KIT | KIT-Bibliothek | Impressum | Datenschutz

Inverse design of all-dielectric metasurfaces with accidental bound states in the continuum

Gladyshev, Sergei; Karamanos, Theodosios D.; Kuhn, Lina 1,2; Beutel, Dominik ORCID iD icon 1; Weiss, Thomas; Rockstuhl, Carsten 1,3; Bogdanov, Andrey
1 Institut für Theoretische Festkörperphysik (TFP), Karlsruher Institut für Technologie (KIT)
2 Scientific Computing Center (SCC), Karlsruher Institut für Technologie (KIT)
3 Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT)

Abstract:

Metasurfaces with bound states in the continuum (BICs) have proven to be a powerful platform for drastically enhancing light–matter interactions, improving biosensing, and precisely manipulating near- and far-fields. However, engineering metasurfaces to provide an on-demand spectral and angular position for a BIC remains a prime challenge. A conventional solution involves a fine adjustment of geometrical parameters, requiring multiple time-consuming calculations. In this work, to circumvent such tedious processes, we develop a physics-inspired, inverse design method on all-dielectric metasurfaces for an on-demand spectral and angular position of a BIC. Our suggested method predicts the core–shell particles that constitute the unit cell of the metasurface, while considering practical limitations on geometry and available materials. Our method is based on a smart combination of a semi-analytical solution, for predicting the required dipolar Mie coefficients of the meta-atom, and a machine learning algorithm, for finding a practical design of the meta-atom that provides these Mie coefficients. Although our approach is exemplified in designing a metasurface sustaining a BIC, it can, also, be applied to many more objective functions. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000162845
Veröffentlicht am 06.10.2023
Originalveröffentlichung
DOI: 10.1515/nanoph-2023-0373
Scopus
Zitationen: 4
Dimensions
Zitationen: 4
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Nanotechnologie (INT)
Institut für Theoretische Festkörperphysik (TFP)
Scientific Computing Center (SCC)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 28.09.2023
Sprache Englisch
Identifikator ISSN: 2192-8614, 2192-8606
KITopen-ID: 1000162845
HGF-Programm 43.32.02 (POF IV, LK 01) Designed Optical Materials
Erschienen in Nanophotonics
Verlag De Gruyter
Band 12
Heft 19
Seiten 3767–3779
Vorab online veröffentlicht am 22.09.2023
Nachgewiesen in Dimensions
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page