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Thermalization of non-Fermi-liquid electron-phonon systems: Hydrodynamic
relaxation of the Yukawa-Sachdev-Ye-Kitaev model
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We study thermalization dynamics in a fermion-phonon variant of the Sachdev-Ye-Kitaev model coupled
to an external cold thermal bath of harmonic oscillators. We find that quantum critical fermions thermalize
more efficiently than phonons, in sharp contrast to the behavior in the Fermi liquid regime. In addition, after
a short prethermal stage, the system acquires a quasithermal distribution given by a time-dependent effective
temperature, reminiscent of “hydrodynamic” relaxation. All physical observables relax at the same rate which
scales with the final temperature through an exponent that depends universally on the low-energy spectrum of the
system and the bath. Such relaxation rate is derived using a hydrodynamic approximation in full agreement with
the numerical solution of a set quantum kinetic equations derived from the Keldysh formalism for nonequilibrium
Green’s functions. Our results hint toward further research on the applicability of the hydrodynamic picture in
the description of the late time dynamics of open quantum systems despite the absence of conserved quantities
in regimes dominated by conserving collisions.
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I. INTRODUCTION

Thermalization of isolated and open quantum many-body
systems has been a subject of intense research since the early
2010s [1–4]. The combination of the large number of de-
grees of freedom and extended correlations in these systems
restricts the applicability of numerical and perturbative meth-
ods. Not suffering from these limitations, exactly solvable
models can be valuable platforms for the study of relaxation
in quantum many-body systems. Instances of these systems.
include integrable models [5–8] and the large-N limit of quan-
tum O(N ) field theories [9–11] featuring ergodicity breaking
and the phenomenon of prethermalization [12,13].

A pivotal case of exact solvability is the celebrated
Sachdev-Ye-Kitaev model (SYK) [14–17] consisting of a
system of randomly interacting Majorana fermions which
admits an exact solution in the limit of a very large num-
ber of fermions. The SYK model features a low-temperature
non-Fermi liquid (NFL) critical state, Planckian dissipa-
tion together with the saturation of the upper bound on
quantum chaos [18,19]. Last, it is shown that the SYK
model has a holographic dual as a theory of gravity in
AdS background [15,20,21]. Another class of SYK models,
called Yukawa-SYK models, comprises systems of com-
plex fermions interacting randomly with phonons [22–26]
or similar bosonic excitations [27] with a plethora of in-
teresting properties in addition to those of purely fermionic
SYK systems. These include an NFL to unconventional
superconducting phase transition [22,23,25,28,29] beyond

*hhossein@uni-mainz.de

the BCS theory [30] and self-tuned quantum criticality for
phonons where the phonon gap vanishes at T → 0 regardless
[22–25,31] of the strength of the interaction and the phonon
gap. Extensions of these models to lattice systems [32–36] and
to the Kondo problem [37] have also been studied in the past.

In this paper, we study the dynamics of a Yukawa-SYK
system coupled to an external bath of thermal phonons by
using the Keldysh formalism of nonequilibrium quantum field
theory [38–40]. Previous works have addressed various out-
of-equilibrium aspects of isolated [41–44], open [45–47], and
periodically driven [48] fermionic SYK models. Our moti-
vation for considering the dynamics of Yukawa-SYK model
is threefold: (i) Phonons and other bosonic excitations are
always present in real electronic systems and therefore the
Yukawa-SYK model is a convenient framework to study their
effects on the NFL behavior. As we will see, the model is an
example for the complex nonequilibrium dynamics of a mul-
ticomponent systems with strongly interacting parts. (ii) Most
of the studies of the dynamics of open SYK systems consider
critical NFL fermionic baths which usually are modeled by
another SYK system, while in realistic settings, there are no
such restrictions on the nature of the external bath. Instead,
in this work we consider a generic Caldeira-Leggett [49] bath
of harmonic oscillators coupled to the phonons of the system.
Below we demonstrate that this is indeed the most relevant
bath coupling of our system. (iii) The fermion sector of the
Yukawa-SYK model has a U (1) symmetry and has a finite lo-
cal Hilbert space while these features are absent in the phonon
sector. The U (1) symmetry of the Yukawa-SYK model can
break, yielding a superconducting state. Thus, our study of
the symmetric limit is a necessary first step to nonequilibrium
superconductivity [50–56] in these systems.
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FIG. 1. (a) Schematics of the Yukawa-SYK model where fermions (blue dots with white arrows indicating spin) are scattered by phonons
(green dots) from one site to another with a random amplitude gi j,k . Each phonon mode φk is coupled to a separate thermal bath Bk .
(b) Qualitative evolution of the effective temperature in a bath-coupled Yukawa-SYK system. Prior to the quench, phonons and fermion
density fluctuations are in a hybrid critical state. Immediately after the quench, the system undergoes a fast process which is followed by a
long-lasting process of thermalization where a hydrodynamical description of the system is possible.

While environments are usually perceived as sources of
decoherence that adversely affect interesting quantum effects,
open quantum systems can host novel phases of matter which
are inaccessible in isolated systems [57–60]. Therefore, it
is natural to study the dynamics of the SYK model as a
prototype for NFL systems in presence of coupling to an
environment. The importance of the nature of the bath and
the type of system-bath coupling on both the intermediate and
long-time behavior of purely fermionic SYK models has been
highlighted by Refs. [45–47]. As a controlled theory for the
dynamics of a strongly interacting electron-phonon system
coupled to an external bath, the Yukawa-SYK model can
provide valuable insights into the nonequilibrium dynamics
of similar but more complex systems.

We first show that the critical phase survives for couplings
to Ohmic, super-Ohmic, and a range of sub-Ohmic baths. The
distributions of fermionic and phononic excitations display
clear qualitative differences over the course of the evolution.
Shortly after the quench, the system shows local (in time)
equilibrium, where the distribution of excitations is given by a
thermal function at an effective, time-dependent temperature.
This is similar to the late-time regime of “hydrodynamic”
relaxation [61–65] although with important differences which
are addressed in Sec. V D. We show that the NFL and Fermi
liquid (FL) regimes have different signatures in the thermal-
ization profiles of fermions and phonons. In the NFL regime,
fermions thermalize more efficiently than phonons despite the
latter’s direct coupling to the cold bath. Interestingly, the ef-
fective temperature of fermionic excitations is lower than that
of phonons at later times. On the other hand, in the FL regime,
phonons thermalize faster than fermions and are colder during
the intermediate and late stages of thermalization.

The paper has the following structure: In Sec. II we demon-
strate the theoretical setup and give a summary of our results.
In Sec. III we introduce the Yukawa-SYK model and charac-
terize different types of baths that we can couple to the system.
In Sec. IV we briefly review the Keldysh formalism and derive
the quantum kinetic equations (QKE) for the Yukawa-SYK

model. The results of the numerical solution of QKE and their
interpretation are presented in Sec. V. Finally, we conclude
the paper and propose some future directions in Sec. VI.

II. OVERVIEW OF RESULTS

The Yukawa-SYK model describes a system of Einstein
phonons randomly interacting with the density fluctuations
of a system of complex fermions [Fig. 1(a)]. The random
fermion-phonon coupling is chosen from a Gaussian ensem-
ble with zero mean and second moment proportional to g2.
This system is always in a quantum critical state at low tem-
peratures characterized by the strong hybridization of phonons
and fermion density fluctuations [22,23,25]. At t = 0, we
couple each phonon species to a separate non-Markovian
thermal system of phonons. By assuming a large number of
degrees of freedom in each local bath, we neglect the effect
of system-bath coupling on the environment. At low energies,
the bath density of states (DOS) has a power-law behavior
J (ω) ∼ ω|ω|a−1 where the exponent a characterizes the low-
energy behavior of the environment.

The effect of the bath on the system crucially depends on
the scaling behavior of J (ω) at small frequencies. We call the
bath infrared (IR) irrelevant when the exponent a given above
satisfies a > ac, for a universal value ac determined only by
the Yukawa-SYK model. In this case, the bath DOS goes
to zero fast enough at low energies such that the tunneling
of phonons between the system and the bath cannot affect
the low-energy spectrum of the system. The bath is called
marginal for a = ac, where at low energies, the system-bath
coupling and fermion-phonon interactions scale with energy
in the same way and similar to the irrelevant bath. Therefore,
we do not expect any qualitative change in the spectrum of
the system when coupled to a marginal bath. Finally, the
bath is termed relevant when a < ac where we expect the
system-bath coupling to affect the low-energy spectrum of the
system. We will not focus on a relevant bath in the following,
since it tends to destroy the critical phase as shown for purely
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fermionic SYK systems [46]. The limitation to an irrelevant
bath coupling is not substantial. We will see that it always
includes the regime of an Ohmic and super-Ohmic bath and
excludes only certain sub-Ohmic environments.

After turning on the system-bath coupling at t = 0, the
evolution of the system follows a two-stage process. An initial
and quick stage of dynamics characterized by large energy
transfer between the system and the bath as a result of the
lack of complete overlap between the eigenstates of pre- and
postquench Hamiltonians followed by a slow and long-lasting
period of quasiequilibrium behavior [Fig. 1(b)]. During the
first stage of dynamics, the population of phonons in the sys-
tem is found to deviate significantly from equilibrium, while
the population of fermions appears to be closer to a thermal
distribution. As explained below, the relative robustness of
the distribution of fermions is a result of Pauli’s exclusion
principle and the U (1) symmetry of fermions which restrict
the available phase space for fermion scattering. The insensi-
tivity of the fermion population allows us to assign fermions
an effective temperature using the fluctuation-dissipation ratio
(FDR) from the earliest instants of dynamics.

During the second stage of the evolution, both fermions
and phonons satisfy fluctuation-dissipation theorem (FDT) at
low to moderate energies (with respect to the bare gap of
the phonons). The effective temperature can be deduced from
FDT ([45,46]), showing a monotonic decrease toward its final
value. Interestingly, fermions appear to be slightly colder than
phonons during the second stage of the dynamics, despite
the direct coupling of phonons to the bath. We show that
the same phenomenon does not occur in an FL variant of the
Yukawa-SYK model with the same strength of interactions
and conclude that it is a result of the strong correlations
between fermions and phonons in the NFL system. We note
that such comparison between fermions and phonons is not
possible in the quench dynamics of purely fermionic SYK
models studied in the past [41,45–47,66].

Looking at the evolution of effective temperature quanti-
tatively, we observe an exponential relaxation of temperature
and other observables such as energy with the same rate. We
call this rate � which is defined via T − Tf ∼ e−�t . We see
that � follows a power-law behavior in terms of the final
temperature � ∼ T x

f where the exponent x is universally deter-
mined by the low-energy behavior of the system and the bath,
and it increases linearly with a. This observation suggests that
the evolution of every physical quantity is uniquely deter-
mined through its dependence on the effective temperature.
Thus, the knowledge of the time evolution of the effective
temperature is sufficient to describe the behavior of all of
the observables. We solve for the complete nonequilibrium
dynamics by numerically integrating the QKE. However, to
check the mentioned hypothesis and to physically illustrate
our numerical results, we also perform a “hydrodynamic”
approximation (see Sec. V D for remarks on the usage of
this term) by finding a closed set of equations for the total
energy and the rate of energy transfer between the system
and the bath as functions of effective temperature. By solving
them, we find the dependence of the temperature relaxation
rate on final temperature in complete agreement with the
results obtained from the numerical integration of QKE. Fur-
thermore, we show that the evolution during the slow phase

of the dynamics can itself be separated into two additional
stages with different scaling behavior if the bath is at very low
temperatures. During the time window where T � Tf and for
an irrelevant bath, temperature displays power-law behavior
in time given by

Teff (t ) ∝ t− 1
a−ac , (1)

while for a marginal bath Teff (t ) ∝ e−�t . For T − Tf � Tf

there is a crossover where the power-law decay for the irrel-
evant bath becomes exponential in time. We find the scaling
form of the decay rate during this stage to be

� ∝ T a−ac
f , (2)

for the NFL phase and � ∝ T 1+a for FL phase (see Ap-
pendix D). The faster relaxation at low temperatures can be
considered as a fingerprint of the NFL phase.

III. THE MODEL

A. The Yukawa-SYK model

The Yukawa-SYK model is a system of N phonon and 2N
fermion species in the exactly solvable limit N → ∞. The
Hamiltonian of the system is

H = 1

2

N∑
k=1

(
π2

k + ω2
0φ

2
k

) + 1

N

N∑
i jk

σ=±

gi j,kφkψ
†
iσ ψ jσ . (3)

The phonon fields φk and their conjugate momenta πk satisfy
the commutation relation [φk, πl ] = iδkl and have the bare gap
ω0, while fermion operators are defined by the anticommu-
tation relation {ψiσ , ψ

†
jσ ′ } = δi jδσσ ′ . The random couplings

gi j,k ≡ g′
i j,k + ig′′

i j,k are chosen from Gaussian ensembles with
zero means and equal second moments given by

g′
i j,kg′

nm,l = g2

2
(δinδ jm + δimδ jn)δkl , (4)

g′′
i j,kg′′

nm,l = g2

2
(δinδ jm − δimδ jn)δkl . (5)

We note that one can define the Yukawa-SYK model for N
fermion and M phonon species. The resulting theory is still
critical at low temperatures in the limit N, M → ∞ as long
as N

M is finite [22,25]. The strength of g′ and g′′ can also
be different. This will give an effective interaction between
fermions in the Cooper channel. Since we are only interested
in the dynamics of the model in the normal phase, we increase
the pair-breaking and thus tune the superconducting pairing to
zero by taking the same variance for g′ and g′′ [28].

The Hamiltonian in Eq. (3) becomes exactly solvable in
the limit N → ∞ as the vertex corrections vanish in this limit
and a closed system of self-consistent equations for fermion
and phonon Green’s functions can be obtained [22]. A key
feature of the system is that particle-hole fluctuations always
renormalize the effective phonon gap down to zero as T → 0.
This is a consequence of the large DOS of fermions at low
frequencies in the large-N limit. Unlike the usual scenario
where the quantum critical point is reached by tuning a param-
eter in the Hamiltonian, this model has self-tuned criticality
at sufficiently low temperatures for all values of g and ω0

[22,23,25,27,28,31]. Due to the disappearance of the phonon
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gap, both fermions and phonons become critical at low tem-
peratures where the system is in the NFL phase. In this regime,
the diagonal element of imaginary time Green’s functions
have the following behavior at large time separations:

G(τ ) ≡ − 1

2N

∑
iσ

〈ψiσ (τ )ψ†
iσ (0)〉 ∝ sgn(τ )

|τ |2

, (6)

D(τ ) ≡ − 1

N

∑
k

〈φk (τ )φk (0)〉 ∝ 1

|τ |2−4

. (7)

The parameter 
 is independent of the microscopic details
and reads


 ≈ 0.42. (8)

Therefore the scaling dimensions of the fields at the NFL
fixed point are given by [ψ] = 
 and [φ] = 1 − 2
. One can
show that the effective phonon gap scales with temperature
as ω2

eff ∼ T 4
−1 at low temperatures. At high temperatures,
phonons act as static impurities for fermions and the system is
in the universality class of the SYK2 model given by Eq. (19)
with constant fermionic DOS at low energies. For more de-
tail about the Yukawa-SYK model, we refer the reader to
Refs. [22,25].

B. The bath

1. General considerations

Thermalization is a by-product of coupling the degrees of
freedom in the bath to the degrees of freedom in the system.
In general, the Hamiltonian of system-bath coupling is given
by

HSB(t ) =
∑

i j

[
ai jOS

i (t )OB
j (t ) + H.c.

]
, (9)

where the operators OS
i and OB

i only contain the degrees of
freedom in the system and the bath, respectively. In order
to proceed, we assume that the effect of the system-bath
coupling on the bath degrees of freedom is negligible. This
means that the evolution of OB

i is approximately given by
d
dt OB

i ≈ i[HB,OB
i ], which is justified as long as the number of

degrees of freedom in the bath is much larger than the number
of degrees of freedom in the system.

We assume that the temperature of the bath is low enough
that the system eventually will end up in the critical phase.
As a result, we expect the scaling dimension of OS

i to be
determined by the scaling dimensions of φk and ψiσ at the
NFL fixed point. For OS

i ∼ ψ†n
ψn′

φm by using Eqs. (6) and
(7) we find the scaling dimension of the coupling ai j at the
NFL fixed point

[ai j] = 1 − (n + n′)
 − m(1 − 2
) − [
OB

j

]
. (10)

Couplings can be organized according to the sign of their scal-
ing dimension as relevant ([ai j] > 0), marginal ([ai j] = 0),
and irrelevant ([ai j] < 0). In the language of renormalization
group, the effect of relevant couplings is pronounced at low
energies. Marginal and irrelevant couplings are supposed to
only alter the nonuniversal properties of the system, since
their effect is suppressed at low energies. This does not mean,
though, that irrelevant couplings are unimportant as they still
can thermalize the system via coupling to high-energy modes.

Based on Eq. (10), we see that couplings with higher
powers of fermion and phonon operators are generally less
efficient. Therefore, it is permissible to neglect higher-order
operators and to only keep those with the lowest-order consis-
tent with the symmetries.

Below, we consider two general classes of phonon and
fermion baths relevant to the Yukawa-SYK model. Using
aforementioned scaling arguments, we will explain that the
setup in Fig. 1(a) is the physically most relevant one that
preserves the NFL phase at low temperatures.

2. Phonon bath

A phonon bath consists of a set of phonon displacement
operators {Xl} together with their conjugate momenta {Pl}.
We assume that instead of having HB, we know all of the
connected correlation functions of the bath. For our purposes,
though, only the two-point functions are required,

Di j (t, t ′) = −i〈Xi(t )Xj (t
′)〉. (11)

We have assumed that the bath is Z2 symmetric, so correlation
functions with an odd number of phonon operators vanish.
We want to find the net effect of system-bath coupling on
the dynamics of the system. In order to do so, we need
to integrate out the bath degrees of freedom. Due to the
potentially nonlocal behavior of the correlation functions in
Eq. (11), integrating out the bath degrees of freedom can
induce correlations in the system that are nonlocal in time.
Also, coupling to the bath can make the off-diagonal Green’s
functions of the system like 〈φkφl〉 nonvanishing. While the
former effect is actually a desirable feature that can lead to
interesting physics, the latter can ruin the exact solvability
of the model. Two ways to work around this issue is to use
an SYK-like random system-bath coupling where the induced
off-diagonal elements vanish in the large-N limit [45–47] or
to couple each degree of freedom in the system to a separate
bath. While we explicitly take the latter route, one can show
that the former approach gives similar results.

The lowest-order terms in Eq. (9) for a phonon bath have
the form Xφ. Note that the coupling of the bath phonons to
density fluctuations of fermions Xψ†ψ is less relevant than
the phonon coupling and can be ignored. We assume that for
every phonon mode in the system φk , there is effectively one
independent but similar mode in the bath Xk coupled to the
phonon mode. As a result, we can write

HSB =
∑

k

φkXk . (12)

Therefore, we are taking each Xk to be a separate Caldeira-
Leggett bath [40,49]. The bath correlation functions are
diagonal and time-translation invariant:

〈Xi(t )Xj (t
′)〉 = iδi jD(t − t ′). (13)

The response and Keldysh correlation functions of the bath
are defined as

DR(t ) = �(t )[D(t ) − D(−t )], (14)

DK (t ) = D(t ) + D(−t ). (15)
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The spectral density of phonons in the bath J (ω) can be found
from J (ω) = −Im DR(ω). We assume that J (ω) is given by
the generic expression

J (ω) = γ sin

(
πa

2

)
sgn (ω)|ω|ae−|ω|/ωc . (16)

The parameter γ determines the strength of system-bath cou-
pling and ωc is a cut-off energy scale assumed to be larger
than relevant energy scales in the system. Depending on the
value of a, the bath is usually called Ohmic (a = 1), super-
Ohmic (a > 1), or sub-Ohmic (a < 1). The real part of DR

can be found from J (ω) using Kramers-Kronig relations.
The Keldysh function DK is found from the condition of
thermal equilibrium for the bath and using FDT (28). The
low-frequency limit of Eq. (16) gives us the scaling dimension
of X

[X ] = 1 + a

2
. (17)

Putting this in Eq. (10) we see that HSB is irrelevant for

a > ac ≡ 4
 − 1. (18)

The value for the threshold exponent ac coincides with the
power of the frequency or temperature divergence of critical
phonons [22]. Hence, the NFL phase of the Yukawa-SYK
model survives after coupling the system to a wide range of
generic cold phonon baths, unlike coupling to a fermion bath
were the simplest system-bath coupling consisting of direct
charge transfer between the system and the reservoir destroys
the NFL phase as was shown before [45,46,67]. This point
becomes relevant by noting that in the real-world electron-
phonon systems, thermalization dominantly occurs through
the interaction of phonons with the environment.

Notice, with the above given value for 
 follows ac ≈
0.68. Hence, our analysis applies to super-Ohmic, Ohmic, and
a > ac sub-Ohmic baths. By varying the ratio M/N of the
phonon and fermion modes the exponent 
 varies between
1
4 and 1

2 [22], such that 0 < ac < 1. Hence, our analysis is
always applicable to the Ohmic and super-Ohmic regime.

3. Fermion bath

We consider a particle-hole symmetric fermion bath de-
scribed by the set of fermion operators (χ†

iσ , χiσ ). We assume
the bath respects SU (2) and U (1) symmetries and therefore
conserves total spin and charge. Again, we use Eq. (10) and
only consider the lowest-order terms in ψ and φ that con-
serve spin and charge in the system-bath mixture to see that
the most relevant terms in HSB are direct fermion tunnel-
ing χ†

σψσ + ψ†
σχσ and fermion-phonon scattering χ†

σχσφ. A
generic fermion bath has a nearly uniform density of states at
low energies and is conveniently modeled by a SYK2 system
defined as

HSYK2 = − 1√
NB

NB∑
i j

σ=±

ti jχ
†
iσ χ jσ . (19)

The random hopping term ti j = −t�
i j is chosen from a Gaus-

sian ensemble with zero mean and second moment |ti j |2 = t2.
The Hamiltonian in Eq. (19) can be solved after taking the

average over the random hopping, resulting in the well-known
semicircular DOS. A convenient way to define the tunneling
Hamiltonian such that it preserves the exact solvability of the
model is to take

HSB = − 1√
NB

N∑
i

NB∑
j

∑
σ=±

(αi jψ
†
iσχ jσ + H.c.), (20)

where |αi j |2 = α2 and αi j = 0. The prefactor in Eq. (20)
ensures that the effect of system-bath coupling on the bath
is O(N/NB) and therefore the bath is not affected by HSB

when NB � N . According to Eq. (19), the scaling dimension
of χ is 1

2 . By putting this in Eq. (10), we see that (20) is a
relevant coupling destroying the NFL phase and as a result, the
low-energy limit of the system is a FL with linearly Landau-
damped phonons.

In case of coupling phonons to a bath of fermions described
by Eq. (19), we can use a Yukawa vertex similar to the original
model in Eq. (3)

HSB = 1√
NNB

N∑
k

NB∑
i j

σ=±

λi j,kχ
†
iσ χ jσφk . (21)

It is easy to check that this coupling is irrelevant and due to
the uniform DOS of the bath, contributes to linear Landau
damping of phonons similar to second term in Eq. (D9). At
low energies, this regime is similar to coupling phonons to an
Ohmic phonon bath corresponding to a = 1 in Eq. (16) and
hence does not require a separate treatment.

IV. KELDYSH FORMALISM

A. General definitions

We only mention briefly the essential concepts used in our
work and refer readers to Ref. [40] for a detailed treatment
of Keldysh formalism. In Keldysh approach, we work with
greater G> and lesser G< correlation functions

G>(t, t ′) ≡ −i〈â(t )â†(t ′)〉, (22)

G<(t, t ′) ≡ −iξ 〈â†(t ′)â(t )〉, (23)

where ξ = ± corresponds to bosonic (+) and fermionic (−)
statistics for â. In the equilibrium formalism, the central ob-
jects of study are time-ordered correlation functions and the
physically measurable correlation functions are only found at
the end of calculation using analytical continuation, whereas
in Keldysh field theory the response and Keldysh (symmetric)
correlation functions can be found directly from Eq. (22),

GR(t, t ′) ≡ �(t − t ′)[G>(t, t ′) − G<(t, t ′)], (24)

GA(t, t ′) = [GR(t, t ′)]†, (25)

GK (t, t ′) ≡ G>(t, t ′) + G<(t, t ′). (26)

In Keldysh field theory we are not limited to thermal states
and, in general, the evolution of Green’s functions in (22) is
given by QKE which are a set of self-consistent integrodif-
ferential equations between correlation functions of different
order. For a generic interacting system there are an infinite

104319-5



HOSSEIN HOSSEINABADI et al. PHYSICAL REVIEW B 108, 104319 (2023)

number of these equations, a quantum counterpart of the
BBGKY hierarchy [68]. Accordingly, a truncation of QKE
is often required which inevitably results in approximate so-
lutions. For SYK models, however, and, as we show below,
QKE become closed at the level of two-point functions in the
limit N → ∞, allowing us to monitor the dynamics exactly.

For steady states, Green’s functions depend on t − t ′, al-
lowing us to take their Fourier transform. The spectral density
of single-particle states A(ω) is determined by

A(ω) = −2 Im GR(ω). (27)

Particularly in thermal equilibrium and at temperature T , the
FDT relates GK (ω) to A(ω) via[

iGK (ω)

A(ω)

]ξ

= tanh
ω

2T
. (28)

One usually can regard Eq. (28) as a relation that gives
GK in terms A when the temperature is known. Out of
equilibrium, time-translation symmetry is usually broken and
Green’s functions are not only functions of t − t ′. As a result,
there is no a unique way to extend Eqs. (27) and (28) to
out-of-equilibrium situations. Two commonly used extensions
are the Wigner transformation defined by [40]

G(t, ω) ≡
∫ +∞

−∞
G

(
t + τ

2
, t − τ

2

)
eiωτ dτ, (29)

and Fourier transformation along the “corner slice” given by
[66]

G(t, ω) ≡
∫ +∞

−∞
[�(τ )G(t, t − τ )

+ �(−τ )G(t + τ, t )]eiωτ dτ. (30)

Both definitions are expected be equivalent for steady states
and also non-steady states if the change in G(t, t ′) along the
center-of-mass coordinate t+t ′

2 is slower than the change along
t − t ′. As a result, the two definitions in Eqs. (29) and (30) can
give quite different results out of equilibrium. Although the
Wigner transformation is the most commonly used definition,
it violates the causal structure of kinetic equations given in
Eq. (52) below. The same does not happen for integration
over the corner slice which is actually the natural choice con-
sidering how Green’s functions are evolved in time by QKE
(Appendix A). For instance, in a quench at t = t0, the func-
tion G(t, ω) defined according to Eq. (29) displays nontrivial
dynamics at t < t0 before the quench happens. This issue
becomes more pronounced in critical systems where memory
effects are strong due to the slow decay of correlations in
time. Henceforth, we employ the corner slice to define time-
dependent Green’s functions in the frequency domain. The
spectral density at time t is defined analogously to Eq. (27).
We define the FDR as

F (t, ω) =
[

iGK (t, ω)

A(t, ω)

]ξ

, (31)

which can be used to find the nonequilibrium one-particle
distribution function n(t, ω) according to [40]

F (t, ω) = [1 + 2ξ n(t, ω)]−ξ . (32)

FIG. 2. The closed time contour in the Schwinger-Keldysh for-
malism starts at the initial moment of the evolution (t = 0) and goes
to infinite future and back. Every field is defined on C. Equivalently,
each field is decomposed to its forward and backward components.

An effective temperature Teff (t ) can be defined if for small
frequencies n(t, ω) is approximated by the Bose-Einstein
(Fermi-Dirac) distribution for bosons (fermions)

tanh
ω

2Teff (t )
≈ F (t, ω). (33)

Note that, in out-of-equilibrium situations the temperature is
found by the best fitting of a hyperbolic function to F (t, ω).
In equilibrium, FDT is used to obtain GK in terms of spectral
density and temperature.

Keldysh field theory can also be expressed in the path
integral language. This can be easily seen by looking at the
evolution of density matrix

ρ(t ) = U (t, 0)ρ0U
†(t, 0), (34)

where ρ0 is the initial density matrix and U is the unitary time-
evolution operator. By decomposing time-evolution operators
on each side into the multiplication of time-evolution oper-
ators over small time steps, inserting resolutions of identity
between them and applying a Trotter expansion, we get a path
integral for each side corresponding to forward (left side) and
backward (right side) directions of integration. The quantum
fields of opposite directions are not independent. They are
coupled through the matrix element of ρ0 between the fields of
opposite contours at t = 0. Moreover, since the trace of ρ(t ) is
to be calculated eventually, the value of the fields on opposite
branches should coincide at the final time. As a result, one
can define quantum fields on a closed time contour C shown
in Fig. 2. Naively, the usual temporal integration in the action
is replaced by integration over the contour∫ +∞

−∞
L(t ) dt →

∮
C

L(tc) dtc, (35)

while keeping in mind to take care of the boundary conditions
mentioned above. Instead of time ordering in the equilibrium
formalism, the correlation functions are contour ordered

iG(tc, t ′
c) ≡ 〈TCa(tc)ā(t ′

c)〉 = ξ 〈TC ā(t ′
c)a(tc)〉, (36)

where TC is the contour ordering operator. Equivalently, we
can assign each field an extra index corresponding to whether
it is on the forward or backward branches of the contour. Then,
we have an alternative expression for the greater and lesser
correlation functions given in Eq. (22) as

G>(t, t ′) ≡ G(t−, t ′+), (37)

G<(t, t ′) ≡ G(t+, t ′−). (38)
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FIG. 3. (a) The interaction vertex for the Yukawa-SYK model
after averaging over random interactions. [(b) and (c)] Diagrammatic
representation of Dyson equations for (b) fermions and (c) phonons.
Narrow lines are bare Green’s functions.

B. Keldysh action for the Yukawa-SYK model

When the system is isolated, its evolution follows Eq. (3).
Therefore, we can use the Keldysh action of Eq. (3) to de-
scribes the dynamics. This action is given by

S = S f + Sph + Sint, (39)

S f =
N∑
i

σ=±

∮
C

dtc iψ̄iσ (tc)∂tcψiσ (tc), (40)

Sph = −1

2

N∑
k

∮
C

dtc
(
φ̇2

k + ω2
0φ

2
k

)
, (41)

Sint = − 1

N

N∑
i jk

σ=±

gi j,k

∮
C

dtc φk (tc)ψ̄iσ (tc)ψ jσ (tc). (42)

In Keldysh formalism, disorder averaging is implemented di-
rectly, without the need to use methods like replica trick [69]
or supersymmetry [70]. By evaluating the Gaussian integrals
over disorder realizations, we get the effective interaction
vertex in Fig. 3(a) given by the nonlocal action

Seff = ig2

2N2

N∑
i j,k

∑
σ,σ ′=±

∮ ∮
dtcdt ′

c φk (tc)φk (t ′
c)

× ψ̄iσ (tc)ψ jσ (tc)ψ̄ jσ ′ (t ′
c)ψiσ ′ (t ′

c). (43)

The fermion and phonon Green’s functions are defined by

G(tc, t ′
c) = −i〈TCψiσ (tc)ψ̄iσ (t ′

c)〉, (44)

D(tc, t ′
c) = −i〈TCφk (tc)φk (t ′

c)〉, (45)

and are assumed to be independent of field indices. The
Green’s functions satisfy Dyson equations

G = G0 + G0 ⊗ � ⊗ G, (46)

D = D0 + D0 ⊗ � ⊗ D. (47)

G0 and D0 are fermion and phonon Green’s functions in the
absence of interactions and � and � are fermion and phonon
self-energies, respectively. For N → ∞, vertex corrections
can safely be ignored and self-energies are given by loop
diagrams in Figs. 3(b) and 3(c) which read as

�(tc, t ′
c) = ig2G(tc, t ′

c)D(tc, t ′
c), (48)

�(tc, t ′
c) = −2ig2G(tc, t ′

c)G(t ′
c, tc). (49)

It may appear that the Dyson equations should be solved
self-consistently. Nevertheless, by applying the inverse of free
Green’s functions on both sides of Eqs. (46) and (47) we get

i∂tc G(tc, t ′
c) = δ(tc, t ′

c) +
∮

�(tc, τc)G(τc, t ′
c) dτc, (50)

−
(
∂2

tc
+ ω2

0

)
D(tc, t ′

c) = δ(tc, t ′
c)

+
∮

�(tc, τc)D(τc, t ′
c) dτc. (51)

One can show that (see Appendix A) these equations have
a causal structure such that the value of a function at (t, t ′)
only depends on the value of other functions at times (t1, t2),
satisfying

max{t1, t2} < max{t, t ′}, (52)

and therefore we do not need to solve Dyson equations self-
consistently. In order to find the dynamics, we have to write
Eqs. (50) and (51) in terms of greater and lesser functions and
then solve them numerically. While these equations together
with FDT are sufficient to find the Green’s functions at equi-
librium, an accurate numerical solution of integrodifferential
equations for time evolution requires us to work with first-
order time derivatives. Therefore, we rewrite the equations for
phonons (51) in terms of a larger set of first-order equations.
This is achieved by introducing two extra correlation func-
tions,

B(tc, t ′
c) = −i〈TCπk (tc)φk (t ′

c)〉, (53)

C(tc, t ′
c) = −i〈TCπk (tc)πk (t ′

c)〉, (54)

where πk = φ̇k is the momentum conjugate field of φk .
A detailed discussion of the first-order quantum kinetic
equations and their numerical solution can be found in
Appendix A.

C. Formulating system-bath coupling

Here we only consider the coupling of phonons to a phonon
bath as represented by Eq. (12). For a discussion of fermion
bath with the coupling in Eq. (20) in Keldysh language, see
Ref. [47].
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FIG. 4. Total energy as a function of time for g2/ω3
0 = 0.7,

a = 1.0, Tf /ω0 = 0.012, and γ /ω0 = 0.12. The red dashed line indi-
cates the total energy before the quench. Inset shows the exponential
decay of energy at later times with a relaxation rate (given by the
slope of the logarithm) that increases with Tf .

Following the arguments of Sec. III B 2, we assume a
quadratic Keldysh action for the phonon bath,

SB = 1

2

N∑
k

∮ ∮
Xk (tc)D−1(tc, t ′

c)Xk (t ′
c) dtc dt ′

c. (55)

The bath Green’s function D is determined by Eq. (16) and
using FDT. Integrating out the bath degrees of freedom and
using Eq. (12) gives the action responsible for the thermaliza-
tion of phonons,

SSB = −1

2

N∑
k

∮ ∮
φk (tc)D(tc, t ′

c)φk (t ′
c) dtc dt ′

c, (56)

which contributes to phonon self-energy in Eq. (49)

�(tc, t ′
c) = −2ig2G(tc, t ′

c)G(t ′
c, tc) + D(tc, t ′

c). (57)

V. RESULTS

In Sec. V A we present the results of the numerical solution
of QKE [Eqs. (50) and (51)] and by looking at the behavior
of effective temperature and the deviation of the system from
equilibrium at low energies, we motivate a two-stage picture
for dynamics after the quench. In Sec. V B we analyze the first
stage of dynamics detail and address the role of phonons and
symmetries in the dynamics at early times. The evolution of
the system during the second stage of dynamics together with
an analytical evaluation of the behavior of relaxation rate are
given in Secs. V C and V D, respectively.

A. The two-stage picture of postquench evolution

In this part, we demonstrate the qualitative difference be-
tween the behavior of various physical quantities at the early
and later periods of the postquench evolution. Accordingly,
we separate the dynamics into two stages as was mentioned
in Sec. II. By inspecting the total energy (see Appendix B) as
a function of time shown in Fig. 4, we observe an oscillatory
behavior during the early times after the quench which shortly
afterwards turns into a monotonic decrease until the system

FIG. 5. Top panel: Phonon (a) and fermion (b) spectral densities
at different times. We can see a quick deformation in both spectral
densities at early times. Bottom panel: FDR for phonons (c) and
fermions (d) as a function of frequency at different times. The large
early deviation of F (t, ω) from quasiequilibrium for phonons is clear.
After a while, both fermions and phonons display quasiequilibrium
behavior. The quench parameters are chosen as g2/ω3

0 = 0.7, a =
1.0, γ /ω0 = 0.12, Ti/ω0 = 0.05, and Tf /ω0 = 0.012.

reaches its final thermal state at t → ∞. This change in the
behavior of the energy is the first sign of the two-stage time
evolution of the system.

The one particle spectra of fermions and phonons are
depicted in Figs. 5(a) and 5(b) at different times. A quick
deformation of both fermionic and phononic spectra imme-
diately after the quench is observed throughout the frequency
space. On the other hand, the variation in the spectra is slow
and gradual at later stages and mostly occurs at low energies.
This crossover in the behavior of the evolution of one particle
spectrum from early to later stages of the evolution is another
manifestation of the fact that the early and later periods re-
quire separate physical descriptions.

Another quantity of interest is the distribution of single
particle excitations related to the FDR defined in Eq. (31).
As it can be seen in Figs. 5(c) and 5(d), the distributions of
both phonons and fermions deviate from quasiequilibrium at
early times while at later times they appear to be quite close
to a thermal state with a time-dependent temperature. A quan-
titative measure of the deviations from quasiequilibrium can
be defined if we assign each species an effective temperature
which is read from the slope of the FDR at the origin of the
frequency space according to

Teff (t ) ≈ 1

2∂ωF (t, ω)

∣∣∣∣
ω→0

. (58)
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FIG. 6. The deviation of FDR for fermions and phonons from
quasiequilibrium defined in Eq. (60) as a function of time. The
minima show the transition to the second stage of the dynamics.
Furthermore, phonons exhibit considerably larger deviations com-
pared to fermions at all times. Dashed lines indicate the the minima
of δF . Inset: The extrapolated effective temperature for fermions
and phonons as a function of time. The peaks approximately mark
the onset of the second stage of the evolution. The parameters are
g2/ω3

0 = 0.7, a = 1.0, Ti/ω0 = 0.05, and γ /ω0 = 0.12.

The effective temperatures obtained from Eq. (58) for
fermions and phonons is shown in Fig. 6. With the exception
of the early times, phonons appear to be at a higher temper-
ature than fermions. This may look counterintuitive from a
classical point of view, as phonons are directly coupled to
the cold bath while fermions exchange heat with the bath
only indirectly via phonons. Nonetheless, quantum effects can
explain this behavior as the correlations between fermions and
phonons due to their strong interactions render the aforemen-
tioned distinction meaningless. This behavior of the strongly
interacting NFL phase can be contrasted to the behavior of a
similar system with an additional moderate to strong random
hopping term for fermions which makes the system a Fermi
liquid. In the latter case (see Appendix D), the effective tem-
perature of phonons is smaller than the effective temperature
of fermions during the intermediate and later stages of the
evolution as the correlations between fermions and phonons
are weak compared to the NFL phase.

We use the effective temperatures to define the quasiequi-
librium FDRs for phonons and fermions according to

Feq(t, ω) ≡ tanh
ω

2Teff (t )
. (59)

The deviation from quasiequilibrium can be defined [46] in
terms of the functional norm of the difference between F (t, ω)
found from Eq. (31) and Feq given by Eq. (59),

δF (t ) ≡
[∫ +�

−�
[F (t, ω) − Feq(t, ω)]2 dω∫ +�

−�
F 2

eq(t, ω) dω

] 1
2

. (60)

We have divided the difference by the norm of Feq to obtain
the relative deviation. The relative deviation δF (t ) is shown
in Fig. 6 for phonons and fermions. We observe that for both
phonons and fermions, there is a temporary increase in δF (t )
followed by a minimum and then a gradual approach towards

the true equilibrium at later times. The oscillations in E (t )
stop approximately around the same time (Fig. 4) when δF (t )
for fermions and phonons reach their minimum. Accordingly,
the minima in the deviations of fermions and phonons from
quasiequilibrium set a natural boundary between the first and
second stages of the evolution.

The separation of the evolution into two stages can also be
observed by looking at the behavior of the effective tempera-
ture for fermions. We read the effective temperature from the
FDR for fermions as their deviation from quasiequilibrium is
significantly less than phonons throughout the entire evolu-
tion. As it can be seen in Fig. 6, there is a temporary increase
in the effective temperature after the quench and as expected
from the two-stage picture given above, the location of the
peak in the effective temperature is close to the location of the
minimum in δF (t ) for fermions.

Having explained the qualitative differences between early
stage and late stage dynamics, we will separately discuss their
properties in more details in the following sections.

B. First stage of dynamics

The first distinct feature of the first stage of dynamics is the
fast relaxation of both fermion and phonon densities of states
[Fig. 5(a) and 5(b)]. Similar behavior has been found in the far
from equilibrium dynamics of purely fermionic SYK models
[44]. This behavior is pronounced at higher frequencies where
the high-frequency components of spectral functions at early
times coincide with their value at t → ∞ [see the curves for
ω0t = 10.0 in Figs. 5(a) and 5(b)].

The second feature is the early oscillatory evolution of total
energy. This behavior has not been observed in the thermaliza-
tion of purely fermionic SYK models [45,46] coupled to IR
irrelevant external baths. The appearance of these oscillations
may seem inconsistent with the Yukawa-SYK model being
in a scale invariant critical state with no characteristic energy
scales besides the temperature itself. However, the coupling of
the system to the bath introduces new energy scales including
the system-bath coupling and the UV cut-off ωc defined in
Eq. (16) which puts a soft upper bound on the energy spectrum
of the environment. Furthermore, due to the temporary heating
of the system as a result of the sudden coupling of the system
to the bath, the system is pushed away from the critical state.
This can render the dynamics sensitive to the bare phonon
gap ω0 and the coupling g2. Phonons as harmonic oscillators
exhibit oscillatory behavior and as it can be seen in Figs. 5(a)
and 5(c), high-frequency phonons with finite spectral weight
are generated in the range of frequencies ω � ω0 after the
quench, resulting in the emergence temporary oscillations in
the profile of phonon correlation functions over timescales
t � 1/ω0 in agreement with the approximate period of initial
energy oscillations τ ≈ 2π/ω0 in Fig. 4. For the Yukawa-
SYK model, the total energy is given by

E (t )

N
= 〈π2〉, (61)

where the contribution of the potential term (∼ 1
2ω2

0φ
2) is

canceled by the fermion-phonon interaction while the kinetic
term is amplified by a factor of 2. We refer the reader to Ap-
pendix B for a derivation of this result. The above expression
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holds in and out of equilibrium and it directly connects the
energy oscillations to the oscillations of phonon correlator as
explained before.

The third distinct feature of the first stage of dynamics is
the deviation of the populations of both fermions and phonons
from a thermal distribution [Figs. 5(c) and 5(d)]. While a
temporary distortion in the distribution of particles is naturally
expected as a result of the sudden coupling of the system to
the bath, the relative robustness of the distribution of fermions
compared to phonons as it can be seen in Fig. 6 requires
extra physical explanation. At first, one may argue that the
substantial difference between the distribution of phonons and
fermions comes from coupling the bath directly to phonons
while fermions are affected less as they only indirectly inter-
act with the bath through their mutual coupling to phonons.
However, this statement cannot fully explain the physics of
the problem for two reasons: First, we are dealing with a mod-
erately strong interacting system of fermions and phonons
and therefore we expect any perturbations in the phononic
sector to be transmitted efficiently to the fermionic sector.
Second, the rigidity of the distribution of fermions persists
even in case of directly coupling fermions to the bath as
long as one crucial condition (see below) is satisfied. The
robustness of fermionic distribution can be attributed to two
elements: the Pauli’s exclusion principle due to fermionic
statistics and the global U (1) symmetry of the problem under
the transformation ψiσ → eiϕψiσ which guarantees fermion
number conservation. To the extent of our knowledge, the
role of U (1) symmetry in the quench dynamics of SYK mod-
els has not been investigated before. We will explain below,
using Fermi’s golden rule arguments, how U (1) symmetry
and Fermi statistics restrict the distortion of the fermionic
distribution function after a quench.

When we turn on the system-bath coupling by a quench
function f (t ) [for this work f (t ) ∝ �(t )], excitations are
created in the system (the bath is large and assumed to be
unaffected by the quench). The energy of these excitations
depends crucially on the power spectrum of f (t ) defined as
| f̃ (ω)|2, where f̃ (ω) is the Fourier transform of f (t ). The per-
turbative rate of change in the phonon distribution at energy
ω, consistent with the symmetries of the problem to the lowest
order in the system-bath coupling, satisfies

∂t nph(ω) ∝
∫

| f̃ (ε)|2J (ω − ε) ρph(ω)

× [nB(ω − ε) − nph(ω)] dε, (62)

where ρph is the phonon spectral density, nB is the distribution
of phonons in the bath and J (ω) is the bath spectral density
given in Eq. (16). For a direct coupling between fermions and
a phononic bath respecting the U (1) symmetry we have

∂t n f (ω) ∝
∫

dε

∫
dν | f̃ (ε)|2A(ω)J (ν)(nB(ν) − 1)

× {[1 − n f (ω)]n f (ω − ε − ν)A(ω − ε − ν)

− n f (ω)[1 − n f (ω + ε + ν)]A(ω + ε + ν)}
+ higher-order terms with even powers of A(ω),

(63)

FIG. 7. The relaxation rates of temperature, energy, and 〈φ2〉 to-
gether with their power-law fits versus final temperature for a = 1.0
(see Table I), g2/ω3

0 = 0.7, and γ /ω0 = 0.12.

where A(ω) is the fermion spectral density. The fact that we
always have even powers of A is a consequence of the U (1)
symmetry in the system. Together with fermionic statistics,
this severely restricts the contributing domain of integration
in Eq. (63) to excitations close to the Fermi energy. This is in
contrast to Eq. (62) for phonons where such restrictions do not
hold.

C. Second stage of dynamics

During the second stage of dynamics, we observe a grad-
ual enhancement of the NFL behavior for fermions as the
systems cools down which has already been observed in
purely fermionic SYK models in the past [46,47]. In addition,
phonons are softened over time toward their low-temperature
gapless state, an exclusive property of the Yukawa-SYK
model.

Shortly after the oscillatory behavior of the energy is over,
the energy starts to relax exponentially to its final value (inset
of Fig. 4)

E (t ) ≈ E f + AE e−�E t . (64)

The energy relaxation rate �E depends on the final tempera-
ture and has a power-law scaling with Tf (Fig. 7).

The effective temperature also follows a monotonic de-
crease during the second stage. We see that the late stage
relaxation follows an exponential trend,

Teff (t ) ≈ Tf + AT e−�T t . (65)

TABLE I. Comparison of the exponent of temperature relaxation
rate x defined as �T ∝ T x

f found from the numerical solution of
quantum kinetic equations and the analytical hydrodynamical ap-
proximation. The parameters a and 
 are respectively defined in
Eqs. (16) and (8).

Bath exponent Numerics Analytics (a + 1 − 4
)

a = 1 0.32 0.32
a = 1.2 0.53 0.52
a = 0.9 0.21 0.22
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The temperature relaxation rate �T (Fig. 7) turns out to be
close to the energy relaxation rate �E for different values of
a (Table I) and has the same scaling with Tf as �E given by
Eq. (66).

The exponential relaxation is not exclusive to total energy
and temperature. The fluctuations of phonon displacement
〈φ2〉 also relax exponentially to their final value, with the
same rate given above (Fig. 7). Moreover, total energy is
proportional to 〈π2〉 according to Eq. (61) and therefore this
quantity has the same relaxation profile. The fact that all of
these quantities relax in the same way as temperature suggests
that the dynamics of the system is completely captured by
the effective temperature. This is consistent with the general
picture of quantum critical systems, where temperature is the
only relevant energy scale [71]. We will confirm this hypoth-
esis in the next section and find the dependence of � on Tf as

�E ∼ T a−4
+1
f , (66)

where a is the exponent of the phonon bath defined in Eq. (16)
and 
 is given by Eq. (8). We see that the exponent is always
positive for an irrelevant bath according to Eq. (18).

We can evaluate the efficiency of the bath to thermalize the
critical system by looking at Eq. (66). As the bath becomes
less relevant in the IR limit, the relaxation rate gets suppressed
at small temperatures. The limit a = 4
 − 1 when the expo-
nent of Tf in Eq. (66) becomes zero corresponds to a marginal
system-bath coupling.

D. Hydrodynamical approximation

As shown before, all physical observables relax with the
same rate in the slow stage of thermalization. This can hap-
pen, for instance, if all of these quantities could be uniquely
determined by only one of them such as the temperature.
The SYK model and its variants are all-to-all connected
interacting models which can efficiently redistribute energy
[18,41,44,48]. When we couple these systems to thermal
baths, we expect the energy transfer between the system and
the bath to be the slowest relevant process and, thus, deter-
mining the rate of relaxation. At every instant of time, the
system is in local equilibrium and all of the observables are
given by their value in equilibrium at temperature Teff (t ). This
situation is similar to the “hydrodynamic” relaxation of trans-
lationally invariant initial states. Despite the similarity, there
is an important difference between our setup and those studied
by Refs. [61–63] in which the energy is locally conserved and,
hence, is described by a stochastic diffusion equation after
local equilibrium has been established. The scale invariance
of the diffusion equation results in the power-law decay of
observables at long times, whereas in our system, the energy
is not conserved due to coupling to the bath and the long
time decay is exponential, except for when the bath is at zero
temperature (see the end of this section). Possibly, our case is
closer to the hydrodynamic regimes discussed in Refs. [64,65]
where collisions are faster than losses, although these sys-
tems are integrable in the absence of losses in contrast to the
Yukawa-SYK model.

To check the validity of such a “hydrodynamic” hypoth-
esis, we assume the system to be in thermal equilibrium at

temperature Teff (t ) and find energy transfer rate and total
energy in terms of Teff (t ). We solve this closed set of equa-
tions to find the relaxation profile of the temperature and
compare the results to the numerics of Sec. V C. The energy
transfer rate between the system and the bath can be found in
terms of the Green’s functions of phonons in the system and
the bath (see Appendix C),

∂t E (t ) = − iN

2

∫ t

0
[DK (t ′, t )∂t D

A(t ′, t )

+ DR(t, t ′)∂t D
K (t ′, t )]dt ′. (67)

When the system is in a quasithermal state with the slowly
varying temperature Teff (t ), we can assume time translation
symmetry and use the expressions for functions appearing in
Eq. (67) at thermal equilibrium to get

∂t E = N
∫

dω

2π
ωJ (ω) Im DR(ω)

×
{

coth

[
ω

2Teff (t )

]
− coth

(
ω

2Tf

)}
, (68)

where J (ω) was given by Eq. (16). At low temperatures, we
can employ the scaling form of the phonon Green’s function
[22] to find

∂t E = −Nγ g2(4
−1)ω−8

0 T 3+a−4


eff f

(
Teff

Tf

)
, (69)

where f (x) is given by

f (x) = − 21+aπ cos (2π
)

cos (π
) sin3 (π
)�(2
)�(1 − 4
)

×
(

2
 − 1

8
2sin π
2


)4
∫ ∞

0
ya+2−4
(coth y − coth yx) dy,

(70)

and it has the following limiting behaviors:

lim
x→1

f (x) = 0, lim
x→∞ f (x) = const. (71)

For finite Tf and Teff (t ) � Tf , Eq. (69) gives

∂t E ∝ T 2+a−4

f (Teff − Tf ). (72)

For a zero temperature bath or when Tf � Teff � g2/ω2
0,

which corresponds to the intermediate stage of the evolution
of the system coupled to a finite temperature but sufficiently
cold bath, we find

∂t E ∝ T 3+a−4

eff . (73)

To identify a closed differential equation for the time evolu-
tion of the temperature, we note that, similarly to the SYK
model [18], the Yukawa-SYK model has a linear specific heat
at small temperatures,

E (T ) − E (0) ≈ 1
2 NcT 2, (74)

where c is a nonuniversal parameter which can be evaluated
numerically. The linear specific heat is a consequence of the
reparameterization symmetry of the Yukawa-SYK model in
the infrared limit [72] which is spontaneously broken by the
saddle-point solution in Eqs. (6) and (7). The degeneracy of
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FIG. 8. Numerical solution of Eq. (75) for the two cases of zero
and finite-temperature Ohmic baths (a = 1). The late time power-law
decay of temperature is evident for Tf = 0. For a finite-temperature
bath, the power-law regime can exists only transiently and it eventu-
ally turns into an exponential relaxation at longer times.

the resulting gapless Goldstone modes is lifted by the con-
tributions from UV modes, resulting in a Schwarzian term
in the effective action of the fluctuations around the saddle
point. Since the irrelevant bath does not affect the low-energy
physics of the system, we expect a Schwarzian term to be
present in the low-energy action of a system coupled to bath.
The Schwarzian results in a linear specific heat [18] at small
temperatures.

By combining (69) and (74) we get a kinetic equation that
governs the time variation of the temperature:

dTeff

dt
= −γ

c
g2(4
−1)ω−8


0 T 2+a−4

eff f

(
Teff

Tf

)
. (75)

As a result, for the regime Teff (t ) � Tf the evolution of tem-
perature is given by

dTeff

dt
∝ −γ T 1+a−4


f (Teff − Tf ). (76)

Therefore T relaxes exponentially to Tf with a rate satisfying
(66). The similarity between �E and �T is now clear from
(72).

In the limit of a zero or extremely low-temperature bath in
Eq. (73), we get a power-law decay for temperature,

dTeff

dt
∝ −T 2+a−4


eff → lim
t→∞ Teff (t ) ∝ t− 1

1+a−4
 . (77)

The result of the numerical evaluation of Eq. (75) is given in
Fig. 8 for baths at zero and finite but small temperatures. As it
can be seen, the regime of power-law relaxation of tempera-
ture can be difficult to access for a finite-temperature bath, as
the system may enter the exponential relaxation regime before
the power-law behavior can emerge. This is the case for the
numerical data presented in this paper as the limited numeri-
cal resources prevented us to resolve temperatures which are
small enough to observe the power-law decay in Eq. (77).

VI. CONCLUSIONS

In this work, we studied the quench dynamics of a variant
of the SYK model with electron-phonon interactions coupled
to an external bath. Based on scaling analysis and numer-
ical evaluation of quantum kinetic equations, we showed
that for couplings to a generic phonon bath described by
the Caldeira-Leggett model, the critical behavior of the sys-
tem is unaffected. Furthermore, we observed that the system
relaxes quickly at short-time/high-frequency scales while
global thermalization, corresponding to the equilibration of
small-frequency modes, takes longer. The system exhibits
quasiequilibrium behavior at a time-dependent effective tem-
perature obtained from the fluctuation-dissipation theorem.
Using the quasiequilibrium state of the system, we provided
an analytical description of the relaxation profile of total en-
ergy and temperature in agreement with our numerics. We
found that while phonons are directly coupled to the bath,
fermions have a lower temperature due to strong correlations
between the two species in the NFL phase, while the opposite
is true in the FL state.

There are multiple directions to pursue in the context
of the dynamics of what we generally call fermion-boson
SYK (FB-SYK) systems. One clear extension of our work is
to study quenches in the presence pairing interactions, i.e.,
when the real and imaginary parts of gi j,k in Eq. (3) have
different second moments. This is the direction that we are
currently following. One could also study the evolution of
FB-SYK systems under the influence of an external periodic
drive. The driving field can be coupled to fermions (similarly
to Ref. [48] for the SYK model) or phonons. Furthermore,
phonons can be driven linearly or parametrically with the
possibility of different qualitative and quantitative behaviors.
In the superconducting phase, one may investigate the de-
struction or possibly the transient amplification [50,51] of
superconducting correlations in a system with pairing of in-
coherent fermions.

Note added. During the submission process of this paper,
we became aware of a recent work [73] where the quench
dynamics of an isolated superconducting Yukawa-SYK model
is studied using Keldysh field theory.

ACKNOWLEDGMENTS

This work was supported by the Deutsche Forschungs-
gemeinschaft (DFG, German Research Foundation) through
TRR 288-422213477 (Projects No. B09 and No. A07) and by
the Dynamics and Topology Centre funded by the State of
Rhineland Palatinate and Topology Centre funded by the State
of Rhineland Palatinate. The authors gratefully acknowledge
the computing time granted on the supercomputer MOGON 2
at Johannes Gutenberg-University Mainz [74].

APPENDIX A: QUANTUM KINETIC EQUATIONS

We start from an alternative expression for the free phonon
action using Legendre transformation

Sph =
N∑
k

∮
C

dtc
[
πk∂tcφk − H (πk, φk )

]

= 1

2

N∑
k

∮
C

dtc �T
k · D0

−1 · �k, (A1)
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where �k = (φk, πk )T and

D0
−1 =

(−ω2
0 −∂tc

∂tc −1

)
, (A2)

The Green’s function matrix is defined as

D(tc, t ′
c) ≡

[
D(tc, t ′

c) B̃(tc, t ′
c)

B(tc, t ′
c) C(tc, t ′

c)

]
, (A3)

where D, B, and C were defined in Eqs. (45), (53), and (54).
We also have B̃(tc, t ′

c) ≡ B(t ′
c, tc) where we have avoided using

the transpose sign BT as superscripts are reserved for Keldysh
indices. Then, the matrix form of Dyson equation in (51) is
given by

D0
−1 · D(tc, t ′

c) = 1δ(tc, t ′
c) +

∮
�(tc, τc) · D(τc, t ′

c) dτc.

(A4)
The self-energy matrix has only one nonzero entry,

�(tc, t ′
c) = �(tc, t ′

c)

(
1 0
0 0

)
, (A5)

where �(tc, t ′
c) is given in (57). Putting (A3) and (A5) in (A4)

gives

∂tc D(tc, t ′
c) = B(tc, t ′

c), (A6)

∂tc B(tc, t ′
c) = − δ(tc, t ′

c) − ω2
0D(tc, t ′

c)

−
∮

�(tc, τc)D(τc, t ′
c) dτc, (A7)

∂tc B
T (tc, t ′

c) = C(tc, t ′
c), (A8)

∂tcC(tc, t ′
c) = − δ(tc, t ′

c) − ω2
0B̃(tc, t ′

c)

−
∮

�(tc, τc)B̃(τc, t ′
c) dτc. (A9)

We use Langreth rules [75] and write Eqs. (50) and (A6)–(A9)
together with their Hermitian conjugates in terms of greater,
lesser, retarded, and advanced functions to get QKE,

+i∂t G
≷(t, t ′) =

∫
[�R(t, τ )G≷(τ, t ′)

+ �≷(t, τ )GA(τ, t ′′)] dτ, (A10)

−i∂t ′G≷(t, t ′) =
∫

[GR(t, τ )�≷(τ, t ′)

+ G≷(t, τ )�A(τ, t ′′)] dτ, (A11)

�≷(t, t ′) = ig2G≷(t, t ′)D≷(t, t ′), (A12)

∂t D
≷(t, t ′) = B≷(t, t ′), (A13)

∂t ′D≷(t, t ′) = B̃≷(t, t ′), (A14)

∂t ′B≷(t, t ′) = ∂t B̃
≷(t, t ′) = F≷(t, t ′), (A15)

FIG. 9. Illustration of how QKE are solved in the two-
dimensional time space.

∂t B
≷(t, t ′) = −ω2

0D≷(t, t ′) −
∫

[�R(t, τ )D≷(τ, t ′)

+ �≷(t, τ )DA(τ, t ′′)] dτ, (A16)

∂t F
≷(t, t ′) = −ω2

0B̃≶(t ′, t ) −
∫

[�R(t, τ )B̃≶(t ′, τ )

+ �≷(t, τ )B̃A(τ, t ′′)] dτ, (A17)

∂t ′F≷(t, t ′) = −ω2
0B≶(t ′, t ) −

∫
[BR(t, τ )�≶(t ′, τ )

+ B≷(t, τ )�A(τ, t ′′)] dτ, (A18)

�≷(t, t ′) = −2ig2G≷(t, t ′)G≶(t ′, t ) + D≷(t, t ′). (A19)

The phonon self-energy contains the contribution from the
bath given by (57). The retarded and advanced functions are
defined according to Eqs. (24) and (25). Note that B̃A(t, t ′) �=
[BA(t, t ′)]T but

B̃A(t, t ′) = �(t ′ − t )
[
B̃<(t, t ′) − B̃>(t, t ′)

]
= �(t ′ − t )

[
B>(t ′, t ) − B<(t ′, t )

] = BR(t ′, t ),

(A20)

therefore the causality of kinetic equations is respected.
In order to numerically solve QKE, we pay attention to the

causal structure in (52) and use an implicit midpoint method
on an N × N grid with step size dt (see Fig. 9). To access
temperature T , we should be able to resolve frequencies com-
parable to T . Consequently, the grid size should satisfy the
condition N dt � πT −1. Furthermore, the step size should
be small enough to prevent instabilities of the solution at
late stages of the evolution. The main numerical cost comes
from increasing the grid size N . We tested two choices of
N = 3000, dt = 0.1 and N = 5000, dt = 0.05 and the re-
sults were in agreement.
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APPENDIX B: TOTAL ENERGY

The total energy is given by the expectation value of (3).
The contribution of the free phonon term is given by

〈HPh(t )〉 = i

4
N

( − ∂2
t + ω2

0

)
DK (t, t ′)|t ′→t . (B1)

To find the contribution of the interaction term we add the
source term −i

∮
J (t )Hint (t ) dt to the action and take the func-

tional derivative with respect to the source,

〈Hint (t )〉 = i
δ

δJ (t )

[∫
D[ψ, ψ̄, φ] eiS−i

∮
J (t )Hint (t ) dt

]
. (B2)

Evaluating the functional derivative results in

〈Hint (t )〉 = Ng2
∮

D(t, t ′
c)G(t, t ′

c)G(t ′
c, t ) dt ′

c. (B3)

To simplify the expression for total energy, we note that (B3)
can be written in terms of phonon self-energy given in (49) to
get

〈Hint (t )〉 = i

2
N

∮
�YSYK(t, t ′

c)D(t ′
c, t ) dt ′

c, (B4)

where �YSYK is the contribution of Yukawa-SYK interaction
to phonon self-energy, excluding the coupling to the bath
given by D(t, t ′). In the next step, we make use of SD equa-
tion for phonons (51) to write

〈Hint (t )〉 = − i

4
N (∂2

t + ω2
0 )DK (t, t ′)|t ′→t

− i

2
N

∮
D(t, t ′

c)D(t ′
c, t ) dt ′

c. (B5)

The total energy is found by adding (B1) to (B5), resulting in
the cancellation of the term proportional to ω2

0,

E (t )

N
= − i

2
∂2

t DK (t, t ′)|t ′→t

− i

4

∫
[DR(t, t ′)DK (t ′, t ) + DK (t, t ′)DA(t ′, t )] dt ′.

(B6)

The first term can be written as 〈π2(t )〉 which was mentioned
in Eq. (61) of the main text.

APPENDIX C: ENERGY TRANSFER RATE

The energy current operator is given by

∂t HS = i[HS + HB + HSB, HS] = i[HSB, HS], (C1)

where HS is the Hamiltonian of an isolated system given by (3)
and HSB is defined in (12). After calculating the commutator
we get

∂t HS = −
∑

l

Xl φ̇l . (C2)

The expectation value of Xl φ̇l reads as

〈Xl (t )φ̇l (t )〉 =
∮

D(t, t ′)〈φl (t
′)φ̇l (t )〉 dt ′, (C3)

where D(t, t ′) is the contour-ordered Green’s function of the
bath defined in (55). Therefore, the energy transfer rate is

given by

∂t E (t ) ≡ 〈∂t HS〉 = −iN
∮

D(t, t ′)∂t D(t ′, t ) dt ′

= − iN

2

∫ t

0
[DK (t ′, t )∂t D

A(t ′, t )

+ DR(t, t ′)∂t D
K (t ′, t )]dt ′, (C4)

which is the quoted result in Eq. (67) of the main text.

APPENDIX D: THE FERMI LIQUID ELECTRON-PHONON
SYSTEM

Fermi liquid behavior can be obtained by adding a random
hopping term Ht to the Yukawa-SYK Hamiltonian in Eq. (3)

Ht = − 1√
N

∑
i j,σ

ti jψ
†
iσ ψ jσ . (D1)

The hopping amplitude ti j = t ′
i j + it ′′

i j is a random Gaussian
variable and satisfies

ti j = 0, (D2)

t ′
i jt

′
nm = t2

2
(δinδ jm + δimδ jn), (D3)

t ′′
i jt

′′
nm = t2

2
(δinδ jm − δimδ jn). (D4)

The hopping term results in an extra contribution to the
fermion self-energy in Eq. (48) given by

�t (tc, t ′
c) = t2G(tc, t ′

c), (D5)

where in the absence of the Yukawa interaction and at equi-
librium yields the following fermion Green’s function:

GR(ω) = 2

ω + i
√

4t2 − ω2
. (D6)

According to the scaling dimension of fermion operators
[ψ] = 
 given by Eq. (6), Ht is a relevant operator near
the Yukawa-SYK fixed point and we can treat the Yukawa
interaction as a perturbation to randomly hopping fermions
and free phonons. The Yukawa contribution to the imaginary
parts of the fermion and phonon self-energies at equilibrium
reads

Im �R
g (ω) = − g2

∫
Im GR(ν) Im DR(ω − ν)

×
[

tanh
ν

2T
− coth

ν − ω

2T

]
dν

2π
, (D7)

Im �R
g (ω) = − 2g2

∫
Im GR(ν) Im GR(ν + ω)

×
[

tanh
ν + ω

2T
− tanh

ν

2T

]
dν

2π
. (D8)

We substitute GR in Eq. (D8) from Eq. (D6). After putting
the contribution from the coupling to the bath and the Yukawa
interaction together we find

Im �R(ω) ≈ −γ sin
(πa

2

)
sgn (ω)|ω|a − 2g2

πt2
ω. (D9)
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FIG. 10. Effective temperatures for a Fermi liquid Yukawa-SYK
system coupled to an external Ohmic bath. The parameters are
t/ω0 = 1.0, g2/ω3

0 = 0.7, and γ /ω0 = 0.2.

As expected for a fermionic system with a smooth DOS at
the Fermi energy, the interaction of phonons with fermion
charge fluctuations results in the Landau damping of phonons.
Depending on the exponent of the bath a and temperature,
phonons exhibit different relaxation behaviors. For Ohmic
and sub-Ohmic baths (a � 1) the Yukawa interaction does
not alter the dynamics of phonons at temperatures below
the crossover scale ω� ∼ (γ t2/g2)1/(1−a) while for a super-
Ohmic bath the Yukawa self-energy dominates the spectrum
of phonons below ω�. Typically, the system-bath coupling γ

is a small parameter and the Yukawa vertex determines the
relaxation of phonons down to very small temperatures. Note
that in contrast to the SYK regime (t → 0), phonons are not
critical at T → 0 and have a finite renormalized gap ωr ; there-
fore, for small energies we have Im DR(ω) ≈ 1

ω4
r
Im �R(ω).

Substituting Eq. (D9) into Eq. (D7) yields

Im �R
g (ω) ≈ − g2

2πω4
r t

[
γ sin

(πa

2

)
|ω|a−1 + 2g2

πt2

]
|ω|2.

(D10)

Albeit the scaling of the fermion self-energy depends on the

spectrum of the bath, we have �(ω)/ω
ω→0−−→ 0 and therefore

the scattering rate of fermions is consistent with the Fermi
liquid picture.

FIG. 11. Temperature relaxation rate for a Fermi liquid Yukawa-
SYK system coupled to an external Ohmic bath. The parameters are
t/ω0 = 1.0, g2/ω3

0 = 0.7, and γ /ω0 = 0.2.

By solving the kinetic equations for this system nu-
merically, we can employ Eq. (58) to find the effective
temperatures for fermions and phonons. As it can be seen in
Fig. 10, phonons are colder than fermions during intermediate
and late stages of the evolution as they are directly coupled
to the bath, in contrast to the NFL phase discussed in the
main text. Furthermore, we observe a late-time exponential
relaxation of temperature T − Tf ∼ e−�T t . However, the scal-
ing of the relaxation rate �T is different from the one for the
critical system in Eq. (I). For an Ohmic bath (a = 1), numerics
show �T ∝ T 2 (see Fig. 11) while for a super-Ohmic bath
with a = 1.2 we get �T ∝ T 2.25. We can use the hydrody-
namical approximation for the energy transfer rate in Eq. (68)
together with a linear specific heat for the Fermi liquid
to get

�T ∝ T 1+a, (D11)

which is consistent with the results given above. The impor-
tant observation here is that the relaxation of the FL is much
slower than the SYK phase at small temperatures.
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