KIT | KIT-Bibliothek | Impressum | Datenschutz

Detecting semi-arid forest decline using time series of Landsat data

Shafeian, Elham ORCID iD icon 1; Fassnacht, Fabian Ewald ORCID iD icon 1; Latifi, Hooman
1 Institut für Geographie und Geoökologie (IFGG), Karlsruher Institut für Technologie (KIT)

Abstract:

Detecting forest decline is crucial for effective forest management in arid and semi-arid regions. Remote sensing using satellite image time series is useful for identifying reduced photosynthetic activity caused by defoliation. However, current studies face limitations in detecting forest decline in sparse semi-arid forests. In this study, three Landsat time-series- based approaches were used to distinguish non-declining and declining forest patches in the Zagros forests. The random forest was the most accurate approach, followed by anomaly detection and the Sen’s slope approach, with an overall accuracy of 0.75 (kappa = 0.50), 0.65 (kappa = 0.30), and 0.64 (kappa = 0.30), respectively. The classification results were unaffected by the Landsat acquisition times, indicating that rather, environmental variables may have contributed to the separation of declining and non-declining areas and not the remotely sensed spectral signal of the trees. We conclude that identifying declining forest patches in semi-arid regions using Landsat data is challenging. This difficulty arises from weak vegetation signals caused by limited canopy cover before a bright soil background, which makes it challenging to detect modest degradation signals. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000162836
Veröffentlicht am 09.11.2023
Originalveröffentlichung
DOI: 10.1080/22797254.2023.2260549
Scopus
Zitationen: 1
Dimensions
Zitationen: 2
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Geographie und Geoökologie (IFGG)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 31.12.2023
Sprache Englisch
Identifikator ISSN: 2279-7254, 1129-8596, 1129-8766, 2039-7860, 2039-7879
KITopen-ID: 1000162836
Erschienen in European Journal of Remote Sensing
Verlag Associazione Italiana di Telerilevamento (AIT)
Band 56
Heft 1
Seiten Art.-Nr. 2260549
Bemerkung zur Veröffentlichung Gefördert durch den KIT-Publikationsfonds
Vorab online veröffentlicht am 25.09.2023
Nachgewiesen in Web of Science
Scopus
Dimensions
Globale Ziele für nachhaltige Entwicklung Ziel 12 – Nachhaltiger Konsum und ProduktionZiel 15 – Leben an Land
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page