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Abstract

Ultra-High Energy Cosmic Rays (UHECRs) are the most energetic particles known to

mankind. Since the discovery of Cosmic Rays (CRs) a century ago, the questions about

their origin and acceleration still remain a mystery. A crucial step towards unraveling

the secrets they hold, is to identify their mass, and thus, their charge. A selection of the

lightest particles will allow to correlate their arrival directions with candidate sources, as

they are minimally de�ected by magnetic �elds. Furthermore, current hadronic interaction

models fail to reproduce the amount of observed muons in Extensive Air Showers (EASs).

As the mass of the primary particle is directly linked to the muon content of a shower, we

are able to re�ne our current theory of strong interactions at highest energies.

This work focuses on estimating and relating the muon content of simulated EASs, to the

mass of the primary particle utilizing Neural Networks (NNs). To achieve this objective, a

recently introduced observable in the Pierre Auger Observatory (Auger), the muon signal

fraction in the Water-Cherenkov detector (WCD), is studied using Monte Carlo (MC)

simulation data. This work comprises a station-level and an event-level analyses.

On station level, NNs are employed to predict the muon signal fraction by utilizing the

information given through the time-dependent signal-traces of the Surface Detector (SD),

clearly surpassing the selected analytical methods in performance. Additionally, a direct

prediction of the mass on a single-station level with NNs leads to astonishing results in

discrimination capability between proton and iron-induced showers.

On an event level, the NN predictions are combined with analytical methods to synthesize

a mass-sensitive estimator, leading to encouraging results for future mass-composition

studies.
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Zusammenfassung

Die ultrahochenergetische kosmische Strahlung besteht aus den energiereichste Teilchen

die der Menschheit bekannt sind. Seit der Entdeckung von kosmischer Strahlung vor

einem Jahrhundert sind die Fragen nach ihrem Ursprung und ihrer Beschleunigung noch

immer ein Rätsel. Ein entscheidender Schritt zur Entschlüsselung der Geheimnisse die

sie bergen, ist die Bestimmung ihrer Masse und damit ihrer Ladung. Eine Auswahl der

leichtesten Teilchen wird es ermöglichen, ihre Ankunftsrichtung mit möglichen Quellen

zu korrelieren, da sie nur minimal von Magnetfeldern abgelenkt werden. Darüber hinaus

können die derzeitigen Modelle der hadronischen Wechselwirkung die Menge der beob-

achteten Myonen in ausgedehnten Luftschauern nicht reproduzieren. Da die Masse des

Primärteilchens direkt mit dem Myonengehalt eines Schauer verbunden ist, können wir

unsere derzeitige Theorie der starken Wechselwirkung bei höchsten Energien testen.

Diese Arbeit konzentriert sich auf die Bestimmung des Myonengehalts von simulierten ex-

tensiven Luftschauern und setzt ihn in Beziehung zur Masse des Primärteilchens mit Hilfe

von Neuronalen Netzen (NNs). Um dieses Ziel zu erreichen, wird ein kürzlich eingeführte

Beobachtungsgröße des Pierre-Auger-Observatoriums (Auger), der Myon-Signalanteil im

Water-Cherenkov-Detektor (WCD), mit Hilfe von Monte-Carlo (MC)-Simulationsdaten

untersucht. Diese Arbeit umfasst eine Analyse auf Stationsebene und eine Analyse auf

Schauerebene.

Auf Stationsebene werden NNs zur Vorhersage des Myonensignalanteils eingesetzt, indem

die Informationen aus den zeitabhängigen Signalspuren des Ober�ächendetektors (SD)

genutzt werden. Die Leistung übertri�t die der ausgewählten analytischen Methoden bei

weitem. Darüber hinaus führt eine direkte Vorhersage der Masse auf Einzelstationsniveau

mit NNs zu erstaunlichen Ergebnissen bei der Unterscheidung zwischen Protonen- und

Eisen-induzierten Schauern.

Auf Schauerebene werden die NN-Vorhersagen mit analytischen Methoden kombiniert,

um einen massensensitiven Schätzer zu synthetisieren, der zu ermutigenden Ergebnissen

für künftige Untersuchungen der Massenzusammensetzung führt.
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1. Introduction

CRs have become one of the most fascinating �elds of fundamental physics to study in the

21
st

century due to their potential in advancing to new scienti�c frontiers. These astronom-

ical messengers unveil astonishing insights into the fundamental workings of the cosmos,

by bridging the gap between the smallest (particle physics) and the largest (astrophysics)

scales. UHECRs are the most energetic particles known to mankind, surpassing the energy

scale of the Large Hadron Collider (LHC) by two orders of magnitude. In studying their

origin within and beyond our Galaxy, we are able to gain insights into the most violent

and fundamental forces in existence.

Since the discovery of CRs over a century ago, their precise origin and acceleration mecha-

nism still remain elusive. To unlock the secrets they hold, it is essential to deduce the mass,

and thus, the charge of the CR particles. The identi�cation of sources will be strengthened

by composition-enhanced arrival-direction studies. The arrival directions of light particles

pin-point back to their origin, being minimally de�ected in the omnipresent galactic and

extragalactic magnetic �elds. Furthermore, measurements of EASs show, that our current

hadronic interaction models fail to reproduce the observed amount of muons in EASs. As

the mass of the primary particle is directly linked to the muon content of a shower, we are

able to re�ne our current theory of strong interactions, quantum chromodynamics (QCD),

by measuring the muon content at the highest energies.

The extreme energies and low �ux of CRs only allow for indirect detection techniques.

At the time of writing, the Auger is the largest CR observatory in the world, covering

an instrumentalized detection area of 3000 km
2

in the argentinian Pampa Amarilla. The

observatory uses a hybrid detection technique, where �uorescence telescopes measure the

longitudinal shower pro�le and surface detectors sample the lateral shower footprint of

EASs, which are induced by CR particles impinging on Earth’s atmosphere.

In recent years, the �eld of deep learning and NNs has gained a lot of momentum. The ever

increasing amount of data, computational power, and the success of NNs in various �elds

of research, has led to a data-driven approach which are now mature enough to be applied

on current problems in physics. The extraction of features from the highly-dimensional

spatial and temporal data of an EAS is non-trivial. However, NNs as universal function

approximators are perfect candidates to overcome this burden.

The main objective of this work is to link the muon content of EASs, measured by the SD,

to the mass of the primary particle. Therefore, a recently introduced variable in Auger is

studied on MC simulation data: the muon signal fraction in the WCD. This work can be

divided into a station-level and an event-level analysis.

1



1. Introduction

NNs are employed to predict the muon fraction on a single-station level, clearly outper-

forming classical analytical methods. Even without the need for the second detector of

the AugerPrime upgrade, which is crucial for some analytical reconstruction techniques,

the NNs provide a promising estimation of the muon signal fraction. Moreover, the NN is

able to deduce mass-sensitive features on a single-station level by directly predicting the

mass of the primary particle, serving a good discrimination capability between proton and

iron-induced showers.

Combining the muon fraction predictions of the NN into an analytical event-level estimator,

leads to encouraging results in two developed methods. In the �rst, a lateral muon fraction

function is �tted to the predictions of the NN to derive a muon fraction estimator on the

event level. After zenith angle and energy corrections, a suitable discrimination capability

between proton and iron is achieved. In the second method, a global parametrization of

the expected muon fraction is utilized to construct lateral reference pro�les for proton

and iron-induced showers on an event-by-event basis. By comparing the NN predictions

with the reference pro�les, the masses of primary particles can be estimated.

This thesis comprises a condensed summary of CR-physics in Chapter 2, which is followed

by the description of the Pierre Auger Observatory in Chapter 3. The fundamentals of

Machine Learning (ML) and NNs are introduced in Chapter 4. In Chapter 5, we use air-

shower simulations to predict the muon fraction with NNs and validate their superiority

over current methods. The predictions of the NNs are combined in analytical event-level

estimators in Chapter 6. Finally, the results are summarized and an outlook is given in

Chapter 7.

2



2. Cosmic Ray Physics

CRs are relativistic particles that have an extraterrestrial origin and are omnipresent in the

Universe. They reach energies beyond 10
20

eV, by far exceeding the energies of human-

built accelerators, such as the LHC with an �xed target energy equivalent to “only” 10
17

eV.

Thus, they are the most energetic particles known to mankind. Their energy spectrum is

well described by a steep power law, which rapidly decreases at the highest energies until

it is completely suppressed. At time of writing, it is still unresolved whether the reason for

this suppression lies in propagation e�ects through the galactic and intra-galactic medium

or whether the sources reach their maximum achievable energy. In the 21
st

century, CRs

have become one of the most fascinating subjects of fundamental physics to study due

to their potential to advance to new scienti�c frontiers by linking the smallest (particle

physics) with the largest (astrophysics) scales known to mankind.

In this chapter, the discovery and the most important properties of CRs are discussed. Pos-

sible production mechanisms, propagation e�ects, and detection techniques are introduced

and put into context.

2.1. Historic Overview

Alongside the discovery of natural spontaneous radioactivity by Antoine Henri Becquerel

in 1896, the steady discharging of conductors in electrically isolated containers [1] could �-

nally be unraveled. The discharging of electroscopes in dry air [2, 3] had been subsequently

attributed to ionized gas atoms by radioactivity of the environment and the Earth’s crust.

However, the origin of the radiation remained hidden. The scienti�c consensus around

1909 favored the Earth itself as the primary source containing radioactive elements [4].

In the early 20
th

century this theory was tested by experiments in various altitudes and

environments with Wulf’s newly developed electrometer. By measuring the ionization rate

above ground level, including the Ei�el Tower [5], and altitudes up to 4500 m [6, 7] using

balloon �ights, no signi�cant decrease in ionization rate was found. Domenico Pacini took

measurements with the Wulf electrometer placed underwater and found a decrease of the

ionization rate. He concluded that there exists a sizable amount of radiation independent

of the radioactive soil [8].

The next logical step was to conduct measurements at higher altitudes within the atmo-

sphere. It was Victor Hess in 1912 who came up with the correct experiment setup to

verify the hypothesis of an extraterrestrial source of radiation. He carried out a successful

series of balloon �ights throughout day and night, equipped with three hermetically sealed

electroscopes. At an altitude of 5350 m, the ionization rate increased up to twice the

amount of that at ground level. Hess concluded that those �ndings can be well described

by an omnipresent, highly penetrating radiation entering the atmosphere from out of

3



2. Cosmic Ray Physics

space, uncorrelated with the Sun [9]. For the discovery of the cosmic radiation Victor Hess

was awarded with the Nobel Prize (NP) in 1936.

The development of new detection techniques in the following years paved the way for

all subsequent discoveries in the �eld of astroparticle physics. They enabled studies of

fundamental properties of cosmic rays, which provided the evidence for and against dif-

ferent hypotheses about the CRs particle type. In the 1920s, the scienti�c community

believed that the radiation consisted of high energetic photons which were produced in

atom-annihilations in the interstellar space. From this hypothesis, led by Milikan, the name

cosmic rays was born. Even though cloud chamber (1927) and stereoscopic photograph

(1929) experiments from Skobelzyn implied an ionic origin, it was not clear whether the

CRs itself or their secondary products are charged particles. The answer was provided by

the east-west e�ect, predicted by Rossi in 1934 [10]. Following his hypothesis the East-West

asymmetry in intensity originates from predominantly positively charged particles with

energies of several GeV. Later, the primary particles could be further decomposed in pro-

tons, alpha particles, and heavier nuclei in balloon �ights. Extending previous coincidence

measurements of CRs by shielding the Geiger-Müller counters [11] with lead and iron

absorbers of di�erent thicknesses up to 1 m, Rossi found an increase of coincident signals.

He thus draw the conclusion that CRs produce secondary particles which can at least be

grouped into a soft and a hard penetrating component [12]. The latter being identi�ed

as the muon µ, after its discovery through elementary particle physics in 1936. Due to

its high mass (<µ ≈ 106 MeV/22
), resulting in low energy losses through ionization or

radiation, and its long lifetime (2.2×10
−6

s) the excessive penetration power of CRs was

explained.

In the year 1939 Pierre Auger provided the �rst experimental proof of EAS (Sec. 2.5) and

shower-cascade theory by increasing the distance between the coincidental measurement

apertures up to 300 m. His measurements of the di�erential CR spectrum do agree with a

power law d# /d� ∝ �−2
. As a consequence of his initial estimate of the primary energy

to exceed 10
15

eV, he draw the correct conclusion that probably not a single process, but

rather enormous and vast electric �elds are responsible for the acceleration of CRs [13].

2.2. Acceleration and Sources

Even after 100 years of research, there are still open questions about the exact origin

of CRs, like “What are the acceleration mechanisms for CRs?” and “Which sources are

capable of providing these extreme energies?”. In general, it is assumed that CRs at the

highest energies are accelerated in the most energetic processes of the Universe. Especially,

regions with large electromagnetic-�eld strengths or spatial extents have been identi�ed to

provide feasible answers. Among the most prominent sources like Active Galactic Nuclei

(AGN), Starburst galaxies, pulsars (highly magnetized spinning neutron stars), Supernovae

explosions and accreting black holes, there are probably many more dynamic processes

and phenomena which are still not understood in detail.

4



2.2. Acceleration and Sources

2.2.1. Hillas Criterion

In the search for possible sources of CRs, the Hillas criterion [14, 15] is indispensable

and serves as a starting point. By relating the spatial extend ! with the �ux density �

of the magnetic �eld in the source region, the particles maximum reachable energy �max

of particles can be examined. The maximum energy is inherently limited by the Larmor

radius 'L =< E⊥/(|@ | �) exceeding the spatial extension of the magnetic �eld provided

by the source. Thus, particles with charge @ = /4 exceeding the maximum energy �max

will unavoidably escape the acceleration side, leading to a spatial con�nement condition,

which is further in�uenced by the age-dependent velocity of the shock front Vs

�max ∼ Vs / 4 � !. (2.1)

The categorization of various known sources in dependency of their magnetic-�eld strength

and spatial size in a diagram has practical implications. Fig. 2.1 shows the directly visible

indication of an energy depended source contribution to the CR energy spectrum (Sec. 2.4).

Hence, the Hillas criterion already rules out a vast majority of sources for UHECRs. The

remaining possibilities are either very compact objects with enormous magnetic �elds

like magnetars, located in the upper left in Fig. 2.1, or large scale structures with tiny

magnetic-�eld strengths like whole galaxy clusters, located in the lower right. Although

the Hillas criterion provides the necessary condition for the energy of CR sources, it is

not su�cient to explain the detected rate of CRs because it neglects energy losses in the

source environment and during propagation.

2.2.2. Fermi Acceleration

One of the predominant powerhouses for CR production is given by the Fermi accel-

eration [17]. The theory describes the gradual transfer of kinetic energy from moving

magnetized plasma to individual charged particles from the Interstellar Medium (ISM).

After [18] the magnetic �elds are co-moving with the plasma and thus serving as magnetic

mirrors for charged particles. A particle entering the plasma will be eventually di�usely

and collision-free re�ected by the magnetic �eld. The particle energy �= after = encounters

is in general modeled as a successive fractional gain U with respect to the injection energy

�0

�= = �0(1 + U)= . (2.2)

Di�usive Shock Acceleration
If the di�usion length inside the plasma is signi�cantly smaller than the spatial expanse

of the plasma, the boundary can be modeled as a plane [15] which resembles an elastic

re�ection against a wall. The most prominent candidate satisfying this condition is the

Supernova Remnant (SNR) with its corresponding shock wave. The net energy gain

Δ� = U�0 of the impinging particle with injection energy �0 after one encounter is

proportional to the velocity of the plasma Vs [15]

Δ�

�0

= U ∝ 4

3

Vs. (2.3)

5



2. Cosmic Ray Physics

Figure 2.1.: The Hillas diagram locates possible CR sources in dependency of their co-

moving size and magnetic-�eld strength. The comoving size is a distance measure that is

independent from the expansion of the Universe. The regions beyond the diagonals indicate

the possible acceleration of a proton (red) or iron (blue) nuclei up to �max = 10
20

eV. The

e�ect of di�erent shock velocities V is depicted with the solid and dashed lines. Adapted

from [16].

6



2.2. Acceleration and Sources

With the relative energy gain being linear in the velocity, it is generally referred to as

�rst-order Fermi acceleration. Due to typical shock front velocities Vs ≤ 0.1, multiple

acceleration cycles are required to explain the observed non-thermal CR energy spectrum.

Thus, an additional back-scattering mechanism outside the plasma is necessary, which

bends the trajectory back on the shock front for reoccurring cycles. The electromagnetic

�elds present in the ISM yield this focusing e�ect.

Second-order Fermi Acceleration
Another energy gain arises if the scattering angle is not constrained as it is the case in

moving turbulent plasma clouds. The di�erent underlying geometry of the scattering

process leads to a less-e�cient energy gain per encounter, being of second order in velocity

and is thus usually referred to as the second-order Fermi acceleration [15],

Δ�

�0

= U ∝ 4

3

V2

s
. (2.4)

Predicted Energy Spectrum
In every cycle there exists a statistical probability ? inherent to di�usion processes, to

escape from the acceleration. Thus, after = cycles the respective remaining number of

particles # is given by

# (=) = #0 (1 − ?)= . (2.5)

Since = cycles are required to reach an energy of � = �0(1 + U)= , the remaining number of

particles can be rewritten in terms of their energy as

# (�) Eq. (2.2)

= #0 (1 − ?)
ln(�/�0)
ln(1+U) = #0

(
�

�0

) ln(1−?)
ln(1+U)

. (2.6)

By deriving the number of particles per energy interval, a natural di�erential power law

spectrum or �ux Φ(�) arises [19] as

Φ(�) = d# (�)
d�

∼ �
ln(1−?)
ln(1+U) −1 B �−(W+1) . (2.7)

The spectral index W = − ln(1−?)
ln(1+U) > 0 describes the steepness of the energy spectrum and

depends on the age of the SNR (through U (VS)) and the injected particle (through ?). The

Fermi acceleration derives in a simple manner that the expected energy spectrum of CRs

should follow a power law which is characterized by the spectral index W . Results from

several studies [16, 20, 21] indicate that the SNRs are the main source of galactic CRs with

energies up to a few PeV. However, the maximum reachable energy is limited by the age

of the SNR and can thus not account for the contribution up to UHECR.

7



2. Cosmic Ray Physics

2.3. Propagation of Cosmic Rays

After various potential CR sources have been introduced in the previous sections, their

identi�cation as such is not easily accomplished. If a CR particle is detected on Earth and

its arrival direction is successfully reconstructed, backtracking its trajectory to a possible

source is only straightforward for neutral particles like neutrinos ν, photons γ or neutrons

n. They travel along straight geodesics and possible interactions either lead to the particle

not arriving at the detector in the �rst place (pair production for photons) or are negligible

rare (neutrinos) for the most CR observatories.

On the other hand, modeling the propagation of charged CRs is a complex topic and

appropriate assumptions and approximations, like boundary conditions, have to be made.

The most general form of propagation is described by a transport equation modeling the

particle density =8 for particle type 8 , which is in general untractable to solve due to various

coupled di�erential equations of other particle types 9 [15],

m=8

mC
+ ∇(E=8)︸ ︷︷ ︸

convection

−∇(�∇=8)︸    ︷︷    ︸
di�usion

(2.8)

= &8︸︷︷︸
source

− m(18 (�)=8)
m�︸       ︷︷       ︸

energy

+
∑
9>8

? 9→8= 9
gspal, 9

− =8

gspal,8︸                  ︷︷                  ︸
spallation

+
∑
9>8

? 9→8= 9
W 9grad, 9

− =8

W8grad,8︸                    ︷︷                    ︸
weak decay

. (2.9)

To simplify this equation a temporal equilibrium state is assumed in the majority of these

models. The particle �ow is then caused by di�usion and convection processes which

respond to ejected material from the source. For the sake of simplicity, the particle density

is assumed and de�ned to be a quantity of space, time, and energy =8 B =8 ( ®G, C, �). The

di�erent terms are explained in the following:

• Convection ∇(®E ( ®G, C)=8)
To account for motion of the containment medium, a space and time dependent

velocity �eld ®E ( ®G, C) is introduced. A simple analogy would be the water �ow in a

river, where the particle density corresponds to a salt concentration.

• Di�usion ∇(� ( ®G)∇=8)
The di�usion term describes the random walk of the particles inside the containment

volume similar to Brownian motion. In general, the di�usion coe�cient � ( ®G) is a

tensor depending on space and accounting for anisotropic di�usion directions.

• Source &8 ( ®G, C, �)
The source term injects particles of type 8 into the containment volume. In general,

the contribution is space, time, and energy dependent. Many theoretical models

assume a source spectrum of & (�) ∝ &0�
−?

with ? ∈ [2, 2.3].

• Energy m(18 (�)=8 )
m�

The energy term accounts for continuos energy losses through interactions with the

ISM during propagation and are summarized in 1 (�). For charged particles radiation

and ionization losses dominate.

8



2.3. Propagation of Cosmic Rays

• Spallation
∑
9>8

? 9→8
gspal, 9

= 9 − =8
gspal,8

Spallation of nuclei describes the disintegration of primary nuclei into secondary

fragments through highly inelastic collisions. This can destroy particles of type

8 through collision with the ISM

(
1

gspal,8
=

=ISME8
_8

)
, as well produce them through

resulting fragments of heavier particle cascades 9 . In this transport equation it is

assumed that the spallation process occurs with a constant probability ? 9→8 over a

speci�c time gspal and is energy independent.

• Weak decay
∑
9>8

? 9→8
grad, 9

= 9 − =8
grad,8

A weakly unstable particle 9 has a probability of ? 9→8 to decay during a Lorentz-

dilated lifetime grad into lighter particle 8 . This process happens spontaneously and

is energy independent. In this transport equation the decay from heavier particles 9 ,

as well as into lighter particles, is accounted for.

2.3.1. E�ects of Magnetic Fields

Charged CR particles are de�ected by omnipresent galactic and extragalactic magnetic

�elds on their way towards Earth. While the knowledge of the local galactic �eld is steadily

increasing and su�cient to model its behavior, little is known about the extragalactic

magnetic �elds where coherence lengths and �eld strengths vary over several orders of

magnitude. The de�ection of a charged-particle trajectory originating from its source is

described by the Larmor radius 'L, which is in�uenced by particle properties (charge /4 ,

energy �) that are summarized in the rigidity ' (for high energies � ∝ ?) and the magnetic

�eld strength �⊥ perpendicular to the particle trajectory [15],

'L =
�

/4�⊥
=
'

�⊥
. (2.10)

The rigidity describes the resistance of a particle to de�ection by magnetic �elds and

relates internal particle properties with external source properties ' = �
/4

= 'L�⊥. Thus,

it is an important quantity to describe the dependency of CR features and to identify

source candidates, if the particle properties are known or vice versa to distinguish between

di�erent primary particles given the spatial extend and magnetic �eld strength of a source.

In the small-angle approximation where the propagation distance 3 is in the same order

as the Larmor radius, one can derive the angular de�ection from the initial trajectory after

ejection from the source as

X\ =
3

'L

= 3
/4�⊥
�

. (2.11)

Due to the de�ection being minimal for highly rigid particles, high-energy light particles,

like protons, are suitable candidates to pin-point the trajectory back to a single source.

9



2. Cosmic Ray Physics

2.3.2. Galactic Propagation

Leaky Box Model

The Leaky Box Model is one of the simplest models describing the propagation of CRs by

approximating Eq. (2.9). It assumes a free propagation in a containment volume with a

constant probability of escape per unit time gesc replacing the convection and di�usion

terms. This is equivalent to a small escape probability every time a particle reaches the

boarder of a box-like containment volume. This approximation is only valid for mean

propagation lengths exceeding the thickness of a galaxy 2gesc � ℎ. The probability of the

particle remaining inside the box after time step C is then given by exp(−C/gesc). Thus, gesc

directly re�ects the mean time a particle is contained inside the box and thus is directly

related to the mean traversed matter _esc = d V 2 gesc [15]. From there, one can derive

some interesting implications resulting from the Leaky-Box model in conjunction with

measured ratios of elements at given energies.

• Energy-Dependent Escape Length
Looking at the measured ratio between carbon and boron in equilibrium (

m=8
mC

= 0),

one derives an energy and thus rigidity dependent escape length _esc ∝ �−X ∝ '−X .

• Source Spectrum
By only retaining the source and escape term for particles which rather escape

than interact _esc � _8 , the source spectrum is directly coupled to the observed CR

spectrum (Sec. 2.4) and has to be of the form =8 ∝ �−(W+1) ∝ & (�) ∝ �−U = �−(W+1−X)

• Cosmic-Ray Clocks
Unstable nuclei with lifetimes on the order of the escape time are suitable as cosmic-
ray clocks. By measuring the ration of an unstable to stable isotope (

10
Be/9Be), the

escape time, and hence the average traversed hydrogen density, can be derived. With

the resulting density being signi�cantly lower than the density of the ISM, one can

conclude that the CRs mainly propagate in the Galactic halo.

2.3.3. Extragalactic Propagation

The energy losses during extragalactic propagation of CRs is dominated by interactions

with the Cosmic Microwave Background (CMB) being the only statistically signi�cant

interaction medium. As protons are suitable candidates to track back their trajectories

to potential sources (Sec. 2.3.1), their energy losses are of a particular interest in order to

estimate their track length. A few of the most important interactions are described brie�y

in the following and are summarized in Fig. 2.2.

GZK Cuto�

During propagation through the interstellar medium, UHECR protons can undergo an

inelastic scattering with the omnipresent CMB photons, creating an unstable Δ+ resonance.

By the prompt decay of this resonance the resulting proton (or neutron) quickly loses its

10



2.3. Propagation of Cosmic Rays

energy and falls below the reaction threshold,

p + γCMB → (Δ+)∗ →
{

p + π0

n + π+
(2.12)

This energy threshold is called Greisen-Zatsepin-Kuzmin (GZK) cuto�, named after its

discoverers Greisen [22] and independently Zatsepin and Kuzmin [23], and describes the

starting point of the photo-pion production at about �p ≈ 6×10
19

eV energy. This value

is determined by the kinematics of the interaction, namely the four momenta of proton

@p, photon @γCMB
, the mean energy of the CMB Planck distribution �γCMB

≈ 1.1 eV and the

rest masses of proton<p and pion<π,

(@`
p
+ @aγCMB

)2 = (<p +<π)2 (2.13)

⇔ �p =
<2

π + 2<p<π

4�γCMB

≈ 6×10
19

eV, (2.14)

and

Δ�p

�p

=
<π

<p +<π
≈ 0.125. (2.15)

This energy loss indicates a natural limit to the mean free path of UHECR protons with an

energy around 10
20

eV to less than 100 Mpc as depicted in Fig. 2.2.

Pair Production and Photo-Disintegration

Another important energy-loss process is the Bethe-Heitler pair production through the

CMB [15],

p + γCMB → p + e
+ + e

−
. (2.16)

The energy threshold and the relative energy loss is given by the mass of the electron<e

and the rest mass of the proton<p

Bth = (<p + 2<e)2 ≈ 6×10
17

eV, (2.17)

and

Δ�p

�p

≈ 2<e

<p

≈ 10
−3

. (2.18)

Due to the relative energy loss being only of order 10
−3

for protons and decreases even

further for heavier primaries, it is small in comparison to the GZK energy loss at energies

beyond 100 EeV.

In the case the CMB or infrared photon gets absorbed by the nuclei, photo-disintegration

occurs and the nucleus is split into two lighter nuclei. Typical fragments are neutrons,

protons or alpha particles, thus the reactions are denoted by (γ, n), (γ, p), (γ, α)

�
X + γ→ �-k

Y + : : = 1, 4, . . . . (2.19)

The photo-disintegration scenario predicts a composition-dependent change of the spec-

trum proportional to the atomic mass number � at the highest energies.

11



2. Cosmic Ray Physics

Figure 2.2.: Dominant energy losses of protons during extragalactic propagation through

the CMB. The GZK cuto� (hadronic dashed line) limits the mean propagation path drasti-

cally to 100 Mpc around 10
20

eV. Taken from [15].

Adiabatic Energy Loss

Due to the expansion of the Universe, the energy of CR particles is reduced by the adiabatic

energy loss. The energy loss is given by the expansion rate of the Universe given by the

Hubble constant �0 ≈ 70 km s
−1

Mpc,

− 1

�

d�

dC
= �0. (2.20)

2.4. Energy Spectrum of Cosmic Rays

The all-particle spectrum of CRs is given in Fig. 2.3 and spans over a huge range of eight

orders of magnitudes in energy, from PeV to more than 100 EeV and is thus plotted in

log-log scale. Measured data from various experiments have to be put together to account

for this enormous range in energy, as typically one experiment focuses on a certain energy

range. The detected rate of particles ranges from frequently observed events 10
6

km
−2

s
−1

in the GeV range, down to events occurring barely once a year per km
2

in the EeV energy

regime. As the �ux follows a steep power law, which was already indicated for energies

up to PeV in Secs. 2.2.2 and 2.3.2, it is scaled by �−2.5
to counteract the rapid fall-o�

and highlight certain features. These characteristic features correspond to a change in

the spectral index W , and are consequently re�ected as kinks in the spectrum. Resulting
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2.4. Energy Spectrum of Cosmic Rays

Figure 2.3.: Combined energy spectrum of the CRs as measured by various experiments.

The �ux is scaled by a factor �2.5
to highlight characteristic features. The achievable energy

references of human-made accelerators are indicated on the top, lead by the LHC with

an �xed-target energy equivalent of 10
17

eV, barely reaching the second knee. Modi�ed

from [15].

implications and interpretations of those features and their corresponding energy intervals

reveal interesting insights into properties and the origin of CRs. Upon writing of this

thesis, four distinct spectral breaks above an energy of ∼ 1 PeV have been identi�ed, which

are discussed in the following.

The Knee (� ≈ 3×10
15

eV)
The �rst break of the all-particle spectrum occurs around 3×10

15
eV and is generally

referred to as the knee. Composition measurements in the form of individual single

particle spectra, as it were done by KASKADE-Grande [24], observed an energy dependent

steepening, proportional to the charge � ≈ / �p,max of the primary. Thus, the break in the

knee is assigned to a break in the spectrum of the lightest particles (protons). Whether this

rigidity-dependent break is caused by Galactic sources, like SNR reaching their maximum

energy (Secs. 2.2 and 2.2.1), or highly rigid particles start escaping the Galaxy due to

limited con�nement by the Galactic �elds (Sec. 2.3), is still an open question.
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2. Cosmic Ray Physics

Figure 2.4.: Sky map of the smoothed CR �ux above 8 EeV in Galactic coordinates with the

Galactic center at the origin as reported by Auger. The large-scale anisotropy is described

by a dipole with a 5.2f signi�cance. The cross indicates the direction of the dipole together

with the 1f and 2f con�dence contours. The arrows indicate the rigidity dependent

de�ection of particles ' = �// = 2.5 EeV due to the Galactic magnetic �eld. Because

the dipole has no correlation with the Galactic plane, this is a strong indication for an

extragalactic origin and supports the transition towards extragalactic UHECR at the ankle.
Taken from [26].

The Second Knee (� ≈ 10
17

eV)
Following the rigidity reasoning as done in the explanation of the knee, the second knee
naturally emerges at 26�p,max ≈ 10

17
eV, when the rigidity conditions for heavier particles

like iron are met. Hence, it is sometimes also referred to as the iron knee.

The Ankle (� ≈ 4×10
18

eV)
The ankle describes the hardening of the energy spectrum around 4×10

18
eV. According to

the current scienti�c agreement, it depicts the transition from Galactic towards extragalac-

tic CRs. This scenario is heavily supported by arrival-direction studies and the reasoning

is two fold. Firstly, if sources within our Galaxy would be capable of accelerating particles

up to this energies, their de�ection over a distance on the order of our Galaxy size is negli-

gible. Hence, the reconstructed arrival direction would equal the trajectory and straightly

point towards the source, which would result in an observation of anisotropies and a

high correlation of the arrival directions with the Galactic plane. However, studies show

no signi�cant deviation from isotropy below 10
18

eV [25]. Secondly, the Auger reports

a 5.2f signi�cant large-scale anisotropy in form of a dipole (Fig. 2.4), pointing towards

100° in right ascension and −24° in declination away from the Galactic center. The dipole

correlates with source catalogues of extragalactic surveys [26, 27] within a few 100 Mpc.

The suppression (� ∼ 6×10
19

eV)
The end of the spectrum is characterized by a rapid fall-o� usually referred to as the

suppression. The transition point where the spectral index changes again around � ≈
6×10

19
eV, is in coincidence with the expected maximum energy which arises from losses

during propagation, dominated by the GZK cuto� (Sec. 2.3.3). But due to the lack of
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2.5. Extensive Air Showers

Figure 2.5.: The lateral (left) and longitudinal pro�le (right) of di�erent components in an air

shower, induced by a vertical primary proton with 10
19

eV energy. The number of particles

in the shower maximum, which can be seen in the longitudinal pro�le, is dominated

by the electromagnetic component, which dies out eventually due to attenuation. The

muons make up the hard shower component, because they experience less attenuation

through the atmosphere, which results in the particle number staying almost constant

after reaching its maximum. Taken from [29].

statistics in composition measurements at the highest energies, it is in general hard

to distinguish this scenario from extragalactic sources reaching their highest energies.

Currently, the GZK is disfavored by results from Auger [28].

2.5. Extensive Air Showers

As a primary CR impinges on Earth’s atmosphere, the interactions with the atomic nuclei

in the air produce a zoo of new particles. By subsequent interactions of the secondary

particles, a cascade forms among the extended trajectory of the primary, until the EAS

eventually hits the ground, covering a footprint of up to a few 10 km
2
. At an altitude of

15 km to 35 km, the �rst interaction initiates the growth of the shower until it reaches the

shower maximum of several billion particles, before the creation rate of particles drops

below their decay rate (Fig. 2.5). The usage of the atmosphere as a calorimeter, where the

primary particle deposits all of its energy and the detection of only secondary particles, is

referred to as an indirect detection technique for CRs.

In the following sections a semi-empirical description of air shower and cascade physics is

provided to derive relations of the most important shower features in absence of detailed

computationally-intensive MC simulations.
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2. Cosmic Ray Physics

2.5.1. Heitler Model

First insights into elementary air-shower physics have been provided by the simplistic

electromagnetic cascade model of Heitler [30]. It su�ciently describes the basic character-

istics of electromagnetic cascades in the �rst few generations, by relating the longitudinal

pro�le (Fig. 2.5) with the energy of the primary particle. The cascade is initiated by a single

photon with energy �0 impinging on the atmosphere and creating an electron-positron

pair (γ→ e
+ + e

−
) after a depth 3 = _r ln 2 (Fig. 2.6). It is assumed that the energy is split

equally between the outgoing particles, thus each one carries an energy of �0/2 after the

�rst interaction. Consecutive interactions take place every time the depth 3 is traversed

again, doubling the number of particles every time. After = generations the number of

particles is #= = 2
= = 4-/_r

, and the traversed longitudinal slant depth is - = = _r ln 2. The

cascade comes to a halt when the ionization-energy losses dominate over the radiative

losses, which is at the critical energy of �c = 85 MeV. The number of particles in the cas-

cade then reaches its maximum #max with each particle carrying an energy of �c = �0/2=c

after =c generations. This leads to the following two central relations in electromagnetic

cascade theory within the Heitler model:

#max = 2
=c =

�0

�c

, and - em

max
= =c _r ln(2) = _r ln

(
�0

�c

)
, (2.21)

The number of particles in the shower is proportional to the primary energy �0 and

the depth of the shower maximum - em

max
increases logarithmically with energy. This

approximation is valid for electromagnetic showers at high energies and validated with

extensive numerical MC simulations, which for instance take into account the energy

dependency of the cross sections and the varying atmospheric pro�le.

2.5.2. Heitler-Matthews Model

By extension of the electromagnetic cascade model of Heitler to a more general hadronically-

induced air shower, Matthews derived further detailed shower characteristics [32]. The

key implications relate the average atomic mass � of the primary to the number of muons

#µ in a shower, as well to the average depth of the shower maximum -max. The cascade is

initiated by a single proton with initial energy �0 that produces all pion types (π0,π+,π−)

at an equal Branching Ratio (BR) (1:1:1) in a hadronic interaction (Fig. 2.6). While the

neutral pions promptly decay into photons (π0 → 2γ or π0 → e
+ + e

− + γ BR (99:1)) and

feed the electromagnetic component of the shower, the charged pions successively interact

after a �xed hadronic interaction length _h ≈ 120 g cm
−2

in air, producing 2#ch π
±

and

#ch π
0

per interaction. The hadronic-component cascade ceases when the energy of π±

falls below the critical energy �π
c
≈ 20 GeV in analogy to the Heitler model (Sec. 2.5.1). In

case of the charged pions, this critical energy is determined by the mean interaction length

becoming shorter than the mean decay length and thus the charged pions exclusively

decay into muons (π+ → µ+ + νµ and π− → µ− + ν̄µ). After =c generations, the energy
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Figure 2.6.: Schematic representation of the shower development according to the Heitler

model (left) and the Heitler-Matthews model (right). In the Heitler model a purely electro-

magnetic cascade with characteristic radiation length _r is initiated by a single photon

undergoing pairproduction. The resulting electron-positron pair produces further pho-

tons which can themselves undergo pair production, leading to an exponential growth of

the cascade until a critical energy is reached. The Heitler-Matthews model extends the

electromagnetic shower development to hadronicly induced air showers. An impinging

proton produces charged and neutral pions. The neutral pions promptly decay into pho-

tons, feeding the electromagnetic shower component. The charged pions undergo similar

hadronic interactions as the proton, producing further charged and neutral pions after the

characteristic interaction length _h. The cascade comes to a halt when a critical energy

is reached where the charged pions preferably decay into muons instead of interacting

again. Reproduced from [31].
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per charged pion is given by �π± = �
π
c
=

�0

( 3

2
#ch)=c

, leading to

=c =
ln

(
�0/�πc

)
ln

(
3

2
#ch

) (#ch=10)
= 0.85 lg

(
�0

�π
c

)
. (2.22)

The number of muons #µ are then given by the number of charged pions #π± = (#ch)=c

at the hadronic shower maximum,

ln#µ = ln#π = =c ln#ch =
ln#ch

ln

(
3

2
#ch

) ln

(
�0/�π2

)
= V ln

(
�0/�π2

)
(2.23)

⇔ #µ =

(
�0

�π
c

)V
with V ∈ [0.85, 0.95] . (2.24)

The depth of the shower maximum is obtained in analogy to Eq. (2.21) from the electro-

magnetic shower starting at depth -0 = _h ln 2 with an energy of �0/(3#ch) per photon,

-
p

max
= -0 + _r ln

(
�0

3#ch�
em

c

)
= - em

max
+ -0 − _r ln(3#ch). (2.25)

Its rate of change per decade of logarithmic energy �0, is given by the elongation rate

theorem Λ = d-max/d lg�0 [32]

Λp = Λem + d

d lg�0

[-0 − _r ln(3#ch)] . (2.26)

Superposition Principle

The extension of the proton induced hadronic shower to a heavier primary nucleus with

atomic mass number �, is modeled by the superposition of � independent proton showers

at �rst order. This approximation is valid, if the interaction energy is much greater than

typical binding energies �b per nuclear �0 � �b ≈ 8 MeV and neutrons produce a similar

cascade as protons. The primary energy �0 is assumed to be distributed uniformly over �

individual independent protonic showers initiated at same depth with energy �0/�. The

shower characteristics for any primary nuclei are then deduced by inserting the reduced

energy per proton shower �0/� into the previous derived equations, and summing over

all showers, thus yielding

#�
µ = �1−V#

p

µ, and (2.27)

-�
max

= -
p

max
− _r ln�. (2.28)

The �rst key feature, which originates from this model, describes the increase in number

of muons with the mass number of the primary nuclei in comparison to a pure proton

shower at same primary energy. It is expected that an iron-induced shower will have up to

56
0.15 = 1.8 as many muons as a proton shower at the same energy on average. The second

important feature states that, on average, heavier nuclei will reach their shower maximum

earlier and not penetrate as deeply as proton showers would at the same primary energy.

Hence, the number of muons as well the depth of the shower maximum are important

quantities giving insights into the mass of the primary particle.
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The �ux of UHECRs is extremely low. Less than one particle per century arrives on an

area of 1 km
2

at � ≈ 10
19

eV (Fig. 2.3). Therefore, a huge detection area is required to

obtain su�cient event statistics at the highest energies. This is only feasible using indirect

detection methods, which utilize the atmosphere as a calorimeter, measuring secondary

particles that originate from shower cascades (Sec. 2.5).

Named after the French physicist Pierre Auger, the Pierre Auger Observatory is the largest

CR detector in the world, speci�cally designed to study UHECRs above 10
17

eV. It is located

in the Pampa Amarilla in the western part of Argentina, at an average altitude of 1400 m

above sea level. The observatory covers a huge instrumentalized area of 3000 km
2

(Fig. 3.1).

The data taking started in 2004 and is still ongoing [33]. Its exposure until 2015 exceeded

40 000 km
2

sr yr at energies above 3×10
18

eV and is higher than in any other CR experiment.

The observatory features a hybrid detector design consisting of the SD and the Fluorescence

Detector (FD), enabling important cross-checks and calibration [34, 35]. The FD observes

the longitudinal pro�le of the shower cascade in the atmosphere by detecting the emitted

�uorescence light. The SD samples the lateral density pro�le of the shower footprint

by measuring the light yield from Cherenkov radiation (WCD) or scintillation (Surface

Scintillator Detector (SSD)), which is emitted by charged particles traversing the detectors.

The detection techniques of the FD and SD have inherently di�erent systematics [33],

which allow for high-quality measurements in so called Golden Hybrid events.
Auger aims to probe the origin and characteristics of CRs, as well as to study hadronic

interactions at energies beyond the reach of terrestrial accelerators.

3.1. Surface Detector

The main SD array is composed of 1660 cylindrical WCDs set up in a triangular grid with

1500 m spacing (Fig. 3.1). Each of the SD stations includes a 3.6 m diameter tank which

contains 12 t of ultra-pure water. Charged relativistic particles traversing through the

water produce Cherenkov radiation, which is di�usely re�ected on the inner surface and

collected by three 9 inch Photomultiplier Tubes (PMTs). The recorded signals are digitized

via a Flash Analog-to-Digital Converter (FADC) and calibrated in Vertical Equivalent

Muon (VEM) units, which is the most likely equivalent signal of one muon traversing

vertically through the center of the detector [36]. Every 61 s a charge and a pulse-height

histograms are �lled with the signals from atmospheric background muons passing a

single tank at a rate of 3 kHz [37], producing a peak in both of them. The peak of the

charge histogram represents the most likely integrated signal of the muon bu�ers as a

measure of deposited energy and is thus used to calibrate the time traces which are used

for high-level reconstruction. The corresponding unit is given by VEM (VEMcharge) or MIP
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Figure 3.1.: Overview of the Auger Observatory Array in the Pampa Amarilla, Western

Argentina. The four FDs (green) are overlooking the array of SD stations (red dots). The

total instrumentalized area covered by the triangular grid amounts to 3000 km
2
. Taken

from [33]

.

(MIPcharge). The pulse-height histogram on the other hand is exclusively used to calibrate

the signal time traces and local trigger thresholds of the SD stations in units of VEMpeak

or MIPpeak on site. By relating both quantities the area-over-peak ratio 0p is derived

0p =
&VEM

�VEM

. (3.1)

In simulations, the area over peak 0p is �xed to 7.3586 (WCD) and 3.5339 (SSD) for the

Upgraded Uni�ed Board (UUB). Thus, if one is using measured data with non-constant

area-over-peak values, due to detector aging, they have to be taken into account for every

station. Each SD station is self-powered by a battery and solar panel and communicates

with the Central Data Aquisition System (CDAS). An example upgraded SD station is

illustrated in Fig. 3.2. The main array was designed to measure UHECR induced air showers

above 10
19

eV, with a duty cycle of 100%. To extend the measurements to lower energies

the In�ll sub-array was commissioned in 2011, containing 61 stations with a triangular

grid spacing of 750 m. It is located near the Coihueco FD side and spans a total area of

23.5 km
2
.

Triggers
To identify an UHECR air shower as such, the Auger has implemented various trigger

levels to optimize the e�ciency of recorded events while suppressing as much background

as possible. They range from simple threshold triggers on a station level up to coincidence

triggers between stations to form an event. The SD triggers exceed 99% e�ciency for

energies above 3×10
18

eV [33]. The trigger levels can be divided into three stages.
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3.2. Fluorescence Detector

Figure 3.2.: Illustration of an SD (left) and an FD (right) detector of Auger. The self-

contained, upgraded SD station is comprised of the WCD, the SSD, the radio antenna, the

solar panel and the Data AcQuisition (DAQ) communication antenna. The FD telescope

consists of a segmented mirror and a camera made out of PMTs. Taken from [38, 39].

• T1 (Single Station Level)
The T1 triggers feature the most straightforward way to decide if a signal should

be recorded or not. This is done by imposing a �xed threshold requirement on the

signal amplitude. This threshold is calibrated in such a way that the trigger rate is

reduced from 3 kHz due to atmospheric muons to only roughly 100 Hz [37].

• T2 (Single Station Level)
The T2 triggers are based on similar principles as the T1 triggers, but in a more

sophisticated way. It implements additional temporal and spatial coincidence stages

on a station level in two ways. One is a temporal-coincident threshold trigger for all

three PMTs in the tank. The other one requires the signal amplitude of two PMTs

exceeding a certain threshold within a temporal window.

• T3 (Event Level)
On top of the two station level triggers, the CDAS implements a third trigger level,

which is based on the coincidence of at least three T2 triggers in a triangular grid

(T3) of neighboring stations (Fig. 3.3). The T3 trigger, as an array trigger, is used to

form an event and initiates data acquisition and storage.

3.2. Fluorescence Detector

The FD consists of four observation sites (Los Leones, Los Morados, Loma Amarilla, and

Coihueco) built atop small elevations on the perimeter of the SD array, facing towards the
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3. The Pierre Auger Observatory

Figure 3.3.: Schematic trigger con�gurations of the SD T3 trigger level that form an event.

At least three T2 triggers have to coincide in a hexagonal grid of neighboring stations.

Taken from [37].

interior of the array (Fig. 3.1). Each FD site contains six independent telescopes, with an

individual Field of View (FoV) of 30° in azimuth and 30° in zenith, summing up to a total

of 180° coverage in azimuth. Additionally, three high-elevation �uorescence telescopes

(High-Elevation Auger Telescopes (HEAT)) are located at the Coihueco side, overlooking

the In�ll array. The inclination of about 60° opens the observation of low-energy showers,

extending the FD energy range down to 10
17

eV. Due to the very high sensitivity of FD

telescopes, it is only possible to operate them during dark nights, resulting in a low duty

cycle of 10%.

The telescope main component is the 13 m
2

spherical segmented Schmidt , which focuses

the collected UV �uorescence light onto a camera of 440 pixels with photomultiplier light

sensors arranged in 22 rows and 20 columns. To improve the signal-to-noise ratio, a UV

�lter is mounted on the aperture system behind the shutter, �ltering out the background

light �ux.

Charged particles traversing the atmosphere excite nitrogen molecules which emit �uo-

rescence light in the 300 nm to 430 nm wavelength during deexcitation [40]. The electro-

magnetic energy losses by the charged particles are proportional to the number of emitted

�uorescence and thus, measuring their rate as a function of slant depth - , results in the de-

velopment of the longitudinal pro�le d�/d- of an air shower. Integrating this pro�le gives

the total electromagnetic calorimetric energy �cal, which corresponds to approximately

90% (n = 0.9) of the primary energy �0. Due to a limited FoV of the FD, the longitudinal

pro�le is not always completely observable, which requires an appropriate function to

extrapolate into unobserved depths. The Gaisser-Hillas function [41] 5GH(- ) provides a

good description of measured longitudinal pro�les and is used as a parameterization of
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3.3. Air-Shower Event Reconstruction

the shower development,

�0 = n
−1 × �cal = n

−1

∫
d�

d-
d- , (3.2)

where

d�

d-
= 5GH(- ) =

(
d�

d-

)
max

(
- − -0

-max − -0

) -max−-0

_

exp

(
-max − -

_

)
. (3.3)

Detecting UHECRs through nitrogen �uorescence light is a well established technique, used

various times before, for example in in Fly’s Eye [42], HiRes [43], and today in Telescope

Array [44] experiments. Major advantages of the FD technique are the provision of a mass-

composition estimate by direct observations of -max, and an hadronic-model-independent

cross calibration of the SD array.

Atmospheric Monitoring
The �uorescence yield of nitrogen molecules depends on the atmospheric conditions, such

as pressure, temperature, and humidity. To correct for a change in the environment, the

FD array is equipped with a network of weather stations, measuring the atmospheric

conditions at each FD site. The data is used to correct the measured �uorescence light �ux

for the atmospheric conditions at the time of the observation [33].

3.3. Air-Shower Event Reconstruction

The main goal of the air-shower reconstruction is to infer the direction of the impinging

primary particle, and its properties like the energy and mass, by interpreting the recorded

data.

3.3.1. Fluorescence Detector

In a �rst step, the shower axis is reconstructed from the timing information of triggered

pixels that form a track on the camera [40]. After the shower-detector plane and the shower

axis are known, the collected signal per pixel amounts to the di�erential calorimetric

energy deposit as a function of slant depth in the atmosphere. Before �tting and integrating

the Gaisser-Hillas pro�le (Eq. (3.3)) to obtain the total calorimetric energy, corrections for

the light attenuation through the atmosphere, Cherenkov radiation, and multiple scattered

light have to be made. Because neutrinos, muons, and other particles carry away an

invisible energy of 10% to 20% [45], the resulting energy estimate has to be upscaled, to get

an unbiased energy of the shower [40].

3.3.2. Surface Detector

For an accurate reconstruction of the shower parameters with the SD array, two additional

event-selection conditions T4 and 6T5 are implemented in O�line Analysis Framework

(O�line) to ensure high data quality. The �rst one checks the time compatibility with the

estimated shower front and the latter one imposes that the station with the largest signal

is surrounded by six working stations.
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3. The Pierre Auger Observatory

Geometric Reconstruction
The arrival direction of the approximated shower front is obtained by �tting a speed-of-

light in�ating sphere with origin ®G0 to the start times of the signals C8 of individual SD

stations. Their positions on the ground are denoted by ®G8 , i.e.

2 (C8 − C0) = | ®G8 − ®G0 |. (3.4)

From this four-parameter �t, the shower age C0 and its virtual origin ®G0 in the atmosphere

are inferred. After obtaining the virtual shower origin ®G0 and the impact point on the

ground ®Gc, which follows from the Lateral Distribution Function (LDF) �t and is initialized

as the signal-weighted barycenter
®1, the normalized shower axis 0̂ is calculated by

0̂ =
®G0 − ®Gc

| ®G0 − ®Gc |
. (3.5)

If only three stations trigger, the shower-front is approximated to be planar, and the

normalized shower axis 0̂pf is derived by �tting the start times C8 to an arbitrary station

( ®G 9 , C 9 ) using the plain-front model

2 (C8 − C 9 ) = ( ®G8 − ®G 9 ) · 0̂pf. (3.6)

The geometrical reconstruction has an angular resolution of 0.4° to 1.14° (68% to 96%

Con�dence Level (CL), respectively) [46].

Shower Size
To derive an SD estimator for the energy of the shower, an average reference signal

is constructed. It is assumed that the signal strength is rotationally symmetric in the

Shower Plane Distance (SPD), perpendicular to the shower axis 0̂. As an empirical approx-

imation of the lateral distribution function LDF, a modi�ed Nishimura-Kamata-Greisen

(NKG)-function [47] (Eq. (3.7)) is used. The �t is done by maximizing the negative log-

likelihood (Eq. (3.8)) of the shower impact point on the ground ®Gc, and the shower size

( (Aopt), given the station signals (8 and their locations ®G8 ,

( (A ) = ( (Aopt) 5LDF(A ) = ( (Aopt)
(
A

Aopt

)V (
A + A1

Aopt + A1

)V+W
(3.7)

− lnL = −
∑
8

ln ? (( (Aopt), ®G2 |(8, ®G8). (3.8)

For the SD array, with 1500 m spacing, the optimal distance [48] is Aopt = 1000 m, chosen

to minimize �uctuations from the array geometry, and A1 = 700 m [46]. Due to an often

insu�cient station multiplicity per event, it is impossible to determine the shower size

( (Aopt) B (1000 and the shape (V , W ) of the LDF simultaneously. As a workaround, the

parameters V and W are �t on a sub set of data with high multiplicity and parametrized in

terms of \ and (1000 [46].

The uncertainties of the derived (1000 estimator are driven by statistical uncertainties

originating from the �nite number of particles sampled per detector and shower-to-

shower �uctuations, as well as by systematic uncertainties introduced by the empirical
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3.3. Air-Shower Event Reconstruction

Figure 3.4.: Cross-calibration of the (38 SD shower-size estimator using the reconstructed

FD energy �FD from 3338 high quality hybrid events (left). The red line depicts the �tted

power-law �FD = �(�
38

. The SD energy resolution (right) converges towards the energy

resolution of the FD (dashed red line) around 2×10
19

eV. Taken from [52].

parametrization of the LDF. To further reduce the systematic biases, one has to correct

for variations in the atmosphere [49] and the in�uence of the geomagnetic �eld [50].

On top of that, more inclined showers will be attenuated by an increasing slant depth

- (\ ) ≈ - (0)/cos\ at �rst order, which has to be accounted for as performed using the

Constant Intensity Cut (CIC) method.

Constant Intensity Cut
The CIC is a method to correct the zenith dependency of the (1000 estimator, which is caused

by attenuation e�ects through the atmosphere. Under the assumption of an isotropic �ux,

the (1000 estimator is transformed to a reference signal (38 = (1000/5CIC(\ ) that would

have been produced by the same shower with an inclination of \ref = 38° [51]. This

reference originates from the median of the zenith angle distribution of reconstructed

Auger events [46]. The parametrization of the attenuation curve is given by a polynomial

5CIC(G) = 1 + 0G + 1G2 + 2G3
, (3.9)

with G = cos
2 \ − cos

2
38° = sin

2
38° − sin

2 \ , re�ecting the assumption of an isotropic �ux

impinging on a �at detector Φ ∝ sin
2 \ .

The relation between (38 and the energy of the primary particle can be inferred through

the measured FD energy in high-quality hybrid events [52] to calibrate the SD energy

estimator. It is well described by a single power-law

�FD = �

(
(38

VEM

)�
. (3.10)

The hybrid calibration is depicted on the left in Fig. 3.4, together with the SD energy

resolution on the right, which converges from roughly 20% at EeV down to the energy

resolution of the FD with approximately 7% above 2×10
19

eV [52].
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3.4. Ongoing Upgrade: AugerPrime

As discussed in the preluding chapters and sections (Sec. 2.3, Sec. 2.4), the separation from

light and heavy particles is crucial to unravel the persisting puzzles in cosmic ray physics

and beyond. Currently, most of the composition studies depend on the measurements

of the �rst and second moment of -max through the FD with a limited duty cycle of 15%.

Consequently, the statistics at highest energies are not su�cient for a detailed composition

study. The ongoing AugerPrime update approaches this problem by adding new detector

types. In essence, the primary mass can be acquired by the disentanglement of the shower

subcomponents at a given energy, as derived in the Heitler-Matthews superposition model

(Sec. 2.5.1). A layered detector system in which each detector has a distinct response

to each subcomponent of the shower is particularly suitable. In the following, a brief

overview of the additional components and their objective is given.

Surface Scintillator Detector (SSD)
Extending the existing WCD by mounting a plastic scintillator on top, allows for a comple-

mentary measurement of shower particles. The measured signal is calibrated in units of

Minimum-Ionizing Particle (MIP) which corresponds to one muon traversing the detector

vertically. Due to both detectors having di�erent responses to the muonic and electromag-

netic sub components of the shower [38, 39], composition analysis at high statistics with

only the SD are possible.

Small PMT
A fourth Small PMT (SPMT) will be added to the WCD, extending the dynamic range of

the SD even further by the ability to measure non-saturated signals as close as 300 m to

the shower core [38, 39].

Upgraded Unified Board (UUB)
Upgrading the electronics of the SSD stations is inevitable to facilitate the processing of

both WCD and SSD signals. The data quality will increase by three-times faster sampling

(40 kHz→ 120 kHz) of the ADC traces with a 12 bit FADC, leading to an increased timing

accuracy and a higher dynamic range [38, 39].

Underground Muon Detector
Directly measuring the shower muon content and its time structure with the Underground

Muon Detector (UMD) will provide important cross checks to muon reconstruction models

based on the layered detector system of the SD. It is part of the Auger Muons and In�ll for

the Ground Array (AMIGA) upgrade and will also provide a measure of muons which is

independent of hadronic models. Therefore, an array containing 61 muon counters, 30 m
2

each, at a spacing of 750 m, covering 24 km
2

buried under a layer of 2.3 m (≈280 g cm
−2

)

soil is deployed [38, 39].

Radio Detector (R&D)
Radio antennas sensitive to the electromagnetic shower component are mounted on top
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of the WCD, based on the results from Auger Engineering Radio Array (AERA) [38]. They

will extend the composition sensitivity of the SD to highly inclined showers, where the

SSD su�ers from a low e�ective cross section.

Increase of FDs Duty Cycle
Lengthening the operation mode of the FD into nights with high sky background will lead

to an increase of about 50% of the current duty cycle. This is achieved by reducing the

PMTs gain through lowering the supplied high voltage [38, 39].

3.5. Scientific Milestones and Open Questions

Auger has provided essential contributions to the understanding of the origin of CRs and

particle physics at the highest energies. In the following section a few scienti�c milestones

are highlighted and open questions that are related to this thesis are outlined.

3.5.1. Muon Puzzle

The investigation of particle physics at the highest energies through Auger has revealed

that current air-shower simulations fail to accurately describe the longitudinal and lateral

shower pro�les [53, 54, 55, 56]. The number of muons from measured shower footprints is

signi�cantly higher than the number of muons obtained in simulations. This muon de�cit

in simulations ranges from 30% up to 80%, depending on the hadronic interaction model

at 10
19

eV [54].

These results are obtained through a preselection of highly-inclined hybrid events, where

the electromagnetic component is mostly absorbed in the atmosphere. Hence, the signal

at the ground is dominated by muons and provides a direct measurement of the muon

number, which is in turn related to the mass of the primary (Eq. (2.27)). The number of

muons is derived by scaling simulated reference pro�les of the expected lateral muon

density pro�le until they �t the measured data [54]. The results imply a contribution of

elements heavier than iron (Fig. 3.5, left), which is unphysical and not compatible with

studies based on -max [57]. The discrepancy is attributed to hadronic interaction models

failing to reproduce the observed amount of muons.

3.5.2. Spectrum

One of the original design objectives of Auger, was to measure the CR energy spectrum

at the highest energies with signi�cant statistics. After a few years of operation, it un-

doubtedly con�rmed the suppression of the �ux beyond the ankle in 2008 [58]. Even

though the region coincides with the theoretical proposed GZK cuto�, we are not able

to distinguish it from the scenario where nearby sources reach their acceleration limit.

Improving the currently limited knowledge about the mass composition, and hence the

fraction of protons, at the highest energies is crucial to disentangle those two scenarios.
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3. The Pierre Auger Observatory

Figure 3.5.: The muon puzzle between simulation and measured data by Auger. The average

relative muon content 〈'µ〉 per shower as a function of energy � (left) [54] would imply

a contribution of elements heavier than iron, which contradicts studies performed with

-max. The divergence between simulation and data is even more prevalent in the �rst and

second moment of the relative muon content, 〈'µ〉 and f ('µ), respectively (right) [56]. The

expectations of any mixture between p, He, N, and Fe (colored contours) for three hadronic

interaction models, have no signi�cant overlap with the measured data (black) within its

systematic uncertainties. The star symbols indicate the preferred mixture which is derived

from the-max measurements. The discrepancy is attributed to hadronic interaction models

failing to reproduce the observed amount of muons [54]. Taken from [54].

3.5.3. Mass composition of UHECRs

The key ingredient to solve many di�erent open questions in CR physics lies in the

determination of the primary particle on a shower-to-shower basis. Currently composition

studies are only possible on a statistical level by measuring the �rst and second moment

of the shower-depth distribution via the FD. Showers of lighter particles penetrate deeper

and have larger �uctuations in shower depth than showers of heavier particles, which

translates into higher 〈-max〉 and f (-max) respectively. The measurement of these two

moments, binned in energy, is depicted in Fig. 3.6 and shows a gradual change from lighter

to heavier particles with increasing energy.

Another very prominent mass-sensitive variable is the muon content in air showers. In

theory the number of muons #µ in an iron shower could be up to 1.8 times higher than

in a proton shower (Sec. 2.5.2), providing a promising discrimination. Currently it is

only possible to estimate the muon content for very inclined showers, see Sec. 3.5.1. In

the context of the AugerPrime upgrade (Sec. 3.4), it should be possible to measure the

muon content on a shower-to-shower basis. In the scope of this thesis the bene�t of

adding an additional detector on station level shall be explored. The results of the layered

two-detector system will in the future be cross-checked by the direct measurements of the

muon content through the UMD.
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Figure 3.6.: First (left) and second (right) moment of the shower depth, 〈-max〉 and f (-max),
respectively, as a function of energy, measured by Auger and Telescope Array project

(TA). Both experiments indicate a gradual change from lighter to a heavier composition

above 10
18.3

eV. The dashed, dotted, and solid lines are the expected values for 〈-max〉 and

f (-max) for air shower simulations using di�erent hadronic interaction models. Taken

from [16].
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The �eld of ML studies the capability of systems to learn by extracting patterns from large

amounts of data [59]. It is part of the �eld of general Arti�cial Intelligence (AI) which tries

to reproduce the intelligence of humans by machines. The methodology of ML is based

on optimizing an imposed metric with respect to a given data set, referred to as training.

During the training process a ML model learns the mapping from inputs, called features,

to outputs, denoted as targets. A major problem of ML is that the performance heavily

relies on the choice of hand-crafted feature representations [59].

The main training paradigms, which describe the feedback type during training, are divided

into supervised, unsupervised, and reinforcement learning. In the context of supervised

learning, the model is given a data set, which consists of inputs and their corresponding

outputs. During training, the model learns a generalized mapping between inputs and

outputs to accurately perform predictions. Example applications are classi�cation and

regression tasks with recent major breakthroughs in Natural Language Processing (NLP)

through ChatGPT [60]. On the contrary, unsupervised learning does not provide any

target information and the model is taught to learn the underlying structure inherent to

the data. Use cases are anomaly detection and clustering. Reinforcement learning is a

special case of supervised learning where the model takes the role of an agent, taught

to maximize a reward function by interacting with the environment. Most prominent

applications exist in robotics and in games like Go (AlphaGo [61]).

Deep Learning
Deep Learning addresses the aforementioned burden existing in ML by loosening the

imposed �xed feature representations to be instead learnable by the model itself, usually

denoted as Representation Learning [59]. This is done by introducing simple trainable

representations that hierarchically merge together to form more complex high level repre-

sentations. In the context of image detection this would correspond to the representation

learning of corners and contours that merge together to form complex features closer

related to the object itself [59], like nose, eyes, and lips to identify a face.

The recent success of Deep Neural Network (DNN) models is mainly attributed to the

enormous growth in computational power, the advance of algorithms, and the availability

of big amounts of data. The former enables the training of much larger models which are

capable of complexer representations and the latter is especially important as the models

need to be trained on a huge amount of data to generalize well.

31



4. Machine Learning and Neural Networks

G1

G2

G3

G4

ℎ1

F11

F12

F13

F14

ℎ2

ℎ3

ℎ4

ℎ5

~1~1~1~1~1

~2~2~2~2~2

~3~3~3~3~3

ℎ1 = f (F11G1 +F12G2 +F13G3 +F14G4 + 11)

= f

(
==4∑
8=1

F18G8 + 11

)

©­­­­«

ℎ1

ℎ2

ℎ3

ℎ4

ª®®®®¬
= f



©­­­«

F11 F12 F13 F14

F21 F22 F23 F24

F31 F32 F33 F34

F41 F42 F43 F44

ª®®®¬
©­­­­«

G1

G2

G3

G4

ª®®®®¬
+

©­­­­«

11

12

13

14

ª®®®®¬


h = f (Wx + b)

Figure 4.1.: Schematic representation of a simple feed-forward neural network with one

hidden layer. Example calculation of the activation of the �rst hidden node is shown on

the top right as well as the activation of the complete hidden layer on the bottom right.
The activation function is denoted as f and not explicitly speci�ed.

4.1. Artificial Neural Networks

Arti�cial Neural Networks (ANNs) have emerged as a powerful technique for solving

complex problems in a wide range of �elds. They are inspired by the biological neural

network of the human brain. The human brain consists of billions of neurons which

are connected to each other by synapses. In analogy the nodes in an arti�cial network

represent the neurons and the edges the synapses connecting the neurons. The activation

resemblance of a node is computed by applying an activation function on the weighted

sum of the directly connected nodes. Increasing the complexity by stacking multiple layers

of nodes together and connecting them via weightsF8 9 and biases 18 yields an arti�cial

neural network as depicted in Fig. 4.1. In the context of this thesis only feedforward neural

networks are considered. Thus the terms neural network and feedforward neural network

are used interchangeably except when explicitly stated otherwise. The information �ow is

directional and starts from the input x, migrates through the chain of hidden layers until

it reaches the output layer where it tries to match the label ~ = 5 (x). The length of the

chain corresponds to the depth of the model. The terminology of DNNs stems from a long

and hence deep chain of layers.

Supervised training
In a process called training, the parameters of the model are adjusted with respect to a

performance measure. The performance measure is given by a loss function L, which

qualitatively compares the predicted output ~̂ to the ground truth ~. Common choices of

loss functions for regression tasks are the Mean Squared Error (MSE) or the categorical

cross-entropy for multi-class classi�cations. The loss function is then optimized by ad-
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justing the trainable parameters \ of the network. In essence this is a minimization or

maximization problem with the loss as an objective function

\̂ = arg min

\

[L(~ |\, G)] or \̂ = arg max

\

[L(~ |\, G)] . (4.1)

In practice the optimization is accomplished by the backpropagation algorithm which

computes the gradient of the loss function with respect to the parameters. The gradient is

then used to update the weights and biases in the direction of the negative gradient. In

the most simplest form a gradient descent update reads as

\8+1 = \8 − [
mL
m\8

, (4.2)

with the learning rate [ and the iteration index 8 . There exist several more sophisticated

variants of stochastic optimization algorithms like Stochastic Gradient Descent (SGD) [62] or

Adaptive Moment Estimation (Adam) (adaptive moment estimation) [63] which implement

a decay of the learning rate, are able to avoid local minima through momentum, and thus

have an overall better convergence behavior.

To ensure that the model is really capturing the underlying representations of the data

and not simply memorizing it, the available data is split into a training, validation, and test
dataset. The training data is used to train the model while simultaneously validate, tune,

and design the model hyperparameters
1

on the validation data. The test data is used in a

�nal step after the model �nished training to evaluate the model performance on unseen

data. In this way a measure of the generalization capability can be obtained.

4.2. Convolutional Neural Networks

In the context of computer vision, deep neural networks rapidly explode in parameter

size. For instance, a one-megapixel gray-scale image has an input dimensionality of 10
6
.

If the �rst layer of a network contains 1000 nodes, the �rst layer already contributes

10
6 × 10

3 + 10
3 ≈ 10

9
parameters. This makes deep neural networks infeasable to train

and prone to over�tting [64].

By exploiting symmetries inherent to the natural data representation, one can impose

a model inductive bias [65], which ultimately leads to a reduction of parameters and a

decrease in computational complexity. Convolutional Neural Networks (CNNs) [66] are a

special class of neural network architectures especially designed to integrate translational

invariance and locality in the spatial structure of images [66]. The convolutional layer as

the core of the CNN is responsible to extract feature maps from adjacent nodes in the input.

It utilizes a trainable kernel window which is slid over the input, computing an element-

wise sum to reduce the input dimensionality (Fig. 4.2, left). They are usually followed by

pooling layers to downsample the input dimensionality even further (Fig. 4.2, right). The

output part of the network consists of fully connected layers that are used to make the

1
Hyperparameters are parameters that are not optimized during training. They specify the model architec-

ture (number of nodes, number of layers, used activation functions etc.) or parameters related to the

training process itself (learning rate, batch size, epochs etc.)
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Figure 4.2.: Basic kernel operation of a convolutional layer (left). In this case the kernel K
is a 3×3 matrix �ltering vertical edges with a stride of 1 and a padding of 0. The kernel

is moved step-wise (stride = 1) over the input image I. At each point, the sum over all

elements of the element-wise product is computed, producing a feature map I ∗ K. The

MaxPooling operation (right) is used to reduce the spatial dimensionality of the feature

map. It is a non-linear operation that computes the maximum value of a kernel window of

size (2×2) over the input. The kernel window is moved over the input with a stride of 2

and a padding of 0. The output is a spatially-reduced feature map.

prediction, i.e. to classify the image. Through successive stacking of convolutional and

pooling layers the e�ective area connected to a single node grows. This e�ective area is

called the receptive �eld in analogy to the discoveries in neurophysiology [67, 68, 69]. It

enables the network to learn more high-level features and thus, to generalize better.

4.3. Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are powerful models for processing sequential data

and are especially designed to capture temporal dependencies. They are widely used in the

�elds of NLP and speech recognition [70]. The core idea of RNNs is to process sequential

data by maintaining an internal state vector h(C) that is updated at each time step C . The

update is accomplished by a non-linear function 5 that takes the current input x(C) and

the previous state vector h(C−1)
as input, to produce the new state vector h(C) ,

h(C) = 5 (h(C−1), x(C)). (4.3)

This recursive relation led to the name of RNNs. As the calculation of the state at any given

time step C depends on all previous applications of the recursive relation, the training is

computationally expensive. For long sequences, traditional RNNs su�er from catching

long-term dependencies and vanishing gradients, as the backpropagation is done over

multiple time steps.

A more state-of-the-art architecture that overcomes this burden is given by a Long Short-

Term Memory (LSTM) network [71]. It incorporates the memory cell (Fig. 4.3) as its basic

building block. The key idea is that it can selectively forget or restore information over

time. This basic components can be divided into the input gate, the forget gate, and the

output gate, which all have the ability to add or remove information to and from the cell

state c(C) . The amount of information change is regularized by the sigmoid functions f

that output a scalar between 0 and 1. In case of the forget gate, the sigmoid takes the

last hidden state h(C−1)
and the current input x(C) to modify the previous cell state c(C−1)
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Figure 4.3.: Illustration of a LSTM cell. The cell state c(C) is updated by the forget gate

f (C) , the input gate i(C) , and the output gate o(C) . The forget gate controls the amount

of information that is removed from the cell state. The input gate controls the amount

of information that is added to the cell state. The output gate controls the amount of

information that is passed to the output. The cell state is updated by the element-wise

multiplication of the forget gate and the cell state and the element-wise multiplication of

the input gate and the input. The output is computed by the element-wise multiplication

of the output gate and the cell state.

by multiplication of the sigmoid scalar. A value of 0 completely removes the previous

information while a value of 1 keeps the internal state. In a next step, the amount of newly

added information to the cell state is controlled via the input gate. Its main purpose is to

extract features and modify the previous cell state accordingly. In a �nal step, the updated

previous cell state is combined with the last hidden state in the output gate to form the

next hidden state h(C) of the cell.

4.4. Mixture Density Networks

In the context of classical regression and least-squares optimization, the approximated

function gives the most probable mean function conditioned on the input data [72]. Thus it

contains no information about any uncertainty in general. The uncertainty can be divided

into aleatoric and epistemic uncertainty. The former is known as stochastic uncertainty

and describes randomness inherent to the data itself. The latter is commonly known as

the systematic uncertainty and describes uncertainty attributed to imprecise models. One

approach to qualify the uncertainty of the neural network prediction is through mixture
density networks initially proposed by Bishop [72]. They are a special class of neural
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networks that are able to model the probability density of the target, via conditioning

on the input data. By building a normalized linear combination of multiple Probability

Density Functions (PDFs) ?: , it is in principle possible to approximate arbitrary conditional

probability densities in the same manner as neural networks represent arbitrary func-

tions [72]. For properly normalized PDFs, the mixture coe�cients U: have to sum to one.

The network is trained to predict the characteristic parameters Θ: of the mixture PDFs

together with the mixture coe�cients. The resulting joint probability density function

characterized by Θ: , U: is used to calculate the negative log-likelihood of the targets yi
with respect to the inputs x8 as

− lnL = −
#∑
8=1

ln

(
<∑
:

U: (x)?: (yi |x8,Θ:)
)

with

<∑
:=1

U: = 1. (4.4)

In practice the normalization of the U: is achieved through a softmax activation function.

In case of a Gaussian mixture model Θ: = { ®̀, Σ} it is recommended to ensure positivity

of the standard deviation by applying a corresponding activation function. The softplus
function, 5 (G) = ln (1 + expG) is a smooth continuous version of a Recti�ed Linear Unit

(ReLU) activation function and commonly used.

4.5. Explainable Artificial Intelligence

The increasing complexity in ML models and their rising applications in �elds like medicine,

healthcare, and autonomous systems has led to the need to understand and interpret the

decisions made by these models. Explainable Arti�cial Intelligence (XAI) is an emerging

�eld of research that developes methods and techniques to explain how ML models derive

their predictions to ultimately increase trust, reliability, and causality for humans [73].

In general, there exists a tradeo� between the interpretability of a model and its perfor-

mance [74]. Well performing models like ANNs are usually so called black-box models

because they are systems with hidden internal mechanisms, which can not be deduced

by simply looking at their parameters. More simpler models like linear regression, on

the other hand, are white-box models because their internal mechanisms can be easily

understood by looking at their parameters.

The �eld of XAI can be divided into model-speci�c and model-agnostic methods. Model-

speci�c methods are only applicable to a speci�c class of models like decision trees or linear

regression. Model-agnostic methods, on the other hand, are applicable to any supervised

ML model after they have been trained [75]. They usually analyze how changes in the input

get re�ected in the model output. Depending on the speci�c use case the model-agnostic

methods can be divided further into global and local methods. Global methods describe

the average behavior of the model while local methods explain individual predictions. In

the context of this thesis the focus lies on the global method to derive measurements of

feature importances with respect to a regression target. In the following section some

elementary XAI methods are introduced.
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4.5.1. Model-Specific Methods

The easiest way to achieve model interpretability is to use a model that is inherently

interpretable as the aforementioned linear regression or decision trees.

Mean Decrease in Impurity (MDI)
In case of a non-linear relationship between input features and target variable, linear

regression fails to capture the underlying relation. In this case decision trees are a good

alternative. They are a non-parametric model that can be used for both classi�cation and

regression tasks and are easy to interpret as they can be visualized in a tree structure. The

prediction of a decision tree is based on a set of rules that are build from the training data.

Through recursive splits of the data into subsets, depending on the input features, the tree

is built. The splitting is generally done in a greedy manner by maximizing the information
gain or impurity (� ) (Gini Impurity, Entropy, Variance or MSE) at each split [76]. The

process is repeated until a stopping criterion is met. The prediction of a decision tree is

the average of the target values of the leaf node the input sample falls into.

By averaging multiple noisy, but unbiased estimators, a reduction of the variance is

accomplished. This is the key principle of bagging [76]. Decision trees are optimal

candidates that full�l this requirements and are usually collectively used in ensemble

methods like Random Forest [77].

The importance measure � of a speci�c feature G 9 can be derived by adding up the weighted

impurity decrease Δ� at each node C where the feature is used inside a tree ) , and average

it over all #) trees in the forest [78],

� (G 9 ) =
1

#)

∑
)

∑
C∈) :E (BC )=G 9

#C

#
Δ� (BC , C) (4.5)

with: Δ� (BC , C) = � (C) −
∑
:=1

#:

#C
� (:) (4.6)

Here #C/# denotes the fraction of samples at node C and E (BC ) the variable used in the

splitting condition BC . The impurity decrease Δ� is the di�erence between the impurity

of the parent node C and the weighted impurity of the children nodes : . Due to multiple

possible impurity measures � , this method is generally referred to as Mean Decrease in
Impurity (MDI) [78]. One drawback of this method is that it does not re�ect the importance

of a feature for a model to generalize well. This comes from the fact that the impurity

measure is computed on the training set statistics. Due to the regression scope of this

thesis, the variance or MSE is used as impurity measure.

4.5.2. Model-Agnostic Methods

The separation of model interpretability from the underlying model is a key concept of

model-agnostic methods. They provide great �exibility because they can be applied to any

ML model, including complex black-box models like ANNs. They provide insights into the

model behavior and can improve the understanding of the data.
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Permutation-Feature Importance
Permutation-feature importance (PFI) is a model-agnostic inspection technique that can

be used on any �tted model. It is de�ned via the decrease in the model score if a single

feature is randomly shu�ed in the data set. This shu�ing breaks the relationship between

the feature and the target and the resulting drop of the model score indicates how much a

model depends on that feature. Thus, this technique does not re�ect the intrinsic predictive

value of a feature itself but rather the dependency of the model on that feature. A feature

is considered as unimportant if shu�ing its values leaves the model error unchanged,

while a feature is considered important if shu�ing its values increases the model error.

The plain algorithm after Fisher, Rudin, and Dominici [79], with the inputs of the trained

model 5 (G) → ~̂, the dataset - , the target ~, and an error measure !(~, ~̂) roughly reads

as

1. Estimate original model error 4orig = !(~, ~̂ (- ))

2. For each feature 9 ∈ {1, . . . , ?} do:

a) permute feature 9 in the data -

b) estimate error 4perm = !(~, ~̂ (- 9=perm))
c) calculate permutation feature importance as di�erence � 9 = 4perm − 4orig or

quotient � 9 = 4perm/4orig

3. Sort features by descending �

The advantages of this method include that it can be computed on the test data and

therefore provides better insights into feature importance for generalization of the model.

Additionally, the comparison of permutation-feature importances between train and test

set can reveal over�tting of a model. One drawback is the breakdown for highly correlated

features, which can result in a decrease of the importance of both features. This can be

overcome by clustering correlated features and only keeping one feature per cluster.

SHAP (SHapley Additive exPlanation) Values
SHAP values are proposed as a uni�ed measure of feature importance and are a conditional

expectation function of the original model [74]. They originate from cooperative game

theory and aim to explain the contribution of each feature to the �nal prediction.

The classical Shapley value is given by the average marginal contribution of a feature

values across all possible coalitions,

q 9 =
∑

(⊆�\{ 9}

|( |!( |� | − |( | − 1)!
|� |! [5(∪{ 9} (G(∪{ 9}) − 5( (G( )], (4.7)

where � denotes the set of all features, ( denotes the set of features that are included

in the coalition, G( represents the input features values, 5( is the model trained with the

features included and 5(∪{ 9} the model with the feature withheld. Due to the exponential

growth of computation time with the number of features, this method is not feasible for

multiple input features. A few model-agnostic approximation methods like Kernel SHAP
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or Shapley Sampling Values exist [74]. The Shapley Sampling Values, approximate the

e�ect of removing a variable by integrating over samples from the training dataset and to

additionally apply sampling techniques to Eq. (4.7) [74].

The global importance of a feature 9 over all samples # can be derived by the mean of the

absolute Shapley values q 9 ,

� 9 = 〈|q 9 |〉 =
1

#

#∑
8=1

|q (8)
9
|. (4.8)

One of the big di�erences to other feature importance measures is that SHAP is based on

the magnitude of feature attributions [75].
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5. Reconstruction of the WCDMuon Signal
Fraction on Station Level

In this chapter, a brief overview of current reconstruction methods for the muon content

in Auger are given in Sec. 5.1. Afterwards, the muon signal fraction is introduced and

motivated as a new composition-dependent quantity in Sec. 5.2, which is central to this

work. The huge simulation data sets, which are used for the training and evaluation of the

machine learning models, are described in Sec. 5.3, together with various preprocessing

steps and normalization techniques. In addition, the reference performance metrics are

de�ned in Sec. 5.4. Insights into important features for the prediction of the muon content

are provided by Sec. 5.5, followed by introducing the baseline and NN models in Secs. 5.6

to 5.7 and their training setup. The CNN architecture is then extensively studied, by �rst

validating it against other architectures and then investigating possible improvements

through di�erent architecture con�gurations. Throughout the analyses, the importance

of the SSD is investigated in Sec. 5.8.3 and the best performing models are chosen to

evaluate their composition dependency in Sec. 5.8.4. Finally, a crosscheck of the CNN

performance on another hadronic model is done in Sec. 5.9. The chapter completes with a

direct estimation of the primary particle on a single station level in Sec. 5.10.

5.1. Current Methods for Muon-Content Estimation

The estimation of the muon content on an event-by-event level is one of the prime ob-

jectives of high-level analyses in Auger. The muon content is an important quantity

because its close relation to the mass of the primary. It will advance our current under-

standing of CRs and air shower physics in many aspects. For instance, the �ne-tuning of

hadronic interaction models at highest energies will be improved as well as the study of

composition-enhanced arrival directions that might pin-point to CR sources.

5.1.1. Matrix Inversion Method

With the ongoing AugerPrime upgrade (Sec. 3.4), two complementary detectors in the

SD allow for the separation between the muon and the electromagnetic component. The

local �ux of muons Fµ and electromagnetic particles Fem can be related to the total signals

(WCD
and (SSD

in each detector of a station. In a �rst-order approximation, the relation

between the �uxes and the total signals is linear and can be expressed using a matrix

M [80, 81, 82, 83, 84],(
(WCD

(SSD

)
=

(
(WCD

µ + (WCD

em

(SSD

µ + (SSD

em

)
= M

(
Fµ
Fem

)
, where M =

(
0 1

2 3

)
. (5.1)
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By inverting M, the �uxes can be calculated from the total signals. Taking into account the

relation between the �uxes and the corresponding sub-component signals, the relations

can be reduced to quantities that are accessible in MC data. Using the coe�cients of the

matrix we arrive at (
(WCD

µ

(SSD

µ

)
=

1

03 − 12

(
03 −01
23 −12

) (
(WCD

(SSD

)
. (5.2)

The coe�cients show only a weak dependence on the hadronic interaction model, the pri-

mary mass, and the shower geometry [38]. The relative resolution of the muon signal is be-

tween 20% to 30%. Utilizing the lateral distribution function and (µ(800) of the muon signal,

merit factors for proton and iron induced showers of up to MF((µ(800)p, (µ(800)Fe) = 1.5

can be obtained [38].

5.1.2. Air-Shower Universality

Some characteristic properties of EAS exhibit universal behavior, irrespective of the

primary particle or its energy. For instance, the electron-positron distributions only depend

on the depth of the shower maximum and the number of particles at the corresponding

depth [85]. This is called air-shower universality.

It can be exploited by using a multivariate analysis of EAS data, which parametrizes the

main sub-components of a shower by a few characteristic shower variables [39]. The

leading components inside an EAS in terms of particle numbers are

• the electromagnetic component: 4γ,

• the muon component: µ,

• the hadronic component and successive decay products: 4γ(π),

• the electromagnetic component from muon decays: 4γ(µ).

For each component a model relates the time-dependent expected signal, induced by a

speci�c sub-component inside a detector, with the global shower parameters. Commonly

used global shower parameters are the energy of the shower �, the relative muon content

'µ = #µ/〈# p

µ〉 describing the number of muons #µ relative to an average proton shower,

the depth of shower maximum -max, the zenith angle \ , the relative plane-front time

ΔCsp = C8 − Csp and the shower-plane distance A . The Likelihood Luni is thus given by

Luni = L(�, 'µ, -max, \,ΔCsp, A ). (5.3)

The main object of universality is to simultaneously reconstruct 'µ and -max to obtain the

primary mass �. Both quantities are related to ln� via

ln�
Eq. (2.27)

= ln(56)
ln'µ − ln〈'p

µ〉
ln〈'Fe

µ 〉 − ln〈'p

µ〉
, and (5.4)

ln�
Eq. (2.28)

= ln(56) -max − 〈- p

max
〉

〈- Fe

max
〉 − 〈- p

max
〉
. (5.5)
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5.2. Muon Signal Fraction

5.2. Muon Signal Fraction

In this work, the muon signal fraction 5µ =(WCD

µ /(WCD
is proposed as a new and better

suited composition estimator than the muon signal (WCD

µ itself. The historical common

reasoning for the reconstruction of the mass of the primary through the SD is the following.

Since the mass is proportional to the number of muons in a shower (Sec. 2.5.2), it would

be straight-forward to derive them by estimating the muon signal by disentangling the

sub-components using di�erent detectors (Sec. 5.1.1). Even if the MC value of the muon

signal is used, this is not easily accomplished. The issue at hand has its roots in the

energy-migration e�ect, which is caused by the uncertainty and the systematic bias of the

energy reconstruction of the SD.

5.2.1. Energy-Migration E�ect

The energy estimator of the SD ((1000), is derived by �tting the LDF to the signals (WCD
of a

radial shower footprint. It is systematically driven by muon signals. As the electromagnetic

component exhibits universality for all primaries and is far more attenuated than the muon

component, showers with a higher number of muons will deposit a larger signal in the

detectors (Fig. A.1). Showers initiated by heavier primaries produce more muons and

thus, get assigned to higher reconstructed energies. This results in a migration e�ect

of lower-energetic heavier particles towards higher reconstructed energies. In case of

measured data, this energy-migration e�ect is increasingly asymmetric, as the CR spectrum

is steeply falling and much more heavier particles migrate towards higher energies, than

lighter towards lower energies. The migrated heavier particles produce a lower total signal

and muon signal than they would produce at the same MC energy. This results in protons

of a given reconstructed-energy range being indistinguishable from lower energetic irons

by using the muon signal to identify the di�erent primaries. On the contrary, the relative

muon signal fraction is almost independent of this energy-migration e�ect because it also

takes into account the reduced total signal, reducing the energy dependence induced by

the SD reconstruction dramatically. On a statistical level, the muon fraction allows for

the separation between showers induced by protons and irons (Fig. 5.1). Note that Fig. 5.1

represents uniformly distributed MC data. The muon signal LDFs of proton and iron are

indistinguishable, while the muon fraction stays separated when binned in reconstructed

energy instead of MC energy. The relative energy bias of the SD amounts to −18% and is

slightly shifted towards iron (Fig. 5.1, bottom right).

5.2.2. Calculation of the Muon Signal Fraction

In simulations, O�line provides signal traces originating from di�erent sub-components 2 ∈
{e,γ,µ} for each PMT of the SD stations. By averaging the three PMT traces in the WCD

for each component, the signal trace of each component B2 [8] is computed by

B2 [8] =
1

# 9

3∑
9=1

B2 [8, 9], (5.6)
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Figure 5.1.: Comparison of the discrimination power of the muon signal fraction 5µ (�rst
row) and the muon signal (µ (second row) in stations, triggered by air showers induced

by proton (red) and iron (blue). The dotted lines represent �tted LDFs and Lateral Frac-

tion Functions (LFFs) per primary. Due to the energy-migration e�ect (Sec. 5.2.1) the

discrimination power of the muon signal is lost when reconstructed quantities �SdRec and

\SdRec are used (right). This is not the case for the muon signal fraction. Since it has a

very weak energy dependence, the energy-migration e�ect has a minimal impact. The

energy-migration e�ect is illustrated in the bottom right panel, which shows the widening

of the distribution of the reconstructed energy in a chosen MC energy bin. Iron showers

get a higher reconstructed energy assigned than proton showers even tough they have a

similar MC energy (bottom left).

44



5.3. Data Sets and Preprocessing

where 8 is the time bin of the trace and B2 [8, 9] is the component trace of the PMT 9 .

# 9 denotes the number of PMT traces that exceed an integrated signal of

∑
8 B2 [8, 9] ≥

10
−3

VEMpeak. Since the individual component traces are historically simulated indepen-

dently from the total signal traces in O�line, to avoid additional statistical �uctuations the

relative fraction is computed with respect to the sum of all components

5µ =
(µ∑
2
(2

=

1s+!tr∑
8=1s

Bµ [8]

∑
2

1s+!tr∑
8=1s

B2 [8]
where 2 ∈ {e,γ,µ}. (5.7)

The trace length !tr = 400 is given in number of bins (1 bin = 8.3̄ns for UUB) after the

signal start bin 1s, found by the trigger algorithm of O�line. In the following 5µ always

denotes the relative muon signal in the WCD, except when explicitly stated otherwise.

Using Eq. (5.7), the muon signal is (µ = 5µ (tot. The hadronic component is completely

neglected throughout this work.

5.3. Data Sets and Preprocessing

Large data sets are needed for the training, validation, and testing of machine learning

models. In UHECR physics they are provided by complex MC simulations of air showers

and their corresponding detector responses. The main advantage of simulation data is the

access to quantities that are otherwise not available in measurements, such as the muon

fraction which suits as a target for the supervised training of machine learning models. To

improve the training process, the data is preprocessed to improve the quality of the data

and to reduce the computational complexity. The air-shower simulations, the data set, and

the preprocessing steps are described in the Secs. 5.3.1 to 5.3.6.

5.3.1. Air-Shower Simulations

In Auger, the detector simulations are provided by two successive MC simulations. In the

�rst step, the air-shower cascade is simulated with the COsmic Ray SImulations for KAscade

(CORSIKA) simulation package, which can use di�erent hadronic interaction models. In

this work the QGSJetII-04 Hadronic Interaction Model (QGSJetII-04) is predominantly

used, while the EPOS-LHC Hadronic Interaction Model (EPOS-LHC) suits as a reference.

In the second step, the detector responses to the simulated shower is simulated with the

O�line framework. Since the simulation of UHECR CORSIKA showers is computationally

expensive, every shower is re-used ten times on the array to increase statistics. After the

detector simulation, the standard reconstruction of O�line is used to extract characteristic

shower properties, such as the energy of the primary particle. The detector response, as

well some reconstructed station and shower properties are used for the detailed station-

level study.

To generate the detector responses, the Praha/Napoli library [86] is used. The showers

are continuously sampled in all shower variables, in contrast to the discrete Karlsruhe air
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Table 5.1.: Number of triggered stations that passed the quality cuts for the MC study in

di�erent logarithmic energy intervals.

lg(�MC/eV) 18 to 18.5 18.5 to 19 19 to 19.5 19.5 to 20 20 to 20.2

QGSJetII-04 UUB p 34 488 64 392 126 417 221 622 130 590

He 32 270 68 783 127 966 224 830 133 306

O 34 465 73 680 131 367 234 063 136 093

Fe 36 065 70 460 139 585 242 221 140 552

EPOS-LHC UUB p 20 588 80 740 129 972 232 594 130 602

He 25 130 70 026 134 584 240 721 136 682

O 27 917 72 954 139 433 246 674 142 177

Fe 29 685 75 830 145 649 242 116 142 529

shower Library (KaLib). This helps the network to rely less on extrapolation in between

the sampling points, instead of working only with discrete values. The air showers are

distributed uniformly in the energy range from 10
18

eV to 10
20.2

eV and uniformly in

sin
2 \ (isotropic �ux), with \ ranging from 0° to 60°. For the primaries a mixed, uniform

composition in proton, helium, oxygen, and iron is used. The number of stations per

energy interval and per primary is depicted in Table 5.1. In total 721 450 (691 139) showers

with 2 403 215 (2 466 603) stations remain for QGSJetII-04 (EPOS-LHC) after the quality

cuts (Sec. 5.3.4). Even though the showers are sampled uniformly, the number of stations

are non-uniform and increases with increasing energy. This is driven by the larger size of

the shower footprint and better trigger e�ciencies.

5.3.2. Preprocessing of the Traces

For the UUB time traces the �rst !tr = 400 bins after the signal start bin 1s are used as an

input for the network. Using a predetermined trace length allows for a reduced network

size and removes the need for zero padding or cutting o� of the traces during training or

prediction. Furthermore, the �rst 400 bins contain the relevant signal information. The

muon signal fraction is barely altered by cutting the traces (Fig. 5.3). To further reduce

the size of the input, the traces of the three PMTs of the WCD are averaged, taking into

account only traces with an integrated PMT signal greater than ≥ 10
−3

VEMpeak (Eq. (5.6)).

5.3.3. Custom Input Features

The feature representation of the input data is crucial for the performance of a machine-

learning model. Because the available information on station level can be highly correlated,

additional high-level features are created with the aim to disentangle those cases and

increase predictive power.
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Figure 5.2.: PDFs of train and test data sets for each primary, as a function of logarithmic

MC energy �MC (upper left), zenith angle sin
2 \MC (upper right), shower-plane distance

A (lower left) and muon signal fraction 5µ (lower right). Since more energetic primaries

trigger more stations and stations with low signals are cut away predominantly in low

energy showers, the distribution in log-energy is not uniform anymore on station level.

This overweights high energy showers. The train:test split is chosen to be 9:1.
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Figure 5.3.: Mean di�erence between the muon fraction 5µ, computed from complete traces,

and the trimmed muon fraction 5 cut

µ (Eq. (5.7)), as a function of cut length !tr (left), and

distributions of di�erences between the muon fraction 5 400

µ from the !tr = 400 bin cut

and 5µ (right). The di�erences are computed with (green) and without quality cuts (black).

The cut length is given in number of bins after the signal start bin 1s. The reference

muon fraction 5µ results from the standard O�line cuts, which are de�ned by SdRecSta-
tion.SignalStartSlot 1s and SdRecStation.SignalEndSlot 1e.
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• (WCD = 0p

∑
2∈{e,γ,µ}

1s+!tr∑
8=1s

BWCD

2 [8],

denotes the total signal in the WCD detector derived from the cut traces of the

sub-components and is converted from VEMpeak to VEM by 0p, see Eq. (3.1).

• (SSD = 0p

∑
2∈{e,γ,µ}

1s+!tr∑
8=1s

BSSD

2 [8],

denotes the total signal in the SSD detector derived from the cut traces of the sub

components and is converted from MIPpeak to MIP by 0p, see Eq. (3.1).

• (r = (SSD/(WCD
,

denotes the total signal ratio between the SSD and the WCD detector.

• Δℎ = A sin\ cosksp,

denotes the height of the station along the shower axis, relative to the impact point

of the shower core.

• ΔCc = C8 − Cc,
denotes the time di�erence between the impact time of the shower core on the

ground Cc and the start time of the individual stations C8 .

• ΔChs = C8 − Chs,

denotes the time di�erence between the start time of the hottest station Chs in an

event and the start time of individual stations C8 . The hottest station is de�ned as

the station with the largest signal in the WCD for each shower.

• ΔCsp = C8 − Csp = C8 −
(

1

2
( ®G8 − ®Gc)0̂ + Cc

)
,

denotes the time di�erence between the shower-plane front Csp and the station start

times C8 . It encompasses information about the curvature of the shower-front, which

is related to the shower depth, and thus to the mass of the primary.

5.3.4. Selected Quality Cuts

Removing noisy or irrelevant data from a data set to improve its overall quality is a vital

step in machine learning. In general, it helps to reduce the computational complexity and

improves the model performance. The cuts need to be carefully chosen to ensure that no

valuable data is removed or any bias is introduced.

Exclusion of low-gain saturated stations
Low-gain (LG) saturated stations are excluded from the analysis, due to an unrecoverable

loss of signal. Consequently, no reliable muon fraction can be derived.

Zenith cut \ ≤ 60°

Very inclined showers are excluded from the analysis to stay in the regime, in which the

SD has the full trigger e�ciency. In future studies similar to this thesis, the extension to

more inclined showers could provide important cross checks to already existing studies

on very inclined events.
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5.3. Data Sets and Preprocessing

Distance cut A ≤ Acut
The maximum distance Acut is the distance where a signal of ( (A ) = (th = 30 VEM is

expected. To determine Acut, the following equation has to be solved numerically for A ,

with given (1000, V and W from the standard reconstruction per event

( (A ) = (1000

(
A

Aopt

)V (
A + A1

Aopt + A1

)V+W
= (th, (5.8)

where Aopt = 1000 m and A1 = 700 m for the main array. The requirement of the total

expected signal ( (A ) being above the threshold (th prevents the LDF to be biased towards

higher signals due to upward �uctuations close to the trigger threshold, as it would be

the case if one cuts on the total signal per station. Cutting away the low-signal stations

would shift the average signal for larger distances upwards and thus modify the scale of

the LDF, as well the distribution in the expected signal. The distance cut further improves

the overall uncertainty of the muon fraction f (5µ). Currently no sophisticated error model

exists for the muon fraction. However, �rst insights can be derived under the assumption

of a Gaussian error propagation and Poissonian statistics (f (() ≈
√
() in the detector

response for low signal strengths,

f (5µ) ≈

√(
m5µ

m(

)
2

f2(() +
(
m5µ

m(µ

)
2

f2((µ) + 2

m5µ

m(

m5µ

m(µ
d ((µ, ()f (()f ((µ)

=

√
(µ

(2
+
(2

µ

(3
− 2

(
3/2
µ

(5/2 d ((µ, () = 5µ

√
1

(µ
+ 1

(
− 2

d ((µ, ()√
(µ(

(5.9)

A dependence plot of the approximated f (5µ) on the total Signal ( and muon signal (µ is

shown in Fig. 5.4 for the cut simulation data with d ((µ, () = 0.91. It qualitatively shows

the decrease in uncertainty of the muon fraction with increasing signal strength. Around

( ≈ 30 VEM the absolute error of 5µ is below 0.08 for d ((µ, () = 0.91.

Physics cuts
Due to baseline �uctuations, a very tiny fraction of stations have a muon fraction outside

of the physical limits 5µ ∉ [0, 1] and thus need to be excluded from the analysis. Therefore,

(µ ≥ 0 VEM and ( ≥ (µ are imposed to also capture cases in which both signals are

negative and still would map to a physically valid 5µ ∈ [0, 1].

5.3.5. Standardization

The standardization of scalar features is a commonly used preprocessing technique that

aims to normalize the scale and distribution of features

G → G − 〈G〉
f (G) . (5.10)

It transforms the data by subtracting the sample mean 〈G〉 and dividing by the standard

deviation f (G), which results in a zero mean and unit variance. Standardization reduces
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Figure 5.4.: Approximated muon fraction error model f (5µ) (Eq. (5.9)) as a function of

the total Signal ( and muon signal (µ. It is evident that the error on 5µ decreases with

increasing signal strength. The error is below f (5µ) ≤ 0.08 for ( ≥ 30 VEM.

the bias introduced by varying scales of the input data. Hence, it is bene�cial to transofrm

the input data to a common scale and unit-less quantities. Furthermore, it increases

the assessment of interpretability and feature importance. The feature-wise weights are

common to the same scale and thus directly comparable to evaluate the contribution of

each feature to the model. The mean and standard deviation of the standardization are

calculated on the training data and applied to the test data as well. It ensures that no bias

is introduced into the data that the model receives as an input, which would be the case if

the test data set has a di�erent distribution. The standardization is applied to all timing

features.

5.3.6. Custom Normalizations and Polynomial Features

In cases where the distribution of an input feature is highly asymmetric, peaked or skewed,

a speci�c non-linear transformation is more bene�cial thana a linear one. For instance,

such transformations can be used to linearize a non-linear relationship between an input

feature and the target. In this way, complex relationships can be modeled with linear

regression. Other use-cases include �attening of peaky distributions, compressing the

range of values or reducing the in�uence of outliers.

In the context of this thesis, the energy � exhibits some of these characteristics, as it is

distributed as 1/�. A log-transformation is applied, resulting in an uniform distribution

on an event-basis � → lg�. A similar transformation to achieve a uniform distribution is
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applied to the zenith angle. Under the assumption of an isotropic CR �ux, the transforma-

tion uniformizes \ → sin
2 \ .

Another method to capture non-linear relationships or interactions between features, is

the generation of polynomial features. This is done by creating new features as the product

of existing features up to a certain polynomial degree % . Given a feature set {G1, G2, . . . , G 9 },
all unique products G

?1

1
G
?2

2
. . . G

? 9
9

that satisfy ?1 + ?2 + · · · + ? 9 ≤ % are generated, which

creates a the new feature set

{G1, G2, . . . , G 9 } → {G1, G2, . . . , G 9 , G1G2, . . . , G1G 9 , G
2

1
, . . . , G2

9 , . . . , G
%
1
, . . . , G%9 }. (5.11)

5.4. Evaluation Metrics and Statistical Quantities

To make di�erent models comparable and unify the metrics that are used to evaluate their

performance in the subsequent sections, the following statistical quantities are introduced.

The mean 〈G〉 of a sample of size # of a random variable G is de�ned as

〈G〉 = 1

#

#∑
8=1

G8 . (5.12)

The sample variance f2
and the standard error on the sample mean f〈G〉 are de�ned as

f2(G) = 1

#

#∑
8=1

(G8 − 〈G〉)2 (5.13)

f〈G〉 =
f (G)
√
#
. (5.14)

The evaluation metrics are used to describe the quality of any model prediction ~̂ with

respect to the target value ~. These metrics can be computed globally, or in bins of a

certain quantity, like the shower-plane distance A . The bias of a model 〈Δ~〉, is de�ned as

the mean di�erence between the prediction and the target values, which are sometimes

also referred to as the residuals Δ~8 = ~̂8 − ~8

〈Δ~〉 = 〈~̂ − ~〉 = 1

#

#∑
8=1

(~̂8 − ~8) . (5.15)

A bias around zero 〈Δ~〉 ≈ 0 indicates that the model is not systematically over- or

underestimating the target value and ensures an accurate prediction on average. To further

quantify the precision of the model, which is given by the spread of the residuals, the

standard deviation is used

f (Δ~) = f (~̂ − ~) =

√√√
1

#

#∑
8=1

(Δ~8 − 〈Δ~〉)2. (5.16)

The bias and the resolution usually depend on di�erent primaries, and thus a primary-

dependent bias 〈Δ~〉p,Fe, which tracks the absolute di�erence between proton and iron
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5. Reconstruction of the WCD Muon Signal Fraction on Station Level

bias, is introduced as well. Additionally, the resolution is also calculated separately for

each primary f (Δ~)p,He,O,Fe

〈Δ~〉p,Fe = |〈Δ~〉Fe − 〈Δ~〉p | (5.17)

f (Δ~)I =

√√√
1

#I

#I∑
8=1

(Δ~8,I − 〈Δ~〉I)2 for: I ∈ {p,He,O,Fe}. (5.18)

In the following sections the~ and ~̂ are replaced by the target at hand, which usually is the

muon signal fraction 5µ and
ˆ5µ respectively. The bias, bias standard error and resolution

are denoted by 〈Δ5µ〉, f〈Δ5µ〉 and f (Δ5µ).
The regression metric to evaluate the performance of the model for the prediciton of the

muon fraction is chosen to be the MAE. This results from the muon fraction describing a

relative quantity that should be optimized to have an accurate prediction, irrespective of

the total signal size. The MAE is de�ned as

MAE = 〈|Δ~ |〉 = 1

#

#∑
8=1

|~̂8 − ~8 |. (5.19)

Merit Factor
The merit factor (MF) is a metric that describes the separation of two standard normal

distributions, given by the subsets ~1 and ~2 of a random variable ~. It is a quantity often

used in Auger and is de�ned as

MF(~1, ~2) =
|〈~1〉 − 〈~2〉|√
f2(~1) + f2(~2)

. (5.20)

For composition analyses, usually the sample mean and the sample variance of a variable

~ with respect to iron (1 = Fe) and proton (2 = p) subsets are used. Higher merit factors

indicate a better separation of the two distributions, as long as the distributions are

Gaussian.

5.5. Importance of Features

To gauge the predictive power of models, a study on which features are important for the

prediction is often helpful and can provide insights in the underlying relations between

features. For all future analysis of Auger using the SSD, it is very important to quantify

the importance of the second detector for the prediction of the muon fraction 5µ in

the SD (Sec. 3.4). First, linear correlations are explored. Then, various XAI importance

measures are evaluated on ensemble models and compared qualitatively.

Pearson Correlation

To measure linear correlations between features themselves and between features and

the target 5µ, the Pearson correlation coe�cient dp is used. As possible input features all
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previously introduced handcrafted variables are taken into account, together with a selected

subset of shower and station variables available from the standard reconstruction. The

correlation matrix is depicted in Fig. 5.5. With the focus on the target 5µ, the zenith angle

and the relative signal between SSD and WCD tend to have the highest absolute correlation,

which is intuitively expected. The attenuation of the electromagnetic component is

proportional to the zenith angle and the fraction of the signal of two di�erent detectors

encompasses the di�erent responses to the muon and electromagnetic component of the

shower. The absolute correlations with 5µ are followed by the shower-plane distance and

the total signals in the detectors. Again, this can be interpreted in terms of electromagnetic

attenuation increasing with the shower-plane distance and in the �rst order the total

signal being composed of a mean constant fraction between electromagnetic and muon

signals. The highly correlated feature cluster of Δℎ, C8 , ΔChs and ΔCc has a light linear

correlation with 5µ of the same absolute magnitude for each feature. They all encode

information about the curvature of the shower front and thus the shower age. A second

highly correlated feature cluster is given by ΔCsp, C1/2 and Cf , which describes the temporal

structure of the total signal trace and is related to the time dependent mixture of sub-

component signal traces. Even though this cluster has almost no linear correlation with

5µ, non-linear transformations of these features will probably have an higher predictive

power. To exploit the feature importance outside the linear regime, tree models are used

in the following.

Ensemble Importance Study

To gain further insights into features that are important for a model to predict the muon

fraction on a station level, the Mean Decrease in Impurity (MDI) (Sec. 4.5.1), Permutation Fea-
ture Importance (PFI) (Sec. 4.5.1) and SHapley Additive exPlanations (SHAP) values (Sec. 4.5.2)

of ensemble methods are studied. The python library scikit-learn [87] provides various

ensemble methods
1

for regression tasks. As XGBoost [88] and LightGBM [89] come with

faster training, better evaluation metrics, and a scikit-learn Application Programming

Interface (API), they are easily included and the preferred ensemble models. All methods

are con�gured to use decision trees as base learners, the MSE as splitting criterion or

impurity measure, and the total gain as feature importance. To additionally align all meth-

ods, the number of estimators is chosen to be 500 for each ensemble, because increasing

it further does not improve the overall performance, but rather drives over�tting. The

advantage of decision trees is the ability to model non-linear relationships between the

input and the target, and thus to exploit further dependencies. The ensemble models are

trained on the UUB QGSJetII-04 data set in Table 5.1. For numerical stability some of the

input features are transformed to map to the order of unity, even tough tree methods

are inherently independent of feature transformations. Since the timing information is

redundantly encoded in multiple timing features, some of the low level features, namely Cc,

C8 , ΔChs ≈ ΔCc andk are dropped in this study. It will be shown in Sec. 5.6, that they hold

similar information content.

1
AdaBoostRegressor, ExtraTreesRegressor, GradientBoostingRegressor, RandomForestRegressor, HistGra-

dientBoostingRegressor
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Figure 5.5.: Pearson correlation coe�cient dp of selected shower- and station-level features.

The shower variables are given by the energy �, zenith angle \ , the impact time of the

core on the ground Cc and the mass of the primary as ln�. The station variables are given

by the shower-plane distance A , the azimuth angle of a station inside the shower plane

k , the height Δℎ, the signal start time C8 , the time di�erence between signal start time in

each station and the hottest station ΔChs = C8 − Chs, as well to the shower core ΔCc = C8 − Cc,

the time delay with respect to the plane-shower front ΔCsp = C8 − Csp, the signal-rise time

C1/2, the signal fall time C 5 , the signal of the detectors from the integration of the cut traces

(WCD
and (SSD

, the signal ratio of both detectors (r = (WCD/(SSD
, the muon signal (WCD

µ

and the muon signal fraction 5 WCD

µ in the WCD derived by integration of the cut trace.
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Figure 5.6.: Mean decrease in Impurity (MDI) for LGBMRegressor (left) and XGBRegressor

(right). The MDI feature importance �MDI is normalized to the sum of all feature importances

and sorted by their value. Both ensembles provide very similar importance rankings. The

zenith angle \ is by far the most important criterion for the reduction of the MSE at each

node in the trees. The high importance of the signal ratio (r = (SSD/(WCD
supports the

bene�t of adding a second detector to determine the muon fraction 5µ. The small energy

Y = lg�/10
19

eV dependence of 5µ is re�ected in its negligible MDI value.

Mean Decrease in Impurity

The MDI feature importances for the LightGBM and XGBoost models are depicted in Fig. 5.6.

The importance ranking of both models is almost identical and con�rms their validity.

The zenith angle \ is by far the most important feature for the reduction of the MSE at

each node in the trees, which is in line with the �ndings of Sec. 5.5. It is followed by the

time di�erence between the station start time and the impact time of the shower core on

the ground ΔCc and the shower-plane distance A . The fourth most important feature is the

total signal ratio (r
between the SSD and the WCD, which is much more important than

the absolute total signal ((WCD
, (SSD

) of each detector and motivates the matrix formalism.

Together with the total signal of the SSD, the information content provided by the total

detector signals is exhausted. This results in only the signal of the WCD to be seemingly

not important at all. Surprisingly, this still holds if the ensembles are trained without the

signal fraction, as done in Fig. A.2. As pointed out in Sec. 5.2 already, the muon fraction is

little dependent on the energy, which is re�ected in the low importance of the logarithmic

energy Y = lg�/10
19

eV in the MDI feature importance. The logarithm of the mass of the

primary ln� is also introduced to explore to what extent the relative muon signal fraction

is related to the primary mass.

Permutation Feature Importance

For the study of the Permutation Feature Importance (PFI) (Sec. 4.5.1) the same data and

ensemble models are used as in the MDI study, and the number of times a feature is per-

muted is �xed to 10 to provide appropriate statistics. To have access to feature importances

describing the generalization capability of the model, the PFI studies are done on the test

data set and the results are depicted in Fig. 5.7. A crosscheck to reveal potential over�tting
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Figure 5.7.: Permutation Feature Importance (PFI) �PFI = ΔMAE for LGBMRegressor (left)
and XGBRegressor (right). The MAE is chosen as the PFI metric because the muon fraction

denotes a relative quantity. The shower-plane distance A and the zenith angle \ are one of

the most important features. For generalization capability, the signal risetime C1/2 seems

to be an important quantity as well for both ensemble models.

is done in Fig. A.3, where the PFI is also calculated on the train data set. As evident, the

models are not over�tted because the PFIs are similar for both train and test data sets.

By comparing the most important features of the PFI with the MDI study, two major

di�erences occur. Firstly, the signal rise time is of great importance for the generalization

capability of the ensemble models in the PFI study, whereas it is less important in the MDI

study. Secondly, the order of the other important features has changed slightly, but are

comparable in their scale. For instance A is undoubtedly leading, while \ has become less

important. Other di�erences are given by the reduced importance of the signal ratio of

both detectors and each model having a slightly di�erent feature ranking. This may be

attributed to the randomness of the feature wise shu�ing and the break down for highly

correlated features. Despite the mentioned di�erences, the less important features are in

good agreement for both studies.

SHapley Additive exPlanations Values

For the calculation of the SHapley Additive exPlanations (SHAP) values [74], the SHAP

python library
2

is utilized. The framework provides a fast and exact algorithm for tree

ensemble methods [90]. The same data and ensemble models as in the MDI and PFI studies

are used. The SHAP values are computed using a data sample of size 20 000, which is

randomly drawn from the test data set without replacement.

The global importance 〈|q 9 |〉 of feature 9 is calculated by averaging the absolute SHAP

values over the test data set (Eq. (4.8)). The results are depicted in Fig. 5.8. The order of

the features with respect to their importance is quiet similar to the results of the MDI and

PFI studies. The two features contributing the most to the model prediction are given

by the shower-plane distance and the zenith angle. The following features of medium

importance are of quiet similar magnitude, but there are di�erences in the ordering. More

2https://github.com/slundberg/shap
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Figure 5.8.: Global importance 〈|q 9 |〉, given by the mean absolute SHapley Additive exPla-
nations (SHAP) values for the LGBMRegressor. The zenith angle \ and the shower-plane

distance A attribute the most for the prediction of the muon fraction 5µ.

detailed insights about the attribution of a feature with respect to a model’s prediction can

be obtained by the feature-wise distribution of the SHAP values (Fig. 5.9). In combination

with the value of the feature, speci�ed by the color code, the direction of impact on the

model output can be investigated. In case of \ and A , high feature values lead to a positive

additive attribution q 9 to the model predictions and vice versa. Meaning that stations far

from the shower core or showers with high inclination contribute to a higher prediction

of the muon fraction. This perfectly resembles the physical expectation due to increased

attention of the electromagnetic component.

Feature Importance Summary

The �ndings of the MDI, PFI, and SHAP feature importance studies for the ensemble models

are qualitatively summarized in the following. The zenith angle \ and the shower-plane

distance A are consistently the most important features for the prediction of the muon

fraction 5µ. The signal rise time C1/2, the time di�erence between station start time and

the impact time of the shower core on the ground ΔCc, the signal ratio between both SD

detectors, the SSD total signal, and the primary mass are of medium importance for the

ensemble models. The features with the least importance are the signal in the WCD, the

time di�erence relative to the plane shower front ΔCsp and the energy of the shower �. The

high importance of the timing features motivate the utilization of further time dependent

trace features.

5.6. Baseline Models

At time of writing, no analytical method to estimate the muon fraction 5µ on station level

is implemented in the standard reconstruction of O�line. In the �eld of machine learn-

ing, especially in training complex models, it is essential to have an easily interpretable

benchmark for comparison. If this is not the case, one could end up in an echo chamber,
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Figure 5.9.: SHAP values q 9 describe the additive attribution of each feature for the pre-

dictions of the LGBMRegressor, with respect to the expectation value of the predictions

E[ ˆ5µ] = 0.51. The features are ordered by their global importance 〈|q 9 |〉. The color code

indicates the feature value relative to its minimum and maximum value, while the width

of the horizontal violins highlights the distribution of the feature with respect to its value.

In general widely spread SHAP values indicate a strong attribution of a feature to the

predictions and the feature is thus important. This is the case for the zenith angle \ and the

shower-plane distance A . Additionally their feature values contribute smoothly to a gradual

change in the corresponding SHAP values. Higher feature values give rise to positive

SHAP values and thus add on top the expectation value and vice versa. This translates into

stations far from the shower core or showers with high inclination, contribute to a higher

muon fraction prediction, what is physically expected. Furthermore, the model learned a

relation between the primary mass, which has been directly introduced as a feature, and

the relative muon content. The four distinct blobs in ln� correspond to the four di�erent

primaries, which are just spread out by the Gaussian kernel of the violin plot.
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improving the performance of his already very complex DNN only by tiny fractions with

millions of parameters, while a classical linear regression could provide similar perfor-

mance metrics. In this case the simpler model is always preferred, as stated by Occam’s
razor [91]. Another major bene�t is that the increase in performance due to complexer

models is explicitly quanti�able.

In the following, the baseline or reference models are linear regression and ensemble

models. Since the target 5µ on the quality-selected data follows roughly a normal dis-

tribution with a mean of ` (5µ) = 0.511 and a standard deviation of f (5µ) = 0.171, a

constant predictor suits as the absolute baseline any other model has to outperform. The

input features are normalized according to Secs. 5.3.5 and 5.3.6. Starting from the matrix

formalism 5µ = 0 +1(SSD/(WCD
, additional station and shower variables are added as input

features. By iteratively adding new features and tracking the corresponding changes in

the evaluation metrics, an additional feature importance measure is provided. In case

of the linear model, polynomial features up to a degree of % = 2 are generated to allow

it, to catch up interaction and non-linearities. This loosely corresponds to a data driven

approach for the parametrization of the matrix parameters. The naming convention for

the regression models is oriented by the degree of the polynomial input features. Thus the

model with features up to degree % = 1 or % = 2 are referred to as the linear or quadratic
models respectively. The ensemble models XGBRegressor and LightGBM are trained on

the same feature sets, but without polynomial expansion, because they are inherently

able to model non-linearities. They have been initialized with 500 estimators and default

parameters, so no hyperparameter tuning is performed.

5.7. Neural Networks

5.7.1. Training Strategy

The loss function for the training of the NNs is chosen to be the MSE

LMSE =
1

#

#∑
8

(~8 − ~̂8)2, (5.21)

where ~ = 5µ. The NNs are trained with a batch size of 128 for a maximum number

of 60 epochs. Adam [63] is used as an optimization algorithm with its default values in

tensor�ow [92]. To prevent the model to over�t on the training data, evaluation metrics are

computed and tracked by callbacks on the validation data set. The independent validation

data set is sampled randomly without replacement from 10% of the training data before

the training start. The ReduceLROnPlateau
3

and EarlyStopping
4

callbacks monitor the

validation loss at the end of each epoch. If the validation loss has not decreased since 3

epochs, the learning rate is decreased by a factor of 0.8. This helps to explore minima

during optimization. The training is stopped if the validation loss has not decreased since

7 epochs. If the validation loss increases again, the weights of the best epoch are restored.

3https://www.tensorflow.org/api_docs/python/tf/keras/callbacks/ReduceLROnPlateau
4https://www.tensorflow.org/api_docs/python/tf/keras/callbacks/EarlyStopping
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Figure 5.10.: Training and validation loss LMSE curves for a simple dense network. The

training stops already at the 45
th

epoch because the validation loss has not improved over

the last 7 epochs. If trained further, the model would over�t, which would result in an

increasing validation loss.

This training strategy results in a stable training process for which the model does not

over�t and computing resources are not wasted.

5.7.2. Data Normalization

The data preprocessing is incorporated into the NN models. This greatly increases the

transportability of the model, as the normalization is done on the �y during prediction

and parameters are saved together with the model weights. It enables one to experiment

with many di�erent normalization techniques for the same data set more easily. Instead

of creating a new duplicate data set each time a normalization is changed and keeping

track of it, a new model with the changed normalization is trained. The drawback of this

approach is a slightly increased training time. Nevertheless, this increase is acceptable

because of the moderate size of the models.

The normalization is performed by custom layers implemented in Tensor�ow [92]. The

normalization in the MetaNormalization layer is done on a per feature basis, which means

that each feature is normalized separately. The initialization of the MetaNormalization
layer is done by adapting it to the training data before the training starts. Later, as the time

traces are included as additional inputs, an additional custom TraceNormalization layer is

added that implements the logarithmic transformation by default. The time dependent

signals in the WCD and SSD traces are normalized with a constant o�set 2 = 1, by the
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transformation commonly applied in previous studies [31, 93, 94, 95],

B =
lg (B/(VEM or MIP) + 2)

lg (100 + 2) . (5.22)

5.7.3. Architectures

Dense Network

The simplest building blocks of NNs are fully connected dense layers. Dense layers can

be represented by a number of units which are connected to every single unit in the

preceding layer, creating a dense or full connection between the layers. In previous stud-

ies [31, 96] it was shown, that they are a powerful tool to predict the muon signal in

the WCD. Hence, it perfectly serves as a starting point as a NN-based reference model.

The architecture (Fig. C.1) is based on previous studies [31, 96]. The network consists

of a MetaNormalization layer and four dense layers with 32 units each. For each dense

layer a ReLU activation function was chosen. The output is a single unit that predicts

the muon fraction. Since 5µ ∈ [0, 1], the output is followed by an additional modi�ed

ReLU function which is limited to the interval [0, 1]. The model complexity, given by

roughly 3 500 trainable parameters, is low if compared to state-of-the-art NN models, such

as BERT [97] which has around 340 million parameters.

Convolutional Neural Network

In order to exploit the information hidden in the signal traces, the dense architecture is un-

suitable. Instead of manually extracting additional trace features, we let the network itself

do the work. The general architecture of the CNN can be split into three sub-networks:

the Trace Analyzer, the Meta Analyzer, and the Predictor (Fig. 5.11).

The Trace Analyzer (Fig. C.2) uses the �rst 400 bins of the detector traces after the signal

start bin as input. The trace is normalized by a logarithmic transformation (Eq. (5.22)) by

default and followed by convolutional blocks which successively extract higher level fea-

tures while compressing the trace. The extracted features are �attened
5

to one dimension.

Each convolutional block contains a convolutional layer with a kernel size of 3, a stride of

1, and a ReLU activation function. The downsampling is accomplised by a max pooling

layer with a kernel size of 2 and a stride of 2. Alternating convolutional layers and pooling

layers is a common used technique in the �eld of computer vision, e.g., AlexNet [98].

The idea behind this architecture is based on the increasing receptive �eld6
with every

convolutional layer, while still being able to capture the smaller features through the small

kernel sizes.

The Meta Analyzer uses the scalar features as input. It resembles the previously intro-

duced dense NN architecture without the �nal dense layer that contains only a single

5
A �attening layer reshapes a multi-dimensional output from a preceding layer into a one-dimensional

vector, allowing it to be processed by subsequent fully connected layers.

6
The receptive �eld in a neural network refers to the region of the input data that is directly or indirectly

connected to a particular node and in�uences its activation.
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unit (Fig. C.1). Thus, it consists of the custom MetaNormalization layer, normalizing the

scalar inputs, which is followed by three dense layers with a ReLU activation function each.

The intention of this sub-network design is to integrate relevant characteristic properties

of the shower event, which would not be available to the network if only traces are used.

The Predictor (Fig. C.3) combines the extracted features from the Trace Analyzer and Meta
Analyzer by concatenating them. The Predictor consists of three dense layers with 64

units and ReLU activation functions each. The output is a single unit that is followed by a

modi�ed ReLU activation function to predict the muon fraction. The model complexity is

given by roughly 20 000 trainable parameters.

5.8. Convolutional Neural Network

5.8.1. Comparison to Reference Models

What is the amount of unused information in the complex and raw data structures and is

it possible to utilize this information with special NN architectures? In order to answer

this question, NN architectures with increasing complexity are evaluated and compared

to the baseline models de�ned in Sec. 5.6 to validate the CNN (Sec. 5.7.3). In general, the

model complexity is measured by the number of trainable parameters. The main goal is to

explore, how increasing the complexity in�uences the predictions and if the increase in

predictive power is signi�cant.

The veri�cation of the CNN architecture is done in two steps, by comparing performance

metrics to other models. First, the CNN architecture is compared to the best perform-

ing baseline models. Then, the performance of the CNN architecture is crosschecked

with another commonly used architecture that is used to process time dependent data, a

LSTM-based network. Its architecture is obtained by substituting the iteratively stacked

convolution and pooling layers in the Trace Analyzer of the CNN by a single LSTM layer.

As a measure of performance, the binned biases and resolutions are used.

Baseline Comparison

Instead of optimizing the model architectures itself, as done in [96], we analyzed how the

performance of each model class changes if di�erent input feature sets are used. Starting

from a feature set that consists of the total signal of each detector (WCD
and (SSD

, motived

by the matrix formalism (Sec. 5.1.1), other features are successively added to �nd the best

performing model. This can be viewed as a non-linear, higher order extension of the matrix

formalism. For each feature set, the reference models are trained on the same training

data set and the change in performance on the independent test data set is tracked. This

procedure is a cross-check of the feature importance study done in Sec. 5.5.

The results for the linear and quadratic model are shown in Table B.1 and for the DNN in

Table B.2. The decrease of the Mean Absolute Error (MAE) is consistent with the �ndings

in the feature importance study done with ensembles (Sec. 5.5), \ and A are very important

inputs to predict the muon fraction. Similar, ℎ and C1/2 signi�cantly improve the predictive

power. Both station-level variables provide information about upstream-downstream

location of the station and the temporal structure of the signal. Again, the logarithmic
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Figure 5.11.: Illustration of the base NN architecture, combining the time traces with

station and shower level variables to predict the muon fraction. The main components

are the Trace Analyzer, the Meta Analyzer, and the Predictor. The Trace Analyzer takes

the �rst 400 bins of the detector traces as an input and extracts higher level features. It

consecutively stacks convolutional and pooling layers while compressing the trace features

and increasing the receptive �eld. The Meta Analyzer takes the scalar features as an input

and resembles the former simple dense architecture (Fig. C.1) without the output layer. The

Predictor concatenates the extracted features from the Trace Analyzer and Meta Analyzer,
mixes their information through dense layers, and predicts the muon content ~̂ = ˆ5µ.
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energy seems to not be important for the prediction of 5µ. The evaluation metrics are

not altered by including it. In general, the performance increases with more features and

higher model complexity per model class. Notable is also the signi�cant enhancement

from the �rst order features to the second order features in case of the regression models.

It shows that there are non-linear relations between the input features and the muon

fraction, which the linear model failed to represent. Studies, such as [31], indicate that

substituting the (SSD
by the signal ratio (r = (SSD/(WCD

improves the performance, as this

feature is more closely related to 5µ (Sec. 5.1.1). This is investigated in Table B.3. However,

the result of this study does not support their claim since the global evaluation metrics

do not change in comparison to Table B.2. Qualitatively, the attribution of a feature to

the performance of the linear and quadratic models is similar to the results obtained by

the simple dense NN. A major di�erence between the NN and the linear models is the

better utilization of information contained in the feature sets. Less inputs are required

for similar results in performances. This e�ciency is due to the non-linearities of the

activation functions in the NN.

After various features combinations on each baseline model have been tested, a summary

of the best performing baseline models of each model class is given in Table 5.2. All models

signi�cantly outperform the linear predictor and thus verify the chosen methods and

feature sets. As expected, the evaluation metrics improve with increasing model complexity,

but the improvement is inherently diminishing between the quadratic, LightGBM and

simple dense model. This saturation indicates that the information in the scalar features

to predict 5µ is exhausted. The CNN is able to extract additional information directly

from the temporal structure of the signal traces. Its global MAE of around 〈|Δ5µ |〉 = 0.037

can be translated into an lower limit on the average relative error on the prediction

of the muon signal via 〈|Δ5µ |〉 ≈ 〈|(̂µ − (µ |/(tot |〉 ≤ 〈|(̂µ − (µ |/(µ〉, and amounts to

〈|(̂µ − (µ |/(µ〉 ≥ 3.7%. Thus, the error is of the same order as the relative errors reported

in previous studies [31, 96]. The additional information hidden in the traces, can be

related to a decrease in the proton-iron bias of around Δ〈Δ5µ〉p,Fe = −0.0168 and a increase

in resolution of Δf (Δ5µ)p = −0.0067 and Δf (Δ5µ)Fe − 0.0045 for proton and iron, by

comparing the global dense NN to the CNN.

Additionally to the global metrics, the bias and resolution in dependency of certain shower

variables are of prime importance to further qualify the performance. In general, the

LightGBM, dense NN and CNN consistently outperform the linear and quadratic models.

They are not suspect to any signi�cant bias over the selected shower and station variables.

Figs. 5.12 to 5.13 show, that the complexity of the models, measured in their number of

trainable parameters (Table 5.2), is correlated to the achievable resolution. The linear model

fails to reproduce dependencies, which are caught up almost perfectly by the polynomial

feature expansion in sin
2 \ . As a consequence, the quadratic model reaches very close to

the bias and resolution of the LightGBM and simple dense NN. This strongly indicates

the exhaustion of information provided by the feature set and motivates to explore the

information content of the signal time traces. The CNN model outperforms all other

models due to the additional information contained in the signal traces. The increase in

performance is re�ected in a better resolution of around Δf (5µ) ≈ −0.01 in comparison

to the LightGBM and NN models in all variables. The resolution of the CNN ranges

from f (5µ)=0.04 to 0.06, for A , \ and �. It indicates a promising discrimination capability
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Table 5.2.: Performance metrics of the baseline models. The models are chosen as the

models with the lowest MAE for each model class. All reference models exhibit a better

performance than the constant predictor. The performance of the quadratic model is

compatible with the more complex LightGBM and dense NN models. The number of

trainable parameters is given in the second column.

Model Parameters 〈|Δ5µ |〉 〈Δ5µ〉p,Fe f (Δ5µ)p f (Δ5µ)Fe

constant 1 0.1419 0.0819 0.1712 0.1638

matrix 2 0.1069 0.0349 0.1365 0.1276

linear 11 0.0550 0.0475 0.0730 0.0651

quadratic 66 0.0435 0.0350 0.0591 0.0529

LightGBM 500 0.0409 0.0299 0.0554 0.0504

dense NN 3 553 0.0408 0.0264 0.0550 0.0501

CNN 19 873 0.0359 0.0141 0.0483 0.0456

between proton and iron induced showers with respect to their muon fraction. Their

average di�erences can reach 〈5µ(A )〉Fe − 〈5µ(A )〉p ≈ 0.1 on a station level for certain

energy and zenith bins (Fig. 5.1). Hence, the discrimination would be possible on a 1f-

level with an unbiased predictor. The monotonic increase in resolution with increasing

signal strength, distances closer to the shower core, and higher energies, is similar for all

models. For higher energies, the increased resolution can be attributed to an increase in

statistics (Fig. 5.2).

CNN vs LSTM Trace Analyzer

Since the CNN outperforms the reference models in all tested metrics, a crosscheck to

another architecture which is speci�cally designed to process sequential data has to be

done. The su�ciency of the CNN architecture is validated by comparing its performance

to a more complex NN using a LSTM-based Trace Analyzer. This is accomplished by

substituting the stacks of convolutional and pooling layers with one LSTM (Sec. 4.3) layer

in the Trace Analyzer. The LSTM layer is con�gured by its number of units to extract a total

of 32 or 64 trace features to investigate possible improvements. Additionally a bidirectional

LSTM layer, which extracts 64 trace features, is deployed instead of the normal LSTM

layer in order to capture sequential information in both time directions. As a reference,

the CNN analyzer extracts 96 trace features in its default con�guration. All models use the

same Meta Analyzer with the scalar inputs \ , �, A , Δℎ and ΔC2 . The comparison in terms of

their biases and resolutions is, for instance, depicted as a function of distance in Fig. 5.14.

The performance comparison in the other binned quantity can be found in Fig. A.4 and

Fig. A.5. All tested con�gurations show essentially the same resolution, while there are

some minor di�erences in the bias. The same holds for the evaluation of global metrics in

Table 5.3. Thus the used CNN analyzer is validated and all the following extensive studies

are performed with the CNN analyzer, as training the LSTM is computationally much

more expensive.
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Figure 5.12.: Bias (top) and resolution (bottom) of the CNN and the reference models as a

function of shower plane distance A (left) and logarithmic total signal lg((/VEM+1) (right).
Only the linear model shows a noticeable bias in the whole phase space. The resolution

monotonically increases with larger total signals and decreases with larger shower plane

distances for all models. The decrease in resolution close to the shower core can be

attributed to the limited statistics in this region. The CNN outperforms the resolution of

the quadratic model by around 0.02.
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Figure 5.13.: Bias (top) and resolution (bottom) of the CNN and the reference models as a

function of logarithmic energy lg� (left) and sin
2 \ (right). Only the linear model shows

a noticeable bias in the whole phase space, and fails to catch the quadratic dependency

in sin
2 \ . The resolution of the CNN monotonically increases with larger energies until

it is almost constant around f (Δ5µ) ≈ 0.042, and gradually decreases with larger zenith

angles. The CNN outperforms the resolution of the quadratic model by around 0.02 over

the whole phase space.

66



5.8. Convolutional Neural Network

−0.010

−0.005

0.000

0.005

0.010

〈Δ
5 µ
〉

LSTM 32
LSTM 64

LSTM bi 64
CNN

0.5 1.0 1.5 2.0
A/km

0.00

0.02

0.04

0.06

�
( Δ5 µ

)

Figure 5.14.: Bias (top) and resolution (bottom) of a DNN using a convolutional, versus

di�erent LSTM-based Trace Analyzers, in dependence of the shower plane distance A . The

LSTM analyzers consist of a single LSTM layer with 32 or 64 units, or a bidirectional layer

with 64 units in total. While there are minor di�erences in the bias, the achieved resolution

is essential the same over all trace analyzers. It validates the used CNN analyzer as a

suitable choice.

Table 5.3.: Evaluation metrics for di�erent LSTM-based Trace Analyzer architectures to

validate the used CNN approach. As all metrics are essential the same to a sub-percent

level, the CNN analyzer is validated as a suitable choice.

Model Trace features Parameters 〈|Δ5µ |〉 〈Δ5µ〉p,Fe f (Δ5µ)p f (Δ5µ)Fe

LSTM 32 16 193 0.0360 0.0166 0.0484 0.0454

LSTM 64 30 913 0.0356 0.0155 0.0480 0.0452

LSTM bi 64 22 721 0.0356 0.0149 0.0479 0.0453

CNN 96 19 841 0.0361 0.0160 0.0484 0.0457
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5.8.2. Optimization of the Architecture

Since the CNN architecture reached the performance of LSTM-based architectures (Ta-

ble 5.3), we investigated if it still has unreached potential to further increase the perfor-

mance. Therefore, a hyperparameter scan is performed to �nd a possibly better performing

con�guration for the trace analyzer. Additionally, it is investigated if the log-normalization

of the time traces has any impact on the convergence behavior of the model by compar-

ing it to other possible normalization layers. Finally, the performances of di�erent meta

features are evaluated to examine the best performing input feature set. To reduce the

randomness inherent to the training procedure, each network con�guration is trained �ve

times and the global metrics of the converged models are averaged.

Optimization of the Trace Analyzer

To optimize the used hyperparameters, a grid search over the number of convolutional

blocks =b, the number of convolutional layers per block =b,l given as a list of their units, the

pooling layer type (maximum and average) and the type of convolutional layer (Conv1D
7

or SeparableConv1D
8
) is performed. For this study, the input for the MetaAnalyzer is

�xed to �, \ , A , Δℎ and ΔCc. The result is depicted in Table B.4. The normal Conv1D layer

constantly outperforms the SeparableConv1D con�guration. Increasing the number of

convolutional layers per block =b,l, to increase the receptive �eld, has not signi�cantly

increased the performance. In fact, for some con�gurations it does the opposite as the

MAE rises. It is attributed to th fact that the used architecture of the TraceAnalyzer is not

suitable to be stacked to arbitrary depth. Substituting the maximum pooling layer with an

average pooling layer lead to a decrease of ≈ 0.002 in 〈|Δ5µ |〉 across all models. Further

compressing down the number of extracted trace features =tf by increasing the number

of convolutional blocks did not improve the performance either. The major part of the

con�gurations with the Conv1D layer consistently lead to 〈|Δ5µ |〉 ∈ [0.0357, 0.0362]. All

of these results indicate that there is little space left for further improvements for this

speci�c architecture.

In addition to the Trace Analyzers architecture search, the in�uence of the widely used

log-normalization of the traces in Auger needs to be investigated and quali�ed. Therefore

two further normalization layers are introduced. The maximum normalization takes each

trace and divides it by its maximum, limiting the maximum value to 1 and removing

any units. The summation normalization divides each trace by the sum of all values in

the trace and thus, by the total deposited charge of the particles. These three possible

trace normalization techniques are compared to not applying any normalization at all.

The comparison is done in two steps. First, the convergence behavior during training

is investigating by tracking the training and validation loss. Then, the trained models

are evaluated with respect to their global metrics. All models are con�gured to train for

a maximum of 100 epochs. The loss curves (Fig. 5.15) in case of no normalization and

the logarithmic normalization converge more rapidly and smoothly than the other two.

Furthermore, they are able exploit a more optimal model parameter space as their losses

7https://www.tensorflow.org/api_docs/python/tf/keras/layers/Conv1D
8https://www.tensorflow.org/api_docs/python/tf/keras/layers/SeparableConv1D
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Figure 5.15.: Average loss curves and their standard deviation for an ensemble of �ve

CNNs per unique trace normalization layer. No trace normalization and the logarithmic

normalization provide a stable and quick convergence, while also clearly outperforming

the maximum and summation layer.

are smaller as the training progresses. One has to keep in mind that the validation data

set is randomly sampled from the training set before training start and thus, there are

�uctuations in the validation losses which are indicated by the error bands. The networks

with maximum and summation normalization layers stop training earlier, as the losses

are not decreasing further. The e�ect of the di�erent normalization techniques on an

average global metric scale (Table 5.4) show, that applying no normalization at all lead to

the best results. Even though, the actual di�erences to the log-normalization layer are of

the sub-percentage-point level and could be attributed to statistical �uctuations inherent

to the training procedure. The di�erences to the maximum and summation layer can be

explained by the loss of information about the signal size, which is removed by dividing

through the maximum or the sum.

Influence of Meta Inputs

Since the hyperparameter search of the CNN TraceAnalyzer did not yield any signi�cant

improvements, the performance of di�erent meta input feature sets is analyzed. For the

whole study, the architecture of the Trace Analyzer is �xed to its default con�guration.

The average global metrics for reconstructed input variables (Table 5.5) show, that the

shower and station geometry de�ned by \ and A or \ and � provide almost the complete

additional information content as the metrics only decrease on the fourth decimal place

by adding further meta variables. In contrast to the feature importance study, the network
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Table 5.4.: Evaluation metrics for di�erent trace normalization layers, aggregated as the

mean of the metrics of �ve CNNs. No trace normalization at all provides the best metrics

on the test set.

Trace normalization 〈|Δ5µ |〉 〈Δ5µ〉p,Fe f (Δ5µ)p f (Δ5µ)Fe

none 0.0359 0.0141 0.0484 0.0456

log 0.0362 0.0144 0.0486 0.0459

max 0.0365 0.0151 0.0491 0.0463

sum 0.0370 0.0164 0.0498 0.0467

is able to utilize the energy as an important feature. Another important feature which

induces a greater drop in the global metrics, is information about the curvature of the

shower front and thus the shower age. It is provided interchangeably by ΔCsp, ΔCc and

ΔChs. By including the signal ratio (r
of both detectors, it shall be explored if the network

somehow underweights the SSD signal trace. This is rejected on the basis of the global

metrics. As the feature set \ , �, A , Δℎ and ΔCc provides the best global metrics, it is used

for the following studies.

Since the reconstructed variables are subject to uncertainties and biases, an additional

crosscheck on the global performance is done by using only MC variables as inputs.

Therefore the total traces, which are simulated independently from the sub-component

traces, are substituted by the sum of all sub-component traces and the reconstructed meta

input features �, \ , A are replaced by the corresponding MC features. through the trace

substitution, the random baseline �uctuations are gone and the baseline is constant which

will lead to less noise propagating through the network. The resulting global metrics

are depicted in Table 5.6. By comparing the global MAE of the reconstructed \ , � and

A to the MC feature set, a decrease of about Δ〈|Δ5µ |〉 = −0.001 is found. The di�erence

in the proton-iron primary bias, as well their resolutions are only marginally a�ected.

This validates that the used reconstructed variables do introduce only a small fraction of

uncertainty in the model predictions, and thus the Transferability of the trained model to

measured data is enhanced. Furthermore, one could speculate that this indicates that the

network has reached the absolute lower limit of achievable resolution, which is given by

the inherent statistical �uctuations of the shower development and the detector responses.

5.8.3. Detector Study

Significance of the SSD

One of the main goals of the AugerPrime upgrade is the disentanglement of the electro-

magnetic and muonic sub-components of an air shower (Sec. 3.4). Until this section it

has been assumed, that the complementary information provided by the SSD time trace

is essential for a improved reconstruction of the muonic fraction, as it is the case in the

classical matrix formalism (Sec. 5.1.1). To qualify the signi�cance of the SSD, the CNN is

trained on either only the SSD, or only the WCD trace, or on both detector traces in two
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Table 5.5.: Evaluation metrics for di�erent meta input feature combinations, aggregated as

the mean of the metrics of �ve CNNs per feature set.

Meta Features 〈|Δ5µ |〉 〈Δ5µ〉p,Fe f (Δ5µ)p f (Δ5µ)Fe

\ 0.0430 0.0302 0.0566 0.0528

\ , A 0.0363 0.0165 0.0487 0.0460

\ , A , Δℎ 0.0362 0.0169 0.0487 0.0457

\ , A , Δℎ, ΔCc 0.0363 0.0166 0.0487 0.0459

\ , A , Δℎ, ln� 0.0359 0.0032 0.0490 0.0457

\ , A , Δℎ, ΔCc, ln� 0.0363 0.0011 0.0488 0.0455

\ , � 0.0364 0.0161 0.0489 0.0462

\ , �, A 0.0362 0.0158 0.0486 0.0460

\ , �, A , Δℎ 0.0361 0.0160 0.0485 0.0458

\ , �, A , Δℎ, ΔCc 0.0360 0.0140 0.0484 0.0457

\ , �, A , Δℎ, ΔChs 0.0362 0.0159 0.0486 0.0458

\ , �, A , Δℎ, ΔCsp 0.0360 0.0143 0.0485 0.0456

\ , �, A , Δℎ, ΔCsp, (r
0.0361 0.0148 0.0486 0.0458

\ , �, A , Δℎ, ln� 0.0355 0.0006 0.0486 0.0453

Table 5.6.: Evaluation metrics for di�erent meta input feature combinations, aggregated

as the mean of the metrics of �ve CNNs per feature set. This time the input features are

taken to be the MC instead of the reconstructed variables. Instead of the total signal traces,

the sum of all sub-component traces is used which does not exhibit baseline �uctuations.

Meta Features 〈|Δ5µ |〉 〈Δ5µ〉p,Fe f (Δ5µ)p f (Δ5µ)Fe

\MC, �MC 0.0378 0.0270 0.0504 0.0467

\MC, �MC, AMC 0.0350 0.0108 0.0472 0.0449

\MC, �MC, AMC, (r
0.0350 0.0107 0.0472 0.0447

\MC, �MC, AMC, ln� 0.0345 0.0006 0.0471 0.0442

\MC, �MC, AMC, (r
, ln� 0.0344 0.0002 0.0469 0.0442
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Table 5.7.: Evaluation metrics for di�erent detector input combinations, aggregated as the

mean of the metrics of �ve CNNs per feature set.

Detector 〈|Δ5µ |〉 〈Δ5µ〉p,Fe f (Δ5µ)p f (Δ5µ)Fe

SSD 0.0443 0.0340 0.0606 0.0538

WCD 0.0364 0.0163 0.0490 0.0460

WCD + SSD 0.0359 0.0139 0.0484 0.0457

WCD + SSD sep 0.0359 0.0137 0.0484 0.0457

di�erent input con�gurations. In the �rst, the WCD and SSD traces are stacked depth wise

with the dimensionality (400,2). One drawback of this method lies in the timing mismatch

due to inherently di�erent detector responses and signal decays. One attempt to solve

this problem, is given by the second input con�guration, where a separate second Trace
Analyzer for the SSD trace is added to network. In this setup the traces are convolved

separately and have an unique Trace Analyzer specialized on the feature extraction of each

detector. The meta input feature set is �xed to \ , �, A , Δℎ and ΔCc.
The performance of the di�erent models in terms of their binned bias and resolution,

with respect to various shower and station variables, is shown in Figs. 5.16 and 5.17. The

biases of all detector con�gurations are negligible small across the provided shower and

station variables. In case the network is trained with the SSD trace, the resolution drops

signi�cantly for high energetic showers and almost across all inclinations. Especially far

from the shower core A ≥ 1 km, the resolution becomes worse which could be attributed to

the limited cross sectional area of the SSDs, but this is however not re�ected in the zenith

angle behavior. Another problem probably also lies in the lack of causality, as particle

traversing one detector are not necessarily traversing the other one and the particle density

can exhibit �uctuations and absorptions locally and thus, deposit di�erent signal sizes in

both detectors. It is expected from (Sec. 5.1.1), that including the SSD trace will allow for

the disentanglement of the electromagnetic and muonic sub-components and thus improve

the performance. However, adding the SSD in any of the described ways, does not impact

the resolution. Only in the case of low-energy showers a minor improvement becomes

visible. But as the global primary-dependent bias (Table 5.7) decreases by including the

SSD, a more detailed study on the primary-dependent bias and resolution with respect to

proton and iron-induced air-showers is done (Figs. 5.18 and 5.19). For �, \ and (tot the iron

bias is reduced by a constant of Δ〈Δ5µ〉Fe ≈ 2.5×10
−3

by including the SSD trace, while

the resolutions are una�ected.

It is hard to draw a conclusion why the SSD does not improve the performance signi�-

cantly, but it is likely that the information content that is hidden in the temporal signal of

the WCD, together with the information through the meta variables is exhausted for the

prediction of the muon fraction and the SSD only holds redundant information.

Gain Systematics

In this analysis we explored, if the CNN exhibits any systematics which are caused by the

inherently di�erent systematics of High Gain (HG) or Low Gain (LG) traces. Again, the
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Figure 5.16.: Bias (top) and resolution (bottom) of CNN ensembles for di�erent detector

input con�gurations as a function of shower plane distance A (left) and logarithmic total

signal lg((/VEM+ 1) (right). For each unique detector combination 5 networks are trained

and the mean of their prediction is used for the evaluation. Because we predict the muon

fraction in the WCD it is not surprising that the ensembles that only receive the SSD

trace as an input perform worse. However adding the signal trace of the SSD, either as an

separate input with an second TraceAnalyzer or as a color channel of the WCD trace, does

not improve the resolution signi�cantly.

meta inputs are �xed to \ , �, A , Δℎ and ΔCc.
In a �rst study, the networks are trained either separately on the HG/LG traces or the

network explicitly receives the binary variable SdRecStation:IsHighGainSaturated as an

additional meta input feature. These two con�gurations are then compared to the network

being trained simultaneously on both HG and LG traces. As there is no signi�cant di�erence

in terms of bias and resolution, the results are moved into the appendix (Figs. A.6 to A.7).

One can conclude that the network is capable of correctly handling both HG and LG traces

in its default con�guration, even though it does not explicitly receive information about it.

Another crosscheck to reveal possible di�erent systematics of HG/LG traces is done by

investigating the bias and resolution suspect to the two gain types. The results are shown

in Figs. 5.21 to 5.20. As the networks do not have any signi�cant bias over the binned

variables, the network is capable of handling both gain types and con�rms the previous

study. In general, the resolution of the LG traces is better than the one of the HG traces.

This is expected, as the LG traces are less noisy and therefore the CNN is able to extract

more information from them. Further, the resolution of HG traces continuously matches

the resolution of the LG traces with increasing signal size. This validates, that there are no

systematic errors introduced by training the network simultaneously on both gain types.
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Figure 5.17.: Bias (top) and resolution (bottom) of CNN ensembles for di�erent detector

input con�gurations as a function of logarithmic energy lg� (left) and sin
2 \ (right). For

each unique detector combination 5 networks are trained and the mean of their prediction

is used for the evaluation. Because we predict the muon fraction in the WCD it is not

surprising that the ensembles that only receive the SSD trace as an input perform worse.

However adding the signal trace of the SSD, either as an separate input with an second

TraceAnalyzer or as an color channel of the WCD trace, does not improve the resolution

signi�cantly.
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Figure 5.18.: Primary-dependent bias (top) and resolution (bottom) of CNN ensembles for

di�erent detector input con�gurations, as a function of shower plane distance A (left) and

logarithmic total signal lg((/VEM + 1) (right). For each unique detector combination, �ve

networks are trained and the mean of their prediction is used for the evaluation. Including

the SSD detector trace on top of the WCD does improve the primary-dependent bias a

little, but for the resolution no signi�cant improvement is observed.
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Figure 5.19.: Primary-dependent bias (top) and resolution (bottom) of CNN ensembles for

di�erent detector input con�gurations, as a function of logarithmic energy lg� (left) and

sin
2 \ (right). For each unique detector combination, �ve networks are trained and the

mean of their prediction is used for the evaluation. Including the SSD detector trace on

top of the WCD does improve the primary-dependent bias a little, but for the resolution

no signi�cant improvement is observed.

−0.05

0.00

0.05

〈Δ
5 µ
〉

LG
HG

18.0 18.5 19.0 19.5 20.0
lg(�/eV)

0.00

0.02

0.04

0.06

0.08

0.10

�
( Δ5 µ

)

−0.05

0.00

0.05

〈Δ
5 µ
〉

LG
HG

0.0 0.2 0.4 0.6
sin2 �

0.00

0.02

0.04

0.06

0.08

0.10

�
( Δ5 µ

)

Figure 5.20.: Bias (top) and resolution (bottom) of the CNN network for LG (green) and

HG (red) traces as a function of logarithmic energy lg� (left) and sin
2 \ (right). The

predictions are given by the means of �ve CNN networks. The worse resolution of the HG

traces is expected, as the LG traces are less noisy and therefore the CNN is able to extract

more information from them.
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Figure 5.21.: Bias (top) and resolution (bottom) of the CNN network for LG (green) and

HG (red) traces, as a function of shower plane distance A (left) and logarithmic total signal

lg((/VEM + 1) (right). The predictions are given by the means of �ve CNN networks. The

matching resolution of HG and LG traces with increasing signal size validates, that there

are no systematics introduced by training the network simultaniously on both gain types.

5.8.4. Composition Dependence

One of the main goals of this work is the construction of a composition-sensitive variable

to discriminate on an event-to-event basis. Hence, the predictions of the network should

not depend on the type of primary particle. In this section, it is investigated if the primary-

dependent bias of the predictions of a NN can be reduced by directly penalizing it.

Composition dependent Loss

A second loss term Lc is added to the loss LMSE with a weight _c, to penalize composition

dependent biases as

Lcomp = LMSE + _c Lc (5.23)

with Lc =
1

4

p,He,O,Fe∑
I

[
1

#I

#I∑
8=1

(~8 − ~̂8)
]2

. (5.24)

Where #I is the number of elements in the current batch. The weight _c is scanned on a

logarithmic scale and the biases of proton and iron induced showers are tracked during

training of the CNN (Fig. 5.22). The meta-feature set used for this study is given through �,

\ , A , Δℎ, and ΔCc. The primary dependent metrics (Table 5.8) are evaluated globally as well

in dependence of shower and station variables (Figs. 5.23 and 5.24). In all cases a larger

value of _c yields a smaller di�erence between proton and iron biases, but also decreases

the resolution. In general, a well behaved �at and constant bias in every shower and

station variable is preferred. Large weights _c ≥ 10 introduce random dependencies and

up- and downward �uctuations in the biases. But for an equal weighting of the composition
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Figure 5.22.: Primary-dependent bias LB of CNN predictions for stations triggered by

showers induced by proton (red) and iron (blue) primaries for di�erent weights _c, penal-

izing the composition loss. With increasing _c, the primary-dependent bias is reduced and

thus the gap between proton and iron bias shrinks, but also leads to an earlier training

stop.

loss _c = 1, the gap between the primary-dependent biases is reduced by 0.003, while

the resolutions decrease only by around 0.0005 percentage-points when compared to

_c = 0. Even though the biases remain �at and constant in the selected shower- and station

variables, it is unclear if this holds for all variables. Other studies, such as [93], have

shown that the composition dependent bias introduces unexpected dependencies in other

variables. Therefore, the composition dependent loss is not used (_c = 0) in the following

analysis and the possible reduction is dropped in favor of well behaved predictions.

Performance Evaluation of Leading Models

Since none of the various test yielded any signi�cant improvement, it is from now on

assumed that the chosen architecture is optimal to predict the muon fraction. Neverthe-

less, the network is con�gured to use the best performing con�guration of each study.

Namely, the CNN is trained with both traces of the SD being not normalized, and takes

the meta feature set consisting of \ , �, A , Δℎ and ΔCc as inputs. To maximize the reachable

performance, the maximum number of training epochs is increased to 100 epochs. The

predictions of �ve networks out of ten are chosen by the best MAE on the test data set,

averaged, and used for the future studies.

The performance of the CNN is evaluated in terms of correlation, bias and resolution plots
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Table 5.8.: Evaluation metrics for di�erent weights _c penalizing the composition loss,

aggregated as the mean of the metrics of �ve CNNs per feature set. One can reduce

the primary-dependent bias 〈Δ5µ〉p,Fe arbitrarily by increasing _c at the cost of a worse

resolution f (Δ5µ)p and f (Δ5µ)Fe.

_c 〈|Δ5µ |〉 〈Δ5µ〉p,Fe f (Δ5µ)p f (Δ5µ)Fe

0.01 0.0361 0.0138 0.0485 0.0458

0.1 0.0360 0.0138 0.0485 0.0458

0.0 0.0360 0.0141 0.0485 0.0458

1.0 0.0363 0.0110 0.0490 0.0462

10.0 0.0380 0.0056 0.0511 0.0482

100.0 0.0429 0.0046 0.0576 0.0542

1000.0 0.0428 0.0033 0.0573 0.0541
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Figure 5.23.: Primary-dependent biases (top) and resolutions (bottom) of the CNN as a

function of energy � (left) and zenith \ (right) for di�erent weights _c penalizing the

composition loss. The bias between proton (red) and iron (blue) is reduced by around

0.0003 for _c = 1, while no decrease in resolution is visible.

78



5.8. Convolutional Neural Network

−0.02

−0.01

0.00

0.01

0.02
〈Δ
5 µ
〉

p (�c = 0)
p (�c = 1)

Fe (�c = 0)
Fe (�c = 1)

0.5 1.0 1.5 2.0
A/km

0.00

0.02

0.04

0.06

0.08

�
( Δ5 µ

)

−0.02

−0.01

0.00

0.01

0.02

〈Δ
5 µ
〉

p (�c = 0)
p (�c = 1)

Fe (�c = 0)
Fe (�c = 1)

1.5 2.0 2.5 3.0 3.5
lg

(
(tot/VEM+ 1

)0.00

0.02

0.04

0.06

0.08

�
( Δ5 µ

)
Figure 5.24.: Primary-dependent bias (top) and resolution (bottom) of the CNN as a func-

tion of shower plane distance A (left) and total signal(tot (right) for di�erent weights _c

penalizing the composition loss. The bias between proton (red) and iron (blue) is reduced

by around 0.0003 for _c = 1, while no decrease in resolution is visible.

in dependence of �, \ , A and (tot. The global correlation of the CNN predictions is shown

in Fig. 5.25 and the coe�cient of determination amounts to '2 = 0.93. The predictions lie

on the diagonal and the spread of the residuals is equal to f (Δ5µ) = 0.05.

To highlight deviations from the diagonal in the correlation plot, each bin entry is normal-

ized to the maximum number #max(5µ) of counts in each column, i.e. # (5µ, ˆ5µ)/#max(5µ).
The results for each primary are depicted in Fig. 5.26. In regions with low statistic the

network predictions tend towards the mean value of 5µ, e.g., for high 5µ the network

underpredicts the muon fraction. The primary-dependent bias gap between proton and

iron decreases with increasing energy 〈Δ5µ〉p,Fe(�≥10
19

eV)≤0.02 (Fig. A.9). At the same

time the resolution of the CNN predictions increases f (Δ5µ)p(�≥10
19

eV)≤0.05. This could

be attributed to increasing statistics in the data set or a decrease in the number of muons

as the energy in the hadronic component decreases with energy. Bias and resolution tend

to be almost constant over the whole zenith-angle range, except for small or large zenith

angles. In this regions the bias between proton and iron-induced showers is reduced. It

can be explained by the attenuation of the electromagnetic component, leading to an

muon fraction close to one for large zenith angles, irrespective of the primary. A similar

reasoning holds for the bias and resolution for high shower plane distances (Fig. A.8). The

rapid increase in resolution with increasing signal size indicates that the network predic-

tions are heavily in�uenced by the inherent statistical uncertainty. This can be quanti�ed

through the maximum error of the approximated error model (Eq. (5.9)) which shows a

similar dependency. Iron has a slightly better resolution than the lighter particles, which

also resembles the decreased statistical �uctuations of shower development due to the

superposition principle. A more detailed analysis of the bias and resolution in dependence

of two dimensional combinations in �, \ , and A is given in Figs. 5.27 to 5.30. While the bias

per primary is almost constant in shower variables 〈Δ5µ〉 ∈ [−0.01, 0.01], the resolution
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Figure 5.25.: Correlation of CNN predictions for all primaries, normalized to the maximum

number counts of all bins #max.

drops signi�cantly for low energetic and highly inclined showers f (Δ5µ)≥0.06. The net-

work exhibits high primary-dependent biases |〈Δ5µ〉|≥0.02 very close to the shower core

for highly inclined proton and iron showers. This can be attributed to limited statistics in

this region of the phase space.

5.8.5. Mixture Density Network

As shown previously, the muon fraction exhibits large �uctuations, especially for small

signal sizes. One architecture that quali�es the uncertainty of the NN prediction is given

through Mixture Density Networks (MDNs) (Sec. 4.4). The CNN architecture can be modi-

�ed by substituting the prediction unit with a Mixture Density Head (MDH), see Fig. C.4.

It is assumed that the mixture is given by a single Gaussian (U = 1). Hence, the network

learns to predict the mean ˆ̀(5µ) ≡ ˆ5µ together with an uncertainty measure f̂ (5µ). To

train this network, the negative log-likelihood of the Gaussian mixture is used as a loss

function, see Eq. (4.4). An ensemble of ten networks is trained to gain insights into the

spread of the predictions inside the ensemble fens( ˆ5µ) and the error distribution of their

predicted means 〈 ˆ5µ − 5µ〉 (Fig. 5.31). As a cross-check, the predictions of an ensemble of

ten CNNs, trained with the MSE loss, are provided. The mean and standard deviation of
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Figure 5.26.: Correlation Plots of CNN predictions for each primary, normalized to the

maximum number #max(5µ) of counts in each column. In regions of the phase space with

only a few samples, for instance for large muon fractions, the DNN
ˆ5µ underpredicts the

fraction 5µ≥0.9 in regions of the phase space that have limited statistics.
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Figure 5.27.: Bias 〈Δ5µ〉 of the DNN predictions for each primary, as a function of shower

energy � and zenith angle \ . The primary-dependent bias is between 0.01 and −0.01 for

proton and iron respectively for energies above 10
19

eV.
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Figure 5.28.: Resolution f (Δ5µ) of DNN predictions for each primary, as a function of

shower energy � and zenith angle \ . The resolution is primary independent and constant

around 0.05, except for low energetic and inclined showers.
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Figure 5.29.: Bias 〈Δ5µ〉 of the DNN predictions for each primary, as a function of the

shower zenith angle \ and the shower-plane distance A . The primary-dependent bias is �at

in zenith, but its absolute value slightly increases for distances close to the shower core.

This is attributed to limited number of stations or even missing data (gray) in vicinity of

the shower core.

the MDN ensemble are given by [99]:

ˆ̀ens =
1

10

10∑
9

ˆ̀ 9 (5.25)

f̂ens =

√√√
1

10

10∑
9

(
f̂2

9
+ ˆ̀

2

9

)
− ˆ̀

2

ens
. (5.26)

The spread inside the MDN ensemble 〈fens( ˆ5µ)〉 = 0.008 is slightly larger than for the

reference ensemble 〈fens( ˆ5µ)〉 = 0.007. An additional crosscheck to reveal potential

systematics is done by comparing the distribution of the average residuals 〈 ˆ5µ − 5µ〉 for

both ensembles. In both cases they are well centered around zero, thus are bias-less and

do exhibit the same width. Hence, the MDH ensemble is able to reproduce the mean of

the 5µ distribution.

To investigate the quality of the predicted uncertainties, they are compared to the true

absolute error of the predictions | ˆ5µ − 5µ | (Fig. 5.32, right). If they corretly describe the

uncertainty, the actual error divided by the predicted standard deviation should follow

a standard normal distribution I
!∼ N(` = 0, f = 1), which is also denoted as the z-
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Figure 5.30.: Resolution f (Δ5µ) of the DNN predictions for each primary, as a function of

the shower zenith angle \ and the shower-plane distance A . The resolution is better than

0.05 except for distances closer than ≤ 200 m or stations far away from the shower core

≥ 1.8 km. This is attributed to limited number of stations or even missing data (gray) in

vicinity of the shower core.

test (Fig. 5.32, left). The variable I is given by

I =
5µ − ˆ̀ens(5µ)
f̂ens(5µ)

. (5.27)

For the MDN ensemble the mean of the z-distribution is given by ` (I) = −0.0741 and its

standard deviation by f (I) = 0.9645. Especially for low (muon) signals the underlying

statistics of the muon fraction are probably not Gaussian and thus introduce a systematic

error. In a result, the MDN architecture will not be used for the �nal analysis as the

predicted uncertainties are not reliable. However, the MDN architecture is a promising

approach to estimate the uncertainty of the predictions and could be further investigated

in the future with a correct underlying probability distribution of the muon signal fraction.

5.9. Hadronic Interaction Models

The current simulations of CR air showers consequently underestimate the muon content

that is measured by Auger. The discrepancy of this muon puzzle (Sec. 3.5.1) depends on the

hadronic interaction model that is used to simulate the air showers. Up to this point, the

QGSJetII-04 model has been used explicitly to train and evaluate the NNs. In this section,

the systematic impact of the hadronic interaction model on the predictions of the CNN is
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Figure 5.31.: Spread of the predictions inside each ensemble (left) and distribution of the

mean ensemble residuals (right). As the distributions for both ensembles are very similar,

the MDN ensemble is able to reproduce the mean of the 5µ distribution.
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ble and correlation plot of the predicted uncertainties and the absolute residuals of the
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Figure 5.33.: Bias (top) and resolution (bottom) of the CNN network, trained on QGSJetII-04,

for EPOS-LHC and QGSJetII-04 hadronic interaction models as a function of shower plane

distance A (left) and logarithmic total signal lg((/VEM + 1) (right).

analyzed. Therefore, the data sets with EPOS-LHC and QGSJetII-04 simulations (Table 5.1)

are used. The EPOS-LHC interaction model currently is favored by measurements [100].

Since the CNN models have been trained on QGSJetII-04 data, the systematic di�erences

are explored by comparing their predictions on QGSJetII-04 with their predictions on

EPOS-LHC data.

The results in terms of biases and resolutions are shown in Figs. 5.33 to 5.34. The CNN

ensemble of Sec. 5.8.4 consistently underestimates the muon fraction of the EPOS-LHC

simulations by -0.008 percentage points globally (Table 5.9). This is re�ected in an almost

constant bias shift with respect to A , � and \ . However, the bias exhibits a non-constant

behavior in dependency of the total signal size. Its absolute value increases with higher

total signal. The overall negative bias is caused by a higher muon content of showers

simulated with the EPOS-LHC model in comparison to the QGSJetII-04 model. Even

though, the obtained resolutions are almost identical for both interaction models.

Further insights into the di�erent muon contents are investigated by the primary-dependent

bias and resolution with respect to each hadronic interaction model (Figs. 5.35 to 5.36). The

biases of proton and iron induced showers are shifted consistently by the same amount

across all shower parameters. Only for large distances, the biases of the EPOS-LHC data

behave di�erently, as the proton bias lies not on top of the iron bias anymore, as it is the

case for the QGSJetII-04 data.

The average muon fraction between both data sets only changed slightly 〈5µ〉QGSJetII-04 −
〈5µ〉EPOS-LHC = −0.002 and is below ≤ 0.02 per primary and per logarithmic energy interval.

Thus, the muon fraction itself is little dependent on the hadronic interaction models, as a

higher muon signal implies a higher total signal while their ratios stay the same.
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Figure 5.34.: Bias (top) and resolution (bottom) of the CNN network, trained on QGSJetII-04,

for EPOS-LHC and QGSJetII-04 hadronic interaction models as a function of logarithmic

energy lg� (left) and sin
2 \ (right).
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Figure 5.35.: Primary-dependent bias (top) and resolution (bottom) of the CNN network,

trained on QGSJetII-04, for EPOS-LHC and QGSJetII-04 hadronic interaction models as a

function of shower plane distance A (left) and logarithmic total signal lg((/VEM+1) (right).

Table 5.9.: Evaluation metrics for a CNN ensemble on QGSJetII-04 and EPOS-LHC simula-

tion data. The CNNs models are trained only on QGSJetII-04 simulation data.

Data set 〈|Δ5µ |〉 〈Δ5µ〉 〈Δ5µ〉p 〈Δ5µ〉Fe f (Δ5µ)p f (Δ5µ)Fe

QGSJetII-04 0.0354 0.0000 0.0070 -0.0070 0.0477 0.0450

EPOS-LHC 0.0357 -0.0080 -0.0017 -0.0144 0.0469 0.0445
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Figure 5.36.: Primary-dependent bias (top) and resolution (bottom) of the CNN network,

trained on QGSJetII-04, for EPOS-LHC and QGSJetII-04 hadronic interaction models as a

function of logarithmic energy lg� (left) and sin
2 \ (right).

5.10. Prediction of the Primary

To estimate the amount of available information related to the primary mass on station-

level, the output of the CNN is switched to predict ln�, or to predict the corresponding class

of the primary. This study also serves as a reference for the mass dependent estimators that

are derived on an event level. Ten CNNs models are trained and the �ve best performing

ones on the test set are used for the predictions. In this section the whole data set, inclusive

the training data, is used for the evaluation to increase the statistics in the energy bins.

The ReLU activation function in the output node is removed to allow the network for

an unconstrained prediction of the mean masses. For instance, the distribution of the

predicted proton mass would be shifted towards higher masses if ln� ≥ 0 is enforced.

Despite this change, the training procedure stays the same as before. The distribution of

the predicted ln� per station is shown in Fig. 5.37 on the left side. The separation between

predicted proton and iron masses, given by the merit factor amounts to MFp,Fe(ln�) = 1.50.

The mass centers of the predicted primary distributions are shifted towards the global

mean. The distributions in di�erent reconstructed-energy intervals is given in Fig. 5.38,

where merit factors of up to MFp,Fe(ln�) = 1.65 are reached.

To adapt the network for the classi�cation, the four primaries are one-hot encoded, so each

primary is given by a one at the correspond class index: i.e. for iron [0,0,0,1] (Table 5.10).

In order to transform the predictions of the network into a corresponding probability

per class, a softmax
9

activation function is used. As a training loss, the categorical cross-

entropy LCE

10
is used. To evaluate the performance of a classi�cation model, its most

9f (I 9 ) =
expI 9

 =4∑
:=1

expI:

10LCE = −
 =4∑
:=1

~: lg ~̂:
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Table 5.10.: One-hot encoding of the primaries for classi�cation.

primary one-hot encoding

p [1, 0, 0, 0]

He [0, 1, 0, 0]

O [0, 0, 1, 0]

Fe [0, 0, 0, 1]
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53.97 32.36 11.28 3.16

Figure 5.37.: Histogram of predicted logarithmic mass ln� (left) and confusion matrix for

the di�erent primaries, normalized to the true class (right) for each station. In case of the

regression, a global merit factor of MFp,Fe(ln�) = 1.50 is achieved.

probable predicted class is compared to the truth class label in a confusion matrix. The

confusion matrix is normalized column-wise to the total number of true labels per class

representing the true/false positive/negative rates. In case of an ensemble classi�er, a

majority vote on their predictions is done. The baseline for the classi�cation is given

by a predictor that would randomly predict each class label with a probability of 25%.

Hence, the classi�cation network outperforms the baseline. The predicted iron classes are

correctly classi�ed in 67 out of 100 cases and only misclassi�ed as protons in 3 out of 100

cases.

The logarithmic-mass predictions of the CNN on a single station level show, that the

network is capable of deducing signi�cant, composition-related information from the

given detector traces and the meta data. Especially the obtained merit factor of the

regression provides a cross-check to compare the mass-sensitive estimators obtained on

an event level.
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Figure 5.38.: Merit factor MF for the predicted ln� of the CNN on a station level, in

dependency of di�erent reconstructed energy intervals �SD. A merit factor of up to

MF(ln�) = 1.65 is obtained.
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6. Reconstruction of a Mass-sensitive
Estimator on Shower Level

Deriving a mass sensitive estimator for the muon signal fraction on event-level is non-

trivial. Since the electromagnetic component is stronger attenuated than the muon com-

ponent for more inclined showers, the azimuthal symmetry assumed in the SD-LDF �t

is broken in case of the muon fraction. In the following, two methods to derive a mass

sensitive estimator are explored and discussed in detail. In Sec. 6.1, an average muon frac-

tion for each shower is estimated and then corrected for zenith and energy dependencies.

In Sec. 6.2, a globally �t parametric model is scaled to the CNN predictions by �tting the

logarithmic mass.

6.1. Lateral Fraction Estimator

As the muon fraction is introduced and motivated as a recent quantity in Auger and this

thesis, still there exists no sophisticated theory describing the expected lateral muon signal

fraction. A correct theoretical treatment is out of scope for this thesis, and thus the LFF

is approximated by heuristically chosen logistic functions. The functional form of these

muon LFFs is motivated by the following considerations:

1. 5µ(A ) ∈ [0, 1]. Therefore the function 5µ(A ) needs to be bounded as well.

2. 5µ(A ) should monotonically increase with A , as the attenuation for the electromag-

netic component is stronger than for the muonic component.

3. 5µ(A = 0) ≠ 0, since for inclined showers the lateral fraction is expected to be

constant.

These considerations are re�ected in the following choice of functions under the transfor-

mation 5µ(A ) → 2 5µ(0(A − A0)):

5µ(A ) =




tanh(A )+1
2

2

c
arctan(A )
G√

1+G2

G
1+|G |

(6.1)

An illustration of the functions is depicted in Fig. A.10, where each function is normalized

to its corresponding derivative at G = 0 to reveal their inherently di�erent curvature.

To �nd the parameters 0, 2 , A0, a two-step process was used. First, the functions have been
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6. Reconstruction of a Mass-sensitive Estimator on Shower Level

�tted in binned quantities of lg�MC, sin
2 \MC and cosksp (Fig. A.11). Then, the resulting

parameters itself have been re-parametrized by polynomial functions of the form:

0(�MC, \MC,ksp) →
∑
:

b: (sin
2 \MC):

∑
9

[ 9 (lg�MC) 9
∑
;

d; (cosksp); , (6.2)

2 (�MC, \MC,ksp) →
∑
:

b: (sin
2 \MC):

∑
9

[ 9 (lg�MC) 9
∑
;

d; (cosksp); , (6.3)

A0(�MC, \MC,ksp) →
∑
:

b: (sin
2 \MC):

∑
9

[ 9 (lg�MC) 9
∑
;

d; (cosksp); . (6.4)

However, a globally performant re-parametrization could not be derived. As shown

previously, all LFF perform equally because only a fraction of the functional shape is

utilized, a polynomial model is equally suited as a potentially LFF. Thus the attempt of the

global LFF re-parametrization is dropped in favor of a global polynomial model.

6.1.1. Up-/Downstream Correction

The major problem that arises when �tting the lateral fraction 5µ(A ) is the up- and down-

stream dependence which breaks azimuthal symmetry. This dependency is caused by

the di�erent attenuation of the electromagnetic and muonic component. Therefore, its

severity increases with increasing zenith angle and shower plane distance (Fig. 6.1). In

�rst order the upstream-downstream dependency of 5µ, binned in � and \ , can be de-

scribed by a linear function. To parametrize the up- and downstream dependence, three

station level-variables have been identi�ed: the shower plane azimuth cos

(
ksp

)
, the com-

bined angle cos

(
ksp

)
tan(\ ), and the perpendicular distance to the shower plane at ground

Δℎ = A cos

(
ksp

)
tan(\ ). As shown in (Fig. 6.2), all of them are equally suitable. However,

due to the inherent relationship of the traveled path and the attenuation, Δℎ is chosen to

be the natural complementary variable. By �tting the relation

5
(8)
µ (A,Δℎ) = 00 + 01 · Δℎ(8) , (6.5)

the 5
(8)
µ (A,Δℎ) of each station 8 can be projected to a fraction that would occur at 5µ(A,Δℎ =

0) (8) . This is exemplary done by using the slope 01 of the �t for the projection of the

individual muon signal fractions to Δℎ = 0

5 ′µ(A,Δℎ = 0) = 5 (8)µ (A,Δℎ) − 01 · Δℎ(8) . (6.6)

The muon fractions very close to or very far from the shower core are less dependent

on up- and downstream than in the intermediate range, which is re�ected in the change

of the slope for di�erent distance �ts. This is especially prevalent for highly inclined

showers (Fig. A.13), where Eq. (6.5) is not capable to capture the dependency across all

distances with only one unique slope parameter. As a consequence, in a postceeding study,

the correction for the up- and downstream dependency has to be re�ned. However, after

this linear correction the upstream-downstream dependency is not as prevalent any more

and the muon fraction for greater distances becomes far more narrow on a single shower
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Figure 6.1.: Up-/downstream behavior of 5µ and (µ, indicated by the color code for pro-

ton (left) and iron (right) as a function of shower plane distance A .

level (Fig. 6.3), as well on a global statistical level.

In practice, the radial and the up-/down-stream dependency is �t simultaneously with the

function

5µ(A,Δℎ) = 2
0A√

1 + (0A )2
(1 + 1Δℎ). (6.7)

By setting Δℎ = 0 after the �t, the LFF is projected to the reference of no up- and down-

stream dependency and is thus, equivalent to �rst projecting 5µ and then �tting the LFF.
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Figure 6.2.: Up-/downstream behavior of 5µ in dependency of the variables cosksp (left)
and Δℎ (right) for iron induced showers in lg� ∈ [19.54, 19.76] and \ ∈ [37.76°, 42.13°].
The lines represent linear �ts in di�erent distance intervals to track the change of slope.
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Figure 6.3.: Lateral muon fraction 5µ before (left) and after (right) the up-/downstream

correction (bottom) for a oxygen induced shower of lg�/eV = 20 and \ = 39°.

6.1.2. Energy and Zenith Correction

Because the muon fraction is rotationally invariant after the up- and downstream cor-

rection, it is possible to construct an event level muon fraction estimator �
(*)

µ , by either

integrating in between a �xed distance interval A ∈ [A0, A1], or by inferring the value at a

�xed reference distance Aref:

�
(*)

µ =

{
2c

∫ A1

A0

5µ(A,Δℎ = 0)A3A,
5µ(Aref,Δℎ = 0).

(6.8)

The integral measure is motivated by averaging over the systematic uncertainty introduced

by the heuristically chosen LFF, which probably will not correctly describe the true

underlying LFF. One should ensure that the integration limits lie well inside the given

phase-space of the data, as extrapolation will introduce systematic errors. On the other

hand, one might loose discrimination power by averaging over a to broadly chosen distance

range. Thus as a �rst approach, the value of the LFF at several distances is taken as an

event level estimator, with an equidistant spacing of 100 m.

In both cases, the derived event level muon fraction estimator has to be corrected for

the attenuation through the zenith angle and the energy dependency. This correction is
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6.2. Global Model

parametrized similar to the CIC method of the SD energy estimator:

� 38

µ =
�
(∗)
µ

6CIC(G)ℎ(�)
, (6.9)

where ℎ(�) = �
(

�

10
19

eV

)�
, (6.10)

6CIC(G) = U0 + U1G + U2G
2 + U3G

3, (6.11)

G = sin
2 \ − sin

2
38°. (6.12)

For convenience, the derived estimator is normalized to the average muon fraction of a

proton-induced shower as

'µ =
�
(∗)
µ

〈� 38

µ 〉p
. (6.13)

Although the chosen parametrization is highly phenomenological, a reasonable separation

between proton and iron-induced showers is accomplished at a distance of 1100 m (Fig. 6.4,

bottom) with an merit factor around MF('µ) ≈ 1.34 by utilizing the NN predictions. The

integration of the LFF between A0=800 m and A1=1400 m leads to similar results Fig. A.14.

The performance of the employed methods is a�ected by the primary-dependent bias

of the NN predictions. Comparing the results obtained on the MC-muon fraction to

the results obtained on the NN predictions, the performance decreases by ΔMF('µ) ≈
0.04. Furthermore, the utilized parametrization through the protonic muon fraction is

not universal. The muon fraction estimator of iron-induced air-showers has a di�erent

curvature with respect to the zenith angle. The developed method is most sensitive for

zenith angles around 38°, as the separation between proton and iron-induced showers

decreases for vertical or highly inclined showers.

6.2. Global Model

Another way to parametrize the muon content of an detected air shower is by using a

global analytical �t. In addition, adding ln� as an input allows to explore the relative

di�erence between di�erent primaries on a station level basis. The sensitivity is given by

the change in 5µ, when the mass is changed from iron to proton and serves as a measure

for the discrimination power between di�erent primaries. For a model that is linear in

ln(�), this corresponds to an constant o�set for di�erent primaries. The �tting is done

in a two-step process. First, the parametric model is �t by including the mass term as a

dependent variable

ˆ5µ = ~ (A, \,Δℎ, (,�) (6.14)

= V1 sec(\ ) + V2A + V3 ln(�) + V4Δℎ sec(\ ) + V5 + V6 lg(() + V7Δℎ + V8A
2
. (6.15)

The resulting parameters V8 are depicted in Table 6.1 and the performances, given by the

bias and resolution, are shown in Fig. A.15 and Fig. A.16. The sensitivity on the mass,
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Figure 6.4.: Zenith angle (top left) and energy dependency (top right) of the muon fraction

estimator at Aref=1.1 km, derived by �tting the LFF to the predictions of the CNN (solid) or

to the MC values (dashed). By normalizing the estimator to the average muon fraction

of a proton-induced shower, a reasonable separation between proton and iron-induced

showers is accomplished (bottom). The separation can be quali�ed by a merit factor of

MF('MC

µ )=1.38 for the method deployed on the MC muon fraction, and MF('MC

µ )=1.34 in

case of the CNN predictions.
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6.2. Global Model

Table 6.1.: Parameters of globally �tted polynomial model.

Parameter Value

V1 0.4783(2)

V2 0.4010(5)

V3 0.0191(0)

V4 0.0638(2)

V5 -0.3317(5)

V6 -0.0509(1)

V7 -0.1673(4)

V8 -0.1245(2)

given by the parameter V3 ∼ 0.2, amounts to
ˆ5 Fe

µ − ˆ5
p

µ = 0.02(ln 56 − ln 1) ∼ 0.08.

After �tting, the global shape of 5µ is �xed by the �tted parameters. The mass variable ln�

is turned into a parameter that is then explicitly �t to the predicted
ˆ5µ of the DNN for each

shower. In essence, the scaling of the �xed reference pro�le is directly coupled to the mass

of the primary. The proton and iron reference lines are easily added to the predictions of

the DNN by inserting their corresponding masses. The comparison of the predictions with

respect to the showers induced by proton and iron are depicted in Fig. 6.5. The predictions

of the CNN consistently lie above(below) the reference lines of iron(proton) for the given

events.

In order to derive a statistical discrimination capability, the polynomial model is scaled to

each shower with at least #st ≥ 2 in the test data set. The resulting distributions of the

derived ln� are depicted in Fig. 6.6. The discrimination power can be quanti�ed by a merit

factor of MF(ln�) = 1.31(#st ≥ 2) and MF(ln�) = 1.43(#st ≥ 5). More detailed insights

about the discrimination capability with respect to a given reconstructed energy are given

in Fig. 6.7. The width of the predicted distributions decreases with increasing energy until

proton-induced showers exhibit limited statistics due to the energy reconstruction bias of

the SD. Scaling a reference LFF-pro�le to the predictions of the CNN provides promising

results for the discrimination of di�erent primaries. Even though, the developed method

has unreached potential, as the direct predictions of the primary mass with CNNs on

station-level outperform the constructed event-level estimator.
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Figure 6.5.: Illustration of the polynomial model �t to the predictions of the CNN for

a proton (left, ln� = −4.59(91)) and iron (right, ln� = 4.37(33)) induced shower. The

muon fraction is projected to 5 ′µ = 5µ(Δℎ = 0) to highlight the radial dependency. The

polynomial references are given by proton (red) and iron (blue).
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In this work, I have introduced and motivated the muon signal fraction of the WCD as a

well suited composition-dependent quantity. The muon fraction is almost independent

of the energy-migration e�ect caused by inherent systematics of the SD energy estimator.

Compared to the muon signal, the muon fraction retains its mass-sensitivity. One of the

main objectives of the developed methods, is the identi�cation of the primary particle on

an event-by-event basis using the muon signal fraction. Therefore, I have developed a

method that is compromised of a hybrid NN-analytical approach. On the station level, I

have shown that NNs surpass the performance of muon fraction predictions of the selected

classical analytical methods by a more than twice as good resolution. On event level,

the NN-based predictions of the muon fraction are used to form an event-level estimator.

Finally, this estimator is used to derive a mass-sensitive observable, which can be used to

discriminate between proton and iron-induced showers.

By comparing the quality of the predictions of various models, I have determined that

the CNN clearly surpasses all reference models in terms of evaluation metrics. Compared

to the state-of-the-art matrix formalism, the resolution of the muon fraction improved

from around 0.137 to 0.048, and the primary-dependent bias between proton and iron

induced showers from 0.035 to 0.014. The saturation of the quality of the predictions of the

complexer LightGBM and dense NN reference models indicate that the information content

provided by tested scalar features is exhausted, while the CNN is capable of e�ciently

utilizing the information of the time dependent signal to outperform them. Moreover, the

chosen CNN architecture is validated by cross-checks to LSTM-based NN architectures,

which are particularly suited for analyzing one-dimensional, ordered time series data. The

resolutions and biases of both architectures are essential the same. In various optimization

attempts, such as a hyperparameter grid-search, I have pushed the CNN architecture to

its limits, leading to some minor improvements in evaluation metrics. Including the SSD

detector trace as an additional input to the CNN in any way, did not yield any signi�cant

improvement. However, the SSD information a�ects the primary-dependent bias between

proton and iron, reducing it from 0.0163 to 0.0137, while the resolution is essentially

una�ected. The information provided by the SSD is most likely redundant in the time

signal of the WCD. By studying possible systematics inherent to the two gain types, I

have shown that the CNN is capable in handling both gain types correctly and no biases

are introduced by training the network simultaneously on both gain types. The muon

fraction predictions of the CNN on QGSJetII-04 data, show that the prediction of 5µ only

marginally depend on the employed hadronic interaction model used for the simulation of

the air showers. The global bias on the predicted muon fraction between QGSJetII-04 and

EPOS-LHC simulated air showers is around -0.008 and almost constant in �, \ , A , and (tot,

while the resolution is essentially the same.
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The developed CNN methods, which directly predict the primary mass on single station-

level, show promising discrimination capabilities with merit factors of up to MF=1.65

between the predicted proton and iron masses, depending on the reconstructed energy

interval. In case the network is trained to classify each station by the particle that induced

the shower, only around 3 out of 100 stations hit by an iron shower got falsely classi�ed

being triggered by proton showers.

The developed methods to form an event level muon fraction estimator which is linked to

the mass of the primary have resulted in encouraging outcomes. Merit factors of up to

MF=1.44 have been achieved by the polynomial method. Scaling a �xed lateral reference

pro�le to the predicted muon fraction turns out to be suitable in progressing towards

an event-to-event identi�cation of the primary. However, a comparison with the results

obtained on a single-station level show, that the employed analytical methods are not

capable of fully utilizing the information content provided by the muon fraction. This

is largely attributed to the heuristically developed methods. Especially the azimuthal

asymmetry hampers a description of the muon fraction as a function of only the distance

to the shower core. Consequently, a more sophisticated theory is required to fully gauge

the potential of the muon fraction as a mass-sensitive observable in future studies.

In a �rst step, the LFF has to be investigated over an extended phase-space to deduce

are more accurate functional shape. Simulations with dense-rings could be utilized to

directly provide an event-level muon-fraction reference and reduce the uncertainty of the

functional shape. The event level reference, at a given distance, could serve as a direct

and less uncertain target for future NN-based studies. Additionally, the sensitivity of the

developed methods can be further enhanced by taking into account the signals originating

from muon decays into the calculation of the muon fraction. Of particular interest is the

application of the developed methods to measured data. As the muon fraction is only

minimally in�uenced by the energy migration e�ect and the deployed hadronic interaction

models, 5µ provides a promising measure to test future hadronic interaction models aiming

to resolve the discrepancy between measured data and simulations.
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Acronyms

Symbols | A | B | C | D | E | F | G | H | I | K | L | M | N | P | Q | R | S | T | U | V | W | X

Symbols

O�line O�line Analysis Framework

A

Adam Adaptive Moment Estimation

AERA Auger Engineering Radio Array

AGN Active Galactic Nuclei

AI Arti�cial Intelligence

AMIGA Auger Muons and In�ll for the Ground Array

ANN Arti�cial Neural Network

API Application Programming Interface

Auger Pierre Auger Observatory

B

BR Branching Ratio

C

CDAS Central Data Aquisition System

CIC Constant Intensity Cut

CL Con�dence Level

CMB Cosmic Microwave Background

CNN Convolutional Neural Network

CORSIKA COsmic Ray SImulations for KAscade

CR Cosmic Ray
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Acronyms

D

DAQ Data AcQuisition

DNN Deep Neural Network

E

EAS Extensive Air Shower

EPOS-LHC EPOS-LHC Hadronic Interaction Model

F

FADC Flash Analog-to-Digital Converter

FD Fluorescence Detector

FoV Field of View

G

GZK Greisen-Zatsepin-Kuzmin

H

HEAT High-Elevation Auger Telescopes

HG High Gain

I

ISM Interstellar Medium

K

KaLib Karlsruhe air shower Library

L

LDF Lateral Distribution Function

LFF Lateral Fraction Function

LG Low Gain

LHC Large Hadron Collider

LSTM Long Short-Term Memory
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Acronyms

M

MAE Mean Absolute Error

MC Monte Carlo

MDH Mixture Density Head

MDN Mixture Density Network

MIP Minimum-Ionizing Particle

ML Machine Learning

MSE Mean Squared Error

N

NKG Nishimura-Kamata-Greisen

NLP Natural Language Processing

NN Neural Network

NP Nobel Prize

P

PDF Probability Density Function

PMT Photomultiplier Tube

Q

QGSJetII-04 QGSJetII-04 Hadronic Interaction Model

R

ReLU Recti�ed Linear Unit

RNN Recurrent Neural Network

S

SD Surface Detector

SGD Stochastic Gradient Descent

SNR Supernova Remnant

SPD Shower Plane Distance
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Acronyms

SSD Surface Scintillator Detector

T

TA Telescope Array project

U

UHECR Ultra-High Energy Cosmic Ray

UMD Underground Muon Detector

UUB Upgraded Uni�ed Board

V

VEM Vertical Equivalent Muon

W

WCD Water-Cherenkov detector

X

XAI Explainable Arti�cial Intelligence
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A. Additional Figures

In this chapter, additional �gures which are referred in the text are shown.

800 1000 1200 1400 1600 1800 2000 2200 2400
r / m
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101

102

S
/
V
EM

(1000(Fe)

(1000(p)

lg�MC/eV = 19.18,�MC = 31.02◦

p
NKG Fit
Fe
NKG Fit

Figure A.1.: Illustration of the energy migration e�ect in the SD reconstruction. An

iron (blue) induced shower contains more muons than a proton (red) induced one at

the same MC true energy. As the electromagnetic component is universal, the signals in

the WCD are driven by muons and thus the iron is reconstructed with a higher energy.

The distance range is restricted for better visibility.
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Figure A.2.: Mean decrease in Impurity (MDI) for LGBMRegressor (left) and XGBRegressor

(right). The MDI feature importance �MDI is normalized to the sum of all feature importances

and sorted by their value. The ensembles are trained without the total signal ratio (r =

(SSD/(WCD
in comparison to Fig. 5.6. Even though the information about the signal in

each detector is not redundant anymore, the ranking of the importances remains the same,

with the total signal of the WCD being not important.
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Figure A.3.: Permutation Feature Importance (PFI) �PFI = ΔMAE for LGBMRegressor, calcu-

lated on the train (left) and test data (right). The MAE is chosen as the PFI metric because

the muon fraction denotes a relative quantity. Because the PFIs of the train and test set

are congruent, there is no indication that the model is over�tted.
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Figure A.4.: Bias (top) and resolution (bottom) of a DNN with a convolutional versus

di�erent LSTM Trace Analyzers in dependency of the uniformly distributed zenith angle

sin
2 \ and logarithmic energy lg�. The LSTM analyzers consist of a single LSTM layer

with 32 or 64 units, or a bidirectional layer with 64 units in total. While there are minor

di�erences in the bias, the achieved resolution is congruent over all trace analyzers. It

validates the used CNN analyzer as a suitable choice.
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Figure A.5.: Bias (top) and resolution (bottom) of a DNN with a convolutional versus

di�erent LSTM Trace Analyzers in dependency of the logarithmic total signal lg((/VEM+1).
The LSTM analyzers consist of a single LSTM layer with 32 or 64 units, or a bidirectional

layer with 64 units in total. While there are minor di�erences in the bias, the achieved

resolution is congruent over all trace analyzers. It validates the used CNN analyzer as a

suitable choice.
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Figure A.6.: Bias (top) and resolution (bottom) of CNN ensembles trained on di�erent high

and low gain detectors as a function of shower plane distance A and logarithmic total

signal lg((/VEM + 1). For each combination, 5 networks are trained and the mean of their

prediction is used for the evaluation. Either the networks are trained separately on HG or

LG traces (HG + LG sep), or they are trained on both traces (HG + LG) with the variable

SdRecStation:IsHighGainSaturated as an additional binary meta input (HG + LG meta). No

signi�cant di�erence in performance is observed, thus the HG + LG networks are capable

of handle both gain types corretly.
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Figure A.7.: Bias (top) and resolution (bottom) of CNN ensembles trained on di�erent high

and low gain detectors as a function of sin
2 \ and logarithmic energy lg�. For each combi-

nation, 5 networks are trained and the mean of their prediction is used for the evaluation.

Either the networks are trained separately on HG or LG traces (HG + LG sep), or they are

trained on both traces (HG + LG) with the variable SdRecStation:IsHighGainSaturated as

an additional binary meta input (HG + LG meta). No signi�cant di�erence in performance

is observed, thus the HG + LG networks are capable of handle both gain types corretly.
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Figure A.8.: Primary-dependent bias (top) and resolution (bottom) of the best performing

CNNs as a function of shower plane distance A (left) and total signal (tot (right).
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Figure A.9.: Primary-dependent bias (top) and resolution (bottom) of the best performing

CNNs as a function of energy � (left) and zenith \ (right).
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Figure A.10.: Graphs of the used logistic functions, transformed to the range [−1, 1] and

normalized to their derivative at G = 0.
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Figure A.11.: Di�erent LFFs �ts in dependence of the shower plane distance A for a given

energy, zenith angle, and shower-plane azimuth angle. All utilized functions �t the lateral

muon fraction equally well since their biases and uncertainties are essentially the same.
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Figure A.12.: Fitted LFF parameters 0 and 2 in dependency of the energy, the zenith angle,

and the azimuth angle.
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Figure A.13.: Up-/downstream behavior of 5µ in dependency of the variables cosksp (left),
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The lines represent linear �ts in binned distance slices, which exhibit now a change in
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Figure A.14.: Mass-sensitive muon fraction estimator, derived by parametrizing the result-

ing integral from the LFF in terms of energy (top right) and zenith dependency (top left). A

reasonable separation between proton and iron-induced showers is obtained. To gauge

the performance of the estimator, showers that triggered at least �ve stations after the

quality cuts are used.
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Figure A.15.: Bias (top) and resolution (bottom) of the global polynomial model as a function

of shower plane distance A and logarithmic total signal lg((/VEM + 1).
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Figure A.16.: Bias (top) and resolution (bottom) of the global polynomial model as a function

of sin
2 \ and logarithmic energy lg�.
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B. Tabular Data

In this chapter, the results of some extensive optimization studies are tabulated.

Table B.1.: Evaluation metrics for the linear regression model for various feature sets.

Starting from an matrix formalism motivated feature set containing the integral signals of

both detectors, further shower and station level features are added. To enable the linear

model to capture interactions between features and non-linearities, polynomial features

are created up to an polynomial degree of % = 2.

Features P 〈|Δ5µ |〉 〈Δ5µ〉p,Fe f (Δ5µ)p f (Δ5µ)Fe

(WCD
, (SSD

1 0.124 0.062 0.154 0.145

2 0.113 0.051 0.143 0.133

+ \ 1 0.088 0.078 0.116 0.096

2 0.077 0.070 0.103 0.087

+ A 1 0.077 0.070 0.101 0.086

2 0.065 0.066 0.087 0.075

+ � 1 0.077 0.070 0.101 0.085

2 0.064 0.062 0.086 0.074

+ ℎ 1 0.065 0.072 0.086 0.072

2 0.051 0.066 0.069 0.058

and + ΔCc 1 0.064 0.064 0.085 0.072

2 0.051 0.059 0.069 0.058

or + ΔCsp 1 0.064 0.064 0.085 0.072

2 0.051 0.059 0.069 0.058

or + Cf 1 0.063 0.066 0.084 0.071

2 0.050 0.059 0.067 0.057

or + C1/2 1 0.060 0.058 0.080 0.070

2 0.046 0.043 0.063 0.055

or + ΔCc, ΔCsp, C1/2, Cf 1 0.057 0.051 0.076 0.067

2 0.043 0.037 0.060 0.054
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B. Tabular Data

Table B.2.: Performance metrics of the the simple dense network for di�erent feature

combinations. For each feature set �ve networks are trained. The evaluation metrics are

computed on the independent test data set and are averaged over the converged models in

each ensemble.

Features 〈|Δ5µ |〉 〈Δ5µ〉p,Fe f (Δ5µ)p f (Δ5µ)Fe

(WCD
, (SSD

0.093 0.041 0.121 0.113

+ \ 0.072 0.060 0.094 0.082

+ A 0.061 0.058 0.082 0.071

+ � 0.061 0.057 0.082 0.071

+ ℎ 0.048 0.059 0.064 0.055

and + ΔChs 0.048 0.059 0.064 0.055

or + ΔCc 0.047 0.053 0.063 0.054

or + ΔCsp 0.047 0.053 0.063 0.054

or + Cf 0.046 0.050 0.062 0.054

or + C1/2 0.042 0.032 0.056 0.051

or + ΔCc, ΔCsp, C1/2, Cf 0.041 0.027 0.055 0.050

Table B.3.: Performance metrics of the the simple dense network for di�erent feature

combinations, this time with (r
instead of (SSD

. For each feature set �ve networks are

trained. The evaluation metrics are computed on the independent test data set and are

averaged over the converged models in each ensemble. The results resemble the ones in

Table B.2.

Features 〈|Δ5µ |〉 〈Δ5µ〉p,Fe f (Δ5µ)p f (Δ5µ)Fe

(WCD
, (r

0.093 0.039 0.121 0.113

+ \ 0.072 0.060 0.094 0.083

+ A 0.060 0.058 0.082 0.072

+ � 0.061 0.057 0.082 0.072

+ ℎ 0.048 0.059 0.064 0.055

and + ΔChs 0.048 0.059 0.064 0.055

or + ΔCc 0.047 0.052 0.063 0.055

or + ΔCsp 0.047 0.052 0.063 0.054

or + Cf 0.046 0.050 0.062 0.054

or + C1/2 0.041 0.032 0.056 0.051

or + ΔCc, ΔCsp, C1/2, Cf 0.041 0.027 0.055 0.050
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Table B.4.: Hyperparameter Scan of the CNN Trace Analyzer.

Conv1D Layer Pooling =b =b,l =tf 〈|Δ5µ |〉 〈Δ5µ〉p,Fe f (Δ5µ)p f (Δ5µ)Fe

Conv Avg 6 16, 16, 16 96 0.0359 0.0136 0.0482 0.0454

Conv Avg 6 16, 16 96 0.0367 0.0148 0.0486 0.0459

Conv Avg 6 16 96 0.0360 0.0138 0.0483 0.0458

Conv Avg 7 16, 16, 16 48 0.0404 0.0303 0.0542 0.0489

Conv Avg 7 16, 16 48 0.0357 0.0136 0.0481 0.0454

Conv Avg 7 16 48 0.0362 0.0141 0.0487 0.0459

Conv Avg 8 16, 16, 16 16 0.0358 0.0135 0.0481 0.0455

Conv Avg 8 16, 16 16 0.0361 0.0137 0.0484 0.0456

Conv Avg 8 16 16 0.0362 0.0139 0.0487 0.0460

Conv Max 6 16, 16, 16 96 0.0358 0.0142 0.0482 0.0454

Conv Max 6 16, 16 96 0.0357 0.0138 0.0481 0.0455

Conv Max 6 16 96 0.0359 0.0142 0.0484 0.0456

Conv Max 7 16, 16, 16 48 0.0357 0.0142 0.0482 0.0454

Conv Max 7 16, 16 48 0.0358 0.0142 0.0482 0.0455

Conv Max 7 16 48 0.0360 0.0146 0.0485 0.0456

Conv Max 8 16, 16, 16 16 0.0361 0.0145 0.0485 0.0459

Conv Max 8 16, 16 16 0.0358 0.0143 0.0483 0.0454

Conv Max 8 16 16 0.0360 0.0145 0.0485 0.0458

Separable Avg 6 16, 16, 16 96 0.0500 0.0660 0.0669 0.0560

Separable Avg 6 16, 16 96 0.0497 0.0652 0.0667 0.0558

Separable Avg 6 16 96 0.0367 0.0150 0.0492 0.0464

Separable Avg 7 16, 16, 16 48 0.0500 0.0660 0.0667 0.0558

Separable Avg 7 16, 16 48 0.0500 0.0658 0.0667 0.0559

Separable Avg 7 16 48 0.0365 0.0146 0.0492 0.0464

Separable Avg 8 16, 16, 16 16 0.0498 0.0653 0.0665 0.0558

Separable Avg 8 16, 16 16 0.0502 0.0650 0.0666 0.0562

Separable Avg 8 16 16 0.0431 0.0398 0.0579 0.0511

Separable Max 6 16, 16, 16 96 0.0498 0.0656 0.0668 0.0558

Separable Max 6 16, 16 96 0.0503 0.0665 0.0668 0.0559

Separable Max 6 16 96 0.0365 0.0151 0.0491 0.0462

Separable Max 7 16, 16, 16 48 0.0498 0.0654 0.0666 0.0559

Separable Max 7 16, 16 48 0.0502 0.0669 0.0666 0.0560

Separable Max 7 16 48 0.0365 0.0152 0.0491 0.0462

Separable Max 8 16, 16, 16 16 0.0500 0.0657 0.0668 0.0558

Separable Max 8 16, 16 16 0.0500 0.0655 0.0665 0.0560

Separable Max 8 16 16 0.0365 0.0150 0.0491 0.0463
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C. Neural Network Architectures

In this chapter, some of the used basic building blocks, sub-networks, custom layers and

NN architectures are depicted in detail.
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C. Neural Network Architectures

InputLayer
input:

output:

[(None, 1)]

[(None, 1)]
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input:
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[(None, 1)]

[(None, 1)]
InputLayer

input:

output:

[(None, 1)]

[(None, 1)]
InputLayer

input:

output:

[(None, 1)]

[(None, 1)]

Dense relu
input:

output:

(None, 4)

(None, 32)

Dense relu
input:

output:

(None, 32)

(None, 32)

Dense relu
input:

output:

(None, 32)

(None, 32)

Dense relu
input:

output:

(None, 32)

(None, 32)

Dense relu
input:

output:

(None, 32)

(None, 1)

ReLU
input:

output:

(None, 1)

(None, 1)

input_1 InputLayer

input: output:

[(None, 1)] [(None, 1)]

sdrecshower_zenith SinNormalizationLayer

input: output:

(None, 1) (None, 1)

input_2 InputLayer

input: output:

[(None, 1)] [(None, 1)]

sdrecshower_energy LogNormalizationLayer

input: output:

(None, 1) (None, 1)

input_3 InputLayer

input: output:

[(None, 1)] [(None, 1)]

sdrecstation_spdistance LogNormalizationLayer

input: output:

(None, 1) (None, 1)

input_4 InputLayer

input: output:

[(None, 1)] [(None, 1)]

sdrecstation_h Normalization

input: output:

(None, 1) (None, 1)

concatenate Concatenate

input: output:

[(None, 1), (None, 1), (None, 1), (None, 1)] (None, 4)

Figure C.1.: Simple dense NN architecture (top) to predict 5µ. In this model four features

are used as inputs, where each feature is normalized separately and concatenated together

afterwards in the MetaNormalization layer (bottom). The MetaNormalization layer is

followed by four fully connected dense layers, each with a ReLU activation and 32 units.

The output layer is used for the prediction of 5µ and thus has one unit followed by a ReLU

with a maximum value of 1.
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Figure C.2.: Trace analyzer (top) of the CNN model architecture. It consists of consecutively

stacked convolution blocks (bottom).
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C. Neural Network Architectures

trace_analyzer

InputLayer

input:

output:

[(None, 96)]

[(None, 96)]

concatenate

Concatenate
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output:

[(None, 96), (None, 32)]

(None, 128)
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InputLayer
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output:

[(None, 32)]

[(None, 32)]

dense

Dense relu

input:

output:

(None, 128)

(None, 64)
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Dense relu

input:

output:

(None, 64)

(None, 64)

dense_2

Dense relu

input:

output:

(None, 64)

(None, 1)

re_lu

ReLU

input:

output:

(None, 1)

(None, 1)

Figure C.3.: Simple predictor of the CNN. It uni�es the outputs of the Trace Analyzer and

the Meta Analyzer by concatenation. Three dense layers extract further information to

ultimately predict the 5µ target. Because 5µ ∈ [0, 1] the output is given by a ReLU that has

a maximum value of 1.

input_1

InputLayer

input:

output:

[(None, 64)]

[(None, 64)]

alphas

Dense softmax

input:

output:

(None, 64)

(None, 1)

mus

Dense linear

input:

output:

(None, 64)

(None, 1)

sigmas

Dense activation

input:

output:

(None, 64)

(None, 1)

pvec

Concatenate

input:

output:

[(None, 1), (None, 1), (None, 1)]

(None, 3)

Figure C.4.: Illustration of the Mixture Density Head that is substituted as the new output

of the base Predictor. It separately predicts the parameters of a Gaussian mixture model

in order to learn the underlying distribution of 5µ. The parameters are given by the

mean ` (5µ), the standard deviation f (5µ) and the mixture weights U: . The number of

components is chosen to be : = 1.
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D. Experiment Tracking

In the machine learning lifecycle it is indispensable to keep track of experiments and their

results, as an immense number of combinations among datasets, model classes or hyperpa-

rameters are possible. This is especially important when many di�erent experiments are

conducted with several runs each, and their results should be compared with each other. In

this work the ML�ow [101] framework is used extensively to accomplish an organized and

central tracking system for all carried out experiments. ML�ow is an open source platform

for the machine learning lifecycle, which enables one to track experiments, package and

share models, manage and reproduce runs, register and deploy models. The tracking

of an experiment is accomplished by logging the associated hyperparameters, metrics

and their history, and artifacts of each run. It is capable of handling almost any machine

learning library and programming language, and is thus easy to integrate into existing

code snippets with minimal changes. The ML�ow tracking server can be hosted locally and

can either be accessed via a user interface through the web browser or programmatically

via an API. The framework heavily simpli�es the experimentation process and increases

reproducibility, transparency and progress in machine learning research.
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