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Abstract

Copulas are functions that allow disentangling the dependence structure from the univari-
ate marginal distributions of a multivariate random variable and to model each separately.
Due to increasingly larger and more complex data sets, their importance in science and
application has grown exponentially in recent years. This work develops new methods
and applications based on copulas as well as it presents a theoretical contribution to the
estimation of the empirical copula process.

More specifically, we first consider the variability of the most widely used empirical
approximation of a copula, the empirical copula. In doing so, a new estimator of the
covariance of the empirical copula process in arbitrary d-dimensional boxes is developed.
The presented estimator is the first that does not require bootstrap procedures and
fast and precise statements about the uncertainty of the results derived from empirical
copulas are possible.

Subsequently, a multivariate extension of the Lorenz curve and Gini coefficient based
on a theoretically derived copula decomposition is proposed. The extension determines
inequality in multivariate distributions originating from both the individual marginal
distributions and their dependence structure. Unlike other extensions, the presented
approach can be interpreted directly and is economically tractable.

The third part results in a multivariate improvement of day-ahead price forecasts in
electricity markets. Here, univariate point forecasts are augmented with the distribution
of their historical errors, while a copula approach enforces the correct dependencies
between hourly prices. Thus, any simple point forecasting model can be extended to
forecast complex multivariate densities without much effort. Among others, this is of
great importance in the context of the current transformation of the energy system, e.g.,
for the risk management of energy providers.

Finally, the generation of images by randomly drawing in the latent space of an au-
toencoder is investigated. We compare copula models with other methodologies for
modeling the latent space and demonstrate how a powerful generative autoencoder can
be constructed using these statistical methods. In addition to image quality, aspects such
as image manipulation of the newly presented Empirical Beta Copula Autoencoder are
discussed.

The topics addressed in the thesis are illustrated using extensive examples with real-world
datasets and simulation studies where applicable or necessary. Further, ready-to-use
computer code is made available for all contributions.
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1. Introduction

“The world’s most valuable resource is no longer oil, but data.”
The Economist, May 6th 2017

The amount of data in a more and more interconnected world is constantly growing
(Bell et al.l 2009; Dharl 2013)). Simultaneously with the rapid advancement of methods
for 'refining’ this often complex and multidimensional data (Donoho, |2017; |Caol 2017)),
dependencies steadily gain importance in modern data analytics, statistics, and machine
learning. For example, one might be interested in the interaction of prices and demand,
treatment and effect, or various observations in the natural sciences. Copulas offer a
very flexible and universal way to cope with all such kinds of dependence structures in
multivariate data. This thesis contributes to the literature on copula theory and develops
new methodologies based on copulas. It explores new ideas to deal with dependence on
multivariate data and demonstrates how to use this rich information. To that end, it
marks an important step towards modern, data-driven solutions in business and research

while introducing copula theory to specialists in various fields of application.

The word ’copula’ originally stems from Latin meaning ’a link, tie or bond’ (Simpson,
1977) and was first mentioned in the statistical literature by [Sklar| (1959)) to describe
a function that joins multiple one-dimensional distribution functions to a single
multivariate distribution function. Thus, copulas allow the modeling of each univariate
marginal distribution function independently from the mutual information of the joint

distribution. That said, copulas may be seen as the most general form of modeling
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dependence on multivariate data. Over the last few years, copulas gained much attention
due to their flexibility and simplicity while dealing with multivariate data. Copula
techniques are employed in a wide range of applications, such as, e.g., economics and
finance (Patton, [2012; |Genest et al., 2009; (Cherubini et al., 2004]), energy modeling
(Pircalabu and Benth, |2017; He et al., [2017)), natural sciences and engineering (Salvadori
et al., [2016; [Coblenz et al., [2020), machine learning (Janke et al.| 2021; [Messoudi et al.|
2021; Tagasovska et al., [2019), or forecasting (Schefzik et al., 2013} |Clark et al., [2004).
This thesis adds further copula-based methodologies to this non-extensive list while

deepening the overall understanding of copulas from a theoretical perspective.

In the following, the contributions of the thesis are shortly outlined and introduced
in more detail in the paragraphs below. In the next chapter, we establish some
relevant preliminaries of this work. Most important, we introduce copulas and their
estimation. Further, we introduce some notation and conventions which we follow
throughout this thesis. However, some additional notation is provided in most of
the chapters, enabling interested readers to study the chapters independently from
the rest of the thesis. In Chapter 3] we deal with a new plug-in estimator for the
variance of the empirical copula. Chapter [4] utilizes copula representations to construct a
multivariate extension of the well-known Gini index to measure multivariate inequality.
Then, in Chapter |5, we introduce a new copula method for probabilistic forecasting
of electricity prices based on univariate point forecasts. Last, Chapter [6] combines
copulas with autoencoders and investigates whether modeling the latent space via

copula methodologies is suitable for data generation before Chapter [7]concludes the thesis.

On a more detailed level, the contributions of each chapter are as follows. Chapter [3] is
based on joined work with Oliver Grothe and Melanie Schienle. There, we consider the
most common estimate of a copula, the empirical copula. Although the asymptotics of
the empirical copula process is widely known, only a few estimators for the covariance of

this process exist. In the chapter, we present a new plug-in estimator for the covariance
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of the empirical copula process. The estimator follows directly from the empirical copula
processes’ asymptotic behavior and uses a given sample from the empirical copula for
its estimate. Notably, the presented estimator is the first in the literature that works
without using bootstrap procedures. Additionally, we extend the estimator so that it
can be applied for estimating covariances of arbitrary partitions in the empirical copula.
Such an estimator can be used to determine the variability of any function based on
the empirical copula, e.g., the survival copula or orthant probabilities, as it is the case
in insurance or risk management applications. We illustrate the good finite sample
properties of the new estimator for dimensions d > 2 in a simulation study and compare
the performance with existing but more burdensome competitors. Further, we provide
ready-to-use computer code to enable researchers and practitioners to easily work with

our rather complicated estimator.

Following in Chapter we propose an extension of the univariate Lorenz curve
and the Gini coefficient to the multivariate case. These two measures are widely
spread and used to assess inequality in any kind of distribution, e.g., in income
or wealth. Our extensions allow measuring inequality in more than one variable
simultaneously and are based on copulas as well. The extensions measure inequality
stemming from inequality in every single variable as well as inequality stemming
from the dependence structure of the variables. Simple non-parametric estimators for
both instruments are derived and exemplary applied to data on individual income
and wealth for various countries. In contrast to other extensions, our approach is
easy to interpret and follows clear economic reasoning. The chapter is based on the
joint paper with Oliver Grothe and Friedrich Schmid published in the Journal of

Economic Inequality (Grothe et al.l 2022a) and computer code is provided in the appendix.

Next, Chapter [o| deals with the topic of forecasting electricity prices and is based on
a joint work with Oliver Grothe and Fabian Kriiger published in Energy Economics

(Grothe et al., 2023)). There, we consider the probabilistic forecast of hourly day-ahead
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electricity prices, which naturally exhibit a temporal dependence structure during
the day. The method we propose is based on the historical errors of 24 univariate
point forecasts from each hour, while we include optional time series components
to adjust for systematic errors. A set of 24 univariate day-ahead point forecasts
is now supplemented by the previously learned distribution of individual errors to
form the multivariate probabilistic forecast for electricity prices of the next day.
Within this forecast distribution, the correct temporal dependencies across hours
are handled by an appropriate copula model. We illustrate the method for five
benchmark datasets, including different electricity markets in Europe and the United
States. Furthermore, we demonstrate the simplicity and superior performance of the
approach with an example of constructing realistic prediction intervals for the weighted
sum of consecutive electricity prices as needed for pricing individual load profiles.

Computer code and information to reproduce all results are also provided in the appendix.

Then, Chapter [6]is based on a joint work with Maximilian Coblenz and Oliver Grothe.In
the chapter, we combine copulas with autoencoders to craft a new, powerful model for
data generation and compare it to other methods paired with autoencoders. By sampling
from the latent space of an autoencoder and decoding the samples to the original data
space, any autoencoder can simply be turned into a generative model. To do so, it is
necessary to model the autoencoders’ latent space with a distribution from which samples
can be obtained. This is the first study, which aims to discuss, assess, and compare
various techniques, including copulas, that can be used to capture the latent space and
construct a powerful generative model. Among them, the new Empirical Beta Copula
Autoencoder, which combines non-parametric copula estimation with classical kernel
density estimation for the marginal distributions. Furthermore, we provide insights
into other aspects of the methods under investigation, such as targeted sampling or
synthesizing new data with specific features as well as computer code. Last, Chapter
[7] concludes the thesis and additional insights for interested readers to all chapters are

given in the appendices.



2. Preliminaries on Copulas

This section shortly introduces the basic statistical concepts used in this thesis, mainly
copulas. Besides providing a comprehensive introduction to copulas, it is intended to
serve as a point of reference for the reader while coping with the single chapters of this
thesis. In this work, we will denote random variables in capital letters and corresponding
realizations in small letters. Further, vectors and matrices are written boldly. For
better readability, we use parenthesis in the given order, [{(-)}], within the thesis. For a
throughout theoretical treatment of copulas, we recommend the books by |[Nelsen| (2006]),

Joe| (2014), and |Durante and Sempi (2015). The section is based on the textbooks above.

2.1. Basics

Let X = (Xi,...,Xy4) be a d-variate random vector, d > 2, defined on a probability space
(€, %, P). The joint distribution function is given by F(x) = P(X; < z1,...,Xq < z4)
for x = (x1,...,2q) € R? and the marginal distribution functions Fj of X are given
by Fi(xg) = P(Xg < x) for z € R and k € {1,...,d}, which are assumed to be
continuous. Sklar’s theorem (Sklar| 1959)) then states that for every d-dimensional
cumulative distribution function F'(x) with continuous, univariate margins Fi, ..., Fy

there exists a unique copula C such that F(x) can be decomposed by

F(zy,...,2q) = C{Fi(z1),..., Fa(za) } (2.1)

for all zj, € R and k € {1,...,d}. We see that the transformation {Fi(z1),..., Fy(zq) =

(uq, ... ,ud)} maps each value of x = (z1,...,24) € R to its corresponding quantile level
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u=(uy,...,ug) € [0,1]% Consequently, a second point of view on copulas is that copulas
are distribution functions with one-dimensional marginals, uniformly distributed over
[0,1]%. From Equation follows, that we can disentangle X € R¢ into its marginal
distribution functions F}j for £ = 1,...,d and its dependence structure, which is fully

governed by the copula C. Further, the expression in Equation (2.1]) can be rewritten by
C’(ul,...,ud):F{Ffl(ul),...,Fgl(ud)} (2.2)

with F,;l denoting the quantile or percentile function function for k € {1,...,d}. Note
that this simply corresponds to Equation after using simple manipulations. Sklar’s
theorem consequently implies that any function F', which can be expressed by a copula C'
and corresponding univariate distribution functions Fj with k = 1,...,d, is a distribution
function. We use both representations of a copula (Equation and Equation in
this thesis, whichever is more convenient. Another more technical definition can be given
by considering the properties of a copula. A copula is a function that is (1) grounded,
ie, C(u,...,uq) =0 if at least one ux = 0 for k € {1,...,d}, (2) has uniform marginal
distributions, i.e., C(1,..., 1, u,1,...,1) = uy for all u € [0,1] and k € {1,...,d}, and

the (3) c-volume is non-negative. The c-volume is defined by

Vo = > sgn(v) C(v) (2.3)

vE[{uhUl}X'“ X{udvvd}]

where
1, if v; = a; for an even number of indices,
sgn(v) =
—1, if v; = a; for an odd number of indices,
and [{u1,v1} x - x {ug,vq}] is the set of vertices on [0, 1]¢, with u; < vy, for k= 1,...,d.

Put simply, the c-volume can be interpreted as probability mass in any rectangular box
of the copula, which has to be non-negative. We use this volume-computation idea later

in Chapter [3] of this thesis to construct a flexible estimator for arbitrary boxes in the
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copula domain.

Any copula is limited pointwise perfect upper (M) and lower (W) dependence in
the sense of W(u) < C(u) < M(u) for all u = (u1,...,uq) € [0,1]¢ By perfect lower

dependence we mean the lower Fréchet-Hoeffding bound given by

d
W(ul,...,ud):maX{Zuk —d—l—l;()}, (2.4)
k=1
which is a universal lower bound for copulas, but only a copula itself for d = 2. In

contrary, the upper Fréchet-Hoeffding bound is given by

M(ul,...,ud):min{ul,...,ud}. (2.5)

Figure visualizes both extremes in a two-dimensional setting, depicting scatter plots of
samples from both copulas with perfect lower (negative) and upper (positive) dependence.
In the middle of the figure, an example of the independence copula 11 is depicted, which
reflects stochastic independence. This copula is also called product-copula since it is

constructed as the product of its arguments, i.e.,

d
(... uq) = [ ] ur (2.6)
k=1

for up € [0,1] and k € {1,...,d}. Note that the two limits W and M are beneficial in
many situations, e.g., where they induce the minimal and maximal values of copula-based

measurements as for the multivariate Gini coefficient developed in Chapter [4] of this thesis.

In the following, we shortly introduce some basic parametric copula models. For a
throughout treatment of different copula models and families of copulas, we refer the
reader to Chapter 6 in |[Durante and Sempi (2015). The probably most common copula
is the Gaussian Copula, which is constructed using Equation and the normal
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Figure 2.1.: From left to right: Samples from the lower Fréchet-Hoeffding bound W, the
independence copula II and the upper Fréchet-Hoeffding bound M.

distribution. Let ®, be the CDF of a multivariate normal distribution with standard
normal margins and d x d correlation matrix p, and ¢! the inverse of the univariate
standard normal CDF. The Gaussian copula is then given for u = (ug, ..., uq) € [0, 1]¢

by
C’(ul,...,ud) = @p{(f)fl(ul),...,(bil(ud)}. (27)

while its dependence is controlled by correlation matrix p. Similarly, the t-copula can be
constructed using the CDF of a multivariate Students-t distributed variable ty, , with v
degrees of freedom, the positive-definite scatter or dispersion matrix > and the inverse

CDF of t-distributed variables ¢, !, namely

C(ul, - ,ud) = tgﬂ,{t;l(ul), - ,t;l(ud)} (28)

for (u1,...,uq) € [0,1]%. Note in Figure that similar to the Students-¢ distribution,
the t-copula depicts more probability mass in the tails, i.e., in non-diagonal areas,
compared to the Gaussian copula. Both copulas are considered as elliptical copula

models since their base distribution is elliptical.
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Figure 2.2.: Sample from the t-Copula with v = 1 degrees of freedom (left) compared to
a sample from a Gaussian copula (right), both with Spearman’s p = 0.8.

Another type of copulas used in this thesis are Archimedean Copulas. Archimedean

copulas are constructed for u = (u1,...,uq) € [0,1]¢ by

C’(ul,...,ud) = 1/){”¢71<7J,1) + ... + I/Jil(ud)}, (29)

where we call ¢ the generator, or generator-function. The generator is a continuous,
decreasing function from [0, 4o0] to [0,1]. It further fulfills (1) ¢(0) = 1 and (2)
(400) = 0, while it (3) is strictly decreasing on [0, t], where ¢t = inf{t > 0 : ¥(0) = 0}.
The most common Archimedean copula models are the Clayton copula, the Gumbel
copula and the Frank copula. Let 6 be the parameter of the copula, the generator of
the Clayton copula is ¥(u) = (1 +u) Y% for § = (0,00), the generator of the Gumbel
copula is ¥(u) = exp(—u'/?) for = [1,00) and the generator of the Frank copula is
Y(u) = —1/0 In{1— (1 —e?)e™"} for 6 = (0,00). Note that an increase in 6 results in an
increase of rank-based measures of dependence like Spearmans’s p or Kendal’s 7. See,
e.g., Chapter 5 in |Nelsen| (2006) an overview of this and other copula-based dependence
measures and Hofert| (2008]) for details and challenges in sampling from Archimedean
copulas. Figure visualizes samples from the three most common Archimedean copula

models mentioned above.
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Figure 2.3.: From left to right: Sample from the Clayton copula, Frank copula and
Gumbel copula, all with a dependence of Kendal’s 7 = 0.8.

2.2. Estimation of Copulas

In this section, we consider different approaches of estimating the copula C from
random vector X = (Xi,...,X ) of which we observe n samples X1,...,X,. The
estimation of C' can be done in a fully parametric, semi-parametric, or non-parametric
way, which we will address shortly in the following. For an overview on estimation,
we recommend the excellent paper from |Genest and Favre (2007a). In the following,
we focus on the more common two-step approach while we refer to Section 10 in

Joe| (2014)) for a treatment of the one-step, full parametric maximum-likelihood estimation.

In the two-step approach, we estimate the copula C of X based on pseudo-observations

u; = (Ujl, e Ujd) for 7 =1,...,n. In the full and semi-parametric setting, the pseudo-
observations are calculated by assuming the estimated marginal distributions ... ,Fd

follow a given distribution,
4 = {F1(X1), -, Fa(Xja)} (2.10)

where X, denotes the kth element within the jth observation X ;. This approach is
sometimes also called ’inference from margins’ (IFM). However, if the parametric models

of I, ..., Ey are wrongly specified, resulting pseudo-observations and, consequently, C,
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is subject to miss-specification (Genest and Favre] 2007al).

Alternatively, pseudo-observations i, for j = 1,...,n are estimated non-parametrically

by using ranks, i.e.,

~ ~ ~ l"k(Xl) I‘k(X 'd)

uj:(Ujla"'and):{njv"'vn] 5 (211)
where rk(-) denotes the rank of each Xj; within all n observations (Xi,..., Xnk)
for k = 1,...,d. Note that this corresponds to replacing the unknown marginal

distribution functions Fj by their empirical marginal distribution functions
Ey(xy) = %Z?Zl {Xy < ap}tfork € {1,...,d} and z € R. We use this fully
rank-based approach, e.g., in Chapter [5] of this thesis for predicting day-ahead electricity
prices. Further note that in applications, pseudo-observations 1; are often estimated
using n + 1 in the denominator of Equation for practical purposes. This is a slight
adjustment that prevents actually having to deal with the 100% quantile.

In the second step, C is estimated based on the previously computed pseudo-
observations and the estimator is called C in the following. The parametric estimation
approach of C' utilizes the pseudo-observations from Equation (or from Equation
2.11| in the semi-parametric case) and employs maximum-likelihood methods to
estimate copula parameters 6 for a given parametric copula model (Genest et all 1995).
Alternatively, copula parameters 6 can be estimated via the method of moments, which
we later do in Chapter [5| using Spearman’s p to parameterize a Gaussian copula. See
Tsukahara (2005a)) and |Joe, (2005) for details or Hofert et al.| (2012)) for estimation in the

case of archimedean copulas.

For the non-parametric estimator of C, we focus on the empirical copula denoted by

C.,. It does not assume any parametric form of the copula and is defined as the empirical
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CDF of pseudo-observations from Equation (2.11)), i.e.,
> 1{q; <u} (2.12)

for u € [0,1]¢. This definition coincides with estimating C,, directly on the ranks of the
data by changing the condition in the indicator functions to ranks. Chapter [3] deals
with the variance related to the asymptotic process of this simple but widely spread
estimator. Further, it might be useful to work with a smoothed version of the resulting
step function given by Equation (2.12) as done by using the empirical beta copula in
Chapter [6] of this thesis.



3. Approximation of the Empirical
Copula Process Revisited: A new

Plug-In Estimator

The following chapter is based on joint work with Oliver Grothe and Melanie Schienle and
was already presented at the International Conference of Ordered Statistical Data 2022 in
Napoli (Italy) and at the German Probability and Statistic Days 2023 in Essen (Germany).
The chapter is the most theoretically orientated in this thesis but is still equipped with

an extensive simulation study and ready-to-use computer code for practitioners.

3.1. Introduction

When the true underlying copula C of data at hand is not known but of interest, the
copula has to be estimated. Several estimation procedures have been introduced in the
previous chapter (Chapter . In most cases, the empirical copula C, is used as a
simple estimator for the unknown copula C. The related asymptotics of the empirical
copula process is known to weakly converge to a Gaussian field G¢, as investigated by
several authors (Stute, 1984; Ruschendorf, 1976; Biicher and Volgushevl, |2013; |[Fermanian
et al.| 2004} |Genest and Segers|, [2009; [Segers, 2012} [T'sukahara), 2005b; |Gaenssler and
Stute, [1987). However, its corresponding covariance structure includes the unknown
copula function and its derivatives. Therefore, estimating covariances is not easy, and

existing proposals are based on bootstrap procedures. See, e.g., Biicher and Dette, (2010)

13
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for an overview and a comparative simulation study.

This chapter makes two contributions toward covariance estimation in empirical
copulas. First, we present a plug-in estimator for empirical copula process variances and
covariances. It is constructed using the well-known theory regarding the empirical copula
process. We illustrate its good finite sample properties in a simulation study and compare
it with results obtained in a study from |Biicher and Dette| (2010) for bootstrap procedures.
Secondly, we provide an expression for the exact computation and estimation of variances
and covariances from arbitrary partitions in the domain of an empirical copula process,
i.e., rectangles in the domain of a d-dimensional empirical copula [0,1]?. The formula
emerges from the introduced covariance arithmetics and the elegant approach from
Cherubini and Romagnoli (2009) for the computation of copula partitions, i.e., the
volume as introduced in Chapter 2l The variance and covariance of such partitions in the
empirical copula process are of particular interest, e.g., for the computation of the variance

of a survival copula. Additionally, ready-to-use computer code is provided in the appendix.

The remainder of the chapter proceeds as follows. Section reiterates and completes
some theoretical foundations and necessary notation from Chapter [2 Most important,
the empirical copula process and its covariance structure are introduced in this section. In
Section [3.3] we derive the plug-in estimator for the covariance of empirical copulas. Then,
in Section [3.4] an estimator for the variance of arbitrary partitions in the d-dimensional
empirical copula process is presented. Simulations demonstrate the practical ability of

the derived estimator in Section [3.5] and Section [3.6] concludes the chapter.

3.2. Preliminaries and Copulas

Be X = (X1,...,Xy) a d-variate random vector with d > 2 defined on a probability space
(Q,3,P) of which we observe n iid copies X1, ..., X,. The joint distribution function of
X is given by F(x) = Pr(X; < z1,..., X4 < z4) and the marginal distribution functions
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F}, of X}, are given by Fj(z) = Pr(Xy < ) for x = (21,...,24) € R% Throughout
the chapter, we use ~» to indicate weak convergence and A to mark the element-wise

minimum of a vector.

As presented in Chapter |2 every d-dimensional cumulative distribution function F'(x)
with continuous, univariate margins Fi, ..., F; can be decomposed by F(z1,...,x4) =
C’{Fl(:zl), e ,Fd(xd)} for all zx, € R and k € {1,...,d}, where C is the corresponding
copula (Sklar, [1959)). Further, remember from Chapter that the simplest non-parametric
estimator for the copula C is given by the empirical copula C,,. With a slightly different
notation than previously introduced, we estimate C,, based on (normalized) ranks, i.e.,

empirical quantile levels, of each marginal distribution (see Deheuvels||1979)
n d .
Cn(u):1/nZH1{““guk}, (3.1)
n
j=1 k=1

for any u = (uy,...,uq) € [0,1]%. Further, r;; denotes ranks within the copies
Xiky ooy X Les, 7 = doi I{XU,C < Xj,k} for k € {1,...,d}. Generally, for the

empirical copula process

Cn(u) = vn{Cp(u) — C(u)}. (3.2)
holds a weak convergence result for n — oo to a continuous centered Gaussian field G¢

on [0,1]% as stated in the following theorem.

Theorem 3.2.1. (Segers |2012) Assume that for each k € {1,...,d} there exist a
continuous partial derivative OC' on the set Vg, = {u € [0,1]¢: 0 < ug < 1}, we get for

n — oo:

Cn(u) = Vn{Cp(u) — C(u)} ~ Ge in 1°°([0,1]%), (3.3)
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where
d
Ge(u) =B(u) - Y 8:C(w)Bu™), (3.4)
k=1

with u® = (1,...,1,u, 1, ..., 1) for k € {1,...,d} and B is a tight limiting Gaussian
process on [0,1]% with
cov{B(u),B(v)}: CuAv)—Cu)C(v) for any u,v € [0,1]%.

See |Segers| (2012) for further details and the proof of the theorem. Note that Biicher
and Volgushev| (2013)) further showed that the above result also holds for some copulas
under certain serial dependence. G¢(u) in Equation can be interpreted as follows.
B(u) characterizes the process if the true margins Fj were used instead of the empirical
version Fk, i.e., estimating empirical quantile levels by using ranks. Thus, the product of
the partial derivatives 9xC(u) and the 'marginalized’ process B(u*)) can be referenced

as resulting ’discrepancy’ of not knowing the true marginal distributions Fj, for k €

{1,....,d}.

3.3. Plug-in Estimator

We now introduce the proposed plug-in estimator for the covariance of the empirical
copula. For this purpose, we estimate the covariance of the empirical copula process,
where the true copula C is replaced by its empirical counterpart C,,. The covariance
of an empirical copula C, is then estimated by the scaled estimated covariance of the
empirical copula process, i.e.,

(ﬁf{én(u),én(v)} =1 -C/CR/{(Cn(u),Cn(V)}. (3.5)

n

The covariance of the empirical copula process and its asymptotics are outlined in the

following. From the previous section, we know that the covariance of the empirical copula
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process C,, (see Equation and Equation [3.4]) can be expressed by

d d
cov{Gc(u),Gc(v)} = cov{IB(u) — Z aklc(u)B(u(kl))7B(v) _ Z ak2C(V)B(V(k2))},
ki1=1 ko=1
(3.6)

with u = (u1,...,uq) and v = (v1,...,vq) for d € {1,...,d}. This can now be further

dissolved into:
COV{Gc(u), Gc(v)} =C(uAv)—C(u)C(v)

d d
+ Z Z ale(u)8k2C’(v){c(u(k1) A V(kz)) _ C(u(kl))C(V(k2))}

k1=1ko=1
d
+ > aklc(u){c*(u%) AV) — C(u(kl))C(v)}
k1=1
d
+ > akQC(v){C’(u Avik2)y — C(u)C(v<k2>)}.
ko=1

Step-by-step transformations of the equation above are given in the appendix to this

chapter at the end of this thesis.

Note that cov{Gc(u), GC(V)} still contains the true underlying copula C' and, thus, is
not an estimator so far. To obtain the plug-in estimator ¢cov{Cy(u), C,(v)}, we estimate
the desired covariance by replacing the true copula C' with its empirical counterpart Ch.
The partial derivatives 0;C(u) are also approximated by their empirical counterparts

similar to |Rémillard and Scaillet| (2009), i.e.,

Co(ut,..., hy ... ug) — Co(ut,...,ux—h, ...,
BrCr() = (uq ug + Ud)2h (u1 m ud)7 3.7)

for small h < 0, where we set h =: (1/y/n) and k € {1,...,d}.
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Consequently assuming the existence of continuous partial derivatives as defined in

an estimator for the asymptotic covariance of the empirical copula C,, is given by

&)\V{(Cn(u), (Cn(v)} = Cp(uAv) = Cph(u)Cyr(v)

d d
+> 0> 8klcn(u)ak20n(v){ Cn(*) A vk2)y — G aR0) An(v(kz))}

k1=1ko=1

d
+> 8k20n(v){é’n(u AvE)) — () An(v(’fﬂ)}.

ko=1

(3.8)

Theorem below states the asymptotics of the presented estimator providing the

respective weak convergence results.

Theorem 3.3.1. Under assumption defined in Theorem [3.2.1], we get for n — oo :
c/\ov{(Cn(u), (Cn(v)} s cov{Cn(u), (Cn(v)}.

Proof. Since Cy,(u) ~» C(u) and 9,Cy(u) ~ 9C(n) for k € {1,...,d} for n — oo in
u € [0,1]%, each element of the sum converges towards the true value (Rémillard and
Scaillet} 2009), which implies a weak convergence of the total estimator to the true value,

i.e., an element-wise convergence. O

Example [3.3.T] illustrates the plug-in procedure and variance estimation in a two-

dimensional copula.
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Example 3.3.1. Consider a two-dimensional empirical copula Cy, d =2, and derive the

estimator for the variance of its empirical copula process C,, at u = (u1,uz) € [0,1]? by

cov{GC(u),Gc(u)}: U@T{Gc(u)} = W{B(u) - i:@iC(u)IB%(u(i))}
- Uar{B(u)}—i— var{@lC(u) up, 1 }+ W{azc B(1 ug)}
2. cov{IBB(u),@lC(u) (u1,1 } 2. cov{IB ), 85C( (1,@@)}
}

+2- cov{alC(u)IB%(ul, ), 2C(0)B(1, uz

(3.9)
Dissolve and plug-in the empirical copula C,, to obtain the estimator.
ﬁr{@n(u)}—{é’n(ul,uz) — C’n(ul, uQ)C'n(ul, uQ)}
+ 01C() 4 G, 1) — G, 1)Con (1, 1)}
a0 ) L (1) én(l,uQ)én(LuQ)}
(3.10)

(u1, u2)Ch(u, 1 }

C,
—C’n(ul,uz 1 , U2 }

{
— 2(31C’n(u){én(u1, Uug) —
- 2820n(u){én(u1, us)

+ 2810n(u)820n(u){(jn(u1, UQ) — Cn(ul, 1)én(1, UQ)}

Simulations have shown that in general covariance terms in Equation (3.9)) and the
partial derivatives in Equation (3.10]) can have substantial size effects on the resulting

estimate and should not be neglected.

Remark 3.3.1. Calculating the variance without the product of the partial derivatives
OrC(u) and the 'marginalized’ process B(u®) for u € [0,1]%, i.e., assuming to know the

true marginal distributions Fy, for k € {1,...,d}, corresponds to calculating the variance
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of a Bernoulli distribution. More specifically, if p corresponds to the value of the underlying
copula model at u, the variance of the empirical copula process at u is calculated by p(1—p)
similar to a Bernoulli distribution with parameter p. Consequently, the simple plug-in
estimator for the case with known marginal distributions can be computed from a sample
with size n by estimating p via p(u) = 1/n Y 1" | 11y, <uy, where u; is the exact quantile
level vector for a observation X ; in the sample, i.e., u; = {Fl(Xﬂ)7 F(Xi2),- -, Fd(Xid)}
(note that this corresponds to the IFM estimation approach from Chapter with known
marginal distributions). This can also be interpreted as the variance of getting exactly
p/n successes (single observation of copula sample is smaller or equal to the values of u

in each element) in n independent Bernoulli trials.

3.4. (Co-)Variance of Copula Partitions

Based on the plug-in estimator derived above, we introduce an algorithm for estimating
variances of arbitrary copula partitions, i.e., variances of the empirical copula process
in any d-dimensional rectangle of the empirical copula in [0,1]¢. Computation
of d—dimensional copula partitions, which are needed for the estimator, is very
cumbersome, and thus, we first recapitulate an elegant algorithm to do so based on
binary representations of integers. In the second step, we combine this algorithm with
the plug-in estimator to estimate variances for arbitrary copula partitions. Note that
resulting formulas and expressions include many terms stemming from pulling apart the
occurring covariances of sums, as illustrated in an example at the end of this section.
Due to this high resulting complexity, we provide ready-to-use computer code in the

appendix.

According to |Cherubini and Romagnoli (2009), the volume of a d-dimensional partition

of a copula, defined by S = [u®) u(P)] € [0,1]¢ with u**) < u) (element-wise), i.e.,
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a d-dimensional rectangle, is computed by

241

Vo($) = Y- (~1'DC|g{p()} .

=0

Here p(7) represents a d-dimensional vector of ones and zeros corresponding to the binary

representation of ¢, resulting in g{p(z)} a d-dimensional vector such that g; = )

J
if pj = 0 and g; = uow) if pj = 1. The index j denotes the j-th element of the

J
corresponding vector in u§up ), ug-lgw) as well as in p; and g;. Last, t(i) = |p(¢)| counts the
number of elements equal to one in p(i) and thereby determines the sign. For example,

in dimensions d = 2 follows the well-known formula

900,00} = c{g(1,00} = c{g0.1)} + c{g1,1)}
(ugup), ugup)> — C(uglow), ugm)) — C(ugw), ugow)) + C’(uglow),ugow)).

Note that the same formula applies for the volume of the empirical copula by replacing
C by C,, hence similarly for C,, (Equation [3.3) and G¢ (Equation . Thus, on these
d-dimensional partitions of [0,1]¢ the empirical copula process C,, and the asymptotic

process approximation G¢ are computed by

241
Ve, (1) = 3 (-1 OCa|g{p(i)} .
1=0
and
241 4
VeolS) = 3 (-1 0Ce[a{p()}].
=0

From now on, we replace the expression g{p(-)} by (i) for the sake of better readability.
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In the next step, we combine the volume computation with the derived plug-in
covariance estimator to approximate the covariance of two empirical copula partitions,
i.e., the covariance of the corresponding empirical copula processes in the given partitions.
Remember that both partitions are positioned within the same copula, and therefore,
strictly speaking, both copula processes actually represent the same process evaluated at
different points. The partitions are defined by arbitrary d-dimensional rectangles S1 and Sy
in the domain of the empirical copula given by S; = [u*®) u(P)] and Sy = [v{low) v(up)]
with u,(glow),u,(cuP),U,(fow),vliuP) € [0,1] and u,(clow) < u](fup)’ v,ilow) < v,iup) for k =1,...,d.
Analogous to the previous section, we first consider the asymptotic covariance of the
empirical copula process before applying the plug-in principle for estimation. The
asymptotic covariance of the empirical copula process of copula partitions S; and Ss

emerges to

IS8

241 241 ]

cov{ch(sl),ch(SQ)} — cov[ (-G {o@ ], 3 (-1 ™W6e{sn) |

i=0 h=0

~

= COV<2 N {B{é(@} - Zd: aklc{é(z')}laa{cs(z‘)(’“)}],
1=0 k1=1
2d_1 d
0 [B{sm} - 3 ac{am{sm®}] )
h=0 ko=1

Again, §, which subsumes functions p and g, is used to address the correct value of
u; and up. The index ki, ko = 0 indicates the absence of marginalization in B, i.e., it
indicates the 'full” B(uy,ug,...,uq) while ki, ko > 1 addresses the marginalized input

vector B(1,..., 1, up, /ky, 1..., 1) for ki, k2 € {1,...,d}.

Next, the expression is further dissolved by decomposing the out covariance term and

rearranging the resulting terms. In favour of a short notation, two additional variables
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a) and i) are introduced and the formula results in

cov{vGC(sl),ch(sz)} _

29-129—1 d d
Z Z Z b(i ok ko) @ Zkl)a(h,;@)cov[B{é(z‘)(’“)}?B{g(h)(kz)}]_
1=0 h=0 k1=0k2=0

(3.11)

Here, a(;x,) encodes the partial derivatives defined by

80{5(1’)}
A(iky) = | L{k=0} + 1{k1>0}8uk1], (3.12)

with a similar expression for a(, ) respectively. Note that indices k1 and ko are extended
by 0, which now indicates the absence of the partial derivative, i.e., a( ), @ k) = 1-

Secondly, t(; h k, k,) determines the sign of the summand by

bk = (—1 1)P@ P71 (k1) +ra(ka)
with |p(:)| and |p(h)| counting the number of elements equal to one in p(i) and p(h)
(d-dimensional vector of ones and zeros subsummized in 0(i)), and r1(k1) = 13,50} as

well as ra(k2) = 1,50y, Tespectively.

Remark 3.4.1. Equation can be further decomposed in variance and covariance
terms (similar to Example 1) for computing the variance of an arbitrary box in the
copula’s domain, i.e., if S = 51 = So. With the help of a(; i, defined similar as a )
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and ap, i) follows

W{VGC } del S a2, )W{ {80 )<ko>}]

7=0 ko=0
2d_12d_1

+2 Z Z Z Z (i,h,k1 ko) a(ml)a(h;@)cov[ {5( )(k‘l)} E{g(h)(kz)}}

i=0 h=0 k1=0 ko#k;
241

2SSt (m)m[ (a0}, B{(s(h)(kw}}

1=0 h#i k1=0 k1=k2

Note that instead of aggregating the last two sums (setting ky to ki), we decided to use

the given notation to make them more comprehensible.

Last, for the plug-in estimator, the expression is further dissolved by decomposing
the covariances and collecting the resulting terms. Then, C is estimated via C,, and
the partial derivatives 9;C(u) are substituted by their empirical counterparts 5(7\” for
i € {1,...,d}. Under the assumption of existing continuous partial derivatives, we define
two arbitrary empirical copula partitions S; and S5 defined as above. The resulting plug-
in estimator for the covariance of the empirical copula process of arbitrary rectangular

partitions is given by

241241 d d
— Z Z Z Z Ui hoky ko) l/ﬁ)&(h ko) [C’n{(;(z')(kl)} A én{6<h)(k2)}
=0 h=0 k1=0ko=0

- én{a(z')(’fﬂ}én{a(h)%ﬂﬂ :
(3.13)

where G,y is defined similarly to Equation 1} using the estimator for the partial
derivative from Equation (3.7]).
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Corollary 3.4.1. Analogously to the estimator given in Theorem[3.5.1), the estimator
cov{ Vg, (51), Ve, (S2)} converges weakly to the true value of cov{Vg, (S1), Ve, (S2)} for

n — 0.

Proof. Follows directly from the proof of Theorem [3.3.1} i.e., the from the element-wise

weak convergence of the components of the sum. O

Example below (and continued in the appendix) computes the variance of a
two-dimensional empirical copula process in the upper right corner of the empirical

copula, i.e., the survival copula, step-by-step.

Example 3.4.1. Consider the following example of a two-dimensional copula, d = 2,
and focus on the grey marked rectangle S in the upper right corner of the copula domain
limited by u(*P) = (ugu”),ugum) = (1,1) and ullew) = (uglow), ugow)) as shown in Figure

(31

uup)

U2 ullow)

Uy

Figure 3.1.: Grey marked rectange S in the upper right corner of the copula domain

[0,1]? enclosed by u(*?) = (ugum,ug“p)) and u(ow) = (uglow),ugow)).
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The asymptotic variance of the empirical copula process in the marked area S is

estimated in accordance with the computation of the volume of the area considered.

@{vcn(S)} -

var{lﬂ%on<u§“p),u§“p)>— P B, (o), 1) = P B, (1)
(low)  (up)y | 9Cn(ul""") uf") (low) 9Cn (uf'”™ u§"™) (up)
—Be, (uy uy ) + Be, (uy 7, 1) + Be, (1,uy )

8uglow) 8ugup)

(low)

— Be, (ul"?, ud)) 4 2 g (o (0) 1) 4 e DR (1,487

u; low
aug ») aué )

acn(uglow%ugl““’))B (low) AC, (ule™) wullo™)y (low)
Ionlty Uy ) 1) — L\t U Ip (]
auglow) Ch (ul ’ ) au(Qlow) Cn( I U2 )
Next, this expression of the variance is split up and further dissolved. The complete

dissolving of the term can be found in the appendiz.

3.5. Simulation Results

In the following, we present simulation results in different dimensions and sample sizes.
First, we evaluate the plug-in estimator given in Section [3.3| and compare our results
with the results obtained by the bootstrap approximations of Biicher and Dette| (2010)).
Secondly, we perform simulations to estimate the variance of copula partitions for
dimensions d > 2, i.e., d = 3,4 and 5. Note that similar to Biicher and Dette (2010), we

present the scaled covariances, i.e., the covariance of the empirical copula process.

3.5.1. Two Dimensions

For the two-dimensional simulation study, we consider the Clayton copula (see Chapter [2))
with parameter §# = 1 (corresponds to Kendal’s 7 = 1/3). Thus, we are able to compare
our results with the results of the simulation study from Biicher and Dette (2010) for
various bootstrap approximations of the empirical copula process. More precisely, we

report the true covariances of the limiting process (ﬁrst row, calculated using Equation
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| and the covariances of the simulated process (second row) based on a sample of size
n = 100 on four different points in the copula domain {(%, %), i,7 = 1,2} in Table m The
simulated values, entitled Simulated in the table, demonstrate the quick approximation
of the limiting process and serve as a benchmark for the performance of our estimator.
They are obtained by calculating the variance/covariance out of 10° simulation runs.
The last row reports the results of the proposed plug-in estimator based on the average
of 1000 simulation runs, with the corresponding mean squared error (MSE) scaled by a

factor of 10* below.

True (1/3,1/3) 0.0486 0.0202 0.0202 0.0100
(1/3,2/3) 0.0338 0.0093 0.0185

(2/3,1/3) 0.0338 0.0185

(2/3,2/3) 0.0508

Simulated  (1/3,1/3) 0.0489 0.0198 0.0198 0.0097
(1/3,2/3) 0.0333 0.0089 0.0181

(2/3,1/3) 0.0334 0.0181

(2/3,2/3) 0.0510

Plug-in (1/3,1/3) 0.0509 0.0198 0.0201 0.0091
0.5488 0.4653 0.4841 0.3064

(1/3,2/3) 0.0348 0.0087 0.0181

0.8551 0.1626 0.2526

(2/3,1/3) 0.0349 0.0178

0.8665 0.2576

2/3:2/3) 00539

Table 3.1.: Sample covariances for the Clayton copula with # = 1 and sample size n = 100.
Simulated values result from 10® simulation runs, and mean squared error
values (multiplied by 10%) for the plug-in estimator are given below the
estimate (obtained from 1000 estimates).

For comparison, Table displays the results from the multiplier bootstrap with
estimated partial derivative bootstrap estimators c,q;,, which has proven to has the best
finite-sample performance in the study of Biicher and Dette (2010) and the standard
beta bootstrap ag by Kiriliouk et al.| (2021). The values of aypgm, are copied from Table 1
and 3 in Bucher and Dette| (2010)), with MSE values given below. For the ag, we report
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MSE values only, copied from Table 2.1 in |Kiriliouk et al. (2021). Further, we report

results for the a,gn,, the ag and our plug-in estimator for a sample size of n = 200 in

Appendix

n=100 (1/3,1/3) (1/3,2/3) (2/3,1/3) (2/3,2/3)
apam  (1/3,1/3) 0.0527 0.0205 0.0205 0.0093
0.8887 0.5210 0.5222 0.3716
(1/3,2/3) 0.0361 0.0092 0.0188
1.0112 0.1799 0.2088
(2/3,1/3) 0.0360 0.0188
0.9899 0.2818
/3219 o
1/3,1/3 — — — —
b (1/3,1/3) 0.9992 0.3402 0.3473 0.1956
(1/3,2/3) — — —
0.7887 0.1294 0.1889
2/3,1/3 — —
(2/3.1/3) 0.7644 0.1821
2/3,2/3 -
(2/3,2/3) o108

Table 3.2.: Sample covariances for the Clayton copula with # = 1 and sample size n = 100.
Mean squared error values (multiplied by 10%) for the bootstrap estimators
are given below the estimate (obtained from 1000 estimates).

In summary, we observe that the plug-in estimator yields a better result than the best
bootstrap method from the study of Buicher and Dette (2010) in absolute values and
measured by the MSE at all points. Comparing our plug-in estimator with bootstrap
procedure based on the empirical beta copula (Segers et al., |2017)) results in a more
balanced conclusion. While ag seems to have a slight advantage over the proposed plug-in
estimator in some cases (but not all), the plug-in estimator performs better in others.

However, ag still relies on bootstrap methods.

3.5.2. Three, four, and five Dimensions

For dimensions d > 2, we stick with our example and consider a Clayton copula with

parameter 6 = 1 again. For the evaluation, we consider four different rectangular boxes
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with positions By, By, B3, By in the d-dimensional domain of the copula [0, 1]%:

11 1

By = Qullow) = W) — (2 2. 2

1 {’U, <0707 )O> YU 37 3 3 3
BQ = {u(low) = (?)7 ;’ cey g) 7u(up) - (17 17 st 1)}

11 1 2 2 2

Bae Jytowy _ (11 1 w)_ (22 2

3 {’LL <3>37 73> YU 373’ '3
B4 = U(low) 17 g) 1,- .. 7u(uP) - 25 ]-7 27 s .

3°3° 3 3 3

The first position Bj represents the empirical copula, whereas the second position Bs
corresponds to the empirical survival copula, looking upwards. Third, B3 is positioned
in the middle of the domain, and last, B, is off-diagonal, more remotely positioned.
The positions are intended to represent structural different areas in the copula domain.
Again, values entitled Simulated in Table are calculated out of 10% simulation runs
to show the approximation of the limiting process given in the first column (7True).
Similarly, plug-in estimates, given in the third column, result from 1000 estimates with
the corresponding Mean Squared Error (MSE) below. We further report results for the
Gaussian copula (see Chapter [2|) in Table with Spearman’s p = 0.5, which roughly
corresponds to the same strength of dependence (7 = 1/3) as before and covariance and

correlation matrix

L p p P

p P
p=

p 1 »p
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True Simulated Plug-in
d = 3 n = 100 n = 1000 n = 100 n = 1000
B;  0.0579 0.0616 0.0561 0.0594 0.0593
0.4989 0.1531
By,  0.0512 0.0524 0.0541 0.0534 0.0528
0.6927 0.1272
Bz 0.0356 0.0384 0.0359 0.0425 0.0384
1.5936 0.1933
B, 0.0316 0.0328 0.0342 0.0358 0.0336
1.0425 0.1219
d = 4 n = 100 n = 1000 n = 100 n = 1000
B;  0.0570 0.0553 0.0544 0.0582 0.0583
0.61739 0.1430
By 0.0431 0.0426 0.0449 0.0452 0.0444
0.8338 0.1207
Bs  0.0186 0.0191 0.0184 0.0239 0.0202
1.3881 0.1362
B, 0.01690 0.0185 0.0175 0.0190 0.0179
0.9750 0.1011
d =5 n = 100 n = 1000 n = 100 n = 1000
B;  0.0535 0.0477 0.0502 0.0545 0.0547
0.7602 0.1380
By 0.0351 0.0345 0.0346 0.0365 0.0362
1.0824 0.1323
Bz  0.0088 0.0095 0.0091 0.0115 0.0098
0.9083 0.0862
B, 0.0074 0.0074 0.0068 0.0091 0.0081
0.6127 0.0559

Table 3.3.: Sample covariances for the Clayton copula with 8 = 1 different sample sizes.
MSE values (multiplied by 10%) for the estimators are given below the mean
estimate (obtained from 1000 estimates).

We observe that the plug-in estimator approximates the true values of the limiting
process quite well in all boxes regardless of dimensions d. This also confirms the
estimator’s overall applicability for dimensions > 2. Regarding the MSE, the values are
comparable with the results from two dimensions and increase only slightly with growing
dimensions. Such an increase is not surprising, as each region in the copula domain is
becoming more sparse. Simultaneously, a significant improvement in the MSE can be
observed for growing sample sizes. As the magnitude of the improvement seems to be
independent of the dimensionality, we believe this is mainly driven by the improved

estimation of the partial derivatives.

Even more, insights can be found if we inspect the MSE relative to the actual value of
the variance in each box, i.e., the ratio of the MSE and actual value presented in Table

for the Clayton copula or Table for the Gaussian copula. We observe that B
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True Simulated Plug-in
d =3 n =100 n =1000 n =100 n = 1000
B;  0.0531 0.0529 0.0532 0.0556 0.0545
0.4075 0.0562
By 0.0531 0.0529 0.0529 0.0554 0.0545
0.3617 0.0554
B3z 0.0345 0.0363 0.0347 0.0410 0.0370
1.4871 0.1581
By 0.0271 0.0278 0.0271 0.0311 0.0288
1.0057 0.1172
d =4 n =100 n = 1000 n =100 n = 1000
By 0.0489 0.0485 0.0486 0.0510 0.0502
0.5552 0.0602
By 0.0489 0.0484 0.0491 0.0509 0.0502
0.5576 0.0570
Bz 0.0173 0.0186 0.0176 0.0220 0.0188
1.2400 0.1221
By 0.0133 0.0135 0.0133 0.0153 0.0140
0.8278 0.0853
d =5 n =100 n =1000 n =100 n = 1000
By 0.0434 0.0426 0.0432 0.0452 0.0444
0.7925 0.0769
By 0.0434 0.0428 0.0433 0.0447 0.0445
0.7864 0.0738
B3 0.0080 0.0087 0.0080 0.0106 0.0087
0.8153 0.0731
By 0.0051 0.0054 0.0053 0.0063 0.0057
0.4639 0.0476

Table 3.4.: Sample covariances for the Gaussian copula with p = 0.5 and different sample
sizes. MSE values (multiplied by 10%) for the estimators are given below the
mean estimate (obtained from 1000 estimates).

consistently yields the smallest relative MSE, closely followed by By and By. Bs exhibits
the highest relative MSE over all boxes. We believe this order is mainly driven by the
number of copula estimations, which include the copula boundary, i.e., zero and one,
as an argument of the copula. In this case, the estimation is much more precise since
it directly implies a value of zero or eliminates the corresponding dimension fully from
the estimation. The difference between By and Bs is than solely based on the density
of observations within the specific box. The number of estimations at the boundaries
of the copula also explains the absence of a linear reduction in the MSE (assuming a
bias of 0) while the sample size is increased. In these cases, a higher number of samples
only affects some of the terms of the sum involved in the estimation; thus, the higher
precision does not fully emerge. Or put into another perspective, some of the terms are

already estimated very precisely (or perfectly) for small sample sizes, hence increasing
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the samples size does not benefit these terms and the overall estimator in the same way

as it would be the case without the estimations at the copula boundary.

d=3 d=14 d=5
n =100 n = 1000 n =100 n = 1000 n =100 n = 1000
By 8.6165 2.6442 10.8314 2.5087 14.2093 2.5794
By  13.5293 2.4844 19.3457 2.8005 30.8376 3.7692
Bs  44.7640 5.4298 74.6290 7.3226 103.2159 9.7955
By 329905 3.8576 97.6923 5.9822 82.7973 7.5541

Table 3.5.: Relative MSE of the plug-in estimator over boxes By, Bo, B and By for the
Clayton copula with § = 1 and different sample sizes. The MSE is calculated
over 1000 simulation runs and multiplied by 10%.

Relative MSE values for the Gaussian copula are given in Table strengthening our
interpretation above. These values are also calculated as the ratio between the MSE and

true value reported in Table

d=3 d=14 d=5
n =100 n = 1000 n =100 n = 1000 n =100 n = 1000
B 7.6742 1.0584 11.3538 1.2311 18.2604 1.7719
By 6.8117 1.0433 11.4029 1.1656 18.1198 1.7004
Bs  43.1043 4.5826 71.6763 7.0578 101.9125 9.1375
B, 37.1107 4.3247 62.2406 6.4135 90.9607 9.3333

Table 3.6.: Relative MSE of the plug-in estimator over boxes Bi, By, B3 and By for
the Gaussian copula with p = 0.5 and different sample sizes. The MSE is
calculated over 1000 simulation runs and multiplied by 10%.

3.6. Conclusion

In this chapter, we presented a new plug-in estimator for variances and covariances of
the empirical copula process, i.e., the empirical copula. We further introduced a formula
for calculating the estimated variance and covariance of the empirical copula process in
any arbitrary rectangle partition of the d-dimensional copula domain. We illustrated its
good finite sample properties in a simulation study, where the MSE seems mainly driven

by the sample size used for estimation. Further, a ready-to-use computer code for the
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estimator is provided. For future research, the given estimator could be enhanced and,

e.g., new testing methods for copulas could be developed on its basis.



4. A Multivariate Extension of the

Lorenz Curve

This chapter is based on |Grothe et al.| (2022a)), published in Journal of Economic
Inequality. The article, as well as the figures, are under Creative Commons Attribution
4.0 International License, which grants permission to reuse them in this work. The chapter
deals with a multivariate extension of the Lorenz curve and enables the measurement of

inequality in more than one dimension, while providing a clear economic reasoning.

4.1. Introduction

The well-known Lorenz curve and Gini coeflicient are still the most important tools for
representation and analysis of inequality in a distribution, such as the income and wealth
distribution. Both, however, are univariate instruments, i.e., they analyze the variables
individually, ignoring their dependence structure. Considering the example of income
and wealth, it is not possible to see the differences in the overall inequality if wealthy
people coincide with high-income people compared to a more balanced, eventually
compensating distribution of wealth over the income groups. Contrary to that, in this
chapter, we propose extensions of both tools based on copulas to study the inequality of
d variables X1, ..., Xy simultaneously. By that, we explicitly capture the dependence

structure of these variables which gets lost if only one variable is considered at a time.

There had been some efforts to extend Lorenz curve and Gini coefficient to the

multivariate case before. The earliest suggestion in this direction we know of is

34
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Taguchi (1972alb)) who applied methods of differential geometry. Further suggestions
are by [Arnold (1987)), |Arnold and Sarabial (2018), Gajdos and Weymark| (2005) and
Koshevoy and Mosler| (1996, 1997)). We will not give an overview of these contributions
because this is - at least partially - done by |Arnold and Sarabial (2018). We agree with
the view of the latter authors that all extensions are essentially determined by (el-

egant) mathematical considerations but may lack interpretability and economic reasoning.

Here, we propose direct and natural multivariate extensions of both, the (inverse) Lorenz
curve and the Gini coefficient. We exploit the fact that the inverse of a variable’s Lorenz
curve is the distribution function of a simple monotonically increasing transformation of
that variable. The multivariate inverse Lorenz curve of the d variables X1, ..., X is then
defined as the joint distribution function of analogous univariate transformations of them.
The resulting Lorenz curve can explicitly be expressed using copulas. As presented in
Chapter 2, copulas decompose the joint distribution function of variables into marginal
distribution functions and their dependence structure. Consequently, for a given vector
X = (Xy,...,Xy) of d variables, the copula-based multivariate Lorenz curve identifies

and captures two different sources of inequality:

a. inequality contained in the individual variables X;, measured by the univariate

Lorenz curve L; or inverse Lorenz curve L;* for i € {1,...,d}.

b. inequality due to the dependence structure of the variables Xi,..., Xy which is

captured by the copula of these variables.

Based on the multivariate Lorenz curve, the formulation of a multivariate Gini coefficient
follows in a natural way analogously to the derivation of the univariate Gini coefficient

from the univariate Lorenz curve.

The mathematics we apply in the theoretical part of the chapter is some elementary
copula theory and - hopefully - is accessible to a broad readership. Later on in the

chapter, we derive simple nonparametric estimators for both instruments and provide
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ready-to-use computer code in the appendix of this thesis. We illustrate both instruments,
the multivariate Lorenz curve and Gini coefficient, on data sets consisting of individual
wealth and income data of various countries. The results are intuitive and show that
the two above-mentioned sources a. and b. of multivariate inequality are reflected in a

reasonable and interpretable way.

The structure of the chapter is the following. Section introduces notation and
some definitions. The multivariate extension of the inverse Lorenz curve (MEILC) is
introduced in Section Various properties of the MEILC are derived. Section [4.4]
presents a multivariate extension of the Gini coefficient (MEGC) related to the MEILC
and considers the bivariate Gini (i.e., d = 2) as a special case. Nonparametric estimation
of MEILC and MEGC is considered in Section .5l In Section .6 we address some
aspects regarding multivariate transfers. The last section of the chapter contains the

empirical applications.

4.2. Notations and Definitions

We again consider a d-variate vector of random variables X = (Xi,...,Xy) de-
fined on a probability space (2,%,P). The joint distribution function is given by
Fx(z) = P(X1 < w1,..., X4 < 1q) for x = (71,...,24) € R? and the marginal distribu-
tion functions F; of X; are given by Fj(z;) = P(X; < ;) for z; e Rand i € {1,...,d}.
Throughout this chapter we assume that X; > 0and 0 < u; = E(X;) < oo fori € {1, ..,d}.
Note the small additional X in the sub-index of F', which we added in this chapter of
the thesis for a more concise notation. Further note that all variables should fit together
in an economically meaningful way and should have a cardinal scale. For inequality
measurement in the case of ordinal or qualitative data we refer the interested reader

to Allison and Foster| (2004)), Gravel et al. (2021)) or Kobus and Mito§| (2012) among others.
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From Chapter |2|7 we already now that there exists a copula C = Cp,, such
that Fx(z1,..,2q) = C{Fi(x1),...,Fy(xy)} for (x1,...,4) € R? which is uniquely
determined if the marginal distribution functions F; are continuous. Besides our work,
copulas also have been applied in the context of income analysis by Aaberge et al.
(2018)) recently. Remember that an important property of a copula from a random
vector X is that it is invariant with respect to strictly increasing transformations of
the marginal distributions and it is bounded by the Fréchet—Hoeffding bounds, i.e,
W(ui,...,uqg) < C(ug,...,uq) < M(ui,...,uq). The upper bound M, which is called
comonotonicity copula, corresponds to the dependence structure of full monotone
positive dependence. An example of wealth and income with such a dependence structure
would be a population of size IV, where the i—th wealthiest individual also has the i—th
highest income (for i € {1,..., N}). The lower bound W is only a proper copula in the
bivariate case and is then called the countermonotonicity copula. In a countermonotonic
income/wealth example, the i—th wealthiest individual would have the i—th lowest
income (for i € {1,...,N}). If X is a vector of independent variables X, ..., X  the
corresponding copula is the independence copula IT with II(uy,...,uq) = H?Zl u;. There
is a partial order C' < C’ on the set of d-variate copulas given by C'(u) < C’(u) for all
u € [0,1]? (see Nelsen|2006). See Figure in Chapter [2| for a visualization of these

extreme types of dependence.

The univariate Lorenz curve for i € {1,...,d} is given by
1w
Li(u;) = — F(t)dt for u; € [0, 1], (4.1)
Hi Jo

see |Gastwirth| (1971). Each L; is a continuous, weakly increasing and weakly convex

function. It has all the properties of a distribution function if we extend L; by 1 for
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u; > 1 and by 0 for u; < 0. The inverse of L; is defined by

inf{t|L;(t) > u;}, foru; € ]0,1]

sup{t|L;(t) = u;}, for u; =0

and L 1is continuous, weakly increasing and weakly concave on [0,1]. It has all the
properties of a distribution function if we extend Li_1 by 1 for u; > 1 and by 0 for u; < 0.

Note that there might be a point mass at zero.

Consider individual income in a population. The usual interpretation of the Lorenz
curve L of this variable is that, e.g., for p € [0,1], L(p) denotes the proportion of total
income that corresponds to the bottom p - 100% of the individuals. The interpretation of
the inverse Lorenz curve is that, for ¢ € [0, 1], Li_l(q) indicates the maximum percentage
of the population with a combined cumulative share of g - 100% of the total income (the
maximum ensures starting with the bottom income individual here). Obviously, both
curves describe the inequality in an equivalent way. It is worth mentioning that Max
Otto Lorenz (Lorenz, 1905) originally proposed in his chapter what we now call the

inverse Lorenz curve.

Using X;, F; and L; as defined above we now define the following random variables X

by
X; = Li{F(X;)} fori e {1,...,d}. (4.2)

Note, the difference between X; and X*. In applications X; has a dimension (such as
income or wealth). X/, however, is a fraction (i.e., a number between 0 and 1). If, e.g.,
X; denotes again individual income in a population then X is the corresponding joint
fraction of the total income of that part of the population having individual incomes

smaller or equal to X;. The d-variate vector X* is defined by X* = (X7,...,X). The
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marginal distribution function for X7 is given by the inverse Lorenz curve of Xj, i.e.,
P () = P[L{RO0) < u] = 27 ()
for u; € [0,1] and 7 € {1,...,d}. The joint distribution function of X* is given by

FX*(ul,...,ud):P(XfSul,...,X[}kSud) (43)

= C{Lll(ul), . ,Ldl(ud)} for u; € [0,1] and i € {1,...,d}. (4.4)

Note, that the copula of X is identical to the copula of X*, since X is a monotonically

increasing function of X; for i € {1,...,d}.

The univariate Gini coefficient is defined as a normalization of the area enclosed by
the Lorenz curve and the diagonal of the unit square. It equals one minus twice the area

under the Lorenz curve (Kakwani), [1977; |Gastwirth, 1972)
G=1- 2/ L(u)du.
[0,1]

Considering that 1 — [ L(u)du = [ L™ (u)du and L™ is the edf of X*, it follows that
J L(u)du = E(X*) and the univariate Gini coefficient may be expressed as

G=1-2E(X")
as well as
G = 2/ L™ (u)du —1
[0,1]

when using the inverse Lorenz curve L~! and considerations above. Notation and

definitions introduced in this section are used to define a multivariate extension of the
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univariate Lorenz curve (see Section [4.3]) and a multivariate extension of the univariate

Gini coefficient (see Section [4.4)).

4.3. A Multivariate Extension of the Lorenz Curve Based

on Copulas (MEILC)

As mentioned in the introduction, inequality in a d-variate random vector X =

(X1,...,X4) has two different sources:

a. inequality in the individual variables X;, which is measured by the corresponding

Lorenz curves L;(u;) or inverse Lorenz curves L; *(u;) for i € {1,...,d} and u; € [0, 1].

b. inequality contained in the dependence structure of the vector X = (Xy,...,Xy)

which is represented by the copula C of X.

To illustrate the effect of b. on the joint inequality in X = (Xi,..., Xy) in more detail,
we look at a very simple example for the bivariate case, i.e., d = 2, and a population of
five individuals, where X; and X» might again stand for individual income and wealth,

respectively.

Individual 1 Individual 2 Individual 3 Individual 4 Individual 5

s () () Q) @ 0 0
ez () () ) OO ()
eaes () () () @ ()

It can be seen that the marginal distributions of X; and X5 over the five individuals are
the same in these examples. We think that it is quite obvious to see that the inequality
is largest in Example 1 and smallest in Example 3. Example 2 is somewhere in between.

The differences in joint inequality in these examples are due to different dependence

structures between the variables. In terms of copulas, the dependence structure in
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Example 1 corresponds to the comonotoncity copula M, the upper bound in the set of
bivariate copulas. In contrast, Example 3 corresponds to the countermonotonicity copula
W which is the lower bound in the set of bivariate copulas. Thus, in Example 1, the high
income individuals are also the wealthiest, whereas in Example 3, income and wealth
kind of compensate each other. Example 2 might stem from the independence copula II.
We conclude from this example that joint inequality in a vector X = (Xq,...,Xy) is

increasing in C in the partial order as defined in Section of this chapter.

Having the example in mind, we now define a multivariate extension of univariate
(inverse) Lorenz curves considering the dependence structure of the variables. It will
turn out that the multivariate Lorenz curve of random vector X is the joint distribution

function (compare to Equation 4.3) of the random vector X™* as defined in Equation

in Section

Definition 4.3.1. Multivariate extension of the inverse Lorenz curve (MEILC) and
Lorenz order

Using the notation of Section[{.3, let

1. LE’}L;I,...,L*I(ul’ ceUg) = C{Lll(ul), . 7Ldl(ud)} for (u1,...,uq) € [0,1]%.

d
2. For a second vector X = (Xl,...,)fd) with copula C and inverse Lorenz
curves Ei_l(ui) of X; for i € {1,...,d}, we define the multivariate ordering
X=X if and only if

]Lg,lﬁfl,...,i[l(u) > L(;}L;R...,L;l(u) for allu = (uy, ..., uq) € [0,1]%

The extension of the inverse Lorenz curve (MEILC) L~!(u) = LC_J,lLfl,---, L;l(u) has a
nice interpretation in terms of the X for i € {1,...,d} and u = (uy,...,uq) € [0, 1]%.
Since L= (uy, ..., uq) is the joint distribution function of X* = (X7, ... , X7) we see that
L~Y(uy,...,uq) is the population fraction for which X; < uy, ... , X} < ug and therefore
the fraction with a cumulative share of the features smaller or equal to ui,...,uq. E.g.,

for d = 2 if u; denotes a share of the cumulative income in a population and uy a share

of wealth, than L ™! (uy, uz) is the corresponding fraction of people collectively having not
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more than shares u; and uo of the total income and wealth, respectively. Note that the
interpetation of the MEILC coincides with the interpretation of the upper parts of the
Lorenz zonoid introduced by Koshevoy and Mosler| (1996). However, while calculating
zonoids from data is computationally intensive, the copula approach results in simple for-

mulas, also allowing a straight forward extension of the Gini coefficient later in the chapter.

We analyze some of the (formal) properties of the MEILC. Here, we are in partic-
ular interested in how L~!(u1,...,ug) behaves, when ceterus paribus either marginal
inequalities or the dependence structures are changed. Later in the chapter, in Section
we discuss some implied properties of the MEILC such as the reaction to transfers in

empirical data.

1. Obviously L™ (u1,...,uq) is a function from [0,1]¢ to [0, 1]. Furthermore for every
C, Ll_l(ul), .. .,L;l(ud) and u = (ug,...,uq) € [0,1]% we have
Lyin(u) < ]Lg’,lLl‘l,.‘.,Lgl(u) < Lpoe ()
where
Lt (u)=W(u,...,ug) = maz{0, Zf u; — (d—1)}
and
Lohe(w) =M(1,...,1) =min{l,...,1} = 1.

These boundaries follow directly from the Fréchet—Hoeffding bounds (see Chapter .
Regarding the margins, note that the arguments of the lower bound refer to minimal
marginal inequality, i.e., L; ' (u;) = u; for i € {1...d}, whereas the arguments
of the upper bound refer to maximal marginal inequality, i.e., L;l(ui) = 1 for
i € {1...d}. Thus, e.g., the upper bound corresponds to the case of maximal
marginal inequality as well as maximal dependence between the variables and

reflects thus the case of maximal multivariate inequality.

2. If Xq,..., X4 are independent, i.e., C' = II we have

IL‘I?IIL_1 L_l(u) = H’Ldzl Lz_l(ul) for u = (u17 R ,Ud> S [07 1]d
LT LDy

So the MEILC is the product of the univariate Lorenz curves in such cases.
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3. If ug =1 we know

LE’}LII7---,L;_11,L;1 (uy,...,ug—1,1) = L(;lLfly---,L;_ll(ul’ ey Ud—1) for
(ul, ... ,ud_l) € [0, 1]d_1

and similar formulas hold for i € {1,...,d — 1} and for more general index sets
Ic{1,...,d}.

This marginalization is quite intuitive, since setting u; = 1 in the MEILC refers
to the fraction of the population having less or equal than the maximum value
of X;. Therefore, the i-th dimension is not restrictive anymore, while the other

dimensions still are.

By further marginalizing, we can see that for d = 1, we get the univariate (inverse)

Lorenz curve as a margin, e.g., LglL_l(ul) = L (w) for uy € [0,1].
g

4. If for u = (w1, ...,uq) € [0,1]? at least one L; *(u;) is zero, then L™!(u) is zero.
But note that there might be point masses at zero in some or even all of the Xj.
The MEILC therefore does not necessarily start at zero since a point mass of X; at

zero would imply L; '(0) > 0.

5. Response of L1 (u) to changing L; *(u;) for fixed u = (u,...,uq) € [0,1]% Higher
values of L;!(u;) lead to higher values of L=!(u), ceteris paribus. This follows
directly from the definition of L.=!(u) and general properties of every copula.
An increased inequality in one dimension, therefore, leads to an increased total

inequality without any further changes.

6. Response of L~!(u) to changes in the dependence structure of the variables, i.e., to
changes of C, when the L;l(ui) do not change: Consider two copulas C'4 and Cp
with C4(u) < Cp(u) for all u € [0,1]%. Here, referring to the example of income
and wealth, in B the wealthy would tend to belong more to the high-income part
of the society than in A. It then follows the corresponding multivariate Lorenz
order from Definition ie., L '(u) <L'(u). Generally, the order properties

of the involved copulas transfer directly to the multivariate Lorenz order. Since
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the copula order is, however, a partial order, not all changes in the dependence

structure lead to ordered Lorenz curves.

We illustrate the MEILC for some bivariate examples in Figures and We
consider two different types of marginal Lorenz curves in all examples, L;(u;) = u? (this
corresponds to values X; which are uniformly distributed over a finite interval [0, b]
with b > 0) or L;(u;) = uzl 0/9 (which is close to the Lorenz curve of minimal inequality).
Note that the corresponding marginal inverse Lorenz curves are Li_l(ui) = /u; and
L;l(ui) = ud"9, respectively. In Figure we consider Gaussian dependence structures
of the variables and vary Spearman’s p from negative to positive dependence, starting
from the case of strong negative dependence (a) to the case of independent margins
(b), small positive dependence (c) and strong positive dependence (d). As expected,
the surface of the MEILC becomes more domed for increasing strength of dependence.
Recall that a point on the surface L™ (u1,ug) at (u1,uz) reflects the maximum share of
the society having together less than shares u; and wuy of the total variable sums of X3

and Xs, respectively. Thus, it refers to the share of individuals being at the bottom in

both variables. A more domed surface therefore reflects a larger inequality.

In Figure[£.2] we illustrate the effect of the copula family and a case of unequal marginal
inverse Lorenz curves. Panels (a) and (b) both refer to cases with a rank correlation of
X1 and X of p = 0.8 but different asymmetric dependence structures, i.e., copulas. The
Clayton copula (a) has a stronger dependence between small values, while the Gumbel
copula (b) has strongest dependence between large values. Consequently, we see that the
surface of the MEILC in the Clayton case is more domed for pairs of small values than
in the Gumbel case (b). Panel (c) depicts the case of independence where the margins
are now different. It can be seen that surface interpolates between the margins. Again,
the surface gets more domed, if the dependence is increased, e.g., by using a Clayton
copula with p = 0.8 (d). This is done by visualizing L =!(u) for data with Gaussian and
Archimedean copulas (see Chapter , different dependence parameters and marginal

distributions.
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(¢) Gaussian Copula, Spearman’s p = 0.5 and

(d) Gaussian Copula, Spearman’s p = 0.9 and
LM (u) = Jug for i = 1,2.

L7 (u;) = Ju; for i = 1,2.

Figure 4.1.: Graphs of L=!(u1, us) based on Gaussian copulas with different values for
the dependence parameter Spearman’s p. The surface of L=!(uy, us) gets
more domed with increasing parameter p.
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(c) Independence copula IT and Ly *(u;) =

= (d) Clayton copula, Spearman’s p = 0.8 and
u$® and and Ly ' (ug) = \/uz.

Lit(up) = ud? and Ly ' (ug) = \/us.

Figure 4.2.: Graphs of L ™! (u1,uz) based on Archimedean copulas with different values
for the dependence parameter Spearman’s p and marginal distributions.
Panels (a) and (b) illustrate the effect of different asymmetric dependence

structures, while (c¢) and (d) illustrate effects of margins and dependence
structure.
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Remark 4.3.1. It might be surprising that our extension of the Lorenz curve is based on
its inverse and not on the Lorenz curve itself. The inverse Lorenz curve draws proportions
of the people on the y-axis and the variable of interest, e.g., share of total income, on the
z-axis. Proportion of people is thus the value of the inverse function, while the variable of
interest is the argument. Having only one variable of interest, the choice between Lorenz
curve or inverse Lorenz curve seems arbitrary. Considering d > 1 variables of interest,
however, it seems conceptually more natural to add these variables as further arguments
of the inverse Lorenz curve. Furthermore, the resulting extension is easily interpretable.

Alternatively, starting from the Lorenz curve, a seemingly intuitive idea like

(w1, ... uq) — C{L1(u1), ..., La(uq)}.

behaves contradictorily. If inequality in the X; rises than the above definition indicates a
decreasing value. If inequality accounted in C increases an increasing value is indicated.
Obuviously this is contradictory.

A possible adjustment would be to look at
(w1,...,uq) — 1= C{1— Ly(u1),...,1— La(uq) }

This object reacts in the expected directions in all cases, but it lacks a reasonable and

convincing interpretation.

Remark 4.3.2. We are quite aware that there might be further reasonable ways of
combining a copula with Lorenz curves L; or its inverses. The survival copula C which
corresponds to copula C' (see|Nelsen) 20006 p.33) might also be a useful tool for the definition

of a multivariate extension of the Lorenz curve, but we have not derived any details.
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4.4. A Multivariate Extension of the Gini Coefficient
(MEGC) Related to the Multivariate Extension of the

Lorenz Curve

In the univariate setting, i.e., d = 1, it is well known that the Lorenz order is only a
weak order. Indeed, Lorenz curves may intersect and consequently X; and X; with
intersecting Lorenz curves cannot be ordered with respect to inequality. A numerical

measure of inequality, such as the Gini coefficient, is called for.

In the multivariate setting, it can be seen that the order defined in Section is also
a weak order and a related numerical measure of inequality is required, too. Using the
notation of Section .2 and [4.3] we define a Gini coefficient related to the MEILC as

follows.

Definition 4.4.1. Multivariate extension of the Gini coefficient (MEGC)
The MEGC is defined as:

f[OJ]d LE}L;R...,L* (w)du — [ 4y L,.in(u)du

G-t -1 o d — . (4.5)
OLy oLy f[o,l}d Lotz (u)du — f[o,l]d L.} (u)du
Using f[O,l]d L. (u)du=1 and f[O,l]d L.} (u)du= ﬁ (see |Nelsen |2006)
we can rewrite,
(d+1)! fig.4ja LE’,ILfl,...,Lgl (u)du — 1
Gort oty = A+ —1

Note, the similarity of the above definition to the univariate Gini coefficient. The
latter is two times the area between the inverse Lorenz curve and the diagonal of the unit
square, where the diagonal stands for the inverse Lorenz curve of minimal inequality. The
factor two results from normalization to the unit interval. In our multivariate definition,

we measure the volume enclosed by the actual Lorenz curve and the curve of minimal
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inequality (see numerator of Equation [4.5)) and rescale the result to be between 0 and 1

(see denominator of that equation). Consequently, setting d = 1 yields,

Gp 1= 2/ LiY(wp)duy — 1= Gy
o [0,1]

which is the Gini coefficient in the univariate case (see, e.g., Section [4.2)).

For d = 2 we have 0 < GC7L;17L;1 < 1, where GO7L;17L;1 = 0 implies that C' = W and
GC,L;17L§1 = 1 implies that C' = M. For d > 3 we have 0 < GC7L;17W,L;1 < 1. This is
due to the fact, that W is not a copula for d > 3. Further G, Loyt = 1 implies that
C=M.

Example 4.4.1. Consider the case of independent X1, ..., X, where cov(X;, X;) =0,
fori,je{l,...,d} andi# j. With C =1I and u = (uy,...,uq) it follows from

/[O?Hd LE}Ll_lwwL;l(u)du = {1 — E(Xf)}{l — E(Xg)}. . {1 - E(X;;)}

_ (;)dﬁ[(ucj)

and Definition that the MEGC can be written as

. B L+, (1+Gy) —1
CLy Lyt — (d+1)—1 '

In the special case d = 2, we obtain
1
GLQ = TO (1 +3G1 + 3G + 3G1G2) . (4.6)

Focusing on the two dimensional case, the MEGC is decomposable into the marginal

Gini coefficients and a term resulting from the dependence structure.
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Theorem 4.4.1. Decomposition of two dimensional MEGC

The two dimensional MEGC' can be expressed as

6 3 3 1
GC,L;I,LQ_I = GLQ = 5E(XTX;) + SGl + gGQ — 5

Proof. Note, that cov(X7, X5) = fol fol [C{Lll(ul), Ly (u2)} — Lll(ul)L21(u2)] duydus
(Nelsen), 2006) and remember that the cdf of X} is L; ', for i = 1,2. So [ Ly (u1)duy =
1 — [ Ly(u1)duy, with [ Ly(u)duy = E(X7). It follows

1 1
/ Lglrl 1 (un, uz)durdus = cov(X{, X3) +/ Lll(ul)dul/ Ly M (ug)dus
a2 Ly ; ;

= cov(XT, X3) + {1 — E(X])H{1 - E(X3)}
= cou(X1, X3) +1— E(X?) — B(X3) + E(X))E(XE)

1 1
= BE(X{X3) + 3G+ 5Go

and therefore

6 f[o,lp Lg}L;17L2_1 (u1, uz)duidug — 1
5

6 3 3 1
= SB(XIX3) 4+ 2G4+ Gy — =
FE(X{X5) + 2G1+ 26 — ¢

Gip =

It follows from Theorem that upper and lower bounds for G 2 are given by

3Gi1+3Gy—% <Gip =LEX{X3)+3G1+3Gy -1
< Smin{B(X}), E(X3)} + 3G + 3Gy — 1
— fmin{} - 4614 - §Ga} + $61+ 3G - |
=51 — Imaz{G1,G2}) + 2G1 + 3Gy — 1
=2 — 2maz{G1,Go} + 2G1 + 2Go

Note, that the sum of weights is 1 in the lower and upper bound.
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Table [4.1] shows the univariate Gini coefficients and the MEGC for the examples using
the Gaussian copula from Figure [4.1] and Figure [4.2

Table 4.1.: Univariate Gini coefficients and corresponding MEGC

Copula type (Fig. No.) MEGC
Gaussian p = —0.9 (1a) 0.25
Gaussian p = —0.5 - 0.29

Gaussian p = 0.0 (1b) 0.33

Gaussian p = 0.5 (1c) 0.39

Gaussian p = 0.9 (1d) 0.43

Gumbel p =0.8 (2a) 0.42

Clayton p = 0.8 (2b) 0.41

Gaussian p = 0.0 (2¢) 0.22
(2d)

Clayton p = 0.8 0.30

Values of MEGC for the examples from Figure4.1|and Figure Note that the univariate
Gini coeflicients are 0.33 in all cases, except for the last two where the marginal Gini
coefficient of the first variable equals 0.05. Further notice that the MEGC, unlike a convex
combination, is not necessarily enclosed by the marginal univariate Gini coeflicients.

As expected, the MEGC increases with increasing strength of the dependence between
X1 and Xs. For the example of wealth and income, the influence of the dependence
structure on the MEGC is positive if a rich person tends to belong to the group of
high income individuals and is negative if a rich person is more likely to belong to
the individuals with low income. Note, that also values G12 > max{Gi,G2} and
Gh2 < min{G1, G} are possible to correctly capture the influence of the dependence on
the inequality. This is in contrast to a convex combination of Gy and Gs. Consider for
example the first eight cases in Table where we have G; = Gy = 1/3. If the MEGC
would be bounded by these values to be equal to 1/3 in all cases, the different dependence

structures would not be reflected.
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4.5. Nonparametric Estimation of the Multivariate Lorenz
Curve (MEILC) and the Corresponding Multivariate
Gini Coefficient (MEGC)

We assume that we have observations Xi,...,X, on X = (Xi,...,Xy), where
X; = (Xj1,Xj2,...,Xjq) for j € {1,...,n}. We only consider the case where
n > d, where we have more observations than dimensions. If F; and L; would
be known for i € {1,...,d} we could easily derive observations X7,..., X2
on X* with X7, = Li{F;(Xj;)} for i € {1,...,d} and j € {1,...,n}. However, F;

and L; are unknown in practical applications and have to be estimated using X1,..., X .

We estimate F; for i € {1,...,d} by its empirical counterpart

1 n

j=1
L; is usually estimated by
ﬁ<u:k>:m for k=0,1 nand i € {1 d}
ni - Z?:1in I T yee s d},
where X(1.,; < Xppi)i < -+ < X[pun)i 18 the increasingly ordered sequence of Xj; and
linear interpolation between Ly;(u = %) and Lpi(u = %) for k =1,2,...,n. This is

tantamount to the compact formula

forie{1,...,d} and u; € [0,1].
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It is now possible to estimate the observations X7; by what we suggest to call "pseudo-

observations” of X ]*Z with

X . DX <X, X
K = D Bi(X0)} = S22 o e (1, dyand j € {1,..,n}  (47)
211 X
and obtain the corresponding vector X;n = (X;.‘Ln, X;Zn e X';fd’n) for j € {1,...,n}.
4.5.1. Estimation of the MEILC
It was pointed out that the MEILC is given by
u=(up,...,uq) — C{Ll_l(ul), e ,Lgl(ud)} for u € [0,1]%

and that it is the joint distribution function of the vector X* = (X7,..., X). Therefore,
the MEILC is estimated by the empirical distribution function based on X ;n for j €

{1,...,n}, ie.,

d
Lt N 1
C,Lfl,‘..,Lgl,n(ul""’ud)_ﬁZH {X* <u;}

j=1i=1 "7
4.5.2. Estimation of the Multivariate Gini Coefficient (MEGC)

In order to estimate G, ;-1 ;-1 we have to estimate the integral
1 d

-----

d

y p— -1 :/ Lfl _ _,(u)du
C,.Ly ..., Ly [0,1]¢ C,LTY,..,L 1(u)
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for u = (ui,...,uq), which is usually done by

I, 1 0 = L1 1, 4. du;
CLY sl /[o,lld C.LytLy'n Z/ [0,1]d H { ;mﬁul} b

=1
= — . du
ZlHl/ {X]’Ln_ ‘
j %
n d
S | (B
Jj=1li=1

After normalizing we obtain the estimator

o _ @+ DY I (=X, -1
C,Ly .., L m (d+1)'—1

4.6. Considerations on Transfers

In this section we want to discuss some considerations on transfers and their effect on
the MEILC and MEGC. We are aware that this is a very wide and complex topic, so we
can not cover it in all its aspects. However, we at least want to share first considerations

and encourage further research on this topic.

First, we define the Correlation Increasing Transformation (CIT) introduced by Tsui
(1998) into the inequality literature and further considered by many authors, e.g. |[Epstein
and Tanny| (1980); Atkinson and Bourguignon! (1982); Decancq (2012); |Gravel and Moyes
(2012)) or lately Faure and Gravel (2021)).

Definition 4.6.1. Correlation Increasing Transformation (CIT)
We are considering two possible distributions or allocations A and B of d variables among
a fized number of individuals. Let, e.g., ta denote the d-dimensional vector of variables of

individual t in allocation scenario A, with analogue expressions for other individuals and
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distributions. We say that distribution B is obtained from distribution A by a Correlation
Increasing Transformation (CIT), if for two individuals t and z with d-dimensional

attribute vectors tg, zg € R® we have the reallocation
tp = max{ta,za} and zp == min{ta,za}, (4.9)

while the wvariable vectors of all other individuals stay unchanged, i.e., mp = ma
for all other individuals m ¢ {t,z}. Here, maz/min denote the element-wise maxi-

Note, that within our framework, this corresponds to only swapping X* values between
two individuals while all others X* values remain unchanged. A distribution B is called
a Correlation Increasing Majorization (CIM) of distribution A if it is obtained by a finite
sequence of CIT’s from A.

The CIT naturally affects the order of multivariate Lorenz curves (MEILC) as summa-

rized in the following proposition 4.6.1

Proposition 4.6.1. Any Correlation Increasing Transformation (CIT) or Correlation
Increasing Majorization (CIM) from a distribution A towards a distribution B, implies

the multivariate Lorenz order B = A from Definition [{.3.1]

Keeping in mind, that a CIT only exchanges values of X of two individuals (with the
same effect to X*) and that L.=! is the joint distribution function of X" = (XE,... ,in‘)
for k 