

W (u1, . . . , ud) ≤ C(u1, . . . , ud) ≤ M(u1, . . . , ud). The upper bound M, which is called

comonotonicity copula, corresponds to the dependence structure of full monotone

positive dependence. An example of wealth and income with such a dependence structure

would be a population of size N, where the i−th wealthiest individual also has the i−th

highest income (for i ∈ {1, . . . , N}). The lower bound W is only a proper copula in the

bivariate case and is then called the countermonotonicity copula. In a countermonotonic

income/wealth example, the i−th wealthiest individual would have the i−th lowest

income (for i ∈ {1, . . . , N}). If X is a vector of independent variables X1, . . . , Xd the

corresponding copula is the independence copula Π with Π(u1, . . . , ud) =
∏d

i=1 ui. There

is a partial order C ≤ C ′ on the set of d-variate copulas given by C(u) ≤ C ′(u) for all

u ∈ [0, 1]d (see Nelsen 2006). See Figure 2.1 in Chapter 2 for a visualization of these

extreme types of dependence.

The univariate Lorenz curve for i ∈ {1, . . . , d} is given by

Li(ui) =
1

µi

∫ ui

0
F−1
i (t)dt for ui ∈ [0, 1], (4.1)

see Gastwirth (1971). Each Li is a continuous, weakly increasing and weakly convex

function. It has all the properties of a distribution function if we extend Li by 1 for
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ui > 1 and by 0 for ui < 0. The inverse of Li is defined by

L−1
i (ui) =

inf{t|Li(t) ≥ ui}, for ui ∈ ]0, 1]

sup{t|Li(t) = ui}, for ui = 0

and L−1
i is continuous, weakly increasing and weakly concave on [0, 1]. It has all the

properties of a distribution function if we extend L−1
i by 1 for ui > 1 and by 0 for ui < 0.

Note that there might be a point mass at zero.

Consider individual income in a population. The usual interpretation of the Lorenz

curve L of this variable is that, e.g., for p ∈ [0, 1], L(p) denotes the proportion of total

income that corresponds to the bottom p · 100% of the individuals. The interpretation of

the inverse Lorenz curve is that, for q ∈ [0, 1], L−1
i (q) indicates the maximum percentage

of the population with a combined cumulative share of q · 100% of the total income (the

maximum ensures starting with the bottom income individual here). Obviously, both

curves describe the inequality in an equivalent way. It is worth mentioning that Max

Otto Lorenz (Lorenz, 1905) originally proposed in his chapter what we now call the

inverse Lorenz curve.

Using Xi, Fi and Li as defined above we now define the following random variables X∗
i

by

X∗
i = Li

{
Fi(Xi)

}
for i ∈ {1, . . . , d}. (4.2)

Note, the difference between Xi and X∗
i . In applications Xi has a dimension (such as

income or wealth). X∗
i , however, is a fraction (i.e., a number between 0 and 1). If, e.g.,

Xi denotes again individual income in a population then X∗
i is the corresponding joint

fraction of the total income of that part of the population having individual incomes

smaller or equal to Xi. The d-variate vector X∗ is defined by X∗ = (X∗
1 , . . . , X

∗
d). The
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marginal distribution function for X∗
i is given by the inverse Lorenz curve of Xi, i.e.,

FX∗
i
(ui) = P

[
Li

{
Fi(Xi)

}
≤ ui

]
= L−1

i (ui)

for ui ∈ [0, 1] and i ∈ {1, . . . , d}. The joint distribution function of X∗ is given by

FX∗(u1, . . . , ud) = P (X∗
1 ≤ u1, . . . , X

∗
d ≤ ud) (4.3)

= C

{
L−1
1 (u1), . . . , L

−1
d (ud)

}
for ui ∈ [0, 1] and i ∈ {1, . . . , d}. (4.4)

Note, that the copula of X is identical to the copula of X∗, since X∗
i is a monotonically

increasing function of Xi for i ∈ {1, . . . , d}.

The univariate Gini coefficient is defined as a normalization of the area enclosed by

the Lorenz curve and the diagonal of the unit square. It equals one minus twice the area

under the Lorenz curve (Kakwani, 1977; Gastwirth, 1972)

G = 1 − 2

∫
[0,1]

L(u)du.

Considering that 1 −
∫
L(u)du =

∫
L−1(u)du and L−1 is the cdf of X∗, it follows that∫

L(u)du = E(X∗) and the univariate Gini coefficient may be expressed as

G = 1 − 2E(X∗)

as well as

G = 2

∫
[0,1]

L−1(u)du− 1

when using the inverse Lorenz curve L−1 and considerations above. Notation and

definitions introduced in this section are used to define a multivariate extension of the
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univariate Lorenz curve (see Section 4.3) and a multivariate extension of the univariate

Gini coefficient (see Section 4.4).

4.3. A Multivariate Extension of the Lorenz Curve Based

on Copulas (MEILC)

As mentioned in the introduction, inequality in a d-variate random vector X =

(X1, . . . , Xd) has two different sources:

a. inequality in the individual variables Xi, which is measured by the corresponding

Lorenz curves Li(ui) or inverse Lorenz curves L−1
i (ui) for i ∈ {1, . . . , d} and ui ∈ [0, 1].

b. inequality contained in the dependence structure of the vector X = (X1, . . . , Xd)

which is represented by the copula C of X.

To illustrate the effect of b. on the joint inequality in X = (X1, . . . , Xd) in more detail,

we look at a very simple example for the bivariate case, i.e., d = 2, and a population of

five individuals, where X1 and X2 might again stand for individual income and wealth,

respectively.

Individual 1 Individual 2 Individual 3 Individual 4 Individual 5

Example 1

(
X1

X2

) (
1
1

) (
2
2

) (
3
3

) (
4
4

) (
5
5

)

Example 2

(
X1

X2

) (
1
3

) (
2
2

) (
3
5

) (
4
1

) (
5
4

)

Example 3

(
X1

X2

) (
1
5

) (
2
4

) (
3
3

) (
4
2

) (
5
1

)

It can be seen that the marginal distributions of X1 and X2 over the five individuals are

the same in these examples. We think that it is quite obvious to see that the inequality

is largest in Example 1 and smallest in Example 3. Example 2 is somewhere in between.

The differences in joint inequality in these examples are due to different dependence

structures between the variables. In terms of copulas, the dependence structure in
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Example 1 corresponds to the comonotoncity copula M, the upper bound in the set of

bivariate copulas. In contrast, Example 3 corresponds to the countermonotonicity copula

W which is the lower bound in the set of bivariate copulas. Thus, in Example 1, the high

income individuals are also the wealthiest, whereas in Example 3, income and wealth

kind of compensate each other. Example 2 might stem from the independence copula Π.

We conclude from this example that joint inequality in a vector X = (X1, . . . , Xd) is

increasing in C in the partial order as defined in Section 4.2 of this chapter.

Having the example in mind, we now define a multivariate extension of univariate

(inverse) Lorenz curves considering the dependence structure of the variables. It will

turn out that the multivariate Lorenz curve of random vector X is the joint distribution

function (compare to Equation 4.3) of the random vector X∗ as defined in Equation

(4.2) in Section 4.2.

Definition 4.3.1. Multivariate extension of the inverse Lorenz curve (MEILC) and

Lorenz order

Using the notation of Section 4.2, let

1. L−1

C,L−1
1 ,...,L−1

d

(u1, . . . , ud) = C

{
L−1
1 (u1), . . . , L

−1
d (ud)

}
for (u1, . . . , ud) ∈ [0, 1]d.

2. For a second vector X̃ = (X̃1, . . . , X̃d) with copula C̃ and inverse Lorenz

curves L̃i
−1

(ui) of X̃i for i ∈ {1, . . . , d}, we define the multivariate ordering

X̃ ⪰ X if and only if

L−1

C̃,L̃1
−1

,...,L̃d
−1(u) ≥ L−1

C,L−1
1 ,...,L−1

d

(u) for all u = (u1, . . . , ud) ∈ [0, 1]d.

The extension of the inverse Lorenz curve (MEILC) L−1(u) = L−1

C,L−1
1 ,...,L−1

d

(u) has a

nice interpretation in terms of the X∗
i for i ∈ {1, . . . , d} and u = (u1, . . . , ud) ∈ [0, 1]d.

Since L−1(u1, . . . , ud) is the joint distribution function of X∗ = (X∗
1 , . . . , X

∗
d) we see that

L−1(u1, . . . , ud) is the population fraction for which X∗
1 ≤ u1, . . . , X

∗
d ≤ ud and therefore

the fraction with a cumulative share of the features smaller or equal to u1, . . . , ud. E.g.,

for d = 2 if u1 denotes a share of the cumulative income in a population and u2 a share

of wealth, than L−1(u1, u2) is the corresponding fraction of people collectively having not
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more than shares u1 and u2 of the total income and wealth, respectively. Note that the

interpetation of the MEILC coincides with the interpretation of the upper parts of the

Lorenz zonoid introduced by Koshevoy and Mosler (1996). However, while calculating

zonoids from data is computationally intensive, the copula approach results in simple for-

mulas, also allowing a straight forward extension of the Gini coefficient later in the chapter.

We analyze some of the (formal) properties of the MEILC. Here, we are in partic-

ular interested in how L−1(u1, . . . , ud) behaves, when ceterus paribus either marginal

inequalities or the dependence structures are changed. Later in the chapter, in Section

4.6, we discuss some implied properties of the MEILC such as the reaction to transfers in

empirical data.

1. Obviously L−1(u1, . . . , ud) is a function from [0, 1]d to [0, 1]. Furthermore for every

C,L−1
1 (u1), . . . , L

−1
d (ud) and u = (u1, . . . , ud) ∈ [0, 1]d we have

L−1
min(u) ≤ L−1

C,L−1
1 ,...,L−1

d

(u) ≤ L−1
max(u)

where

L−1
min(u) = W (u1, . . . , ud) = max

{
0,
∑d

i ui − (d− 1)
}

and

L−1
max(u) = M(1, . . . , 1) = min

{
1, . . . , 1

}
= 1.

These boundaries follow directly from the Fréchet–Hoeffding bounds (see Chapter 2).

Regarding the margins, note that the arguments of the lower bound refer to minimal

marginal inequality, i.e., L−1
i (ui) = ui for i ∈ {1 . . . d}, whereas the arguments

of the upper bound refer to maximal marginal inequality, i.e., L−1
i (ui) ≡ 1 for

i ∈ {1 . . . d}. Thus, e.g., the upper bound corresponds to the case of maximal

marginal inequality as well as maximal dependence between the variables and

reflects thus the case of maximal multivariate inequality.

2. If X1, . . . , Xd are independent, i.e., C = Π we have

L−1

Π,L−1
1 ,...,L−1

d

(u) =
∏d

i=1 L
−1
i (ui) for u = (u1, . . . , ud) ∈ [0, 1]d.

So the MEILC is the product of the univariate Lorenz curves in such cases.
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3. If ud = 1 we know

L−1

C,L−1
1 ,...,L−1

d−1,L
−1
d

(u1, . . . , ud−1, 1) = L−1

C,L−1
1 ,...,L−1

d−1

(u1, . . . , ud−1) for

(u1, . . . , ud−1) ∈ [0, 1]d−1

and similar formulas hold for i ∈ {1, . . . , d − 1} and for more general index sets

I ⊂ {1, . . . , d}.

This marginalization is quite intuitive, since setting ui = 1 in the MEILC refers

to the fraction of the population having less or equal than the maximum value

of Xi. Therefore, the i-th dimension is not restrictive anymore, while the other

dimensions still are.

By further marginalizing, we can see that for d = 1, we get the univariate (inverse)

Lorenz curve as a margin, e.g., L−1

C,L−1
1

(u1) = L−1
1 (u1) for u1 ∈ [0, 1].

4. If for u = (u1, . . . , ud) ∈ [0, 1]d at least one L−1
i (ui) is zero, then L−1(u) is zero.

But note that there might be point masses at zero in some or even all of the Xi.

The MEILC therefore does not necessarily start at zero since a point mass of Xi at

zero would imply L−1
i (0) > 0.

5. Response of L−1(u) to changing L−1
i (ui) for fixed u = (u1, . . . , ud) ∈ [0, 1]d: Higher

values of L−1
i (ui) lead to higher values of L−1(u), ceteris paribus. This follows

directly from the definition of L−1(u) and general properties of every copula.

An increased inequality in one dimension, therefore, leads to an increased total

inequality without any further changes.

6. Response of L−1(u) to changes in the dependence structure of the variables, i.e., to

changes of C, when the L−1
i (ui) do not change: Consider two copulas CA and CB

with CA(u) ≤ CB(u) for all u ∈ [0, 1]d. Here, referring to the example of income

and wealth, in B the wealthy would tend to belong more to the high-income part

of the society than in A. It then follows the corresponding multivariate Lorenz

order from Definition 4.3.1, i.e., L−1
A (u) ≤ L−1

B (u). Generally, the order properties

of the involved copulas transfer directly to the multivariate Lorenz order. Since
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the copula order is, however, a partial order, not all changes in the dependence

structure lead to ordered Lorenz curves.

We illustrate the MEILC for some bivariate examples in Figures 4.1 and 4.2. We

consider two different types of marginal Lorenz curves in all examples, Li(ui) = u2i (this

corresponds to values Xi which are uniformly distributed over a finite interval [0, b]

with b > 0) or Li(ui) = u
10/9
i (which is close to the Lorenz curve of minimal inequality).

Note that the corresponding marginal inverse Lorenz curves are L−1
i (ui) =

√
ui and

L−1
i (ui) = u0.9i , respectively. In Figure 4.1, we consider Gaussian dependence structures

of the variables and vary Spearman’s ρ from negative to positive dependence, starting

from the case of strong negative dependence (a) to the case of independent margins

(b), small positive dependence (c) and strong positive dependence (d). As expected,

the surface of the MEILC becomes more domed for increasing strength of dependence.

Recall that a point on the surface L−1(u1, u2) at (u1, u2) reflects the maximum share of

the society having together less than shares u1 and u2 of the total variable sums of X1

and X2, respectively. Thus, it refers to the share of individuals being at the bottom in

both variables. A more domed surface therefore reflects a larger inequality.

In Figure 4.2, we illustrate the effect of the copula family and a case of unequal marginal

inverse Lorenz curves. Panels (a) and (b) both refer to cases with a rank correlation of

X1 and X2 of ρ = 0.8 but different asymmetric dependence structures, i.e., copulas. The

Clayton copula (a) has a stronger dependence between small values, while the Gumbel

copula (b) has strongest dependence between large values. Consequently, we see that the

surface of the MEILC in the Clayton case is more domed for pairs of small values than

in the Gumbel case (b). Panel (c) depicts the case of independence where the margins

are now different. It can be seen that surface interpolates between the margins. Again,

the surface gets more domed, if the dependence is increased, e.g., by using a Clayton

copula with ρ = 0.8 (d). This is done by visualizing L−1(u) for data with Gaussian and

Archimedean copulas (see Chapter 2), different dependence parameters and marginal

distributions.
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(a) Gaussian Copula, Spearman’s ρ = −0.9
and L−1

i (ui) =
√
ui for i = 1, 2.

(b) Gaussian Copula, Spearman’s ρ = 0.0
(equals to the independence copula) and
L−1
i (ui) =

√
ui for i = 1, 2.

(c) Gaussian Copula, Spearman’s ρ = 0.5 and
L−1
i (ui) =

√
ui for i = 1, 2.

(d) Gaussian Copula, Spearman’s ρ = 0.9 and
L−1
i (ui) =

√
ui for i = 1, 2.

Figure 4.1.: Graphs of L−1(u1, u2) based on Gaussian copulas with different values for
the dependence parameter Spearman’s ρ. The surface of L−1(u1, u2) gets
more domed with increasing parameter ρ.
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(a) Clayton copula, Spearman’s ρ = 0.8 and
L−1
i (ui) =

√
ui for i = 1, 2.

(b) Gumbel copula, Spearman’s ρ = 0.8 and
L−1
i (ui) =

√
ui for i = 1, 2.

(c) Independence copula Π and L−1
1 (u1) =

u0.91 and and L−1
2 (u2) =

√
u2.

(d) Clayton copula, Spearman’s ρ = 0.8 and
L−1
1 (u1) = u0.91 and L−1

2 (u2) =
√
u2.

Figure 4.2.: Graphs of L−1(u1, u2) based on Archimedean copulas with different values
for the dependence parameter Spearman’s ρ and marginal distributions.
Panels (a) and (b) illustrate the effect of different asymmetric dependence
structures, while (c) and (d) illustrate effects of margins and dependence
structure.
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Remark 4.3.1. It might be surprising that our extension of the Lorenz curve is based on

its inverse and not on the Lorenz curve itself. The inverse Lorenz curve draws proportions

of the people on the y-axis and the variable of interest, e.g., share of total income, on the

x-axis. Proportion of people is thus the value of the inverse function, while the variable of

interest is the argument. Having only one variable of interest, the choice between Lorenz

curve or inverse Lorenz curve seems arbitrary. Considering d > 1 variables of interest,

however, it seems conceptually more natural to add these variables as further arguments

of the inverse Lorenz curve. Furthermore, the resulting extension is easily interpretable.

Alternatively, starting from the Lorenz curve, a seemingly intuitive idea like

(u1, . . . , ud) 7−→ C
{
L1(u1), . . . , Ld(ud)

}
.

behaves contradictorily. If inequality in the Xi rises than the above definition indicates a

decreasing value. If inequality accounted in C increases an increasing value is indicated.

Obviously this is contradictory.

A possible adjustment would be to look at

(u1, . . . , ud) 7−→ 1 − C
{

1 − L1(u1), . . . , 1 − Ld(ud)
}

This object reacts in the expected directions in all cases, but it lacks a reasonable and

convincing interpretation.

Remark 4.3.2. We are quite aware that there might be further reasonable ways of

combining a copula with Lorenz curves Li or its inverses. The survival copula C which

corresponds to copula C (see Nelsen 2006 p.33) might also be a useful tool for the definition

of a multivariate extension of the Lorenz curve, but we have not derived any details.
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4.4. A Multivariate Extension of the Gini Coefficient

(MEGC) Related to the Multivariate Extension of the

Lorenz Curve

In the univariate setting, i.e., d = 1, it is well known that the Lorenz order is only a

weak order. Indeed, Lorenz curves may intersect and consequently X1 and X̃1 with

intersecting Lorenz curves cannot be ordered with respect to inequality. A numerical

measure of inequality, such as the Gini coefficient, is called for.

In the multivariate setting, it can be seen that the order defined in Section 4.4 is also

a weak order and a related numerical measure of inequality is required, too. Using the

notation of Section 4.2 and 4.3 we define a Gini coefficient related to the MEILC as

follows.

Definition 4.4.1. Multivariate extension of the Gini coefficient (MEGC)

The MEGC is defined as:

GC,L−1
1 ,...,L−1

d
=

∫
[0,1]d L

−1

C,L−1
1 ,...,L−1

d

(u)du−
∫
[0,1]d L

−1
min(u)du∫

[0,1]d L
−1
max(u)du−

∫
[0,1]d L

−1
min(u)du

. (4.5)

Using
∫
[0,1]d L

−1
max(u)du = 1 and

∫
[0,1]d L

−1
min(u)du = 1

(d+1)! (see Nelsen 2006)

we can rewrite,

GC,L−1
1 ,...,L−1

d
=

(d+ 1)!
∫
[0,1]d L

−1

C,L−1
1 ,...,L−1

d

(u)du− 1

(d+ 1)! − 1
.

Note, the similarity of the above definition to the univariate Gini coefficient. The

latter is two times the area between the inverse Lorenz curve and the diagonal of the unit

square, where the diagonal stands for the inverse Lorenz curve of minimal inequality. The

factor two results from normalization to the unit interval. In our multivariate definition,

we measure the volume enclosed by the actual Lorenz curve and the curve of minimal
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inequality (see numerator of Equation 4.5) and rescale the result to be between 0 and 1

(see denominator of that equation). Consequently, setting d = 1 yields,

GC,L−1
1

= 2

∫
[0,1]

L−1
1 (u1)du1 − 1 = G1

which is the Gini coefficient in the univariate case (see, e.g., Section 4.2).

For d = 2 we have 0 ≤ GC,L−1
1 ,L−1

2
≤ 1, where GC,L−1

1 ,L−1
2

= 0 implies that C = W and

GC,L−1
1 ,L−1

2
= 1 implies that C = M. For d ≥ 3 we have 0 < GC,L−1

1 ,...,L−1
d

≤ 1. This is

due to the fact, that W is not a copula for d ≥ 3. Further GC,L−1
1 ,...,L−1

d
= 1 implies that

C = M .

Example 4.4.1. Consider the case of independent X1, . . . , Xd, where cov(Xi, Xj) = 0,

for i, j ∈ {1, . . . , d} and i ̸= j. With C = Π and u = (u1, . . . , ud) it follows from∫
[0,1]d

L−1

Π,L−1
1 ,...,L−1

d

(u)du =

{
1 − E(X∗

1 )

}{
1 − E(X∗

2 )

}
. . .

{
1 − E(X∗

d)

}

=

(
1

2

)d d∏
j=1

(1 +Gj)

and Definition 4.4.1 that the MEGC can be written as

GC,L−1
1 ,...,L−1

d
=

(1 + d)!(12)d
∏d

j=1(1 +Gj) − 1

(d+ 1)! − 1
.

In the special case d = 2, we obtain

G1,2 =
1

10
(1 + 3G1 + 3G2 + 3G1G2) . (4.6)

Focusing on the two dimensional case, the MEGC is decomposable into the marginal

Gini coefficients and a term resulting from the dependence structure.
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Theorem 4.4.1. Decomposition of two dimensional MEGC

The two dimensional MEGC can be expressed as

GC,L−1
1 ,L−1

2
= G1,2 =

6

5
E(X∗

1X
∗
2 ) +

3

5
G1 +

3

5
G2 −

1

5

Proof. Note, that cov(X∗
1 , X

∗
2 ) =

∫ 1
0

∫ 1
0

[
C{L−1

1 (u1), L−1
2 (u2)}−L−1

1 (u1)L−1
2 (u2)

]
du1du2

(Nelsen, 2006) and remember that the cdf of X∗
i is L−1

i , for i = 1, 2. So
∫
L−1
1 (u1)du1 =

1 −
∫
L1(u1)du1, with

∫
L1(u1)du1 = E(X∗

1 ). It follows

∫
[0,1]2

L−1

C,L−1
1 ,L−1

2

(u1, u2)du1du2 = cov(X∗
1 , X

∗
2 ) +

∫ 1

0
L−1
1 (u1)du1

∫ 1

0
L−1
2 (u2)du2

= cov(X∗
1 , X

∗
2 ) + {1 − E(X∗

1 )}{1 − E(X∗
2 )}

= cov(X∗
1 , X

∗
2 ) + 1 − E(X∗

1 ) − E(X∗
2 ) + E(X∗

1 )E(X∗
2 )

= E(X∗
1X

∗
2 ) +

1

2
G1 +

1

2
G2

and therefore

G1,2 =
6
∫
[0,1]2 L

−1

C,L−1
1 ,L−1

2

(u1, u2)du1du2 − 1

5
=

6

5
E(X∗

1X
∗
2 ) +

3

5
G1 +

3

5
G2 −

1

5

It follows from Theorem 4.4.1 that upper and lower bounds for G1,2 are given by

3
5G1 + 3

5G2 − 1
5 ≤ G1,2 = 6

5E(X∗
1X

∗
2 ) + 3

5G1 + 3
5G2 − 1

5

≤ 6
5min{E(X∗

1 ), E(X∗
2 )} + 3

5G1 + 3
5G2 − 1

5

= 6
5min{1

2 − 1
2G1,

1
2 − 1

2G2} + 3
5G1 + 3

5G2 − 1
5

= 6
5(12 − 1

2max{G1, G2}) + 3
5G1 + 3

5G2 − 1
5

= 2
5 − 3

5max{G1, G2} + 3
5G1 + 3

5G2

Note, that the sum of weights is 1 in the lower and upper bound.
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Table 4.1 shows the univariate Gini coefficients and the MEGC for the examples using

the Gaussian copula from Figure 4.1 and Figure 4.2.

Table 4.1.: Univariate Gini coefficients and corresponding MEGC

Copula type (Fig. No.) MEGC

Gaussian ρ = −0.9 (1a) 0.25
Gaussian ρ = −0.5 - 0.29
Gaussian ρ = 0.0 (1b) 0.33
Gaussian ρ = 0.5 (1c) 0.39
Gaussian ρ = 0.9 (1d) 0.43
Gumbel ρ = 0.8 (2a) 0.42
Clayton ρ = 0.8 (2b) 0.41
Gaussian ρ = 0.0 (2c) 0.22
Clayton ρ = 0.8 (2d) 0.30

Values of MEGC for the examples from Figure 4.1 and Figure 4.2. Note that the univariate
Gini coefficients are 0.33 in all cases, except for the last two where the marginal Gini
coefficient of the first variable equals 0.05. Further notice that the MEGC, unlike a convex
combination, is not necessarily enclosed by the marginal univariate Gini coefficients.

As expected, the MEGC increases with increasing strength of the dependence between

X1 and X2. For the example of wealth and income, the influence of the dependence

structure on the MEGC is positive if a rich person tends to belong to the group of

high income individuals and is negative if a rich person is more likely to belong to

the individuals with low income. Note, that also values G1,2 > max{G1, G2} and

G1,2 < min{G1, G2} are possible to correctly capture the influence of the dependence on

the inequality. This is in contrast to a convex combination of G1 and G2. Consider for

example the first eight cases in Table 4.1, where we have G1 = G2 = 1/3. If the MEGC

would be bounded by these values to be equal to 1/3 in all cases, the different dependence

structures would not be reflected.
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4.5. Nonparametric Estimation of the Multivariate Lorenz

Curve (MEILC) and the Corresponding Multivariate

Gini Coefficient (MEGC)

We assume that we have observations X1, . . . ,Xn on X = (X1, . . . , Xd), where

Xj = (Xj1, Xj2, . . . , Xjd) for j ∈ {1, . . . , n}. We only consider the case where

n > d, where we have more observations than dimensions. If Fi and Li would

be known for i ∈ {1, . . . , d} we could easily derive observations X∗
1 , . . . , X

∗
n

on X∗ with X∗
ji = Li

{
Fi(Xji)

}
for i ∈ {1, . . . , d} and j ∈ {1, . . . , n}. However, Fi

and Li are unknown in practical applications and have to be estimated using X1, . . . ,Xn.

We estimate Fi for i ∈ {1, . . . , d} by its empirical counterpart

F̂ni(x) =
1

n

n∑
j=1

1{Xji≤x} for x ∈ R.

Li is usually estimated by

L̂ni

(
u =

k

n

)
=

∑k
j=1X[j:n]i∑n
j=1Xji

for k = 0, 1, . . . , n and i ∈ {1, . . . , d},

where X[1:n]i ≤ X[2:n]i ≤ · · · ≤ X[n:n]i is the increasingly ordered sequence of Xji and

linear interpolation between L̂ni(u = k
n) and L̂ni(u = k−1

n ) for k = 1, 2, . . . , n. This is

tantamount to the compact formula

L̂ni(ui) =

∫ ui

0 F̂−1
in (t)dt

1
n

∑n
j=1Xji

for i ∈ {1, . . . , d} and ui ∈ [0, 1].
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It is now possible to estimate the observations X∗
ji by what we suggest to call ”pseudo-

observations” of X∗
ji with

X̂∗
ji,n = L̂ni{F̂ni(Xji)} =

∑
l:Xli≤Xji

Xli∑n
l=1Xli

for i ∈ {1, . . . , d} and j ∈ {1, . . . , n} (4.7)

and obtain the corresponding vector X̂
∗
j,n = (X̂∗

j1,n, X̂
∗
j2,n . . . , X̂

∗
jd,n) for j ∈ {1, . . . , n}.

4.5.1. Estimation of the MEILC

It was pointed out that the MEILC is given by

u = (u1, . . . , ud) 7−→ C

{
L−1
1 (u1), . . . , L

−1
d (ud)

}
for u ∈ [0, 1]d

and that it is the joint distribution function of the vector X∗ = (X∗
1 , . . . , X

∗
d). Therefore,

the MEILC is estimated by the empirical distribution function based on X̂
∗
j,n for j ∈

{1, . . . , n}, i.e.,

L̂−1

C,L−1
1 ,...,L−1

d ,n
(u1, . . . , ud) =

1

n

n∑
j=1

d∏
i=1

1{X̂∗
ji,n≤ui}.

4.5.2. Estimation of the Multivariate Gini Coefficient (MEGC)

In order to estimate GC,L−1
1 ,...,L−1

d
we have to estimate the integral

IC,L−1
1 ,...,L−1

d
=

∫
[0,1]d

L−1

C,L−1
1 ,...,L−1

d

(u)du
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for u = (u1, . . . , ud), which is usually done by

ÎC,L−1
1 ,...,L−1

d ,n =

∫
[0,1]d

L̂−1

C,L−1
1 ,...,L−1

d ,n
(u)du =

1

n

n∑
j=1

∫
[0,1]d

d∏
i=1

1{X̂∗
ji,n≤ui}dui

=
1

n

n∑
j=1

d∏
i=1

∫ 1

0
1{X̂∗

ji,n≤ui}dui

=
1

n

n∑
j=1

d∏
i=1

(1 − X̂∗
ji,n)

After normalizing we obtain the estimator

ĜC,L−1
1 ,...,L−1

d ,n =
(d+ 1)! 1n

∑n
j=1

∏d
i=1(1 − X̂∗

ji,n) − 1

(d+ 1)! − 1
(4.8)

4.6. Considerations on Transfers

In this section we want to discuss some considerations on transfers and their effect on

the MEILC and MEGC. We are aware that this is a very wide and complex topic, so we

can not cover it in all its aspects. However, we at least want to share first considerations

and encourage further research on this topic.

First, we define the Correlation Increasing Transformation (CIT) introduced by Tsui

(1998) into the inequality literature and further considered by many authors, e.g. Epstein

and Tanny (1980); Atkinson and Bourguignon (1982); Decancq (2012); Gravel and Moyes

(2012) or lately Faure and Gravel (2021).

Definition 4.6.1. Correlation Increasing Transformation (CIT)

We are considering two possible distributions or allocations A and B of d variables among

a fixed number of individuals. Let, e.g., tA denote the d-dimensional vector of variables of

individual t in allocation scenario A, with analogue expressions for other individuals and
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distributions. We say that distribution B is obtained from distribution A by a Correlation

Increasing Transformation (CIT), if for two individuals t and z with d-dimensional

attribute vectors tB, zB ∈ Rd we have the reallocation

tB := max{tA, zA} and zB := min{tA, zA}, (4.9)

while the variable vectors of all other individuals stay unchanged, i.e., mB = mA

for all other individuals m ̸∈ {t, z}. Here, max/min denote the element-wise maxi-

mum/minimum.

Note, that within our framework, this corresponds to only swapping X̂∗ values between

two individuals while all others X̂∗ values remain unchanged. A distribution B is called

a Correlation Increasing Majorization (CIM) of distribution A if it is obtained by a finite

sequence of CIT’s from A.

The CIT naturally affects the order of multivariate Lorenz curves (MEILC) as summa-

rized in the following proposition 4.6.1.

Proposition 4.6.1. Any Correlation Increasing Transformation (CIT) or Correlation

Increasing Majorization (CIM) from a distribution A towards a distribution B, implies

the multivariate Lorenz order B ⪰ A from Definition 4.3.1.

Keeping in mind, that a CIT only exchanges values of X̂ of two individuals (with the

same effect to X̂∗) and that L̂−1 is the joint distribution function of X̂
∗

= (X̂∗
1 , . . . , X̂

∗
d)

for k ∈ {1, . . . , d}, the proposition follows directly from Epstein and Tanny (1980).

Consequently, any CIT has also direct implications towards the MEGC.

Proposition 4.6.2. Any Correlation Increasing Transformation (CIT) or Correlation

Increasing Majorization (CIM), induces a higher multivariate Gini coefficient MEGC.

An analogous statement applies to the decreasing counterparts of the operations, which

induce lower MEGCs.

Proposition 4.6.2 follows directly from Proposition 4.6.1 and Definition 4.4.1.
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More intuitively, a CIT does only have an impact on the dependence structure, i.e.,

the copula, as it only swaps the coupling of realizations in the margins. Then, a CIT

results per definition in more concordant dependence structure and consequently to an

increased multivariate Gini coefficient.

Further, we want to elaborate the topic with the help of an example motivated by

an anonymous referee. We look at a population of three individuals and consider the

bivariate case, i.e., d = 2, where X1 and X2 might again stand for the individuals’ income

and wealth, respectively.

Individual 1 Individual 2 Individual 3

Society 1

(
X1

X2

) (
3
3

) (
4
4

) (
6
6

)
Society 2

(
X1

X2

) (
5
3

) (
2
4

) (
6
6

)
Society 3

(
X1

X2

) (
4
3

) (
3
4

) (
6
6

)

Society 1 is obtained from Society 3 by a simple CIT between Individual 1 and

Individual 2. We therefore expect the MEGC of Society 1 to be higher than that of

Society 3. For Society 2 the transfer is more complicated. Society 2 is obtained from

Society 1 by a transfer of two units X1 from Individual 2 to Individual 1. Reversely, this

is equal to first applying a CIT to Society 2 (increases inequality) and then a transfer of

one unit X1 from Individual 2 to Individual 1, which is typically considered to reduce

inequality. In this case we can not directly rank the distributions by means of their

multivariate inequality from looking at the transfers. However, it is possible to rank the

distributions by calculating the MEGC, resulting in MEGC = 0.121 for the first society,

MEGC = 0.098 for the second society and MEGC = 0.084 for the third society. As

expected, we see that Society 1 is more unequal than Society 3. Furthermore, we now

can include Society 2 in the ordering.
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More general, Pigou-Dalton transfers are widely known to reduce inequality in the

univariate case (Dalton, 1920). However, the extension to the multivariate case is not

straightforward and multiple suggestions have been made, see e.g. Basili et al. (2017);

Bosmans et al. (2009); Banerjee (2014). The problem at hand in the multivariate case is

that both, the marginal distributions and the dependence structure, can be changed at

the same time, even in opposite directions, e.g., decreasing inequality in the margins while

increasing in the dependence structure. Thus it might not be so clear to define types of

pure basis transfers between two individuals that act always in the same direction with

respect to margins and dependence structure. Further complicating matters, individuals

who are not directly included in the transfer can be effected and general statements

are very difficult to make. The following example illustrates the above and hopefully

encourages further research.

Example 4.6.1. Multivariate Pigou-Dalton-Bundle-Transfers (PDBT) are defined as

non-negative transfer from one unambiguously richer individual to a poorer individual

in each attribute. The amounts or the proportions of the transfers need not to be the

same for all attributes, i.e., it is possible to transfer only one attribute (see Fleurbaey and

Trannoy 2003; de la Vega et al. 2010). Consider the two societies below, where Society 2

is obtained from a PDBT of 1.1 units of X1 from Individual 1 to Individual 4.

Individual 1 Individual 2 Individual 3 Individual 4 MEGC

Society 1

(
X1

X2

) (
5
4

) (
4
5

) (
3
2

) (
2
3

)
0.131

Society 2

(
X1

X2

) (
3.9
4

) (
4
5

) (
3
2

) (
3.1
3

)
0.141

The transfer from richer Individual 1 to Individual 4 obviously reduces the inequality in

X1, but also affects Individuals 2 and 3 leading to another result in the multivariate case.

Individual 2 now is the richest in both dimensions whereas Individual 3 is the poorest.

Therefore, the transfer increased the dependence, more specific the rank-dependence, within

the society which increases inequality in this case leading to a higher MEGC.
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Example 4.6.1 displays the complexity of the topic. Although a transfer seems to reduce

inequality at the first glance, it may have an opposing efficacy within the dependence

structure of the whole society. In our example, the PDBT results in a clear richest and

poorest individual, decreasing the balancing effect of the dependence structure.

For more general considerations on transfers we refer to Epstein and Tanny (1980);

Atkinson and Bourguignon (1982); Decancq (2012), or most lately Faure and Gravel

(2021).

4.7. Analysis of Income and Wealth Inequality Using the

MEILC and the MEGC

In the following section we demonstrate a possible application of the MEILC and the

corresponding MEGC. The first example in Section 4.7.1 uses data for Germany (SOEP,

2019) and is implemented in Python 3.8 (Van Rossum and Drake, 2009). Section 4.7.2 is

implemented via the LISSY R-Interface (Luxembourg Wealth Study (LWS) Database,

2020) and examines the MEGC of 13 additional countries.

4.7.1. MEILC and the MEGC for Germany 2017

We analyze the joint inequality of income and wealth in Germany based on the data

provided by the Socio-Economic Panel (SOEP) for 2017 (SOEP, 2019). Detailed infor-

mation about the survey and the methods used in the SOEP are provided by Goebel

et al. (2019) and Wagner et al. (2007). The analysis is based on the variable ’i11102’

from the pequi dataset for income and ’n0111a’ from the hwealth dataset for wealth.

Entries with negative values in one of the variables are dropped as suggested by many

authors (see e.g., Rehm et al. 2014; Harvey et al. 2017; Saez and Zucman 2016; Formby

et al. 1989). The data set refers to households, whereas inequality numbers are usually

reported at the individual level. Income and wealth numbers in the data set are there-

fore broken down to the individual level. To this end, the values (income and wealth)

are equivalised with respect of the number of household members by multiplying with
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1/(household members)0.5, see, e.g., OECD (distribution database, 2017). In a next step,

each adjusted pair of income and wealth is replicated K times, where K is the product

of the household members (e.g., to get 5 individual entries from a 5 person household)

and the integer part of a weight reported in variable ’w11102’. The variable ’w11102’

corrects for differences in the socio-economic distribution between households in the panel

and all households of the country. Additionally, data errors are eliminated by excluding

individuals with values lying more than 30 standard deviations off the mean.

The resulting data is presented in Figure 4.3. For better visualization, the figure

only shows data with income and wealth below EUR 0.1 million and EUR 1 million,

respectively. This corresponds to more than 98.0% of the data. The empirical copula of

the full data set is shown in Figure 4.4 and the resulting MEILC in Figure 4.5. For the

univariate Gini coefficients, we compute G1 = 0.29 for income and G2 = 0.65 for wealth.

Thus, inequality in wealth is considerably higher than in income. This difference is also

observable in the shape of the margins L−1
income and L−1

wealth of the MEILC in Figure 4.5.

The multivariate Gini coefficient of wealth and income yields G1,2 = 0.47. Due to the

moderate positive dependence of wealth and income (Spearman’s ρ is ρ = 0.56, here) this

is slightly higher than it would be for independent variables (compare to Equation 4.6 in

Section 4.4).
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Figure 4.3.: Scatter-plot and corresponding histograms of income and wealth in Germany
2017 based on the SOEP dataset in Euro e .

4.7.2. MEGC of Income and Wealth for Other Countries

Table 4.2 summarizes the Gini coefficients for wealth G1, income G2 and the MEGC

G1,2 for several countries based on the Luxembourg Wealth Study (LWS) database

(Luxembourg Wealth Study (LWS) Database, 2020). For an extensive documentation of

the cross-national wealth database, see LIS (2019a) and LIS (2019b). In the analysis, the

variables disposable household income (’dhi’) and disposable net worth (’dnw’) from the

latest available data sets are used (if too many of the values are missing, we use the

total current income (’hitotal’) variable instead of ’dhi’ ). The data processing is done

analogously to the SOEP data set in the last section. Again, households with negative

values in one or both variables are excluded. Both household variables are again broken

down to individual levels. First we equalize by multiplying by 1/(household members)0.5
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Figure 4.4.: Empirical copula of income and wealth in Germany 2017 based on the SOEP
dataset.

and then we replicate each income and wealth pair in the sample according to the

number of household members times the integer part of panel adjustment weights. In

this database, the number of household members is stored in the variable ’nhhmem’,

while the adjustment weights are stored in ’hpopwgt’.

Turning to Table 4.2, all reported numbers are plausible, and inequality is larger for

wealth than income in all cases. With regard to wealth, South Africa, as well as the

United States, have the highest inequality. South Africa also shows the largest inequality

in income distribution. Considering all countries, dependencies between income and

wealth are positive and mainly moderate. The reported numbers of Spearman’s rho are

often below 0.5. For this reason, all reported MEGC numbers of multivariate inequality

lie well between the univariate Gini coefficients. The highest MEGC is reported for

South Africa, followed by the United States. The lowest MEGC numbers are reported for

Slovakia and Finland. An interesting example of the effect of the dependence structure
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Figure 4.5.: MEILC of income and wealth in Germany 2017 based on the SOEP dataset.

on inequality is the pair of Italy and Slovenia. While marginal inequalities in wealth

and income are slightly lower in Italy than in Slovenia, the stronger dependency of these

variables in Italy (i.e., the rich tend to coincide with the higher earners) results in a

higher MEGC in Italy than in Slovenia. As an alternative, a graphical illustration of the

dominance structure within the three aspects, two univariate Gini coefficients, and the

MEGG, we provide a Hasse-diagram in Figure 4.6. There, the concordant ordering of all

three aspects between the two countries results in a connecting edge within the graph.

Note that the values for the univariate Gini coefficients can differ from other publications

for various reasons. First, we do not apply any top or bottom coding of the data and

exclude all individuals with negative values in the variables. Second, we floor the provided

weights to the next integer because of computational reasons. Third, we only use complete
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Table 4.2.: Gini coefficient, MEGC and and Spearman’s ρ on wealth and income

Country Gini on income Gini on wealth MEGC Spearman’s ρ

Australia 0.33 0.62 0.46 0.28
Austria1 0.28 0.67 0.47 0.41
Canada 0.32 0.66 0.48 0.41
Finland 0.25 0.60 0.43 0.41
Germany2 0.29 0.65 0.47 0.56
Greece1 0.32 0.55 0.45 0.41
Italy 0.34 0.58 0.48 0.56
Luxembourg1 0.39 0.63 0.51 0.54
Slovakia1 0.34 0.51 0.44 0.40
Slovenia1 0.36 0.59 0.46 0.29
South Africa 0.61 0.85 0.71 0.43
Spain1 0.38 0.60 0.50 0.45
United Kingdom 0.35 0.60 0.48 0.55
United States 0.45 0.80 0.61 0.63

Gini coefficient, MEGC and and Spearman’s ρ on wealth and income for multiple countries
based on the Luxembourg Wealth Study (LWS) Database (2020) database. 1hitotal
instead of ’dhi’ from LWS dataset used because of missing values. 2 From SOEP data,
Section 4.7.1.

cases of the datasets. This means we consider a person in our calculation only if all

information (dhi, dnw, hpopwgt, nhhm) of the case is available. Furthermore, we treated

both variables in the same way, especially when adjusting for the household size. See

Sierminska and Smeeding (2005) for a brief discussion on the topic. Last, we used only

the data provided by the LWS database and did not supplement it with data from other

sources.
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Figure 4.6.: Illustration of the incomplete ranking resulting from table 4.2 in terms of a
Hasse diagram. Dominance in all three Gini coefficients leads to an edge
between countries, whereas inequality decreases from the top down.



5. From Point Forecasts to Multivariate

Probabilistic Forecasts: The Schaake

Shuffle for Day-Ahead Electricity

Price Forecasting

This chapter is based on a joint publication with Oliver Grothe and Fabian Krüger in

Energy Economics (Grothe et al., 2023) dealing with the forecast of electricity prices.

Permission to reuse the article, as well as the figures, in this work is granted by the

copyright holder. Another paper published during my time as a Ph.D. student related to

energy markets estimates in-feeds of the biggest European offshore wind farms (Grothe

et al., 2022b). However, it is not part of this thesis.

5.1. Introduction

Day-ahead electricity price forecasting is a critical element in the decision-making

of energy companies. Accordingly, an active applied research literature is concerned

with developing and comparing price forecasting methods. The majority of this

literature addresses point forecasts, for which a wide range of methods have been

proposed. These efforts, which have recently been reviewed by Hong et al. (2020) and

Lago et al. (2021), have given rise to a rich toolkit that includes time series models,

regularized regression techniques, deep learning models, as well as strategies for pa-

65
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rameter estimation, variable selection, hyperparameter selection and forecast combination.

While univariate point forecasts are an important first step, they are typically limited

in two respects. First, they usually do not address forecast uncertainty, which is an

important concern for economic decision making. The studies surveyed by Nowotarski

and Weron (2018) and Ziel and Steinert (2018) address this aspect by considering

probabilistic forecasting in energy markets. While growing, the corresponding literature

and range of approaches are still more limited than for point forecasting. Second,

univariate forecasts are concerned with a single measurement unit (such as a given time

period or a given location), whereas economic decisions often require joint forecasts for

several time periods or locations. In applications, the two aspects of forecast uncertainty

and multivariate dependence may well interact. For example, managing daily price

risks requires information on both the uncertainty in hourly prices and information

on dependencies of prices across hours. Consider the sum of the prices from two

consecutive hours. If the price of the first hour is higher than predicted, the price of

the second predicted hour is likely to be higher as well. Assuming independence of

these prices would underestimate the uncertainty of the sum, leading to sub-optimal

economic decisions. Dependence modeling thus plays a vital role in uncertainty estimation.

This chapter of the thesis considers a generic and easy-to-implement method for

constructing multivariate probabilistic forecasts based on univariate point forecasts. The

method uses past forecast errors to learn about forecast uncertainty and dependencies

across measurement units. If necessary, we first fit simple time series models to the

univariate point forecast errors, thus accounting for possible predictability in the errors’

conditional mean and variance. Such methods have been proven successful in forecasting

electricity prices, e.g., by Weron and Misiorek (2008), Jan et al. (2022), Bibi et al. (2021)

or Garcia et al. (2005). In contrast to these authors, however, we use the methods for

modeling the errors of given point forecasting models instead of designing stand-alone

forecasting models. For dependence, we apply straightforward empirical copula methods.
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Being based on forecast errors, our approach leverages the rich literature on univariate

point forecasting (thus avoiding to re-invent the wheel) while at the same time addressing

forecast uncertainty and multivariate dependence. Our framework is inspired by the

literature on post-processing multivariate ensemble forecasts in meteorology (Clark et al.,

2004; Schefzik et al., 2013; Vannitsem et al., 2021). Here, the point forecast errors

of numerical weather prediction models are used to learn about forecast uncertainty

and (possibly) about multivariate dependencies across variables, locations, or time

points. Related post-processing approaches have been considered in macroeconomics; in

particular, Clark et al. (2020) consider a Bayesian approach for modeling forecast errors

across multiple time points.

Given the rich literature on point forecasting and the wide availability of data for

learning structures in past point forecasting errors, post-processing seems particularly

promising for forecasting energy prices or demand. Nevertheless, the literature on

post-processing of energy forecasts is relatively sparse. In a univariate context, studies

such as Marcjasz et al. (2020) and Kath and Ziel (2021) discuss approaches to estimate

forecast uncertainty from past point forecast errors. Phipps et al. (2022, 2020) and

Ludwig et al. (2022) consider post-processing univariate or multivariate weather forecasts

in a situation where these are used as an input to energy forecasting models. In a

multivariate setting, Muniain and Ziel (2020) deal with bivariate probabilistic price

forecasting in off-peak and peak time series from the German-Austrian day-ahead

price using a residual based approach that is conceptually similar to post-processing.

Janke and Steinke (2020) apply an implicit generative model to generate a multivariate

forecast distribution for energy prices from an ensemble of univariate point forecasts.

Furthermore, Chai et al. (2019) employ a Gaussian copula to generate scenarios on

the basis of an ensemble from extreme learning machines. Compared to the latter two

studies, our use of empirical copula methods is considerably simpler to implement and

more easily comparable to the large meteorological literature. Other uses of copula

methods to model multivariate dependence in energy contexts include Toubeau et al.
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(2019) employing empirical copulas to create scenarios of load, renewable generation,

and prices; Pinson and Girard (2012) introducing multivariate verification tools for

sets of scenarios; Manner et al. (2016) modeling electricity price spikes in two markets;

and Pircalabu and Benth (2017) investigating the joint behavior of electricity prices

in interconnected markets. Furthermore, existing multivariate probabilistic techniques

for day-ahead electricity prices include functional models, where the daily profile is

modeled as a functional observation, allowing the use of additional information of the

data (cf. Shah and Lisi, 2015); vector autoregressive models, where the dependence

between univariate time series is taken into account (cf. Panagiotelis and Smith, 2008;

Shah et al., 2021); and combinations of functional models and stochastic methodologies

(cf. Lisi and Shah, 2020; Chen and Li, 2017; Shah et al., 2020). Furthermore,

Arpinoa et al. (2021) and Kou et al. (2015) exploit multivariate Gaussian Processes

to model the multivariate density of prices. However, these are either standalone

methodologies (thus do not leverage the rich literature on univariate point forecasts),

assume a fixed, parametric distribution of errors (e.g., Gaussian), or do not take the

dependence structure between errors into account. In contrast to these approaches,

our methodology simply post-processes univariate point forecasts, resulting in a multi-

variate distribution. Our approach can be used in a fully parametric, non-parametric,

or semi-parametric manner, incorporating a plausible dependence structure of error terms.

We next present a more specific summary of our approach, which is illustrated in

Figure 5.1. Full details on the methodology are provided in Section 5.3 of this chapter.

We consider a vector of 24 day-ahead point forecasts, each of which refers to one hour h

of the following day t stemming from any given point forecasting model visualized by the

grey box. From now on, we stick to this hourly example to simplify the presentation,

but quarter-hourly or minute-by-minute forecasts could be handled analogously. The

prediction is subject to an error defined by ϵt,h = yt,h − ŷt,h, where yt,h denotes the true

price and ŷt,h the prediction for each day t and hour h = 1, . . . , 24. Conditional on the

information set Ft−1, available at day t− 1, ϵt,h is a random variable with unknown, con-
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ditional distribution function that we model as Gt,h(x) := Fh(
x−µt,h

σt,h
). Here, Fh reflects an

hour specific shape of the distribution while σt,h and µt,h are scale and location parameters.

Point Forecasting Model

Error Learning Phase Dependence Learning Phase

Forecasting Phase

Multivariate Forecast Distribution

Forecasting errors

Marginal distribution
Fh of errors for
h = 1, . . . , 24.

Dependence structure
across hours
h = 1, . . . , 24.

Figure 5.1.: Schematic representation of the proposed method. The text next to each
arrow represents the result of the corresponding phase. More details are
given in the main text around the figure.

Next, these errors are used in the following phases of the proposed method, colored

red in Figure 5.1. In what we call the Error Learning Phase, the error distributions

Fh, as well as the scale and location parameters are estimated. We allow a potentially

time-varying conditional mean µt,h = E[ϵt,h|Ft−1] and variance σ2t,h = V[ϵt,h|Ft−1]. The

nonzero conditional mean µt,h is motivated by possible misspecification of the point

forecasting model, leading to predictable forecast errors. Time variation in the conditional

variance σ2t,h accommodates for differences in price uncertainty over time. If predictable

structure in the data is apparent, µt,h and σ2t,h can be tracked by time series models,

e.g., by estimating the models’ parameters in rolling windows of past forecast errors,

separately for each hour. Alternatively, with no predictable structure apparent, we simply

set Gt,h(x) := Fh(x), so that the error distribution remains constant over time. We call

the latter the ‘raw’-error approach.
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In the Dependence Learning Phase, the procedure aims to learn the dependence of

the given point forecast errors. Therefore, we estimate the joint distribution of the

24-dimensional vector of day-ahead forecasting errors ϵt,h. We disentangle univariate

error distributions and their dependence by inferring the copula from the corresponding

uniformly standardized values, i.e., ût,h := Ĝt,h(ϵt,h), where Ĝt,h has been obtained

from the Error Learning Phase. Finally, the learned error distribution and dependence

structure are passed on and combined in the Forecasting Phase to construct a forecast

distribution consisting of m simulated time paths of day-ahead electricity prices, with

each path consisting of 24 hourly prices. This resulting simulated distribution (colored

green in Figure 5.1) encodes both forecast uncertainty for each individual hour, and the

temporal dependence across the day’s 24 hours. For example, if the realized price of the

first hour exceeds the point forecast, the model typically places a high probability on a

positive forecast error in the second hour as well. We thus obtain the full univariate

forecast distribution (and not only an interval) for each hour h = 1, . . . , 24 of the day, as

well as joint behavior of prices across hours. Among others, the forecast distribution

can be used to assess the likelihood of price-related events (such as the event of a price

spike) and to measure the uncertainty of summary random variables (such as the sum of

hourly prices). We consider an example for the price of a Standard Load Profile (SLP),

reflecting a typical daily pattern of energy consumption, and show that the proposed

method is able to capture the dependence structure of hourly prices, leading to a realistic

assessment of price risks. Furthermore, we highlight the importance of the dependence

structure in a multivariate probabilistic forecast by comparing our results to their näıve

counterpart that assumes temporal independence of the prices.

In summary, the contributions of the chapter are:

1. We provide a methodology to leverage any given point forecasting model using a

post-processing approach.

2. The methodology addresses forecast uncertainty by providing a probabilistic forecast

of the variable of interest.
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3. Dependence structures across time are taken into account by using copula tech-

niques.

4. Rigorous assessment of the proposed method in five different benchmark data sets,

as well as in a load forecasting example.

The remainder of the chapter is structured as follows. Section 5.2 presents the used

electricity price data sets and day-ahead load data that we consider in our application.

In Section 5.3 we explain our proposed method in detail and give a toy example. Section

5.4 provides a case study for multivariate probabilistic electricity price forecasting in five

markets and an example for the price of a Standard Load Profile in Germany. Further,

we apply our method on a highly seasonal load forecasting time series to show the benefit

of the time series component. Last, Section 5.5 summarizes our work and points toward

future research.

5.2. Data and Point Forecasts

5.2.1. Data Sets
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Figure 5.2.: Load profile (SLP G0), aver-
aged over all seasons, week-
days, and hours in [kW] for
a normalized consumption of
1.000kWh/year.

The method we consider is based on a data

set of past point forecasts and correspond-

ing realizations. In our illustrations, we

utilize point forecasts of energy prices and

the corresponding realized prices. As dis-

cussed in the introduction, a wide range of

point forecasting models and data sources

are available for this purpose. Here we con-

sider the five data sets recently proposed

as replicable and transparent benchmarks

by Lago et al. (2021). We access the data

via the python library epftoolbox.1 The

1https://epftoolbox.readthedocs.io/en/latest/modules/cite.html

https://epftoolbox.readthedocs.io/en/latest/modules/cite.html
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Figure 5.3.: Day-ahead electricity prices in EUR/MW from 4 January 2012 to 31 De-
cember 2017 in the EPEX-DE dataset (Lago et al., 2021).

data covers five day-ahead electricity markets, each spanning a history of six years.

Namely, the EPEX-DE dataset covers the German electricity market; the PJM the

Pennsylvania-New Jersey-Maryland market; the EPEX-BE the day-ahead electricity

market in Belgium; the EPEX-FR the day-ahead electricity market in France; and the

NORD POLE the European power market of the Nordic countries. Note that the python

library only provides an interface to easily access the data, which is all openly available

at the ENTSO-E transparency platform.2 In addition to observations of day-ahead

prices, two time series of influential exogenous variables are included, which differ for

each market. To illustrate the data, Figure 5.3 displays the realized day-ahead electricity

prices in EUR per MW from 4 January 2012 to 31 December 2017 in the data set for the

German electricity market (EPEX-DE).

Our method builds on a series of point forecasts. For the five data sets above we use

point forecasts stemming from the the LEAR model by Lago et al. (2021), which we

implement with a two-year calibration window.3 The LEAR model is a parameter-rich

2https://transparency.entsoe.eu/
3Forecast averaging across calibration windows of different lengths could possibly yield improved results
(Hubicka et al. 2019; Marcjasz et al. 2018); here we consider the simpler choice of a single calibration
window in order to retain focus on the proposed method.

https://transparency.entsoe.eu/
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ARX model (that is, an autoregressive model with a large number of ‘exogenous’

regressors or features) estimated using LASSO for feature selection. In total, 247 features

are considered, including day-ahead prices, day-ahead forecasts of the two exogenous

variables, and historical day-ahead forecasts of the exogenous variables, all stemming

from previous days and weeks. Additionally, a dummy variable for the day of the week

is included. Finally, all variables are preprocessed with the arc hyperbolic sine (asinh)

variance stabilizing transformation. Details on the data and the LEAR model can be

found in Lago et al. (2021, Section 4.2).

In our forecast evaluation analysis, we further consider a Standard Load Profile (SLP)

that provides a practically relevant example of intra-day seasonality in energy demand.

We use this profile to construct a single daily energy price from 24 hourly prices. This

setup allows us to assess whether our multivariate probabilistic predictions of hourly

prices enable a realistic estimation of the uncertainty in daily prices. In practice,

German energy suppliers use SLPs to model the consumption patterns of electricity

customers without registered power metering. The SLPs replace the non-existent

load profile of these customers with a forecast of electricity consumption during every

quarter-hour. We utilize SLP G0 (see Figure 5.2), which represents the average of

all industrial SLPs in Germany and is provided by the German Association of En-

ergy and Water Industries (Bundesverband der Energie- und Wasserwirtschaft e.V., 2021).

We also demonstrate the application of our method for the related task of load

forecasting. To this end, we use openly available day-ahead load forecasts from the

ENTSO-E transparency platform for the German market from 2016 to 2020. Load

forecasting is essential for the planning and operation of energy suppliers, system operators,

and other market participants (Weron, 2006, Chapter 3). Figure 5.4 shows the time series

of errors that results from the forecasts provided on the platform. Upon closer inspection,

the error series displays strong seasonal patterns and therefore calls for appropriate time

series modeling techniques for post-processing.
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Figure 5.4.: Load forecast errors for Germany from 1 October 2020 to 31 December 2020.

5.2.2. Sample Choices for Forecasting Scheme

Training of our model is based on two phases. First, the univariate error distribution is

learned (Error Learning Phase). Second, the joint behavior of realized and standardized

errors is modeled by their copula (Dependence Learning Phase). Both phases require

calibration windows for learning and we implement the proposed method using

backward-looking rolling windows. The windows should be long enough to provide stable

estimates but also short enough to adapt quickly to changing market developments. Here,

we use about one year (364 days) of raw errors ϵt,h for the Error Learning Phase. Then,

the raw errors are standardized with the help of an appropriate time series model, and

the most recent 90 standardized errors are used to infer the distribution of standardized

errors Fh. Alternatively, when the raw errors do not show temporal structures, the

24 distributions Fh, h = 1, . . . , 24 are inferred directly from the most recent 90 raw

errors without filtering them through a time series model. We call the latter ‘raw-error’

approach. Finally, the Dependence Learning Phase estimates multivariate dependence

by computing the copula between the 24 distributions Fh based on a windows of the

last 90 filtered or raw errors, respectively. While the trade-off between too short or too

long window sizes needs to be resolved individually for each use case, our experiments
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indicate that the above lengths are a good baseline setting for hourly prices.

After the next day’s distribution of observations is predicted, the windows are rolled

over by one day and the estimates of the error distributions and dependency structures

are updated. The initial rolling windows used for each data set are shown in Table 5.1

along with the overall resulting evaluation periods. Note that the different lengths of the

evaluation period and different times result from the used benchmark data as proposed

by Lago et al. (2021) and are not explicitly chosen by us.

Dataset Error Learning Dependence Learning Evaluation Period

EPEX-DE 05.01.2015-03.01.2016 06.10.2015-03.01.2016 04.01.2016-31.12.2017
PJM 29.12.2015-26.12.2016 28.09.2016-26.12.2016 27.12.2016-24.12.2018
EPEX-BE 05.01.2014-03.01.2015 06.10.2014-03.01.2015 04.01.2015-31.12.2016
EPEX-FR 05.01.2014-03.01.2015 06.10.2014-03.01.2015 04.01.2015-31.12.2016
NORD POLE 29.12.2015-26.12.2016 28.09.2016-26.12.2016 27.12.2016-24.12.2018

Table 5.1.: Sample choices in the empirical analysis. We show the initial backward-
looking windows for the learning phases, which are then rolled over until the
end of the evaluation periods (rightmost column).

5.3. Methods

The method we propose is inspired by Clark et al. (2004) and Schefzik et al. (2013) who

consider multivariate dependencies in weather forecasting models, e.g., across locations or

across different weather variables. Intuitively, we learn the univariate forecast distributions

of 24 hours of the day (Error Learning Phase) and their dependence structure (Dependence

Learning Phase) in history and use this information to construct multivariate forecasts

in the future (Forecasting Phase). This algorithm can be used on top of any arbitrary

univariate point forecasting model. We next detail the three steps of the method. An

algorithmic description is given below for the Schaake-NP/P and in the appendix for

Schaake-Raw. For ease of presentation, we omit time indices in this section; for example,

we denote the price for hour h of day t by yh instead of yt,h.
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Algorithm 1: Schaake shuffle with time series model (Schaake-NP/Schaake-P)
Result: Simulated multivariate forecast distribution for day-ahead electricity prices ŷ∗

t
Input: History of point forecasts ŷ for day-ahead electricity prices
for each day in Error Learning Phase do

for each hour h do
Fit time series model to errors in learning data ϵh = yh − ŷh
Standardize realized forecast error by ẑh = ϵh−µ̂h

σ̂h
with µ̂h and σ̂h obtained from time series

model and save last 90 of the resulting standardized error ẑh in F̂h

end

end
for each day in Dependence Learning Phase do

for each hour h do
if parametric margins==True then

Calculate and save realized quantile ûh of ẑh in specified distribution, e.g., N(0, 1), by
ûh = Φ(ẑh)

else

Calculate and save realized quantile ûh of ẑh in empirical distribution F̂h by ûh = F̂h(zh)
end

end

end
for each day t in Forecasting Phase do

for each hour h do

Create m univariate samples representing each 1
m+1

th
quantile

if parametric margins==True then
use specified distribution, e.g., N(0, 1) and its inverse CDF Φ−1:
for each ensemble member i do

ỹih = (ŷh + µ̂h) + Φ−1{i/(m+ 1)} × σ̂h

end

else

use empirical CDF F̂h and its inverse CDF F̂−1
h :

for each ensemble member i do

ỹih = (ŷh + µ̂h) + F̂−1
h {i/(m+ 1)} × σ̂h

end

end

end
if parametric dependence==True then

Fit specified parametric copula model C to saved realized quantiles û
Sample m times from parametric copula model C and create rank matrix R̂

else

Derive empirical copula Ĉ and rank matrix R̂ out of saved, realized quantiles û
end

Pair up univariate forecast ensembles according to rank matrix R̂ (Formula (5.6) to obtain final
forecast ensemble ŷ∗

t
Update Error Learning Phase and Dependence Learning Phase

end
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5.3.1. Error Learning Phase

In the Error Learning Phase, we estimate the conditional distributions Gt,h(x)

:= Fh(
x−µt,h

σt,h
) of the forecast errors ϵt,h, where the indices represent the day (t) and hour

(h). The conditional mean and variance of the error, µt,h and σ2t,h, can be estimated

via a time series model. This is recommended if, e.g., the point prediction has high

autocorrelation, seasonal effects, or heterogeneous variance patterns. The estimates µ̂t,h

and σ̂t,h then result from the forecast of the time series model. The required degree of

complexity of the model partly depends on the point forecasting model that generated

this sequence of forecast errors. In an idealized setup, one would not require a model

for the expected forecast error µt,h, as the latter is equal to zero if the forecast model

is correctly specified (see e.g. Pesaran and Weale, 2006, Section 2.3). However, due to

complex seasonality and persistence patterns, this goal is hard to achieve for practical

energy price forecasts (see e.g. Maciejowska et al., 2021). Time variation in σ2t,h reflects

different market phases and seems unrelated to the accuracy of the point forecasting

model.4 If no time series model is applied, we set Gt,h(x) = Fh(x), i.e., we assume that

the distribution of yt,h|Ft−1 does not change over time. For background on time series

analysis, we refer to the textbooks by Lütkepohl and Krätzig (2004) and Brockwell

and Davis (2016). The time series specification used in our example can be found in

Appendix C.

To complete the model specification, we must estimate or fix the distribution Fh of the

standardized residuals ẑt,h =
ϵt,h−µ̂t,h

σ̂t,h
. We consider two versions: A parametric variant,

where we suppose that ẑt,h follows a standard normal distribution, and a non-parametric

4To see this point, consider a stylized example where the true conditional distribution of yt,h given Ft−1

has mean five and variance 1 + 1(t > 100), i.e., the conditional variance equals one for time periods
t ≤ 100 and 2 for t > 100. In this example, the optimal mean forecast of yt,h|Ft−1 is given by 5, and
the conditional variance of εt,h = yt,h − 5 is heteroskedastic even though the mean forecast is optimal.
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variant, where we estimate Fh via the empirical distribution function. We hence set

F̂h(z) =
1

n

n∑
t=1

1(ẑt,h ≤ z), (5.1)

where z ∈ R, and n is the length of the error learning phase.

5.3.2. Dependence Learning Phase

The Dependence Learning Phase aims to learn the joint distribution of all ϵt,h. Since

we have already estimated the marginal distributions Gt,h(x) of each hour h, we next

estimate their dependence structure using copula techniques. To motivate our use of

copulas, note that we need the joint distribution of the 24-day ahead errors ϵt,h of the

point forecast model for h = 1, . . . , 24. This joint distribution is represented by the

multivariate distribution function

Gϵt(θ) = P (ϵt,1 ≤ θ1, . . . , ϵt,24 ≤ θ24) (5.2)

with ϵt = (ϵt,1, . . . , ϵt,24), where θ = (θ1, . . . , θ24) ∈ R24 is a vector of threshold values.

For example, for a vector of zero thresholds, θ0 = (0, . . . , 0), Gϵt(θ0) yields the probability

that all 24 forecast errors are negative (or zero). In general, the distribution function

Gϵt is a complicated object that depends on both the marginal distribution of each

element ϵt,h as well as the dependence structure across the 24 elements. However,

copula methods allow us to specify the 24 elements’ marginal distributions and their

dependence separately, i.e., a copula C constructs a multivariate CDF from 24 marginal

CDFs. A simple example of a copula is given in the case of independence, where

C
{
Gt,1(θ1), . . . , Gt,24(θ24)

}
=

∏24
h=1Gt,h(θh), i.e., the copula function simply multiplies

all of its arguments. In practice, independence of the hourly prices is clearly unrealistic

and more flexible models of dependence are required. We can achieve this by choosing

and estimating an appropriate copula function C. In the parametric case, we require

additional parameters that determine the function C. For example, we could use a
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Gaussian copula which is parameterized by correlation matrix ρ (see Chapter 2 for

details on estimation and selected parametric copula models). The latter matrix has

24 × 23/2 = 276 unique elements so that the Gaussian copula allows for considerable

flexibility in modeling dependence at the cost of parameter estimation uncertainty. In

order to estimate the Gaussian copula, we use the rank correlation estimator (see, e.g.,

Genest and Favre 2007b).

In contrast to parametric copulas, non-parametric copulas do not assume a specific

functional form for C as already introduced in Chapter 2.2. The use of non-parametric

copulas in the context of multivariate forecast preprocessing was introduced by Clark et al.

(2004), who named the reordering idea after Dr. J. Schaake, a member of the National

Weather Service Office of Hydrologic Development. Schefzik et al. (2013) established the

connection to empirical copulas. Our exposition of non-parametric copulas in this chapter

loosely follows Schefzik et al. (2013, Section 3.3) for a more comprehensible presentation

in the present application. More details on non-parametric copula estimation can be

found in Chapter 2 and Chapter 3 of this thesis. Now consider a training sample covering

m days of past point forecast errors for every hour h, i.e.,

{(εt,1, . . . , εt,24) : t = 1, . . . ,m}. (5.3)

We standardize these forecast errors by considering the corresponding quantile levels

ût,h = Ĝt,h(εt,h) = F̂h(ẑt) ∈ [0, 1].5 Assume for simplicity that there are no ties, i.e., the

training sample contains m× 24 unique values of ût,h. We denote the rank of ût,h within

û1,h, . . . , ûm,h by rk(ût,h). That is, for the day t at which the smallest quantile level is

observed, we have rk(ût,h) = 1. Similarly, the day t with the largest quantile level yields

rk(ût,h) = m. The empirical copula – an estimator of the unknown copula C, based on a

5In the case of parametric (standard normal) margins, we have ût,h = Φ(ẑt,h), where Φ is the CDF of
the standard normal distribution.
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training sample of length m – is then given by

Ĉm(i1/m, . . . , i24/m) =
1

m

m∑
t=1

1 {rk(ût,1) ≤ i1, . . . , rk(ût,24) ≤ i24} , (5.4)

for integers 0 ≤ i1, . . . , i24 ≤ m. For example, suppose that i1 = . . . = i24 = 10. In

this case, the above function yields the empirical frequency of the event that all 24

quantile levels are simultaneously smaller or equal than their tenth smallest observed

value. Clearly, setting i1 = . . . = i24 = 0 yields a function value of zero, and setting

i1 = . . . = i24 = m yields a function value of one. Note how the here given representation

of the empirical copula coincides with the empirical copula based on ranks (defined in

Chapter 2), which is similar except the scaling factor of m and n, respectively.

5.3.3. Forecasting Phase

We next describe how to draw multivariate forecasts for the next day t. From the

previous two steps, we have obtained estimates of the univariate distributions Gt,h(x)

and the copula C of standardized residuals ẑt,h. We now combine these two pieces to

construct the desired multivariate distribution. Therefore, we first construct probabilistic

univariate forecast distributions and then combine these distributions with the help of

the learned copula representation.

Specifically, we begin by constructing a probabilistic univariate forecast distribution of

size m, for each hour h in the next day, by

ỹit,h = (ŷt,h + µ̂t,h)︸ ︷︷ ︸
bias-corrected point forecast

+ F̂−1
h

{
i/(m+ 1)

}
× σ̂t,h︸ ︷︷ ︸

predicted quantiles of forecast error

(5.5)

for i = 1, . . . ,m, where F̂−1
h is the inverse cumulative distribution function of the

standardized residuals. In the case of parametric (Gaussian) marginal distributions,

we have that F̂−1
h = Φ−1 is the quantile function of the standard normal CDF. Thus,

Equation (5.5) generates a stylized sample by computing m equally spaced quantiles of
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the 24 univariate forecast distributions. In the ‘raw-error’ case without a time series

model, we simply set µ̂t,h ≡ 0 and σ̂t,h ≡ 1 in the formula above.

Up to now, the 24 ensembles represent the 24 marginal forecast densities for the hours

but lack the correct dependence structure. Therefore, the resulting univariate ensembles

per hour h, consisting of forecasts ỹit,h, i ∈ {1, . . . ,m} have to be paired according to the

learned copula to encode the desired dependence structure. A discrete representation of

the copula is needed for this purpose. Such a representation is given by a suitable rank

matrix R̂ = (rk,h) k∈{1,...,m}; h∈{1,...,24}, containing the pairing of univariate ensembles.

For the parametric copula approach, we derive the rank matrix from a random sample

of size m from the fitted parametric copula model. I.e., we assign ranks to m random

samples from the learned copula in each dimension starting with one for the smallest

value. For the non-parametric approach, the rank matrix R̂ is calculated from the points

of the empirical copula in the Dependence Learning Phase (see Equation 5.4).

From R̂ we derive the m× 24 matrix ŷ∗
t that contains our final multivariate forecast

distribution reflecting the correct dependence structure. That is, each row of ŷ∗
t represents

24 hourly prices that could plausibly be observed together. Specifically, to obtain ŷ∗
t we

sort the points ỹit,h, i ∈ {1, . . . ,m} from Equation (5.5) such that the ranks in each row

of ŷ∗
t correspond to the kth row of the rank matrix, i.e,

(ŷ∗
t )k := {ỹrk,1t,1 , . . . , ỹ

rk,24
t,24 } (5.6)

for k ∈ {1, . . . ,m} and (·)k denoting the kth row of a matrix. Note that rk(ỹit,h) = i by

construction, i.e., ỹit,h has rank i among the m univariate forecast draws for hour h (see

Equation 5.5). We illustrate this approach in Example 5.3.1, which complements the

meteorological example of Clark et al. (2004, Section 3b).

Example 5.3.1. To illustrate the method (and in particular, the Forecasting Phase),

we next consider a toy example based on a Dependence Learning Phase of length m = 7
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and four (instead of 24) hours of the day. First, Table 5.2 illustrates the four univariate

forecast distributions. Equation (5.5) together with m = 7 implies that we represent

each distribution by a set of quantiles at levels (1/8, . . . , 7/8). The differences in the

four univariate distributions (e.g., the lower median price forecast at 00:00 compared to

12:00) reflect intra-daily seasonality in energy prices. This seasonality is typically already

reflected by the point forecasting model that we consider as an input to our method.

Quantile
level 12.5% 25% 37.5% 50% 62.5% 75% 87.5%

00:00 6.1 16.1 23.6 30.3 37.0 44.5 54.5
06:00 21.7 31.6 39.0 45.7 52.3 59.7 69.6
12:00 27.2 37.0 44.4 50.9 57.5 64.8 74.6
18:00 26.7 36.5 43.9 50.5 57.0 64.4 74.2

Table 5.2.: Univariate forecast distributions in the toy example, separately for four hours
h (rows).

Table 5.3 illustrates an estimated rank matrix R̂. For example, the table’s first row

shows the ranks for the first day of the Dependence Learning Phase. Prices were fairly

low on that day: Among others, the price at 00:00 was the lowest recorded in the training

sample compared to the prices at 00:00 for the other m − 1 = 6 days in the training

sample. The table also shows strong positive dependence on the prices across hours, as

reflected by the positive correlation between the ranks.

Finally, Table 5.4 shows the multivariate forecast distribution that results from com-

bining the univariate distributions in Table 5.2 with the rank structure from Table 5.3.

For example, the first draw of the multivariate forecast distribution consists of the lowest

quantile for the price at 00:00 (given by 6.1), the second-lowest quantile for the price at

06:00 (given by 31.6), the lowest quantile for the price at 12:00 (given by 27.2), and the

second-lowest quantile for the price at 18:00 (given by 36.5).
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00:00 06:00 12:00 18:00

t = 1 1 2 1 2
t = 2 4 3 3 5
t = 3 5 4 7 7
t = 4 2 1 2 1
t = 5 3 5 5 6
t = 6 7 7 6 4
t = 7 6 6 4 3

Table 5.3.: Rank matrix R̂ in the toy example.

Forecast
Draw # 00:00 06:00 12:00 18:00

1 6.1 31.6 27.2 36.5
2 30.3 39.0 44.4 57.0
3 37.0 45.7 74.6 74.2
4 16.1 21.7 37.0 26.7
5 23.6 52.3 57.5 64.4
6 54.5 69.6 64.8 50.5
7 44.5 59.7 50.9 43.9

Table 5.4.: Final multivariate forecast distribution in the toy example.

Observe that the number of elements is the same in Tables 5.2, 5.3 and 5.4. At the

same time, the interpretation differs across the three tables: While Table 5.2 represents

quantile levels per time point in each row, rows in Table 5.3 represent ranks, and forecast

draws in Table 5.4. This observation mirrors the simple yet clever construction behind

the Schaake shuffle: Based on a dependence training sample of a given size (here, m = 7),

it constructs a multivariate forecast sample of the same size. As a consequence, larger

training samples yield larger and potentially more informative forecast distributions.

On the other hand, short samples are quicker to adapt to possible structural breaks in

dependence patters. In our empirical analysis below, we consider m = 90.
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5.4. Results

5.4.1. Forecast Evaluation

For the evaluation of our forecast distributions, we follow the principle of Gneiting et al.

(2007), according to which a probabilistic forecast should maximize sharpness subject to

calibration. Calibration means that, ideally, each observation should resemble a random

draw from the predictive distribution. On the other hand, sharpness requires that the

predictive distribution be as concentrated as possible. Proper scoring rules (Gneiting

and Katzfuss, 2014; Gneiting and Raftery, 2007) assess sharpness and calibration

simultaneously by assigning numerical predictive performance measures. A scoring rule is

a function S(F, y) → R, where F is the forecast distribution and y the observed outcome.

We consider scoring rules in negative orientation, i.e., a smaller score value indicates a

better forecast. A scoring rule is called proper if stating the true forecast distribution

yields the best expected score. We consider the Continuous Ranked Probability Score

(CRPS) to evaluate the marginal forecast distributions. Specifically, we evaluate the

forecast distribution for each of the 24 horizons and then compute the average score.

Furthermore, we use the Energy Score (ES) to evaluate the multivariate forecast

distribution. We further apply the Diebold and Mariano (1995) test jointly to all hourly

series (i.e., to the mean score across all 24 hours) to assess the statistical significance of

differences in forecast performance (see Ziel and Weron, 2018). Finally, we check the

calibration of multivariate forecasts graphically with Average Rank Histograms (Tho-

rarinsdottir et al., 2016). We provide details on these evaluation methods in the appendix.

Note that we do not use the popular Mean Absolute Error (MAE) criterion because it

refers to point forecasts (rather than forecast distributions). However, the CRPS criterion

we consider reduces to the MAE in the special case where the forecast distribution collapses

to a single point (see Gneiting and Katzfuss, 2014). For a discussion of evaluation metrics

in probabilistic forecasting for electricity prices, we refer to Nowotarski and Weron (2018).
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5.4.2. Electricity Price Forecasting

Our probabilistic forecasts are based on the rolling window scheme explained in Section

5.2.2. We examine several settings of the proposed method to investigate the impact of

different modeling choices on forecast performance. Additionally, we compare all settings

to their simplified (independence) counterparts ignoring the dependence structure.

Settings

We investigated several settings of the proposed method. All price forecasts used as inputs

stem from the benchmark LEAR model by Lago et al. (2021) introduced in Section 5.2.

The variants we consider differ in their specification of the margin (standardizing forecast

errors via a time series model versus using raw forecast errors; using a non-parametric

versus Gaussian marginal distribution) and the copula (non-parametric versus Gaussian).

Thus, we are able to systematically identify drivers of the method’s performance and

to disentangle the effect of different modeling approaches in the Error and Dependence

Learning Phase. For ease of presentation, we do not consider all possible configurations

but focus on the settings listed in Table 5.5: The Schaake-NP variant uses non-parametric

margins and a non-parametric copula, as well as an AR(1)-GARCH(1,1) time series

model for error standardization. As detailed in the appendix, this model combines

an autoregressive (AR) specification for the mean with a generalized autoregressive

conditional heteroskedasticity (GARCH) specification for the variance. The Schaake-P

variant uses Gaussian margins, a Gaussian copula, and the same AR(1)-GARCH(1,1) for

error standardization. Last, the Schaake-Raw variant is based on raw forecast errors, i.e.,

without time series standardization, but is otherwise identical to the Schaake-NP variant.

As a simple evaluation of copula modeling performance, we compare each variant with its

independence counterpart that uses the same marginal distributions of forecast errors for

each hour h, but assumes them to be independent across hours (I-NP, I-P, and I-Raw).

The AR-GARCH calculation is done using the ‘rugarch’ package (Ghalanos, 2020) in R

(R Core Team, 2013), while everything else is implemented in Python 3 (Van Rossum

and Drake, 2009). Since the method proposed here is a post-processing approach, the
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runtime of the overall estimation is mainly driven by the underlying point forecasting

model. Last, we provide ready-to-use computer code to reproduce our results in the

appendix.

Setting AR-GARCH Dependence modeling Marginal distributions

Schaake-NP Yes Empirical copula Non-parametric
Schaake-P Yes Gaussian copula Parametric
Schaake-Raw No Empirical copula Non-parametric
I-NP Yes Independence Non-parametric
I-P Yes Independence Parametric
I-Raw No Independence Non-parametric

Table 5.5.: Settings considered for electricity price forecasting. Note that the names and
abbreviations are specifically chosen for this work for ease of presentation.

Assessment

Figures 5.5 (a), 5.5 (b), and 5.5 (c) provide illustrative calibration checks for the

EPEX-DE data set. The univariate verification rank histograms for all 24 hours are

displayed on the diagonal and the bivariate scatterplots of realized quantiles on the

off-diagonals. Each point in the figure corresponds to one day in the forecasting phase.

Figure 5.5 (a) displays the result for Schaake-NP, while panel (b) displays the case of

its parametric counterpart Schaake-P, and panel (c) refers to the case of raw errors

(Schaake-Raw). The off-diagonal elements in Figures 5.5 (a) to (c) indicate a decreasing

dependence for hours that are further apart, which seems plausible. The verification

rank histograms (diagonal elements) suggest good calibration of the univariate forecast

distribution for the non-parametric case (Figure 5.5 a), as indicated by uniform

histograms. Univariate calibration seems to be slightly worse in the parametric case

(diagonal elements of Figure 5.5 (b), where most of the histograms are hump-shaped.

The margins of the non-parametric raw-error approach in Figure 5.5 (c) also seem to be

well-calibrated. Thus, the results suggest better calibration for the two non-parametric

versions. Furthermore, satisfactory calibration of the raw error approach suggests that

error post-processing via a time series model is not of much importance in this case
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study.

Figure 5.6 shows the Average Rank Histograms for various forecast distributions.

The non-parametric Schaake methods in panels (a) and (c) display slight signs of

miscalibration (i.e., non-uniform histograms) which however, seem rather unsystematic.

The histogram for the parametric case in panel (b) is hump-shaped, which indicates

under-dispersion and is in line with our observation in Figure 5.5 (b). The three näıve

independence counterparts in panels (d)-(f) clearly lack calibration, as indicated by

(a) Schaake-NP

Figure 5.5.: Verification rank histograms for the EPEX-DE data set. Diagonals: Uni-
variate rank verification histograms. Off-diagonals: Bivariate scatterplots of
realized quantiles.
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(a) Schaake-P

(c) Schaake-Raw

Figure 5.5, continued.
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distinct U-shaped patterns of the Average Rank Histograms.

(a) Schaake-NP (b) Schaake-P (c) Schaake-Raw

(d) I-NP (e) I-P (f) I-Raw

Figure 5.6.: Average Rank Histograms for the EPEX-DE dataset.

Finally, Table 5.6 summarises the Energy Score and CRPS for all settings and the

corresponding baselines in the five markets. We observe the same values for the copula

based approaches and their independence counterparts for the CRPS as they share the

same marginal distributions. In terms of the Energy Score, the three copula based

approaches consistently outperform their independence counterparts. Furthermore, we

note a better performance for both non-parametric versions (Schaake-NP/Schaake-Raw)

than for the parametric error distributions (Schaake-P). This result is in line with the lack

of calibration of the Schaake-P method documented earlier. Remarkably, the performance

of the raw error approach (Schaake-Raw) is not systematically worse than that of the

time series based non-parametric variant (Schaake-NP). For the PJM, and FR data sets,

both variants perform similarly, and differences in score performance (Diebold-Mariano

tests) are typically insignificant at the 5% level. For the BE and DE data set, which
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are potentially more challenging to predict (Lago et al., 2021, Section 3.4 and 3.6),

Schaake-Raw outperforms Schaake-NP. This may be due to increased robustness of

Schaake-Raw in an unstable data environment. On the contrary, in the Nord Pole data,

Schaake-NP outperforms Schaake-Raw. Overall, the competitive performance of the raw

error approach indicates that there is little need of systematic error post-processing. This

suggests that the forecast models provided by Lago et al. (2021) yield a good fit to the

data, leaving little unmodeled heterogeneity in the models’ forecast errors. The need

for error post-processing may be more pronounced in a setup with less sophisticated

forecasting models. We consider such a case in the context of load forecasting below.
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Setting Energy Score CRPS p-values
(a) (b)

EPEX-DE

Schaake-NP 18.769 3.138
Schaake-P 19.841 3.421 <0.001 <0.001
Schaake-Raw 18.216 3.035 <0.001 <0.001
I-NP 19.227 3.138 <0.001
I-P 20.075 3.421 <0.001 <0.001
I-Raw 18.663 3.035 0.333 <0.001

Pennsylvania-New Jersey-Maryland (PJM)

Schaake-NP 14.594 2.394
Schaake-P 15.318 2.581 <0.001 <0.001
Schaake-Raw 14.791 2.436 0.162 0.047
I-NP 15.133 2.394 <0.001
I-P 15.687 2.581 <0.001 <0.001
I-Raw 15.426 2.436 <0.001 0.047

EPEX-BE

Schaake-NP 35.13 5.503
Schaake-P 38.64 6.134 <0.001 <0.001
Schaake-Raw 33.488 5.311 0.012 0.001
I-NP 36.423 5.503 <0.001
I-P 38.868 6.134 <0.001 <0.001
I-Raw 34.642 5.311 0.444 0.001

EPEX-FR

Schaake-NP 22.553 3.307
Schaake-P 23.578 3.515 0.001 <0.001
Schaake-Raw 21.203 3.243 0.097 0.119
I-NP 23.088 3.307 <0.001
I-P 23.935 3.515 <0.001 <0.001
I-Raw 21.633 3.243 0.259 0.119

NORD POLE

Schaake-NP 9.729 1.571
Schaake-P 10.437 1.72 <0.001 <0.001
Schaake-Raw 9.904 1.626 0.007 <0.001
I-NP 10.179 1.571 <0.001
I-P 10.657 1.72 <0.001 <0.001
I-Raw 10.189 1.626 <0.001 <0.001

Table 5.6.: Energy Score and CRPS for several variants of proposed method and five
benchmark data sets. (a) p-value of Diebold-Mariano tests for equal Energy
Score, compared to Schaake-NP. (b) p-value of Diebold-Mariano tests for
equal CRPS, compared to Schaake-NP. Blank cells indicate that scores are
equal by construction, so that the test is undefined.
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5.4.3. Load Profile Price Prediction Intervals

We illustrate the importance of the correct dependence structure in forecasting with the

example of the Standard Load Profile (SLP) G0 from the Bundesverband der Energie-

und Wasserwirtschaft e.V. (2021). To do so, we compare daily price forecasts for the SLP

G0 from the Schaake-NP and Schaake-Raw variants with their independence counterparts

(I-NP/I-Raw) over the time period from 04/01/2016 to 31/12/2017. We average the

quarter-hourly SLP across seasons and aggregate it to full hours. The true price for

the SLP of each day is then calculated with realized prices from the EPEX-DE dataset.

Further, we added a Quantile Regression (QR) which uses the 24 univariate point

predictions of the day as explanatory variables with a small L1-regularization constant of

0.1; a Kernel Density Estimation (KDE) over the last 90 price realizations of the full

daily profile; and an AR(1)-GARCH(1,1) time series model also fitted to the last 90 price

realizations of the full daily profile as additional benchmarks (in line with the choice for

the Dependence Learning Phase). The L1-regularization in the QR is necessary to avoid

exploding regression coefficients and, hence, unrealistic interval forecasting results. See Li

and Zhu (2008) and Koenker et al. (1994) for theoretical introductions to regularization

in quantile regression. Finally, we evaluate how often this price realizes within the 93.33%

quantile of the respective forecast distribution (Forecast Interval Coverage Probability,

FICP) and the normalized width of the interval (Forecast Interval Normalized Average

Width, FINAW). See the appendix for details on these measures.

As expected, the positive dependence between consecutive hours leads to wider predic-

tion intervals for the SLP compared to the approaches not considering the dependence.

Figure 5.7 illustrates this aspect for a three-month subsample of the data (for better

visibility), whereas Figure C.1 in the appendix presents the entire sample period. This is

also reflected in the FINAW values reported in Table 5.7. We observe that I-Raw results

in the shortest intervals (smallest FINAW), followed by I-NP; however, both methods

fail to achieve the desired level of coverage. Notably, only Schaake-Raw and Schaake-NP

combine good coverage results with small values of FINAW. In particular, 91.35% of the
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Figure 5.7.: Prediction intervals and realized prices for SLP G0 from 3 October 2017 to
31 December 2017 (last 90 days of 2017).

realized prices are within the projected 93.33% prediction interval of the Schaake-NP

model. For the Schaake-Raw model, the corresponding share is 91.49%. Hence both

models achieve coverage rates that are very close to nominal coverage, indicating good

calibration. By contrast, the corresponding coverage rates of 53.71% and 56.19% for the

independence assumption show that economic uncertainty cannot be well approximated

without considering the dependence structure. As a simple alternative method, one could

compute a prediction interval from past price realizations. In the present case, using

this ’direct’ method with a sample of 90 past prices also yields a satisfactory coverage

rate of 88.59% but much wider intervals, with a FINAW value of 0.2533. Similarly, the

reported KDE and AR(1)-GARCH(1,1) methods in Table 5.7 provide good coverage but

exhibit wider forecasting intervals. In contrast, QR results in much smaller forecasting

intervals, but does not provide sufficient coverage. Importantly, note that the latter three

methods require an aggregated time series which is specific to the particular load profile

considered here. By contrast, the Schaake methods can be adapted to any given load

profile as they yield forecasts on an hourly resolution.
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FICP FINAW

Schaake-NP 91.35% 0.1122
I-NP 53.71% 0.0372
Schaake-Raw 91.49% 0.1068
I-Raw 56.19% 0.0333
QR 80.77% 0.0697
KDE 90.93% 0.2789
AR(1)-GARCH(1,1) 90.11% 0.1907

Table 5.7.: Forecast Interval Coverage Probability FICP (nominal level: 93.33%) and
Forecast Interval Normalized Average Width FINAW for realized SLP prices
over the time period from 04/01/2016 to 31/12/2017.

5.4.4. Forecasting Intraday Load Data

We finally give a short example of other operational scenarios where our proposed method

can be applied. Instead of hourly prices, this example uses intra-day load data of the

entso-e transparency platform for Germany from 2016 to 2020.6 We average the day-

ahead quarter-hourly load forecasts ([6.1.B]) and actual loads ([6.1.A]) over each hour,

hence resulting in 24 hourly forecast error observations, in line with the setup of the

price data considered earlier. We choose this data set to substantiate the use of time

series models as an optional building block within the proposed method. In contrast to

the point forecast errors for the price data above, point forecast errors for the load data

contain a time series structure with a marked seasonal component (see, e.g., the analysis

in Maciejowska et al. (2021)). Without claiming to be optimal, we tackle this stylized

fact by using a Seasonal Autoregressive S-AR(1)(1,7) time series with one AR parameter

and one seasonal AR parameter with a lag of one week, i.e., 7 days for each hourly error

time series (Schaake-NP). See Hyndman and Athanasopoulos 2021, Section 9.9 for an

introduction to seasonal autoregressive models. We display the results for the Energy

Score and CRPS for the years 2019 and 2020 in Table 5.8.

6https://transparency.entsoe.eu/dashboard/show

https://transparency.entsoe.eu/dashboard/show
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Setting Energy Score CRPS p-values
(a) (b)

Schaake-NP 5854.619 1047.883
Schaake-Raw 13412.822 2614.415 < 0.001 < 0.001
I-NP 6082.442 1047.883 < 0.001
I-Raw 13734.781 2614.415 < 0.001 < 0.001

Table 5.8.: Energy-Score and CRPS for forecasting German load data from 01 January
2019 to 30 December 2020. (a) p-value of Diebold-Mariano tests for equal
Energy Score, compared to Schaake-NP. (b) p-value of Diebold-Mariano tests
for equal CRPS, compared to Schaake-NP. Blank cells indicate that scores
are equal by construction, so that the test is undefined.

The table indicates that raw error approaches are clearly inferior to S-AR based error

post-processing. Thus, in contrast to the case of price data considered above, there

appears to be a clear need for error post-processing in this example. We conjecture that

this result is driven by the lower sophistication of the (unknown) load forecasting model,

as compared to the forecasting models provided by Lago et al. (2021) that we considered

for the energy price data.

5.5. Conclusion

The work in this chapter proposes a post-processing method to create multivariate

forecast distributions for day-ahead electricity prices out of any point forecasting

model. The method is motivated by two main aspects: First, many sophisticated

point forecasting models have been introduced in the literature, so that we may take

the availability of a ‘good’ point forecasting model as given. Second, many economic

decisions require probabilistic multivariate forecasts, which are hardly available at present.

Our method exploits several time series of univariate point forecast errors and creates

a multivariate forecast distribution that inherits their dependence structure. In a case

study on energy price forecasting based on benchmark models of Lago et al. (2021), a

simple raw-error variant of the method performs well. This result indicates that the
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point forecast errors contain little exploitable structure so using a time series model

for these errors is not necessary. In an additional case study on load forecasting, the

point forecast errors contain pronounced seasonal patterns, and removing these patterns

via a time series model leads to clear gains in forecasting performance. Throughout

our empirical analysis, simple non-parametric techniques (for estimating the marginal

distribution and the copula) outperform parametric ones based on normality assumptions.



6. Sampling from the Latent Space in

Autoencoders: A Simple way Towards

Generative Models?

This chapter is based on joint work with Maximilian Coblenz and Oliver Grothe. It

investigates methodologies to model the latent space of an autoencoder turning it into a

generative model.

6.1. Introduction

Generating realistic sample points of various data formats has been of growing

interest in recent years. Thus, new algorithms such as Autoencoders (AEs) and

Generative Adversarial Networks (GANs) Goodfellow et al. (2014) have emerged.

GANs use a discriminant model, penalizing the creation of unrealistic data from a

generator and learning from this feedback. On the other hand, AEs try to find a

low-dimensional representation of the high-dimensional input data and reconstruct from

it the original data. To turn an AE into a generative model, the latent low-dimensional

distribution is modeled, samples are drawn, and thereupon new data points in

the original space are constructed with the decoder. Based on that, Variational

Autoencoders (VAEs) have evolved, optimizing for a Gaussian distribution in the

latent space Kingma and Welling (2014). Adversarial autoencoders (AAEs) utilize

elements of both types of generative models, where a discriminant model penalizes

the distance of the encoded data from a prior (Gaussian) distribution (Makhzani

97
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et al., 2016). However, such strong (and simplifying) distributional assumptions as

in the VAE or AAE can have a negative impact on performance, leading to a rich

literature coping with the challenge of reducing the gap between approximate and

true posterior distributions (e.g., Rezende and Mohamed 2015; Tomczak and Welling

2018; Kingma et al. 2016; Gregor et al. 2015; Cremer et al. 2018; Marino et al. 2018;

Takahashi et al. 2019). We argue that imposing restrictions on the distribution should

be avoided and that more flexible approaches for modeling the latent space seem beneficial.

Recently, Tagasovska et al. (2019) presented the Vine Copula Autoencoder (VCAE)

to overcome the mentioned problems. Their approach comprises two building blocks,

an autoencoder and a vine copula which models the dependence structure in latent

space. By that, they were able to create realistic, new images with samples from the

fitted vine copula model in the latent space. In this work, we want to elaborate on

this idea and compare various methods to model the latent space of an autoencoder

to turn it into a generative model. To this end, we analyze, amongst others, the usage

of Gaussian mixture models (GMM) as done by Ghosh et al. (2020), the vine copula

approach by Tagasovska et al. (2019), and simple multivariate Kernel Density Estimates.

Additionally, we introduce a new, non-parametric copula approach, the Empirical Beta

Copula Autoencoder (EBCAE) based on a special form of the already known empirical

copula. To assess the ability to turn a standard autoencoder into a powerful generative

model, we inspect resulting images, check the models for their ability to generalize

and compare additional features. We also check if these methods may be a simple

alternative to more complex models, such as normalization flows (see Rezende and

Mohamed 2015). More specifically, we use the well-known Real NVP (Dinh et al., 2017)

as a benchmark but do not elaborate on these in detail. Note that in contrast to other

methods (e.g., Oring et al. 2021 or Berthelot et al. 2019), the overall approach does not

restrict or change the training of the autoencoder in any form, enabling it to find the

best low-dimensional representation of the data.
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Figure 6.1.: Function scheme of simple generative autoencoders. 1. An encoder f encodes
the data X to a low dimensional representation Y . 2.1 Y is modeled by Y ′,
2.2 Generate new synthetic samples of the latent space by sampling from
Y ′. 3. Decode the new samples with the decoder g.

All models considered in this work are constructed in three steps, visualized in Figure

6.1. First, an autoencoder, consisting of an encoder f and a decoder g, is trained to

find a low-dimensional representation of the data X. Second, the data in the latent

space Y is used to learn the best fitting representation Y ′ of it. This is where the

examined models differ from each other by using different methods to model the latent

space. Finally, we sample from the learned representation of the latent space and feed

the samples into the decoder part of the autoencoder, creating new synthetic data samples.

Generative models are a vivid part of the machine learning literature. For example,

new GAN developments Varshney et al. (2021); Karras et al. (2021); Lee et al. (2021);

Hudson and Zitnick (2021), developments in the field of autoencoders, Larsen et al.

(2016); Yoon et al. (2021); Zhang et al. (2020); Shen et al. (2020) or developments

in variational autoencoders Sohn et al. (2015); Havtorn et al. (2021); Masrani et al.

(2019); Xu et al. (2019) are emerging. We again want to emphasize that for the models

we consider, no prior is needed, nor the optimization approach is changed, i.e., the

latent space is modeled after the training of the autoencoder (post-doc). Thus, the
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presented approach could be transferred to other, more sophisticated, state-of-the-art

autoencoders, as hinted in Ghosh et al. (2020). The general idea of creating new

data by sampling in the latent space of a generative model has already been used

by, e.g., Tagasovska et al. (2019); Dai and Wipf (2019); Brehmer and Cranmer

(2020) or Ghosh et al. (2020), but to the best of our knowledge, no analysis and

comparison of such methods have been made so far. Closely related, more and more

researchers specifically address the latent space of generative models Mishne et al. (2019);

Fajtl et al. (2020); Moor et al. (2020); Oring et al. (2021); Hofert et al. (2021) in their work.

This work does not propose a new ’black-box algorithm’ for generating data (although

we present the new EBCAE) but analyses challenges and possible answers on how

autoencoders can be turned into generative models by using well-understood tools of

data modeling. We show that this idea generally works with various approaches but

that it is hard to find a trade-off between out-of-bound sampling and creating new

pictures. We debate further properties of the used methods as targeted sampling and

synthesizing images. Our conclusion is intended to point out relevant aspects to the user

and discusses the advantages and disadvantages of the models examined.

The remainder of the chapter is structured as follows. Section 6.2 introduces various

methods for modeling the latent space. Besides traditional approaches, copula-based

methods are introduced. Section 6.3 describes the implementation, evaluation, and results

of the experiments carried out. In Section 6.4 we discuss the results and conclude the

chapter.

6.2. Modeling the Latent Space

In this section, we want to introduce and reflect on different methods to model the latent

space in an autoencoder. All methods aim to fit the low-dimensional data Y as best as

possible to be able to create new sample points in the latent space, which leads to new
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realistic images after passing the decoder. We first recap more ’traditional’ statistical

tools, followed by copulas as an intuitive and flexible tool for modeling high-dimensional

data. We briefly explain how each approach can be used to model data in the latent

space and how to obtain samples thereof. Note that we do not introduce our benchmark

models, namely the standard plain vanilla VAE and the Real NVP, and refer to the

original papers instead (Kingma and Welling, 2014; Dinh et al., 2017).

6.2.1. Traditional Modeling Methods

We classify the multivariate Gaussian distribution, a Kernel Density Estimation (KDE),

and a Gaussian Mixture Model (GMM) as traditional modeling methods and give a

rather short treatment of each below. They are well known and can be studied in various

statistics textbooks such as Hastie et al. (2001) or Bishop (2006).

Multivariate Gaussian

The probably simplest method is to assume the data in the latent space to follow a

multivariate Gaussian distribution. Thus, we estimate the covariance matrix Σ̂ and mean

vector µ̂ of Y . In the second step, we draw samples thereof and pass them through the

decoder to generate new images.

GMM

The Gaussian Mixture Model (GMM) aims to model the density of the data by mixing M

multivariate Gaussian distributions. Thus, the resulting density of the Gaussian mixture

model has the form

f(y) =
M∑

m=1

αmϕ(y;µm,Σm) (6.1)
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where αm denotes the mixing parameter and ϕ the density of the multivariate normal

distribution with mean vector µm and covariance matrix Σm. The model is usually

fit by maximum likelihood using the EM algorithm. By combining several Gaussian

distributions, it is more flexible than estimating only one Gaussian distribution as above.

A GMM can be seen as some kind of kernel method (Hastie et al., 2001), having a rather

wide kernel. In the extreme case, i.e., where m equals the number of points the density

is estimated on, a Gaussian distribution with zero variance is centered over each point.

Kernel density estimation is introduced in the following.

KDE

Kernel Density Estimation is a well-known non-parametric tool for density estimation.

Put simply, a KDE places a density around each of the N data points yi, i ∈ {1, . . . , N}
of Y . The estimated density at point y0 is constructed by

f(y0) =
1

Nλ

N∑
i=1

Kλ(y0, yi) (6.2)

with bandwidth λ and used kernel K. The kernel density estimation can be performed

in univariate data as well as in multivariate data. Note that the choice of bandwidth

and kernel can affect the resulting estimated density. In this work, we rely on the most

commonly used kernel, the Gaussian Kernel, and a bandwidth fitted via Silverman’s rule

of thumb (Silverman, 1986) for the univariate KDEs, while we use a grid search with

10-fold cross-validation in the multivariate case.

We use kernel density estimation in multiple fashions. First, we use a multivariate

KDE to model the density of the data in the latent space itself. In the case of a Gaussian

kernel, the density at point y0 can be estimated

f(y0) =
1

N
√

Σ2π

N∑
i=1

e−1/2(y0−yi)
′Σ−1(y0−yi) (6.3)
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where Σ represents the covariance matrix of the kernel, i.e., the matrix of bandwidths,

and N the total number of observations in Y again. Second, we ignore the dependence

structure between margins and estimate the univariate densities of each dimension in the

latent space by a KDE. In this way, we are able to find out whether explicitly modeling

the dependence structure is necessary or not. We call that approach the Independent

modeling approach. Last, we use univariate KDEs for modeling the marginal distributions

of each dimension in the latent space and use them in the copula models described below.

6.2.2. Copula Based Models

In the following, we introduce two copula-based methods to model the latent space

of the autoencoder: the vine copula and the empirical beta copula approach. Copulas

have been subject to an increasing interest in the Machine Learning community over

the last decades, see, e.g., Dimitriev and Zhou (2021); Janke et al. (2021); Messoudi

et al. (2021); Ma et al. (2021); Letizia and Tonello (2020); Liu (2019); Kulkarni et al.

(2018); Tran et al. (2015). Sklar’s theorem, introduced in Chapter 2 of this work,

allows us to construct multivariate distributions with the same dependence structure

but different margins or multivariate distributions with the same margins but different

couplings/pairings, i.e., dependence structures. Thus, using copula techniques seems

natural to model high-dimensional distributions like the latent space of an autoencoder.

The simplest estimator for the copula of data at hand is given by the empirical

copula (see Chapter 2), which one of the methods we propose is based on. Next,

we focus on two copula-based methods for modeling the latent space Y of an autoencoder.

Vine Copula Autoencoder

Although a variety of two-dimensional copula models exist, the amount of multivariate

(parametric) copula models is somewhat limited. Vine copulas offer a solution to this

problem and decompose the multivariate density as a cascade of bivariate building blocks

organized in a hierarchical structure. This decomposition is not unique, and it influences
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the estimation procedure of the model. Here, we use regular-vine (r-vine) models Czado

(2019); Joe (2014). A r-vine is built of a sequence of linked trees Ti = (Vi, Ei), with nodes

Vi and edges Ei for i = 1, . . . , d−1. A d−dimensional vine tree structure V = (T1, ..., Td−1)

is a sequence of T − 1 trees if (see Czado 2019):

1. Each tree Tj = (Ni, Ei) is connected, i.e. for all nodes a, b ∈ Ti, i = 1, ..., d − 1,

there exists a path n1, ..., nk ⊂ Nj with a = n1, b = nk.

2. T1 is a tree with node set N1 = {1, ..., d} and edge set E1.

3. For i ≥ 2, Tj is a tree with node set Ni = Ei−1 and edge set Ei .

4. For i = 2, ..., d− 1 and {a, b} ∈ Ei it must hold that |a ∩ b| = 1.

An example of a five-dimensional vine tree structure is given below in Figure 6.2. Note

that the structure has to be estimated and multiple structures are possible. See Czado

(2019); Joe (2014); Bedford and Cooke (2002) for details on vine copula estimation.

Figure 6.2.: Example of a vine copula tree structure T1 − T4 for five dimensions.
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A d-dimensional copula density can be written as the product of its bivariate building

blocks:

c(u1, . . . , ud) =

d−1∏
i=1

∏
e∈Ei

caebe;De(uae|De
, ube|De

) (6.4)

with conditioning set De and conditional probabilities, e.g., uae|De
= P(Uae ≤ uae |De).

For each copula, encoding the dependence of two conditional variables, any bivariate

copula model including non-parametric modeling approaches (as done by Tagasovska

et al. 2019) can be chosen. However, the construction and estimation of vine copulas is

rather complicated. Hence, assuming independence for seemingly unimportant building

blocks, so-called truncation is regularly applied. Because of this, truncated vine copula

models do not capture the complete dependence structure of the data, and their usage

is not underpinned by asymptotic theory. We refer to Czado (2019); Czado and Nagler

(2022) and Aas (2016) for reviews of vine copula models.

Empirical Beta Copula Autoencoder

The empirical beta copula (Segers et al., 2017) avoids choosing a single, parametric

multivariate copula model due to its non-parametric nature. Further, it offers an easy

way to model the full, non-truncated multivariate distribution based on the univariate

ranks of the joint distribution and, thus, seems to be a reasonable choice to model the

latent space. The empirical beta copula is closely related to the empirical copula and is

a crucial element of the Empirical-Beta-Copula Autoencoder. It is solely based on the

ranks ri,j of the original data Y and can be interpreted as a continuous counterpart of

the empirical copula introduced in Chapter 2. It is defined by

Cβ(u) =
1

n

n∑
i=1

d∏
j=1

Fn,ri,j (uj) (6.5)
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for u = (u1, . . . , ud) ∈ [0, 1]d, where

Fn,ri,j (uj) = P (U(ri,j) ≤ uj) (6.6)

=
n∑

p=ri,j

(
n

p

)
upj (1 − uj)

(n−p) (6.7)

is the cumulative distribution function of a beta distribution, i.e., B(ri,j , ri,j + n − 1).

As ri,j is the rank of the ith element in dimension j, U(ri,j) represents the ri,j
th order

statistic of n i.i.d. uniformly distributed random variables on [0, 1]. For example, if

the rank of the ith element in dimension j is 5, U(ri,j) = U(5) denotes the 5th order

statistic on n i.i.d. uniformly distributed random variables. Example 6.2.1 illustrates

this computation.

Example 6.2.1. Consider six data points, each having three dimensions. The rank

matrix is now computed by replacing the values of each data point with its corresponding

rank per dimension (see Table 6.1 and Table 6.2).

Table 6.1.: Example data with six
data points (rows) span-
ning over Three dimensions
(columns).

i, j

0.1 0.4 0.2
0.5 0.5 0.3
0.2 0.1 0.5
0.7 0.3 0.1
0.9 0.8 0.4
0.8 0.6 0.6

→

Table 6.2.: Resulting rank matrix R.
Remember, ranks are com-
puted separately per dimen-
sion.

rki,j
1 3 2
3 4 3
2 1 5
4 2 1
6 6 4
4 5 6

The ranks are used in the following to parameterize the empirical beta copula.

The intuition behind the empirical beta copula is as follows: Recall that the marginal

distributions of a copula are uniformly distributed on [0, 1] and, hence, the kth smallest
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value of scaled ranks ri,j/n corresponds to the kth order statistic U(k). Such order

statistics are known to follow a beta distribution B(k, k + n− 1) (David and Nagaraja,

2003). Consequently, the mathematical idea of the empirical beta copula is to replace

each indicator function of the empirical copula with the cumulative distribution function

of the corresponding rank ri,j .

Synthetic samples in the latent space y′ are created by reversing the modeling path.

First, m random samples from the copula model ui = (ui1, . . . , uid) for i ∈ {1, . . . ,m}
are drawn. Then, the copula samples are transformed back to the natural scale of the

data by the inverse probability integral transform of the marginal distributions, i.e.,

y′ij = F̂j(uij), where F̂j is the estimated marginal distribution and uj the jth element of

the copula sample for j = 1, . . . , d. Algorithm 2 below summarizes the procedure.

Theorem 6.2.1 gives the asymptotic behavior of the empirical beta copula.

Theorem 6.2.1 (Asymptotics of the empirical beta copula). Let the copula C have

continuous first-order partial derivatives Ċj = δC(u)/δuj for each j ∈ {1, . . . , d} on the

set Ij = {u ∈ [0, 1]d : 0 < uj < 1}. The corresponding empirical copula is denoted as

Cn, with empirical copula process Gn =
√
n

(
Cn(u) − C(u)

)
and empirical beta copula

Cβ
n with empirical beta copula process Gβ

n =
√
n

(
Cβ
n(u) − C(u)

)
. Suppose Gn ⇝ G for

n −→ ∞ to G in l∞([0, 1]d), where G is a limiting process having continuous trajectories

almost surely. Then, in l∞([0, 1]d)

Gβ
n = Gn + op(1), n −→ ∞.

Proof. See Segers et al. 2017 Section 3.

In short, Theorem 6.2.1 states that the empirical beta copula has the same large-sample

distribution as the empirical copula and, thus, converges to the true copula (compare to

Theorem 3.2.1 in Chapter 3). However, the empirical beta copula performs better for
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small samples. Segers et al. 2017 demonstrate that the empirical beta copula outperforms

the empirical copula both in terms of bias and variance.

Algorithm 2: Sampling from Empirical Beta Copula

Input: Sample Y ⊂ Rn×d, new sample size m
begin

Compute rank matrix Rn×d out of Y
Estimate marginal distributions of Y with univatiate KDE leading to
F̂−1
1 , . . . , F̂−1

d

for i ≤ m do
Draw random from I ∈ [1, . . . , n]
for j ≤ d do

Draw uI,j ∼ B(rIj , n+ 1 −RIj)

Set ui = (uI1, . . . , uId)
Rescale margins by y′i = F̂−1

1 (ui1), . . . , F̂
−1
d (uid).

Output: New sample Y ′ = (y′1, . . . , y
′
m) of size m

6.3. Experiments

In this section, we present the results of our experiments. We use the same architecture

for the autoencoder in all experiments for one dataset but replace the modeling technique

for the latent space for all algorithms. The architecture, as well as implementation

details, are given in the appendix. We further include a standard VAE and the Real

NVP normalization flow approach modeling the latent space in our experiments to serve

as a benchmark. Note that we purposely did not include any GAN in the experiments

since the presented results should be independent of the trained generative models to

ensure comparability of results.

Methodology

We train an autoencoder consisting of two neural nets, an encoder f , and a decoder g.

The encoder f maps data X from the original space to a lower-dimensional space, while

the decoder g reconstructs this low-dimensional data Y from the low-dimensional latent
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space to the original space (see Figure 6.1). We train both neural nets in a way that

the reconstruction loss is minimized, i.e., that the reconstructed data X ′ = g
{
f(X)

}
is

as similar to the original data X as possible. In the second step, we model the latent

space Y data with a multivariate Gaussian distribution, a Gaussian mixture model,

Kernel density estimates, the two presented copula methods and the Real NVP. Thus,

we fit models with different flexibility and complexity while keeping the training process

of the autoencoder untouched. Last, new samples are generated by decoding random

samples from the learned model in the latent space. Note that such an approach is only

reasonable when the underlying autoencoder has learned a relevant and interesting repre-

sentation of the data and the latent space is smooth. We demonstrate this in the appendix.

Datasets

We conduct experiments on one small-scale, one medium, and one large-scale dataset. The

small-scale MNIST dataset (LeCun et al., 2010) includes binary images of digits, while

the medium-scale SVHN dataset (Netzer et al., 2011) contains images of house numbers

in Google Street View pictures. The large-scale CelebA dataset (Liu et al., 2015) consists

of celebrity images covering 40 different face attributes. We split data into a train set

and a test set of 2000 samples which is a commonly used size for evaluation (Tagasovska

et al., 2019; Xu et al., 2018). Note that the data sets cover different dimensionalities in

the latent space, allowing for a throughout assessment of the methods under investigation.

Evaluation

Evaluation of results is performed in several ways. First, we visually compare random

pictures generated by the models. Second, we evaluate the results with the framework

proposed by Xu et al. 2018, since a log-likelihood evaluation is known to be incapable

of assessing the quality (Theis et al., 2016) and unsuitable for non-parametric models.

Based on their results, we choose five metrics in our experiments: The earth mover

distance (EMD), also known as Wasserstein distance (Vallender, 1974); the mean

maximum discrepancy (MMD) (Gretton et al., 2007); the 1-nearest neighbor-based
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two-sample test (1NN), a special case of the classifier two-sample test (Lopez-Paz and

Oquab, 2017); the Inception Score (Salimans et al., 2016); and the Frêchet inception

distance (Heusel et al., 2017). In line with Tagasovska et al. (2019) and as proposed by

Xu et al. (2018), we further apply the EMD, MMD, and 1NN over feature mappings

in the convolution space over ResNet-34 features. For all metrics except the Inception

Score, lower values are better. For more details on the metrics, we refer to Xu et al.

(2018). Next, we evaluate the ability to generate new, realistic pictures by the different

latent space modeling techniques. Therefore, we compare new samples with their nearest

neighbor in the latent space stemming from the original data. This shows us whether the

learned distribution covers the whole latent space, or stays too close to known examples,

i.e., the model does not generalize enough. Finally, we compare other features of

the tested models, such as their ability of targeted sampling and of recombining attributes.

Results

Figure 6.3a and Figure 6.3b show images generated from each method for MNIST and

CelebA. The GMM model is composed of 10 elements, and the KDE is constructed using

a Gaussian kernel with a bandwidth fitted via a grid search and 10-fold cross-validation.

The specification of the Real NVPs are given in the appendix.

For the MNIST dataset, we observe the best results for the EBCAE (row 6) and

KDE (row 3), while the other methods seem to struggle a bit. For the CelebA, our

visual observations are slightly different. All methods produce images that are clearly

recognizable as faces. However, the Gaussian samples in row 1 and independent margins

in row 2 create pictures with some unrealistic artefacts, blurry backgrounds, or odd

colors. This is also the case for the GMM in row 4 and VCAE in row 5, but less severe.

We believe that this comes from samples of an empty area in the latent space, i.e., where

none of the original input pictures were projected to. In contrast to that, the samples in

the latent space of the KDE, EBCAE, and Real NVP stay within these natural bounds,

producing good results after passing the decoder (rows 3, 6, 8). Recall that all methods
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(a) MNIST samples (b) CelebA samples

Figure 6.3.: Comparison of synthetic samples of different autoencoder models. 1st row:
Fitted normal distribution, 2nd row: Independent margins, 3rd row: KDE-
AE, 4th row: GMM, 5th row: VCAE, 6th row: EBCAE, 7th row: VAE,
8th row: Real NVP, Last row: original pictures.

use the same autoencoder and only differ by means of sampling in the latent space.

From our observations, we also conclude that the autoencoder for the CelebA dataset is

less sensitive toward modeling errors in the latent space since all pictures are clearly

recognizable as faces. In contrast, for the MNIST dataset, not all images clearly show

numbers. Similar results for SVHN are presented in the appendix of the thesis.

The numerical results computed from 2000 random samples displayed in Figure 6.4

prove that dependence truly matters within the latent space. Simultaneously, the KDE,

GMM, and EBCAE perform consistently well over all metrics, delivering comparable

results to the more complex Real NVP. Especially the EBCAE outperforms the other

methods, whereas the VCAE, Gauss model and VAE usually cluster in the middle.

We further report results over the number of samples in the latent space in the

appendix. This, at first sight, unusual perspective visualizes the capability to reach good
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Figure 6.4.: Performance metrics of generative models on CelebA, reported over epochs
computed from 2000 random samples. Note that they only differ in the
latent space sampling and share the same autoencoder.

performance even for small sample sizes in latent space. In a small-sample regime, it is

crucial to assess how fast a method adapts to data in the latent space and models it

correctly. We see that all methods perform well for small sample sizes, i.e., n = 200.

Similar experiments for MNIST and SVHN can be found in the appendix.

Next, we evaluate the different modeling techniques in their ability to generate new,

realistic images. For this, we focus on pictures from the CelebA dataset in Figure 6.5.

First, we create new, random samples with the respective method (top row) and then

compare these with their decoded nearest neighbor in the latent space (middle row). The

bottom row displays the latent space nearest neighbor in the original data space before

applying the autoencoder. By doing so, we are able to disentangle two effects. First, the

effect from purely encoding-decoding an image and, second, the effect of modeling the

latent space. Thus, we can check whether new images are significantly different from the

input, i.e., whether the distribution modeling the latent space merely reproduces images
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or generalizes to some extent.

We observe that the samples from GMM, VCAE and the here-used Real NVP

substantially differ from their nearest neighbors. However, again they sometimes exhibit

unrealistic colors and blurry backgrounds. The samples created from KDE and EBCAE

look much more similar to their nearest neighbors in the latent space, indicating that

these methods do not generalize to the extent of the other methods. However, their

samples do not include unrealistic colors or features and seem to avoid sampling from

areas where no data point of the original data is present. Thus, they stay in ’natural

bounds’. Note that this effect apparently is not reflected in the numerical evaluation

metrics. We, therefore, recommend that, in addition to a quantitative evaluation, a

qualitative evaluation of the resulting images should always be performed.

(a) Gaussian (b) Independent (c) KDE (d) Real NVP

(e) GMM (f) VCAE (g) EBCAE

Figure 6.5.: Resulting examples of the six investigated modeling methods after decoding.
Top row: New examples. Middle row: Nearest neighbor of training data
Y in latent space after decoding. Bottom row: Original input picture of
nearest neighbor in latent space.

To further underpin this point, Figure 6.6 shows 2-dimensional TSNE-Embeddings

(see, e.g.,van der Maaten and Hinton 2008) of the latent space for all six versions of the
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autoencoder (MNIST). Black points indicate original input data and colored points are

synthetic samples from the corresponding method. We see that the KDE, as well as the

EBCAE, stay close to the original space. The samples from the GMM and Real NVP

also seem to closely mimic the original data, whereas the other methods fail to do so.

This visualization confirms our previous conjecture that some algorithms tend to sample

from ’empty’ areas in the latent space, leading to unrealistic results.

Figure 6.6.: TSNE embeddings of samples in the latent space of the MNIST dataset.
Points from the original input training data Y are given in black, whereas
new, synthetic samples Y ′ stemming from the different modeling methods
are colored.

We also report computing times for learning and sampling of the different models for

MNIST and CelebA in Table 6.3. Unsurprisingly, the more straightforward methods such

as Gauss, Independence, KDE, and GMM, exhibit the lowest sampling times. The Real

NVP shows the highest learning time as a neural network is fitted. However, we expect

the difference to be much smaller once trained on an appropriate GPU. The times also

reflect the complexities of the methods in the latent space dimensions.

Last, we discuss other features of the tested methods, such as targeted sampling

and recombination. In contrast to the other techniques, the KDE and EBCAE

allow for targeted sampling. Thus, we can generate new images with any desired

characteristic directly, e.g., only ones in a data set of images of numbers. In the

case of the KDE, this simply works by sampling from the estimated density of

the corresponding sub-group. In the case of the EBCAE, we randomly choose

among rows in the rank matrix of original samples that share the desired specific
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Table 6.3.: Modeling and sampling time in the CelebA and MNIST dataset of 2000
artificial samples based on a latent space of size n = 2000 in [s].

CelebA CelebA MNIST MNIST
Method Learn Sample Learn Sample

Gauss <0.01 0.01 0.002 0.002
Indep. 4.10 0.07 0.393 0.003
KDE 75.25 0.01 13.958 0.001
GMM 1.35 0.03 0.115 0.004
VCAE 306.97 148.48 10.345 4.590
EBCAE 3.41 59.36 0.328 5.738
Real NVP 2541.19 3.69 341.608 0.477

attribute. Other approaches are also possible, however, they need further tweaks to the

model, training, or sampling as the conditional variational autoencoder (Sohn et al., 2015).

The second feature we discuss is recombination. By using copula-based models (VCAE

and EBCAE), we can facilitate the decomposition idea and split the latent space in

its dependence structure and margins, i.e., we combine the dependence structure of

images with a specific attribute with the marginal distributions of images with different

attributes. Therefore, copula-based methods allow controlling the attributes of created

samples to some extent. Our experiments suggest that the dependence structure provides

the basic properties of an image, while the marginal distributions are responsible for

details (see, e.g., Figure 6.7). However, we want to point out that it is not generally clear

what information is embedded in the dependence structure and what information is in

the marginal distributions of latent space. This might also depend on the autoencoder

and the dataset at hand. Thad said using such a decomposition enables higher flexibility

and hopefully fuels new methodological developments in this field.
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Figure 6.7.: Top row: Samples from the EBCAE constructed with the latent space
dependence structure from samples with glasses and latent space marginal
distributions from samples without glasses. Middle row: Nearest neighbor
of training data Y in latent space after decoding. Bottom row: Original
input picture of nearest neighbor in latent space.

6.4. Discussion

In this section, we want to discuss our experiments’ results and express some further

thoughts. So, is sampling from the latent space a simple way towards generative models?

We observed that sampling from the latent space is indeed a viable approach to turning

an autoencoder into a generative model. The main advantage is that the autoencoder is

not restricted in any way (so it is able to find the best low-dimensional representation of

the data). We also observe that the studied methods can achieve competitive results

comparable to the more complex Real NVP approach and hence may be interesting

for future research applications in more advanced autoencoders. Simultaneously, each

modeling approach in this setting comes with its own restrictions, advantages, and

problems.

We witness a trade-off between the ability to generalize, i.e., to create genuinely

new pictures, and sample quality, i.e., to avoid unrealistic colors or artefacts. In cases

where new data points are sampled in the neighborhood to existing points (as in

the KDE or EBCAE), the newly generated data stays in somehow natural bounds

and provides realistic, but not completely new, decoded samples. On the other hand,
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modeling the latent space too generically leads to bad-quality images. We believe

this is similar to leaving the feasible set of an optimization problem or sampling from

a wrong prior. While being close to actual points of the original latent space, new

samples stay within the feasible set. By moving away from these points, the risk of

sampling from an unfeasible region and thus creating unrealistic new samples increases.

Recombination via a copula-based approach of marginal distributions and dependence

structures offers the possibility to detect new feasible areas of the latent space for the

creation of realistic images. Also, interpolating by building convex combinations of two

points in the latent space seems reasonable. However, we can not guarantee proper

interpolation results without further restrictions during training. Further, we observe

that the performance metrics do not reflect the mentioned trade-off. Therefore, we

strongly recommend not only checking quantitative results but also finding and analyzing

the nearest neighbor in the original data to detect the pure reproduction of pictures.

This also reveals that the development of additional evaluation metrics could be beneficial.

A closely related issue is the choice of a parametric vs. a non-parametric modeling

method in the latent space. Parametric methods can place probability mass in the latent

space, where no data point of the original input data was observed. Thus, parametric

methods are able to generate (truly) new data, subject to their assumption. However, if

the parametric assumption is wrong, the model creates samples from ’forbidden’ areas in

the latent space leading to unrealistic images. Despite this, carefully chosen parametric

models can be beneficial, and even a log-likelihood is computable (although we do not

use it for training). Non-parametric methods altogether avoid this human decision and

possible source of error but are closely bound to the empirical distribution of the given

input data. Consequently, such methods can miss important areas of the latent space but

create more realistic images. Furthermore, adjusting parameters of the non-parametric

models, such as increasing bandwidths or lowering truncation levels, offer possibilities to

overcome these limitations slowly.
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Besides the major points above, the EBCAE and KDE offer an easy way of targeted

sampling without additional training effort. This can be beneficial for various applications

and is not as straightforward with other methods. Lastly, the investigated methods differ

in their runtime. While vine copula learning and sampling is very time-intensive for high

dimensions, the EBCAE is much faster but still outperformed by the competitors. For

the non-copula methods, the GMM is really fast in both datasets while still capturing

the dependence structure to some extent. In contrast to that, the Real NVP needs more

time for training but is rather quick in generating new samples.

To sum up, we can confirm that there are indeed simple methods to turn a plain

autoencoder into a generative model. We conclude that the optimal method to do so

depends on the goals of the user. Besides runtime considerations, the specific application

of the autoencoder matters. For example, if one is interested in targeted sampling,

EBCAE or KDE should be applied. Recombination experiments call for a copula-based

approach, whereas in all cases, the trade-off between generalization and out-of-bound

sampling should be considered. Lastly, during our research, we found that future, more

theory-driven work most likely could establish the structural link between copulas and

normalization flows via the Rosenblatt transformation Rosenblatt (1952).



7. Conclusion

This thesis widened the theoretical understanding of copulas and contributed to new

applications of copula theory. After introducing some necessary theory and basic

notation in the beginning, we analyzed the asymptotic behavior of the empirical copula,

i.e., especially the variance thereof in detail (see Chapter 3). We introduced a new

estimator and showed its superiority over existing ones in extensive simulation studies.

In this part of the thesis, we also demonstrated how the same estimating procedure could

be applied to arbitrary rectangular boxes out of the d-dimensional copula domain and

therefore opening the door for future developments and applications.

Next, we applied the concept of copulas to extend the well-known idea of the Lorenz

curve to arbitrary dimensions. We argue that this multivariate tool, including the further

introduced multivariate extension of the Gini coefficient, is a more complete measure of

inequality compared to the univariate Lorenz curve since it allows multiple variables to

be included in the assessment. Last, we demonstrate its applicability in a small case

study using income and wealth to evaluate the monetary inequality in different countries,

including Germany (see Chapter 4).

The third contribution in this thesis helps to assess risks and prices in day-ahead

electricity markets more precisely by providing a multivariate forecast density for

electricity prices (see Chapter 5). It is simple and straightforward to apply as it can be

based on any existing point forecasting model and does not need much computational

effort. Within this powerful post-processing method, we propose to combine our
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rank-based copula approach with time series modeling and achieve good results even

for non-optimal point forecasting methods. A thorough assessment of several different

configurations of the method in various electricity markets demonstrates the practical

abilities of the approach. Such methods are increasingly important for future energy

markets contributing to a stable and reliable energy supply.

Last, we deal with the vast area of generative modeling by using autoencoders, a

classical field in machine learning (see Chapter 6). We compare different methodologies for

modeling the latent space in autoencoders, including the use of copula techniques, which

have not been done in the literature so far. In the chapter, we further propose the usage

of the empirical beta copula and assess it against various other methods. We conclude

that no ’best’ method exists, and the user should choose the method according to its needs.

In summary, the thesis provides new solutions for dealing with dependence in different

application areas and therefore is an essential step in an increasingly data-driven world.

However, the thesis left some work related to the chapters for future research. In particular,

it would be interesting to aim for further improvement of the estimator in Chapter 3 by

deriving more precise estimates of the partial copula derivatives. Further, the proposed

forecasting algorithm for electricity prices could be evaluated in other applications with

a 24-hourly structure, e.g., solar, wind, or load forecasting. We anticipate that only a

few adjustments to the proposed methods may be necessary, but leave this to future

research. Finally, in light of the last chapter in this thesis, the link between copulas

and normalization flows for generative modeling seems interesting and worth further

investigation.
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A. Computer Code and Data

In this appendix, we provide the links to the computer code and data of each chapter.

All code is written using Python and published online to make it accessible to other

researchers.

Code for Chapter 3

Ready-to-use computer code (Python) for Chapter 3 is available under the following

URL:

https://github.com/FabianKaechele/Copula-Covariance-Estimation.

Code and Data for Chapter 4

Python computer code for the chapter is publicly available in the following repository:

https://github.com/FabianKaechele/Multivariate_Extension_Lorenz_Gini

Raw datasets analyzed in Section 4.7 of the Chapter are available from SOEP (2019)

and Luxembourg Wealth Study (LWS) Database (2020), but restrictions apply to the

availability of these data, which were used under license for the current study, and so are

not publicly available. Information on how to obtain it and reproduce the analysis is

available from the corresponding author on request.
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Code and Data for Chapter 5

Computer code and all information including data to reproduce the experiments of the

chapter is available at the following link:

https://github.com/FabianKaechele/Energy-Schaake

Code and Data for Chapter 6

Computer code and all information to reproduce the experiments of the chap-

ter is available at the following link: https://github.com/FabianKaechele/

SamplingFromAutoencoders

The used datasets are publicly available for download via the pytorch interface (link to

the documentation):

https://pytorch.org/vision/stable/datasets.html

https://github.com/FabianKaechele/Energy-Schaake
https://github.com/FabianKaechele/SamplingFromAutoencoders
https://github.com/FabianKaechele/SamplingFromAutoencoders
https://pytorch.org/vision/stable/datasets.html


B. Appendix to Chapter 3

Complete Derivation of Covariance Term

cov

{
GC(u),GC(v)

}
= cov

{
B(u) −

d∑
k1=1

∂k1C(u)B(u(k1)),B(v) −
d∑

k2=1

∂k2C(v)B(v(k2))

}

= cov

{
B(u),B(v)

}
+ cov

{
−

d∑
k1=1

∂k1C(u)B(u(k1)),−
d∑

k1=1

∂k1C(u)B(v(k2))

}

+ cov

{
B(u),−

d∑
k2=1

∂k2C(v)B(v(k2))

}

+ cov

{
−

d∑
k1=1

∂k1C(u)B(u(k1)),B(v),

}

= C(u ∧ v) − C(u)C(v)

+

d∑
k1=1

d∑
k2=1

∂k1C(u)∂k2C(v)cov

{
B(u(k1)),B(v(k2))

}

+

d∑
k2=1

∂k2C(v)cov

{
B(u),B(v(k2))

}

+

d∑
k1=1

∂k1C(u)cov

{
B(u(k1)),B(v)

}
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= C(u ∧ v) − C(u)C(v)

+
d∑

k1=1

d∑
k2=1

∂k1C(u)∂k2C(v)

{
C(u(k1) ∧ v(k2)) − C(u(k1))C(v(k2)

}

+
d∑

k2=1

∂k2C(v)

{
C(u ∧ v(k2)) − C(u)C(v(k2)

}

+
d∑

k1=1

∂k1C(u)

{
C(u(k1) ∧ v) − C(u(k1))C(v)

}
.

Example 3.4.1 continued

We now dissolve the resulting variance term for area S and use the following notations

for the derivatives and volumes of the copulas:

∂Cn(u
(up)
1 , u

(up)
2 )̂

∂u
(up)
1

:= a0
∂Cn(u

(up)
1 , u

(up)
2 )̂

∂u
(up)
2

:= b0

∂Cn(u
(low)
1 , u

(up)
2 )̂

∂u
(low)
1

:= a1
∂Cn(u

(low)
1 , u

(up)
2 )̂

∂u
(up)
2

:= b1

∂Cn(u
(up)
1 , u

(low)
2 )̂

∂u
(up)
1

:= a2
∂Cn(u

(up)
1 , u

(low)
2 )̂

∂u
(low)
2

:= b2

∂Cn(u
(low)
1 , u

(low)
2 )̂

∂u
(low)
1

:= a3
∂Cn(u

(low)
1 , u

(low)
2 )̂

∂u
(low)
2

:= b3
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BCn(u
(up)
1 , u

(up)
2 ) := x BCn(u

(up)
1 , 1) := d

BCn(1, u
(up)
2 ) := e BCn(u

(low)
1 , u

(up)
2 ) := y

BCn(u
(low)
1 , 1) := f BCn(u

(up)
1 , u

(low)
2 ) := z

BCn(1, u
(low)
2 ) := g BCn(u

(low)
1 , u

(low)
2 ) := α

Splitting term within the variance expression in its components leads to:

v̂ar

{
VCn(S)

}
= var(x) + a20var(d) + b20var(e) + var(y) + a21var(f) + b21var(e) + var(z)

+ a22var(d) + b22var(g) + var(α) + a23var(f) + b23var(g)

− 2a0cov(x, d) − 2b0cov(x, e) − 2cov(x, y) + 2a1cov(x, f) + 2b1cov(x, e)

− 2cov(x, z) + 2a2cov(x, d) + 2b2cov(x, g) + 2cov(x, α) − 2a3cov(x, f)

− 2b3cov(x, g)

+ 2a0b0cov(d, e) + 2a0cov(d, y) − 2a0a1cov(d, f) − 2a0b1cov(d, e)

+ 2a0cov(d, z) − 2a0a2var(d) − 2a0b2cov(d, g) − 2a0cov(d, α)

+ 2a0a3cov(d, f) + 2a0b3cov(d, g)

+ 2b0cov(e, y) − 2b0a1cov(e, f) − 2b0b1var(e) + 2b0cov(e, z)

− 2b0a2cov(e, d) − 2b0b2cov(e, g) − 2b0cov(e, α) + 2b0a3cov(e, f)

+ 2b0b3cov(e, g)

− 2a1cov(y, f) − 2b1cov(y, e) + 2cov(y, z) − 2a2cov(y, d)

− 2b2cov(y, g) − 2cov(y, α) + 2a3cov(y, f) + 2b3cov(y, g)

+ 2a1b1cov(f, e) − 2a1cov(f, z) + 2a1a2cov(f, d) + 2a1b2cov(f, g)

+ 2a1cov(f, α) − 2a1a3var(f) − 2a1b3cov(f, g)

− 2b1cov(e, z) + 2b1a2cov(e, d) + 2b1b2cov(e, g) + 2b1cov(e, α)

− 2b1a3cov(e, f) − 2b1b3cov(e, g)

− 2a2cov(z, d) − 2b2cov(z, g) − 2cov(z, α) + 2a3cov(z, f)
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+ 2b3cov(z, g)

+ 2a2b2cov(d, g) + 2a2cov(d, α) − 2a2a3cov(d, f) − 2a2b3cov(d, g)

+ 2b2cov(g, α) − 2b2a3cov(g, f) − 2b2b3var(g)

− 2a3cov(α, f) − 2b3cov(α, g)

+ 2a3b3cov(f, g).

At this point, the covariance terms can be dissolved. Therefore, we use the super-scripted

c to indicate the corresponding copula, e.g., xc := Ĉn(u
(up)
1 , u

(up)
2 ), and obtain the

estimator by

v̂ar

{
VCn(S)

}
= xc(1 − xc) + a20d

c(1 − dc) + b20e
c(1 − ec) + yc(1 − yc) + a21f

c(1 − f c)

+ b21e
c(1 − ec) + zc(1 − zc) + a22d

c(1 − dc) + b22(g
c(1 − gc) + αc(1 − αc)

+ a23f
c(1 − f c) − b23g

c(1 − gc)

− 2a0(x
c − xcdc) − 2b0(x

c − xcec) − 2(yc − xcyc) + 2a1(y
c − xcf c)

+ 2b1(x
c − xcec) − 2(zc − xczc) + 2a2(x

c − xcdc) + 2b2(z
c − xcgc)

+ 2(αc − xcαc) − 2a3(y
c − xcf c) − 2b3(z

c − xcgc)

+ 2a0b0(x
c − dcec) + 2a0(y

c − dcyc) − 2a0a1(f
c − f cdc) − 2a0b1(x

c − dcec)

+ 2a0(z
c − dczc) − 2a0a2d(1 − dc) − 2a0b2(z

c − dcgc) − 2a0(α
c − dcαc)

+ 2a0a3(f
c − f cdc) + 2a0b3(z

c − dcgc)

+ 2b0(y
c − ecyc) − 2b0a1(y

c − ecf c) − 2b0b1e(1 − ec) + 2b0(z
c − eczc)

− 2b0a2(x
c − dcec) − 2b0b2(g

c − ecgc) − 2b0(α
c − ecαc) + 2b0a3(y

c − ecf c)

+ 2b0b3(g
c − ecgc)

− 2a1(y
c − ycf c) − 2b1(y

c − ecyc) + 2(kc − yczc) − 2a2(y
c − dcyc)

− 2b2(α
c − ycgc) − 2(αc − ycαc) + 2a3(y

c − ycf c) + 2b3(α
c − ycgc)

+ 2a1b1(y
c − ecf c) − 2a1(z

c − f czc) + 2a1a2(f
c − f cdc) + 2a1b2(α

c − f cgc)

+ 2a1(α
c − f cαc) − 2a1a3f

c(1 − f c) − 2a1b3(α
c − f cgc)
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− 2b1(z
c − eczc) + 2b1a2(x

c − dcec) + 2b1b2(g
c − ecgc) + 2b1(α

c − ecαc)

− 2b1a3(y
c − ecf c) − 2b1b3(g

c − ecgc)

− 2a2(z
c − dczc) − 2b2(z

c − gczc) − 2(αc − zcαc) + 2a3(z
c − f czc)

+ 2b3(z
c − gczc)

+ 2a2b2(z
c − dcgc) + 2a2(α

c − dcαc) − 2a2a3(f
c − dcf c) − 2a2b3(z

c − dcgc)

+ 2b2(α
c − gcαc) − 2b2a3(α

c − f cgc) − 2b2b3g
c(1 − gc)

− 2a3(α
c − f cαc) − 2b3(α

c − gcαc)

+ 2a3b3(α
c − f cgc).

Simulation Results for Sample Size n = 200

We report additional simulation results to Table 3.1 for a sample size of n = 200 in the

table below. The values of αpdm again are copied from Table 2 and 4 in Bücher and

Dette (2010), with MSE values given below. For the αβ, we report MSE values only,

copied from Table 2.1 in Kiriliouk et al. (2021). Similar to a sample size of n = 100 we

observe a better finite sample performance of the plug-in estimator in all cases compared

to the αpdm. In comparison with the αβ both estimators yield comparable results.
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n=100 (1/3,1/3) (1/3,2/3) (2/3,1/3) (2/3,2/3)
Plug-in (1/3,1/3) 0.05043

0.3993
0.01978
0.2271

0.01986
0.2500

0.00907
0.1499

(1/3,2/3) 0.035
0.4391

0.00854
0.0969

0.01797
0.1314

(2/3,1/3) 0.03439
0.4732

0.01837
0.1397

(2/3,2/3) 0.05311
0.22568

αpdm (1/3,1/3) 0.0513
0.4595

0.0203
0.2673

0.0201
0.2798

0.0092
0.1961

(1/3,2/3) 0.0356
0.5211

0.0087
0.1069

0.0184
0.1577

(2/3,1/3) 0.0355
0.5092

0.0185
0.1681

(2/3,2/3) 0.0537
0.2992

αβ (1/3,1/3) −
0.6205

−
0.2427

−
0.2383

−
0.1547

(1/3,2/3) −
0.4933

−
0.0857

−
0.1366

(2/3,1/3) −
0.4898

−
0.1376

(2/3,2/3) −
0.4183

Table B.1.: Sample covariances for the Clayton copula with θ = 1 and sample size
n = 200. Mean squared error values (multiplied by 104) for the plug-in
estimator are given below the estimate (obtained from 1000 estimates).
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Algorithmic Description of Proposed Method

Here we present algorithmic descriptions of the proposed method for the raw-error version

without a time series model. For ease of presentation, we omit time indices in this section;

for example, we denote the price for hour h of day t by yh instead of yt,h.

Algorithm 3: Schaake shuffle without time series model (Schaake-Raw)
Result: Simulated multivariate forecast distribution for day ahead electricity prices ŷ∗

t
Input: History of point forecasts ŷ for day ahead electricity prices
for each day in Error Learning Phase do

for each hour h do
Save last 90 errors in learning data ϵh = yh − ŷh

end

end
for each day in Dependence Learning Phase do

for each hour h do

Calculate and save realized quantile ûh of ϵh in empirical distribution F̂h by ûh = F̂h(ϵh)
end

end
for each day t in Forecasting Phase do

for each hour h do
for each ensemble member i do

ỹih = (ŷh + 0) + F̂−1
h {i/(m+ 1)} × 1

end

end

Derive empirical copula Ĉ and rank matrix R̂ out of saved, realized quantiles û
Pair up univariate forecast ensembles according to rank matrix R̂ (Formula 5.6) to obtain final
forecast ensemble ŷ∗

t
Update Error Learning Phase and Dependence Learning Phase

end

130
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Time Series Model for Error Standardization

Our goal is to estimate the conditional distributions Gt,h(x) := Fh(
x−µt,h

σt,h
) of the forecast

errors ϵt,h via a time series model, where the indices represent the day (t) and hour (h).

In our case, we utilize an AR(1)-GARCH(1,1) model but complexity may vary according

to the point forecasting model that generated this sequence of forecast errors.

The AR(1)-GARCH(1,1) model of point forecast errors ϵt,h for a given hour h is given

by

ϵt,h = a0,h + a1,hϵt−1,h + σt,hzt,h (C.1)

σ2t,h = b0,h + b1,hσt−1,hz
2
t−1,h + b2,hσ

2
t−1,h. (C.2)

The coefficients a0,h, a1,h, a2,h, b0,h, b1,h, b2,h are the model parameters and zt,h is

the standardized residual that follows the distribution function Fh (with zero mean

and unit variance) and is independent over time. From the perspective of day t − 1,

ϵt,h is a random variable with expected conditional standard deviation σ̂t,h and mean

µ̂t,h := â0,h + â1,hϵt−1,h.

The forecasts µ̂t,h and σ̂t,h of the time series model are now used to obtain the standardized

residuals ẑt,h =
ϵt,h−µ̂t,h

σ̂t,h
. Note that we use a separate AR-GARCH model for each hour

h, resulting in 24 independent models. See Brockwell and Davis (2016, Section 7) and

Lütkepohl and Krätzig (2004, Section 5) for textbook treatments of GARCH and related

models.

Details on Forecast Evaluation

Assessment of Calibration

We assess univariate calibration by examining verification rank histograms (see e.g.

Gneiting et al., 2008), separately for each hour h = 1, . . . , 24. To describe the verification

rank histogram for hour h, let Rt,h = 1 +
∑90

i=1 1(ỹit,h < yt,h) denote the rank of the
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realization yt,h in the merged sample {yt,h, {ỹit,h}90i=1} that contains the realization and

the forecast sample of size 90. If the forecast for hour h is calibrated, i.e. if observed

prices behave like random draws from the (hour-specific) forecast distribution, then the

distribution of {Rt,h}Tt=1 is uniform. By contrast, a U-shaped distribution indicates that

observed prices are often higher or lower than expected by the forecast distribution,

implying that the latter is too narrow (or overconfident).

To assess multivariate calibration, we use the Average Rank Histogram (Thorarinsdottir

et al., 2016) which has a relatively simple interpretation that is similar to the univariate

case. The Average Rank Histogram is based on the average rank across hours, given by

AvgRankt = (
∑24

h=1Rt,h)/24. If the forecast is calibrated, the latter series is uniformly

distributed.

CRPS

To assess the univariate forecasts, we use the Continuous Ranked Probability Score

(CRPS), which we average over time and across all 24 hours h. For a univariate forecast

distribution F (represented by its cumulative distribution function, or CDF) and an

outcome y, the CRPS is defined by

CRPS(F, y) =

∫ {
F (x) − 1(x ≥ y)

}2
dx

= EF |Y − y| − 1

2
EF |Y − Y ′|,

(C.3)

where Y and Y ′ are independent random variables distributed according to F , and

1(x ≥ y) denotes the indicator function which equals one if x ≥ y and zero otherwise.

We aggregate the T × 24 score values (for each day and hour) by computing their mean.
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Energy Score

The multivariate extension of the CRPS, the Energy Score (ES). For a multivariate

forecast distribution F , the ES is given by

ES(F, y) = EF ||Y − y|| − 1

2
EF ||Y − Y ′||.

For an ensemble forecast Fens with members ŷ(1), . . . , ŷ(m) it reduces to

ES(Fens,y) =
1

m

m∑
k=1

||ŷ(k) − y|| − 1

2m2

m∑
l=1

m∑
k=1

||ŷ(l) − ŷ(k)||, (C.4)

see Gneiting et al. (2008). We average the ES across the T days of the evaluation sample.

Diebold-Mariano-Test

We apply the Diebold and Mariano (1995) test for testing whether differences in forecast

performance are statistically significant. The test considers the null hypothesis that

E(S1,t −S2,t) = 0, where S1t and S2t denote the scores of forecasting methods 1 and 2 on

day t. In our case, the scores correspond to either the CRPS or the Energy Score. In case

of the CRPS we follow Ziel and Weron (2018) and apply the DM test jointly to all hourly

series, by using the daily mean score across all 24 hourly series. The Diebold-Mariano

test is a t-test with test statistic given by

δ̄12
σ̂(δ̄12)

where δ̄12 = T−1
∑T

t=1(S1,t−S2,t) is the mean score difference, and σ̂(δ̄12) is its estimated

standard deviation. The test statistic is standard normally distributed under the null

hypothesis. Since we focus on one-day ahead forecasts, we set σ̂(δ̄12) equal to the sample

standard deviation.
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Assessment of Interval Forecasts

To asses interval forecasts in Section 5.4.3, we use the Forecast Interval Coverage

Probability (FICP), and the Forecast Interval Normalized Average Width (FINAW), see

e.g. Quan et al. 2014).

Denote the prediction interval for forecast case t by [Lα
t , U

α
t ], where α ∈ [0, 1] is the

desired nominal coverage probability (in our case, α = 93.33%). FICP measures the

actual coverage rate for a sequence of interval forecasts corresponding to observations

t = 1, . . . , T :

FICP =
1

T

T∑
t=1

ψ
(α)
t

where ψ
(α)
t is an indicator for the coverage behavior, with ψ

(α)
t = 1 if the realized value

yt of the predictand lies between the forecasted lower bound L
(α)
t and upper bound

U
(α)
t , and ψ

(α)
t = 0 otherwise. FICP should be at least as large as its nominal value of

α. If FICP is too small, the intervals are overconfident, in that they cover too few of

the realized observations. While ‘too high’ values of FICP (exceeding nominal coverage

α) are not problematic by themselves, they typically come at the expense of wider

prediction intervals.

FINAW measures the normalized width of the interval defined by the upper bound

U
(α)
t and lower bound L

(α)
t . It is defined by

FINAW =
1

T ·R
n∑

t=1

(U
(α)
t − L

(α)
t )

where R is the maximum minus the minimum of yt, i.e., R = max
t

{yt}−min
t
{yt}. Here a

smaller value corresponds to a sharper prediction interval. However, the actual coverage

(FICP) must be respected by the forecast as well.



Appendix to Chapter 5 135

Prediction Intervals in Load Profile Example

Figure C.1 displays prediction intervals in the load profile example of Section 5.4.3 for

the full sample period. It complements Figure 5.7 in the main text that zooms in on the

last 90 days of the sample period.
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Figure C.1.: Prediction intervals and realized prices for SLP G0 from 4 January 2016 to
31 December 2017.
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Architectures of Autoencoders and VAE

We use the same architecture for EBCAE, VCAE, and VAE as described below. All

models were trained by minimizing the Binary Cross Entropy loss.

MNIST

Encoder:

x ∈ R32×32 → Conv32 → BN → ReLu

→ Conv64 → BN → ReLu

→ Conv128 → BN → ReLu

→ FC10

Decoder:

y ∈ R10 → FC100 → ConvT128 → BN → ReLu

→ ConvT64 → BN → ReLu

→ ConvT128 → BN → ReLu

→ FC1

136
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For all (de)convolutional layers, we used 4 × 4 filters, a stride of 2, and a padding of 1.

BN denotes batch normalization, ReLU rectified linear units, and FC fully connected

layers. Last, Convk denotes the convolution with k filters.

SVHN

In contrast to the MNIST dataset, images in SVHN are colored. We do not use any

preprocessing in this dataset.

Encoder:

x ∈ R3×32×32 → Conv64 → BN → ReLu

→ Conv128 → BN → ReLu

→ Conv256 → BN → ReLu

→ FC100 → FC20

Decoder:

y ∈ R20 → FC100 → ConvT256 → BN → ReLu

→ ConvT128 → BN → ReLu

→ ConvT64 → BN → ReLu

→ ConvT32 → BN → ReLu

→ FC1

Notations are the same as described above.

CelebA

In contrast to the MNIST dataset, images in CelebA are colored, Further, we first

took central crops of 140 × 140 and resize the images to a resolution 64 × 64.



Appendix to Chapter 6 138

Encoder:

x ∈ R3×64×64 → Conv64 → BN → LeakyReLu

→ Conv128 → BN → LeakyReLu

→ Conv256 → BN → LeakyReLu

→ Conv512 → BN → LeakyReLu

→ FC100 → FC100

Decoder:

y ∈ R100 → FC100 → Conv512 → BN → ReLu

→ ConvT256 → BN → ReLu

→ ConvT128 → BN → ReLu

→ ConvT64 → BN → ReLu

→ ConvT32 → BN → ReLu

→ FC1

LeakyReLU uses a negative slope of 0.2, and padding was set to 0 for the last convolutional

layer of the encoder and the first of the decoder. All other notations are the same as

described above.

Implementation of Real NVP

In our study, we used a Real NVP (see Dinh et al. 2017) to model the latent space of the

autoencoder and serve as a benchmark. For all data sets, we use a spatial checkerboard

masking, where the mask has value of 1 if the sum of coordinates is odd, and 0 otherwise.

For the MNIST data set, we use 4 coupling layers with 2 hidden layers each and 256

features per hidden layer. Similary for the SVHN data set we also use four coupling

layers with two hidden layers each and 256 hidden layer features. Lastly, for the CelebA
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data set we use four coupling layers with two hidden layers each and 1024 hidden layer

features. For all data sets, we applied a learning rate of 0.0001 and learn for 2000 epochs.

Additional Experiments

Numerical Assessments

Figure D.1.: Performance metrics of generative models on CelebA, reported over latent
space sample size. Note that they only differ in the latent space sampling
and share the same autoencoder.
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Figure D.2.: Performance metrics of generative models on MNIST, reported over epochs
computed from 2000 random samples. Note that they only differ in the
latent space sampling and share the same autoencoder.

Figure D.3.: Performance metrics of generative models on MNIST, reported over latent
space sample size. Note that they only differ in the latent space sampling
and share the same autoencoder.
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Figure D.4.: Performance metrics of generative models on SVHN, reported over epochs
computed from 2000 random samples. Note that they only differ in the
latent space sampling and share the same autoencoder.

Figure D.5.: Performance metrics of generative models on SVHN, reported over latent
space sample size. Note that they only differ in the latent space sampling
and share the same autoencoder.
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Samples from SVHN

Figure D.6.: SVHN samples

Figure D.7.: Comparison of synthetic samples of different Autoencoder models. 1st

row: Fitted normal distribution, 2nd row: Independent margins, 3rd row:
KDE-AE, 4th row: GMM, 5th row: VCAE, 6th row: EBCAE, 7th row:
VAE, 8th row: Real NVP, Last row: original pictures.

Image Interpolation of the Autoencoder

We show that our used autoencoder learned a relevant and smooth representation of

the data by interpolation in the latent space and, thus, modeling the latent space is

reasonable. For example, consider two images A and B with latent variables yA,1, ..., xA,100

and yB,1, ..., yB,100. We now interpolate linearly in each dimension between these two

values and feed the resulting interpolation to the decoder to get the interpolated images.

Each row in Figure D.8 shows a clear linear progression in ten steps from the first face

on the left to the final face on the right. For example, in the last row, we see a female
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Figure D.8.: Interpolation in the latent space of samples of the autoencoder.

with blonde hair slowly transforming into a male with a beard. The transition is smooth,

and no sharp changes or random images occur in-between.
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