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Abstract: Ammonia (NH3) is considered a promising zero-carbon fuel and was extensively studied
recently. Mixing high-reactivity oxygenated fuels such as dimethyl ether (DME) or dimethoxymethane
(DMM) with ammonia is a realistic approach to overcome the low reactivity of NH3. To study the
combustion characteristics of NH3/DMM and NH3/DME mixtures, we constructed a NH3/DMM
chemical mechanism and tested its accuracy using measured laminar burning velocity (LBV) and
ignition delay time (IDT) of both NH3/DMM and NH3/DME mixtures from the literature. The
kinetic analysis of NH3/DMM flames using this mechanism reveals that the CH3 radicals generated
from the oxidation of DMM substantially affects the oxidation pathway of NH3 at an early stage
of flame propagation. We investigated the formation of nitrogen oxides (NOx) in NH3/DMM and
NH3/DME flames and little difference can be found in the NOx emissions. Using NH3/DMM flames
as an example, the peak NOx emissions are located at an equivalence ratio (ϕ) of 0.9 and a DMM
fraction of 40% in the conditions studied. Kinetic analysis shows that NOx emission is dominated by
NO, which primarily comes from fuel nitrogen of NH3. The addition of DMM at 40% significantly
promotes the reactive radical pool (e.g., H, O, and OH) while the maintaining a high concentration of
NO precursors (e.g., HNO, NO2, and N2O), which results in a high reaction rate of NO formation
reaction and subsequently generates the highest NO emissions.

Keywords: ammonia; dimethyl ether; dimethoxymethane; combustion mechanism; NOx emission

1. Introduction

Amidst the persisting global energy crisis and escalating concerns regarding environ-
mental pollution, ammonia (NH3) received significant attention as a zero-carbon fuel [1,2].
In the 1960s, extensive research was conducted in the United States to explore the feasibility
of NH3 combustion in military equipment such as gas turbines, compression ignition
engines, and spark ignition engines [3,4]. However, these studies indicated that the direct
utilization of NH3 in combustion systems is challenging compared to conventional hydro-
carbon fuels, such as low heating value, slow combustion rate, high ignition energy, and
narrow flammable range. Therefore, it seems inevitable to modify or redesign traditional
combustion systems to utilize pure NH3 reliably to expand the operating range and im-
prove the performance of pure NH3 burners [3,4]. However, development of an existing
combustion system can be costly. Hence, ongoing research is primarily directed towards
preserving the integrity of present combustion equipment while harnessing the potential
of NH3 in conjunction with other highly reactive fuels. The incorporation of blended fuels
serves as a booster to initiate or enhance the stable combustion of NH3. In practical investi-
gations concerning the blending of NH3 with diverse fuels, a comprehensive analysis of the
fuel combustion process is of utmost importance. It becomes imperative to comprehend the
combustion properties via chemical kinetics to effectively enhance combustion stabilities,
fuel efficiency, and curtail the emission of NOx.
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Different hydrocarbon fuels, such as hydrogen (H2) [5,6], alkanes [7,8], and
alcohols [9,10] were tested as combustion enhancer for NH3. For instance, Wang et al. [5]
measured the LBVs of NH3/H2 mixtures (0, 10, and 20% vol. H2) at pressures from 1 to
5 bar, temperature from 360 K, and ϕ from 0.7 to 1.4 in a constant volume chamber and
validated the accuracy of mechanisms developed by Okafor et al. [11], Mei et al. [12], and
Shrestha et al. [13]. Dai et al. [6] proposed a combustion model for NH3/H2 blends by
optimizing the mechanism of Glarborg et al. [14], which shows better performance than the
mechanisms from Klippenstein et al. [15], Mathieu et al. [16], and Shrestha et al. [17] based
on the IDTs measured (0–10% vol. H2) at conditions (ϕ = 0.5, 1.0), pressures (20–75 bar),
and temperatures (1040–1210 K) in a rapid compression machine. Wang et al. [18] coupled
the skeletal n-heptane mechanism of Chang et al. [19] with the detailed NH3/n-heptane
mechanism of Dong et al. [20] to obtain an NH3/n-heptane that can predict the IDTs of a
NH3/n-heptane mixture very well. Wang et al. [9] measured the LBVs of a NH3/methanol
(20–100% vol.) and NH3/ethanol (20–100% vol. ethanol) mixture at 1 atm, temperatures
from 298 to 448 K, and ϕ from 0.7 to 1.8 using the heat flux method and developed a
NH3/ethanol mechanism consisting of 91 species and 444 reactions.

In recent years, artificially synthesized polyoxymethylene dimethyl ethers (CH3O-
(CH2O)n-CH3, PODEn) attracted attention in that it can be used as fuel directly or as a
fuel additive due to its high reactivity and low soot emission [21,22]. As a result, PODEn
has great potential to be used as a promoter for NH3 combustion in internal combustion
engines. DME, as the simplest PODEn, was investigated as a NH3 combustion enhancer.
Experimental results of the LBVs [23,24] and IDTs [25,26] of NH3/DME mixtures indicate
that DME performs well in enhancing the reactivity of NH3. Xiao et al. [24] coupled the DME
mechanism of Zhao et al. [27] with the NH3 mechanism of Han et al. [28] and incorporated C–
N interaction reactions from Shrestha et al. [29], Dai et al. [25], Konnov et al. [30], and others
to develop an NH3/DME mixed fuel mechanism consisting of 102 species and 594 reactions.
Validation based on experimental data and literature confirms that the mechanism proposed
by Xiao et al. [24], compared to the mechanisms of Dai et al. [25] and Issayev et al. [26], is
not only more simplified, but also more accurate in predicting LBV and IDT. Meng et al. [31]
focused on the variation in NOx emissions during NH3/DME combustion. They simulated
the post combustion NOx emissions of NH3/DME using a detailed mechanism consisting of
221 species and 1597 reactions. The results show that the NOx emissions did not decrease,
but increase after DME was blended with NH3. This phenomenon was also observed in the
experiments of Gross et al. [32] on direct injection NH3/DME compression ignition engines.
Meng et al. [31] inferred that the generation of NOx might be influenced by highly reactive
radicals. Recently, Elbaz et al. [33] conducted further research on the blended combustion
of DMM with NH3. They measured the LBVs and Markstein length of NH3/DMM using
spherical freely propagating flames and developed a NH3/DMM combustion mechanism
by coupling the nitromethane mechanism of Shrestha et al. [34] and the DMM mechanism
of Sun et al. [35], whereas the mechanism underestimates the measured LBVs for matures
containing 20–60% DMM at lean conditions.

At present, there is no mechanism currently available that can simultaneously predict
the combustion characteristics of NH3/DME and NH3/DMM. An accurate NH3/DMM
mechanism is vital to develop a combustion mechanism of NH3 with heavier PODEn. In
this study, we developed a combustion mechanism for NH3/DMM based on the work
of Xiao et al. [24] and Li et al. [36]. The accuracy of the mechanism was validated using
experimental data of NH3/DMM [17,33] and NH3/DME mixtures [24,25] from literature.
We performed reaction path analysis, sensitivity analysis, and NOx formation analysis
of NH3/DME and NH3/DMM based on the present mechanism. Compared to previous
studies [24,31,33], we presented a more comprehensive reaction pathway and provided
further explanation for the peculiar phenomenon of NOx emissions observed at different
DMM fractions.
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2. Kinetic Modeling
2.1. Numerical Approach

This study employs the one-dimensional (1D) free flame model and zero-dimensional
(0D) ideal gas reactor model from Cantera [37] for the calculation of LBV and IDT.

The zero-dimensional (0D) ideal gas reactor model makes it so that the mixture
behaves as an ideal gas. It means that the pressure, volume, and temperature of the
mixture are related by the ideal gas law. The following is the governing equation for the
zero-dimensional (0D) ideal gas reactor model:

d(ρV)

dt
= 0 (1)

ρVcv
dT
dt

= −P
dV
dt

+
.
q−∑

.
mkhk (2)

ρVcv
dYk
dt

=
.

ωkV (3)

P = ρRT (4)

where ρ is the density, V is the reactor volume, cv is the specific heat capacity at constant
volume, T is temperature, P is pressure,

.
q represents heat sources or losses,

.
mk is the mass

flow rate of each species, and hk is the enthalpy of species k, Yk is the mole fraction of
species k,

.
ωk is the molar production rate of species k, and R is the gas constant.

The one-dimensional (1D) free flame model is stabilized in an axisymmetric stagnation
flow and computes the solution along the stagnation streamline, using a similarity solution
to reduce the three-dimensional governing equations to a single dimension. The following
is the governing equation for the one-dimensional (1D) free flame model:

∂ρu
∂z

+ 2ρv = 0 (5)

ρu
∂v
∂z

+ ρV2 = −Λ +
∂

∂z

(
µ

∂v
∂z

)
(6)

ρcpu
∂T
∂z

=
∂

∂z

(
λ

∂T
∂z

)
−∑ jk

∂hk
∂z
−∑ hkWk

.
ωk (7)

ρu
dYk
dz

= −∂jk
∂z

+ Wk
.

ωk (8)

where ρ is the density, u is the axial velocity, v is the scaled radial velocity, Λ is the pressure
eigenvalue (independent of z), µ is the dynamic viscosity, cp is the heat capacity at constant
pressure, T is the temperature, λ is the thermal conductivity, Yk is the mass fraction of
species k, jk is the diffusive mass flux of species k, hk is the enthalpy of species k, Wk is the
molecular weight of species k, and

.
ωk is the molar production rate of species k.

To ensure the post flame reaches equilibrium, the computational domain was set as
a uniform spatial grid of 10 cm width. Additional points were automatically added in
regions with steep gradients based on predefined ratios, slopes, and curves [38].

Sensitivity analysis of the LBV for NH3/DME/air and NH3/DMM/air mixtures was
performed using a ‘Brute force’ method:

Si =
ki
Sl
× ∂Sl

∂ki
(9)

where ki represents the rate constant of the i-th reaction (1/s), and Sl is the LBV (cm/s). By
varying ki and calculating the resulting changes in Sl , normalized sensitivity coefficients Si
can be obtained. Each rate constant is increased by a factor of 2 by doubling the preexpo-
nential A factor while keeping those of the other reactions constant. A positive sensitivity
coefficient indicates that the reaction promotes the flame propagation, while a negative
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coefficient indicates that the reaction inhibits the flame propagation. An element flux
analysis was performed to study the reaction path of the fuels under the experimental con-
ditions. Rate of production (ROP) analysis was also performed to assist the interpretation
of the results.

2.2. Mechanism Optimization

The mechanisms developed in this study are mainly drawn from Xiao et al. [24]
and Li et al. [36], which serve as NH3/DME and DMM submechanisms, respectively.
The mechanism of Xiao et al. [31] coupled the DME mechanism of Zhao et al. [27] with
the NH3 mechanism of Han et al. [28] and incorporated C–N interaction reactions from
Shrestha et al. [29], Dai et al. [25], and Konnov et al. [30]. The mechanism of Xiao et al. [24]
performs well in predicting the LBVs [24] and IDTs [23] of NH3/DME mixtures. The
mechanism of Li et al. [36] based on the hieratical structure of ‘reaction classes’ was origi-
nally proposed by Curran et al. [39]. Validation based on experimental data and literature
confirms that the mechanism proposed by Shrestha et al. [29] and Li et al. [36] is not only
more simplified, but also more accurate in predicting LBVs and IDTs of DMM/air mixtures.
We propose a new NH3/DMM mechanism by coupling the NH3/DME submechanism
from Xiao et al. [24] and the DMM submechanism from Li et al. [36] and updating the
reaction rates of some key reactions. The specific updates of the reaction rates are outlined
in Table 1.

Table 1. Updates in the present mechanism. Units are s, mol, cm, and cal in k = ATn exp
(
− Ea

RT

)
.

No. Reaction A n Ea Ref.

1 NH + NO = N2O + H 2.7 × 1015 −0.78 20.0 [40]
2 NH2 + OH = NH + H2O 2.04 × 104 2.52 −616.032 [41]
3 NH3 + OH = NH2 + H2O 3.25 × 1012 0.0 2120.0 [42]
4 NNH + O = NH + NO 5.2 × 1011 0.388 −409.0 [15]
5 NH2 + NO = H2O + N2 9.5 × 1016 −1.44 268.0 [25]
6 NH2 + NO2 = H2NO + NO 2.0 × 1019 −2.369 870.0 [14]
7 HNO + O2 = NO + HO2 2.0 × 1013 0.0 14896.0 [25]
8 H2NO + NO2 = HONO + HNO 6.0 × 1012 0.0 2000.0 [25]
9 N2H3 + HO2 = N2H4 + O2 9.2 × 105 1.94 2126.1 [25]
10 H + O2 + M = HO2 + M 4.65 × 1012 0.44 0.0 [43]
11 H + OH + M = H2O + M 3.5 × 1022 −2.0 0.0 [44]
12 O + H2O = OH + OH 6.7 × 107 1.704 14986.8 [45]
13 HO2 + OH = H2O + O2 1.93 × 1020 −2.49 584 [46]
14 HO2 + O = O2 + OH 1.0 × 1013 0.0 −4452 [47]
15 CH2 + O2 = HCO + OH 1.06 × 1013 0.0 1500.0 [44]
16 HCO + O2 = CO + HO2 13.45 × 1012 0.0 400.0 [44]
17 CO + OH = CO2 + H 8.7 × 104 2.053 −355.7 [48]
18 CH3OCH2OCH3 + H = CH3OCH2OCH2 + H2 5.04 × 106 2.3 6453.155 [49]
19 CH3OCH2OCH3 + H = CH3OCHOCH3 + H2 2.18 × 1010 1.155 6548.757 [49]
20 CH3OCH2OCH3 + M = CH3OCH2O + CH3 + M 2.33 × 1019 −0.66 84139.5 [50]
21 CH3OCH2OCH3 + NH2 = CH3OCH2OCH2 + NH3 1.8 × 100 3.61 4353.0 est DME
22 CH3OCH2OCH3 + NH2 = CH3OCHOCH3 + NH3 3.79 × 103 2.426 4475.0 est DME
23 CH3OCH2OCH3 + NO2 = CH3OCH2OCH2 + HONO 5.8 × 101 3.5 23755.0 est DME
24 CH3OCH2OCH3 + NO2 = CH3OCHOCH3 + HONO 9.93 × 102 3.112 22010.0 est DME
25 CH3OCH2OCH3 + NO2 = CH3OCH2OCH2 + HNO2 6.5 × 102 3.0 23176.0 est DME
26 CH3OCH2OCH3 + NO2 = CH3OCHOCH3 + HNO2 1.11 × 104 2.667 21473.0 est DME

The updated reaction rate constants for R1, R2, R3, and R4 are referenced from the
literature [15,40–42]. By modifying the reaction rate constant of R1, R2, R3, and R4, the
accuracy of the mechanism is improved while adjusting the contribution of different
elementary reaction pathways in the combustion process of ammonia.

NH + NO = N2O + H (R1)

NH2 + OH = NH + H2O (R2)
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NH3 + OH = NH2 + H2O (R3)

NNH + O = NH + NO (R4)

The reaction rate constants for reactions R5 and R6 were adjusted based on the litera-
ture [14,25]. Additionally, reactions R7, R8, and R9 were introduced to further optimize
the reaction pathway of NH3 during the initial stages of combustion. These adjustments
effectively enhanced the accuracy of the mechanism’s predictions for NH3 IDT.

NH2 + NO = H2O + N2 (R5)

NH2 + NO2 = H2NO + NO (R6)

HNO + O2 = NO + HO2 (R7)

H2NO + NO2 = HONO + HNO (R8)

N2H3 + HO2 = N2H4 + O2 (R9)

Reactions R10 and R11 are important pathways for the consumption of H radical and
play a suppressive role in the combustion of NH3/DMM/air and NH3/DME/air mixtures.
In this study, the reaction rate of R10 decreased at low temperatures and increased at high
temperatures based on data from Fernandes et al. [43]. The reaction rate of R11 was slightly
decreased based on data from GRI 3.0 [44].

H + O2 + M = HO2 + M (R10)

H + OH + M = H2O + M (R11)

Under lean conditions with a high fraction of NH3, O radicals tend to react with H2
and H2O, while under rich conditions, O radicals tend to react with H2 and CH3, both of
which play important promoting roles in NH3/DMM/air and NH3/DME/air mixtures. In
this study, the reaction rate of R12 is increased based on data from Sutherland et al. [45].

O + H2O = OH + OH (R12)

Under conditions with a low fraction of NH3, reactions R13 and R14 suppress the
combustion of NH3/DMM/air and NH3/DME/air mixtures by consuming radicals. In this
study, the reaction rate of R13 is increased and that of R14 is decreased based on data from
Burke et al. [46] and Baulch et al. [47], respectively, to adjust the consumption pathway
of HO2.

HO2 + OH = H2O + O2 (R13)

HO2 + O = O2 + OH (R14)

Reactions R15, R16, and R17 are important pathways for CO2 formation. The pro-
moting effect of reaction R15 on the combustion of NH3/DMM/air and NH3/DME/air
mixtures becomes more significant with an increase in the fraction of hydrocarbon fuels
in the mixture, while reaction R16 starts to inhibit combustion as the fraction of hydrocar-
bon fuels decreases. Reaction R17 is an important reaction that consumes CO to produce
CO2, playing a promoting role in the combustion of NH3/DMM/air and NH3/DME/air
mixtures. In this study, the reaction rates of R15 and R16 are updated based on data from
GRI 3.0 [44], and the reaction rate of R17 is decreased based on data from Jshi et al. [48],
improving the accuracy of the CO2 generation pathway in the mechanism.

CH2 + O2 = HCO + OH (R15)
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HCO + O2 = CO + HO2 (R16)

CO + OH = CO2 + H (R17)

Reactions R18, R19, and R20 are important components of the low-temperature
oxidation mechanism of DMM. Reactions R18 and R19 inhibit the combustion of the
NH3/DMM/air mixture by consuming H radicals, while reaction R20 promotes the com-
bustion of the mixture by generating CH3OCH2O and CH3 radicals through the decom-
position of DMM. The reaction rates of R18 and R19 are increased based on simulation
data from Vermeire et al. [49], and reaction R20 is updated based on the molecular collision
effects in the DMM decomposition process proposed by Jacobs et al. [50]. Through these
updates to the aforementioned reactions, the low-temperature oxidation pathway of DMM
in this mechanism is improved.

CH3OCH2OCH3 + H = CH3OCH3OCH2 + H2 (R18)

CH3OCH2OCH3 + H = CH3OCHOCH3 + H2 (R19)

CH3OCH2OCH3 + M = CH3OCH2O + CH3 + M (R20)

Furthermore, reactions R21–R26 are the interactions between DMM and nitrogen
estimated based on the NH3/DME/air mechanism proposed by Xiao et al. [24] in this study.

CH3OCH2OCH3 + NH2 = CH3OCH3OCH2 + NH3 (R21)

CH3OCH2OCH3 + NH2 = CH3OCHOCH3 + NH3 (R22)

CH3OCH2OCH3 + NO2 = CH3OCH3OCH2 + HONO (R23)

CH3OCH2OCH3 + NO2 = CH3OCHOCH3 + HONO (R24)

CH3OCH2OCH3 + NO2 = CH3OCH3OCH2 + HNO2 (R25)

CH3OCH2OCH3 + NO2 = CH3OCHOCH3 + HNO2 (R26)

The complete mechanism is composed of 108 species and 615 reversible reactions.

3. Results and Discussion
3.1. Mechanism Validation

The present mechanism is validated against the measured LBVs of NH3/DMM/air
and NH3/air mixtures from literature as shown in Figure 1. The calculated LBVs agree very
well with the measured LBVs of NH3/DMM/air mixtures at most conditions, only slight
underestimation up to ~2 cm/s is observed for pure DMM/air mixtures. For NH3/air
mixtures, the calculated LBVs lies in the cross-section of the experimental data from
literature. The validation of the present mechanism is also performed against the LBV
of NH3/DME/air mixtures under ambient condition as shown in Figure 2. The present
mechanism predicts the LBVs precisely for NH3/DME mixtures except that it slightly
underestimates the LBVs of pure DME by 3cm/s from ϕ = 0.7 to 1.3. For NH3 with 50%
DME fraction at elevated temperature and pressures, the validation is firstly performed at
Tu = 298 K and Pu ranges from 1 to 4 atm as shown in Figure 3a. The present mechanism
generally predicts the LBVs well at most conditions, albeit the biggest underestimation up
to 5 cm/s is observed at the leanest condition for Pu = 1 atm. The discrepancy mitigates at
elevated pressures. The overall performance is further improved for all three pressures at
elevated temperature Tu = 373 K as shown in Figure 3b.



Energies 2023, 16, 6929 7 of 18

Energies 2023, 16, x FOR PEER REVIEW 7 of 19 
 

 

mixtures, the calculated LBVs lies in the cross-section of the experimental data from liter-

ature. The validation of the present mechanism is also performed against the LBV of 

NH3/DME/air mixtures under ambient condition as shown in Figure 2. The present mech-

anism predicts the LBVs precisely for NH3/DME mixtures except that it slightly underes-

timates the LBVs of pure DME by 3cm/s from 𝜑 = 0.7 to 1.3. For NH3 with 50% DME 

fraction at elevated temperature and pressures, the validation is firstly performed at Tu = 

298 K and Pu ranges from 1 to 4 atm as shown in Figure 3a. The present mechanism gen-

erally predicts the LBVs well at most conditions, albeit the biggest underestimation up to 

5 cm/s is observed at the leanest condition for Pu = 1 atm. The discrepancy mitigates at 

elevated pressures. The overall performance is further improved for all three pressures at 

elevated temperature Tu = 373 K as shown in Figure 3b. 

  

(a) NH3/DMM/air (b) NH3/air 

Figure 1. Effect equivalence ratio on the LBVs of DMM/air, NH3/DMM/air (a), and NH3/air (b) mix-

tures at Tu = 298 K and Pu = 1 bar. The experimental data for the DMM/air mixture are obtained from 

Shrestha et al. [17], the NH3/DMM/air mixture from Elbaz et al. [33], and the NH3/air mixture from 

Lhuillier et al. [51], Mei et al. [12], and Han et al. [52]. The solid line represents the predicted results 

of the present mechanism. 

 

Figure 2. Effect of the equivalence ratio on the LBV of the NH3/DME/air mixture at Tu = 298 K and 

Pu = 1 bar. The experimental data for DME/air and NH3/DME/air mixtures are obtained from Xiao 

et al. [24]. The solid line represents the predicted results of the present mechanism. 

Figure 1. Effect equivalence ratio on the LBVs of DMM/air, NH3/DMM/air (a), and NH3/air (b)
mixtures at Tu = 298 K and Pu = 1 bar. The experimental data for the DMM/air mixture are obtained
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results of the present mechanism.
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Figure 4 illustrates the comparison of calculated IDTs using the present mechanism
and the measured IDTs of the NH3/DME mixture from Issayev et al. [26]. As can be seen,
the present mechanism can accurately predict the measurements at all four conditions.
Figures 5 and 6 illustrate the comparison between the predictions of the present mechanism
and the measured IDTs of pure DME and pure NH3 from Dai et al. [25]. As shown in
the figure, the present mechanism accurately predicts IDTs of pure DME and pure NH3.
In general, the present mechanism can accurately predict the LBVs of NH3/DMM/air
and NH3/DME/air mixtures and the IDTs of the NH3/DME/air mixture as well. To our
knowledge, there are no IDT measurements of NH3/DMM available at present, and further
validation against the IDTs of NH3/DMM will be added in our future study. The present
mechanism is employed to perform a chemical kinetic analysis of NH3/DMM flames in
the next section.
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Figure 4. Effect of temperature on the IDT of the NH3/DME/air mixture at ϕ = 1.0. The work-
ing conditions corresponding to (a–d) are: Pu = 40 bar/XDME = 25%, Pu = 40 bar/XDME = 40%,
Pu = 20 bar/XDME = 25%, Pu = 20 bar/XDME = 40%. The experimental data for the IDT of the
NH3/DME/air mixture are obtained from Issayev et al. [26].
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Dai et al. [25].
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3.2. Kinetic Analysis
3.2.1. Reaction Pathway and Sensitivity Analysis

To investigate the overall oxidation pathways of NH3/DME/air mixtures, we con-
ducted a reaction path analysis by tracing nitrogen (Figure 7a) and carbon (Figure 7b),
respectively, at Tu = 298 K, Pu = 1 bar, ϕ of 0.9, and a DME substitution rate of 40%. Similar
to the reaction path of pure ammonia [13,26], the first step for ammonia is dehydrogenation
to form NH2, followed by the generation of N2 through four key intermediate species:
NH, NHO, NNH, and NO. At a flame temperature of 1000 K, NO can be converted to
NO2, but its influence diminishes as the temperature increases. When the flame temper-
ature reaches 2000 K, N2O can be further converted to N2. When DMM fraction reaches
40%, NH2 reacts with CH3 generated from the thermal decomposition of DMM to pro-
duce a significant amount of CH3NH2. At a flame temperature of 1500 K, the flux of
the NH2 → CH3NH2 reaction pathway will exceed 60% in the N element reaction path.
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This phenomenon was also observed in previous studies on NH3/DME/air [23,24] and
NH3/CH4/air [53] mixtures, indicating that the addition of DMM has a significant impact
on the early oxidation process of NH3. From the reaction pathway diagram of ammo-
nia, it can be observed that at a flame temperature of 1500 K, NO is mainly generated
through three pathways: 1.NH3 → NH2 → NH→ NO, 2.NH3 → NH2 → HNO→ NO,
and 3.NH3 → NH2 → NH→ NHO→ NO. The fluxes of NO generated through these
channels do not exceed 20%. However, as the fuel oxidation process progresses, the DMM
component in the fuel is consumed first, and the temperature increases, leading to the
oxidation of NH3. Additionally, the accumulated CH3NH2 in the early stage will also be
converted to NO. The high temperature will suppress the flux of the NO→ N2 pathway,
resulting in the accumulation of NO.
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Figure 7. The reaction pathways for carbon (a) and nitrogen (b) under the conditions of Tu = 298 K
and Pu = 1 bar, and ϕ = 0.9 and XDME = 40%. The black line represents the reaction pathways at a
flame temperature of 1500 K, while the blue and red lines represent the additional key component
reaction pathways at flame temperatures of 1000 K and 2000 K, respectively.

As shown in Figures 7b and 8, the C–N interaction has a relatively small impact on the
oxidation of DME and DMM. DME first reacts with H, OH, O, and CH3 radicals to undergo
dehydrogenation, forming CH3OCH2. The CH3OCH2 radical primarily undergoes thermal
dissociation to produce CH3 and CH2O. At lower flame temperature (1000 K), a small
amount of CH3 reacts with NH2 under the influence of C–N interaction, leading to the
formation of CH3NH2. As the flame temperature increases to 1500 K, more than 60% of the
CH3 radicals undergo self-recombination and further oxidation to form C2 species (e.g.,
C2H6 and C2H5) or reacts with H, HO2, and CH2O radicals to produce CH4. Meanwhile,
CH2O is further oxidized to CO through the pathway CH2O→ HCO→ CO. When the
flame temperature reaches 2000 K, CH4 and C2 species are involved in oxidation reactions,
and CO is gradually completely oxidized to CO2 by OH radicals.
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The sensitivity analysis of the LBV for pure NH3, NH3/DME, and NH3/DMM mix-
tures are performed at Tu = 298 K, Pu = 1 bar, and ϕ of 0.9 as shown Figure 9. Consistent
with the findings of Xiao et al. [24], the reactions involving H radicals, namely H + O2 = O
+ OH and H + O2 (+M) = HO2 (+M), have the most significant promoting and inhibiting
effects on the LBV of pure NH3. Additionally, the reactions involving NH2 radicals, NH2
+ NO = NNH + OH and NH2 + NO = H2O + N2, correspond to two reaction pathways
(NH2 → NNH→ N2 and NH2 → N2 ) for the oxidation of NH2 as shown in Figure 7.
Furthermore, the reactions NH3 + O = NH2 + OH and HO2 + NH2 = NH3 + O2 are also
important in the NH3 → NH2 reaction pathway. Overall, the concentration variations
of highly reactive radicals such as H and key intermediate species such as NH2 play a
crucial role in the combustion process of pure ammonia. Figure 9b represents the sensitivity
analysis of the LBVs for NH3/DME/air and NH3/DMM/air mixtures with 40% DMM or
DME fraction at Tu = 298 K, Pu = 1 bar, and ϕ of 0.9. For both flames, the chain branching
reaction H + O2 = O + OH always exhibits the highest sensitivity. Other highly sensitive
reactions, such as CO + OH = CO2 + H and HCO + M = CO + H + M, are crucial for
the reaction pathway HCO→ CO→ CO2 (as shown in Figures 7 and 8) and achieving
complete oxidation of carbon to CO2. The reaction H + O2 (+M) = HO2 (+M) plays the most
significant inhibitory role in the combustion of both flames, followed by the key reactions
of NH3 oxidation to NH2 radicals: HO2 + NH2 = NH3 + O2 and NH3 + OH = H2O + NH2.
Furthermore, CH3, as a key radical in the oxidation of DME and DMM, is involved in many
important reactions that affect the LBV. For example, the reaction CH3 + HO2 = CH3O +
OH is crucial for driving the oxidation of CH3 radicals. The reaction CH3 + H (+M) = CH4
(+M) is the main reaction causing the reduction in CH3 radicals to CH4 at lower flame
temperatures and inhibiting the combustion process.
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mixtures at Tu = 298 K, Pu = 1 bar, ϕ = 0.9, and XDME = XDMM = 40%.

Overall, the main reactions controlling the LBVs of NH3/DME/air and NH3/DMM/air
mixtures are almost identical, the LBVs are primarily dominated by the reactions of small
radicals, and no C–N interaction reactions or fuel dissociations were found among these
reactions. This suggests that the variations in LBVs for both mixtures are primarily influ-
enced by changes in the shared OH, H, and O radical pool during the oxidation of NH3
and DME, rather than by mutual reactions between C and N elements. This finding is
consistent with the research results of Xiao et al. [24] and Elbaz et al. [33].

3.2.2. NOx Emission Analysis

The effect of DMM and DME addition on NOx emissions and temperature as a function
of ϕ is shown in Figure 10. For NH3/DME/air mixtures with different DME fraction,
a similar trend can be observed that the NOx emission initially increases from leanest
condition to ϕ = 0.9 and then decrease after the peak. The contribution of thermal NOx
from pure DME combustion is negligible compared to the fuel NOx coming from NH3
as shown in Figure 10a. This suggests that the NOx emissions generated during laminar
burning of NH3/DME/air mixtures are influenced to some extent by temperature, but the
relationship with temperature is not directly correlated. Notably, under different DME
fractions, the temperature increases with higher DME fractions, while NOx emissions
exhibit an initial increase followed by a decrease, peaking within the range of 40% to 50%.
As shown in Figure 10b, the trend of NOx emissions for NH3/DMM/air mixtures is similar
to that of NH3/DME/air mixtures, but the peak NOx emissions occur at ϕ of 0.9 within the
range of the 30% to 40% DMM fraction.

Kinetic analysis reveals that the main component of NOx emissions in NH3/DME/air
and NH3/DMM/air mixtures is NO, while the emissions of other nitrogen oxides are
approximately two orders of magnitude lower than NO. This study conducted a rate of
production analysis on NO at Tu = 298 K and Pu = 1 bar, with ϕ of 0.9 and DME (Figure 11a)
and DMM (Figure 11b) fractions of 40%. As shown in Figure 11, the generation and
consumption of NO in NH3/DME and NH3/DMM mixtures are primarily influenced by
six reactions. The reactions involving H + NO2 = NO + OH, H + HNO = H2 + NO, HNO +
OH = H2O + NO, and H + NO = NH + O contribute to the production of NO, while the
reactions HO2 + NO = NO2 + OH and NH + NO = H + N2O participate in NO consumption.
It is noteworthy that four reactions involve H radicals, and three reactions involve OH
radicals, indicating the significant impact of highly reactive radicals such as H and OH on
NOx emissions.
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Figure 11. During the combustion of NH3/DME/air (a) and NH3/DMM/air (b) mixtures, the six
reactions that have the greatest impact on the NO production rates under the conditions of Tu = 298 K,
Pu = 1 bar, ϕ = 0.9, and XDME = XDMM = 40%.

To investigate the impact of highly reactive free radicals such as H and OH on NOx
emissions, this study focuses on the analysis of the ROP and concentration changes of
the H radical in NH3/DMM/air mixtures as an example. As shown in Figure 12a, under
different DMM fractions, all NO reactions involving the H radical exhibit a promoting
effect on the NO formation. The ROP of these reactions demonstrates a similar trend to
Figure 11, where the NO emissions are higher at XDMM = 40% compared to XDMM = 20% and
XDMM = 80%. Further analysis of the concentration changes of the H radical and related NO
precursors (e.g., NO2, HNO, and N2O) at the same flame length is presented in Figure 12b.
It is evident that both the H radical and NO precursors show a monotonic correlation with
the DMM fraction, meaning that the concentration of the H radical increases overall while
the concentration of NO precursors decreases with an increase in the DMM fraction. This is
because the combustion process of DMM generates a significantly higher concentration of
the H radical compared to NH3, while the formation of NO precursors relies mainly on
the oxidation of NH3. In the NH3/DMM/air combustion process, a lower DMM fraction
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leads to a decrease in NO emissions due to the lack of highly reactive free radicals such
as the H radical, while a higher DMM fraction results in a decrease in NO emissions
due to the deficiency of NO precursors. Only within an appropriate range of the DMM
fraction can the generation of an appropriate concentration of highly reactive free radicals
such as the H radical and the presence of NO precursors lead to the peak generation
of NO during the combustion process. Figure 13 compares the concentration changes
of the H radical and NO precursors in NH3/DME/air and NH3/DMM/air mixtures at
Tu = 298 K, Pu = 1 bar and ϕ = 0.9. This demonstrates that under the same conditions, the
addition of DMM produces a higher concentration of the H radical compared to DME, while
the concentration of NO precursors is lower than that of DME. This explains why the peak
NOx emissions in NH3/DMM/air combustion with a blending ratio of hydrocarbon fuel
are 10% lower than those of NH3/DME/air. In conclusion, the fraction of DME or DMM
in NH3 combustion does not show the monotonical effect of NOx emissions. One of the
crucial factors influencing the phenomenon is the ‘trade-off’ relationship between highly
reactive radicals (e.g., H, OH, and O) and NO precursors caused by DME or DMM addition.
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4. Summary and Conclusions

In this study, we proposed a NH3/DMM mechanism that can accurately predict
the LBVs and IDTs of NH3/DMM and NH3/DME mixtures, which can be used as the
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core mechanism for developing a combustion mechanism of NH3 with heavier PODEn.
Furthermore, we conducted kinetic analysis of NH3/DMM and NH3/DME flames based
on the present mechanism. Some of the key findings are as follows.

1. Updates of some key reactions using the latest dataset, e.g., NH, NNH, and H-relevant
reactions and the interactions between DMM and NH2/NOx are crucial to increase
the accuracy of the present mechanism.

2. Reaction path analysis revealed that early C–N interaction reactions play an important
role in the oxidation pathway of NH3. The dehydrogenation of NH3 leads to the
formation of NH2, which then combines with a significant amount of CH3 produced
by the oxidation of DMM through collisions with other radicals, forming CH3NH2.

3. The analysis of NOx emission shows that fuel NOx coming from NH3 dominates the
NOx emissions and NO turns out to be the main component of NOx emissions.

4. The calculated NOx emissions initially increase and then decrease with higher DME
or DMM fraction, reaching a peak around a fraction of 40%. This phenomenon can be
attributed to the ‘trade-off’ relationship between the high-activity radicals (e.g., H,
OH, and O) and NO precursors promoted by the addition of DME or DMM.

5. The difference in NOx mole fraction between NH3/DMM and NH3/DME flames
does not exceed 830 ppm according to the calculations.
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Nomenclature

LBV laminar burning velocity
IDT ignition delay time
ROP rate of production
NH3 ammonia
NOx nitrogen oxides
DME dimethyl ether
DMM dimethoxymethane
PODEn polyoxymethylene dimethyl ethers
C2 compounds containing two carbon atoms
C–N carbon and nitrogen
Tu, T temperature
Pu, P pressure
V reactor volume
cv heat capacity at constant volume
cp heat capacity at constant pressure
ρ density
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https://www.mdpi.com/article/10.3390/en16196929/s1


Energies 2023, 16, 6929 16 of 18

R gas constant
XDME DME fraction
XDMM DMM fraction
.

min mass flow rates of reactants entering the reactor.
.

mout mass flow rates of products leaving the reactor.
.
q heat sources or losses
u axial velocity
Λ pressure eigenvalue
µ dynamic viscosity
λ thermal conductivity
Wk molecular weight of species k
Yk mole fraction of species k
.

mk mass flow rates of each species
hk enthalpy of species k
.
ωk molar production rate of species k
jk diffusive mass flux of species k
ϕ equivalence ratio
ki the rate constant of the i-th reaction
Sl laminar burning velocity
Si normalized sensitivity coefficients
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