Bragg magnifier optics for dose-efficient

X-ray phase contrast imaging

Zur Erlangung des akademischen Grades einer

Doktorin der Naturwissenschaften (Dr. rer. nat.)

von der KIT-Fakultat fiir Physik des
Karlsruher Instituts fiir Technologie (KIT)
genchmigte

DISSERTATION

vo1

M.Sc. Rebecca Spiecker

Referent: Prof. Dr. Tilo Baumbach
Korreferent: Prof. Dr. Michael Fiederle

Tag der miindlichen Priifung: 19.04.2024






Abstract

Propagation-based X-ray phase contrast imaging (PB-PCI) enables the visualization of soft
materials and tissues by exploiting the coherent self-interference of the diffracted wavefield
behind the sample, which evolves into intensity contrast as the propagation distance between
the sample and the detector increases. While phase contrast imaging allows significantly
reducing the dose compared to conventional X-ray absorption imaging, the ionizing nature of
X-rays still induces radiation damage. The dose therefore needs to be further reduced both
for high, micrometer resolution in vivo and in situ imaging of biological or radiation-sensitive
samples, as well as for imaging at moderate resolution of tens to hundreds of micrometers,
e.g., in (bio)medical research and diagnostics. However, both resolution regimes face severe
constraints. On the one hand, conventional high-resolution detectors suffer from decreasing
efficiency with increasing resolution. On the other hand, PB-PCI at moderate resolution
requires propagation distances of hundreds of meters to generate sufficient image contrast.

The main objective of this work is to push the limits of dose-efficient X-ray imaging by op-
timizing the entire imaging process of PB-PCI with respect to the deposited dose. In a first
part, high-resolution imaging with highest dose efficiency is realized by combining PB-PCI,
asymmetric Bragg crystal optics, and a single photon counting detector, thereby operating
close to the theoretical limit of dose efficiency for PB-PCI. The superior imaging performance
of the developed system compared to conventional detector systems is demonstrated theoret-
ically and experimentally, and in particular, a substantial increase in dose efficiency is shown
for high spatial frequencies, which comprise the relevant high-resolution components of the
image. The technique’s potential is exemplified by a pilot in vivo study of submillimeter-sized
parasitoid wasps inside their hosts with unprecedentedly long observation times.

Second, for imaging large, centimeter-sized samples at moderate resolution, a new technique is
introduced that allows achieving high propagation-based image contrast within a meter-scale
setup, thereby eliminating the need for very long wavefield propagation distances. Simulta-
neously, the technique reduces image blur caused by the finite size of the X-ray source. The
strong increase in image contrast is demonstrated in a proof-of-concept experiment, realized
by asymmetric Bragg crystal optics with reversed optical path. This approach paves the way
for low-dose studies of large radiation-sensitive specimens, with potential applications ranging
from biomedical soft tissue and small animal in vivo imaging up to medical diagnostics, e.g.,
the early detection of breast cancer.
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1. Introduction

With the discovery of X-rays by W. C. Rontgen in 1895, X-ray imaging has found widespread
applications, ranging from medical diagnostics over security scanners and nondestructive test-
ing in industry up to present-day research [1]. The high penetration power of X-rays allows
studying internal structures in optically opaque samples, rendering X-ray imaging a unique
analysis tool. However, soft materials and tissues have for a long time been omitted in X-ray
imaging, since they exhibit only low X-ray absorption and thus provide hardly any image
contrast. In addition, the ionizing nature of X-rays induces radiation damage in the sample,
which limits the amount of radiation that can be used. Nonetheless, X-ray imaging of soft
tissues and soft materials is highly desirable for biological, medical and materials science re-
search. Especially in the context of in situ or in vivo imaging, there exists a high demand to
improve image contrast of soft tissues and to reduce the necessary radiation dose, for exam-
ple for medical diagnostics, to reveal morphodynamics and physiological processes in living
organisms, or to provide information about the mechanical properties of a radiation-sensitive

material by in situ studies.

In the last decades, significant efforts have been made to increase image contrast for objects
consisting of light elements. The most successful approach to image light elements is phase
contrast imaging, facilitated by the ongoing development of X-ray sources and especially the
high coherence provided by modern synchrotrons [2]. Instead of relying solely on the ab-
sorption properties of matter, phase contrast methods reveal the phase shift imprinted on a
wavefield when traveling through an object. For light elements, phase variation dominates
absorption by several orders of magnitude, enabling a strong increase in image contrast [3].
The most common phase contrast approaches include propagation-based imaging [4, 5], inter-
ferometric methods based on crystals [6, 7] or gratings [8, 9], analyzer-based imaging [10, 11],
and coded-aperture or speckle-based methods [12-14]. The latter are geometrical methods
that detect the deflection of the X-ray beam induced by the sample: In coded-aperture and
speckle-based imaging, the incident wavefront is modulated by a mask, and the influence of
the sample on the intensity distribution is measured. In analyzer-based imaging, the deflec-
tion of X-rays is measured by reflecting the X-rays behind the sample with a crystal having a
small angular acceptance and detecting the reflected intensity for several angular positions of
the crystal. Grating interferometry measures the sample-induced changes in the self-image of
a periodic pattern, generated by a grating placed in the beam path and detected by stepping
a second grating laterally to the detector. A crystal interferometer splits the beam into two
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branches and reunites them after one branch has passed through the sample. If an X-ray
source with sufficient coherence is available, propagation-based phase contrast imaging (PB-
PCI) has a rather simple realization compared to the previous techniques, since it utilizes
solely a detector placed at a certain distance from the sample and does not require further
optical elements. By coherent self-interference of the diffracted wavefield behind the sample,
the phase shift increasingly evolves into measurable intensity contrast as the distance between
the sample and the detector increases. PB-PCI is nowadays widely used, not only in biology
and biomedicine [15, 16], but also in natural and cultural heritage [17], materials science [18],
and industrial applications [19].

In principle, PB-PCI can be employed for imaging soft materials and tissues both at high, mi-
crometer resolution and at moderate resolutions of several tens of micrometers. However, both
resolution ranges come with severe constraints. Increasing the resolution for a given signal-to-
noise ratio inherently requires to increase the necessary X-ray fluence, i.e., the amount of X-ray
photons per unit area. Therefore, a high dose is needed, and although PB-PCI enables dose
reduction compared to absorption imaging, so far, for example, in vivo studies at micrometer
resolution could only be realized for very short time sequences of a few seconds to minutes
before the onset of severe radiation damage in the biological specimens [20-23]. In these stud-
ies, conventional high-resolution scintillator-based indirect detector systems have been used.
They are constrained by a trade-off between X-ray detection efficiency and achievable reso-
lution. Conversely, PB-PCI of large, centimeter-sized samples at moderate resolution would
require less dose per se, which is essential for, e.g., medical diagnostics. However, a propaga-
tion distance between the sample and the detector of several tens to hundreds of meters would
be necessary to generate sufficient image contrast. Recently, a new synchrotron beamline was
built at the European Synchrotron Radiation Facility (ESRF, Grenoble, France) to enable
remarkably long propagation distances of up to 36 m. Such long experimental hutches are not
only expensive, but often inherently not realizable due to space restrictions. Further, image
blur by the finite X-ray source size limits the longest useful propagation distance.

The aim of this thesis is to develop suitable methods to push the limits of dose-efficient X-ray
imaging. This goal encompasses two key aspects:

(i) to minimize the dose in PB-PCI of small samples at high resolution, and

(ii) to enable PB-PCI of large samples at moderate resolution within a meter-scale setup,

which in turn also allows for a reduced dose.

In general, the imaging process can be divided into three main steps, as visualized in Fig. 1.1:
First, the sample information is imprinted on the incident X-ray wavefield. Second, the
information encoded in the wavefield is rendered accessible by the generation of detectable

image contrast. Third, the provided information is extracted by detecting the X-ray image.
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| {
X-ray beam —— / sample ; ————> | contrast formation |———> image detection

1. information generation 2. information provisioning 3. information extraction

Figure 1.1.: Optimizing dose-efficient X-ray imaging. The process of X-ray imaging can be
delineated into three stages, each of which needs to be optimized for achieving highest dose efficiency.
First, the sample information is conveyed to the incident X-ray wavefield. Second, the information
encoded in the wavefield is made available by generating detectable image contrast. Last, the provided
information is extracted by image detection.

This thesis focuses on optimizing each of these steps with regard to the dose deposited in the
sample in order to achieve highest dose efficiency.

The first step is addressed by considering the energy-dependent phase shift and dose deposi-
tion in the sample in order to determine the ideal operating energy of the X-ray illumination.
For high resolution imaging, the second step is readily solved by realizing PB-PCI, while the
third step requires overcoming current limitations of high-resolution indirect detector systems,
especially their rather low detection efficiency and poor transmission of high spatial frequen-
cies into the final image, which contain the high-resolution components of the object. As a
potential solution to this challenge, direct magnification of the X-ray imaging would allow
exploiting the high detection efficiency of large-area detectors while maintaining high resolu-
tion. For imaging at moderate resolution, the bottleneck is given by the second step, i.e., to
generate contrast at low spatial frequencies without building unrealistically long beamlines.
Approaching this challenge by modulating the spatial frequency distribution of the diffracted
wavefield behind the sample promises to strongly increase image contrast.

These two approaches are addressed by employing Bragg crystal optics, specifically Bragg
magnifiers and demagnifiers. A Bragg magnifier enlarges the cross section of an X-ray beam
through asymmetric Bragg diffraction, and a Bragg demagnifier reduces it [24]. Here, dose-
efficient X-ray imaging at micrometer resolution is tackled by combining PB-PCI, a Bragg
magnifier and an efficient detector. By magnifying the diffracted wavefield behind the sample
with a Bragg magnifier, the image can be recorded by a large-area detector. In this way,
the low detection efficiency of conventional indirect detectors can be overcome by exploiting
the high detection efficiency provided by, e.g., single photon counting detectors. Second, for
imaging large, centimeter-sized samples at moderate resolution, a new technique is presented
here that can achieve high propagation-based image contrast within a meter-scale setup,
which eliminates the need for the very long distances that would conventionally be required.
By magnifying the spatial frequencies of the diffracted X-ray wavefield behind the sample, the
propagation distance is virtually increased to hundreds of meters, whereby the image contrast
is considerably enhanced within a short physical distance. Magnification in reciprocal space
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is tantamount to demagnification in real space, which is realized by a Bragg demagnifier.
Simultaneously to the strong increase in effective propagation distance, the Bragg demagnifier
reduces image blur caused by the finite X-ray source size. Both approaches are addressed by

theoretical considerations and by an experimental validation.

Outline of the thesis

The thesis is structured as follows: Chapter 2 describes the underlying theoretical con-
cepts. The focus lies on dynamical X-ray diffraction from asymmetrically cut crystals and
propagation-based phase contrast imaging. The detection of X-rays by indirect and direct
detectors is also briefly discussed.

Chapter 3 introduces the general functionality of Bragg magnifiers and presents an experimen-
tal characterization of the developed system. The chapter starts with a historical overview of
Bragg magnifiers, followed by a description of the working principle and the operation modes.
Next, the image formation is derived and the resulting equations are applied to enable image
simulations. Finally, the experimental setup is described and characterized. This combined
theoretical groundwork and practical demonstration forms the basis for the following chapters.

Chapter 4 deals with dose-efficient imaging by means of the Bragg magnifier introduced in
the previous chapter. It starts with a discussion of the ideal experimental parameters for
high dose efficiency and the advantages of using a Bragg magnifier system over a conventional
scintillator-based indirect detector system. Next, the developed Bragg magnifier system is
compared experimentally to an indirect detector system. Finally, the high dose efficiency
of the Bragg magnifier system is demonstrated by a pilot in vivo study of parasitoid wasps
within their host eggs.

Chapter 5 describes the approach of using a Bragg demagnifier for phase contrast imaging
of large samples. The principle of increasing the effective propagation distance by image
demagnification is discussed in the first part of this chapter. The second part presents a
proof-of-concept experiment, demonstrating the validity of the proposed method.

The thesis concludes in Chapter 6 with a summary of the presented work and an outlook on
possible avenues for future research activities in the field of dose-efficient X-ray imaging with
Bragg crystal optics.



2. Fundamentals of X-ray diffraction and
phase contrast imaging

Since this work combines aspects of crystal X-ray diffraction and phase contrast imaging via
Fresnel diffraction, the basic principles of both fields are introduced in this chapter. Section 2.1
provides an overview of X-ray diffraction, which can be described by the kinematical theory,
neglecting multiple scattering, or by the dynamical theory for large perfect crystals, taking
multiple scattering into account. FEmphasis is placed on the latter, with a focus on the
parameters that are important for the imaging performance of a Bragg magnifier. The second
part of this chapter, Section 2.2, introduces the aspects of X-ray phase contrast imaging that
are relevant to the work presented here. Finally, direct and indirect X-ray detectors are briefly

discussed in Section 2.3.

2.1. Basics of crystal X-ray diffraction

The discovery of X-ray diffraction dates back to the year 1912, when Paul Ewald was finalizing
his thesis with the aim ‘to find the optical properties of an anisotropic arrangement of isotropic
resonators’ [25] and contacted Max von Laue to discuss his newly established theory. During
the conversation, Laue asked Ewald about the distances between the resonators, to which
Ewald replied that they were probably in the order of a thousandth of the wavelength of visible
light, and that his thesis made no assumptions about the wavelength of the electromagnetic
waves. Laue immediately realized that if the atoms in a crystal did indeed form a lattice, the
crystal should give rise to interferences of X-rays. With the help of Walter Friedrich and Paul
Knipping, Laue experimentally demonstrated the diffraction of X-rays on a copper sulfate
crystal and elaborated his geometrical theory of X-ray diffraction, relating the scattering
angle to the size and spacing of the crystal’s unit cells [26]. He received the Nobel Prize in
1914. Inspired by Laue’s work, William Laurence Bragg and his father William Henry Bragg
repeated the diffraction experiments, interpreted the results as a reflection on families of
lattice planes and derived Bragg’s law [27], whereupon they were awarded the Nobel prize in
1915. The theory of dynamical X-ray diffraction, which takes into account multiple scattering
effects, was shaped by both Charles Galton Darwin [28, 29], who coined the term Darwin’s
reflectivity curve, and Ewald, who provided a theoretical basis for the X-ray interferences
by crystals [30-32]. Later, Laue reformulated the dynamical theory in a macroscopic way,
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)\O/ 2d sin 93 = m)\o kO kh
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lattice planes d-sinfg
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Figure 2.1.: Bragg’s law. The diffraction condition is fulfilled when the optical path difference of
the diffracted waves corresponds to a multiple of the wavelength. Depending on the exit direction of
the reflected waves, a distinction is made between Bragg and Laue geometry. The Laue condition is
sketched on the right and is equivalent to Bragg’s diffraction condition.

describing a crystal by a continuous distribution of the dielectric susceptibility [33].

More details on the history of the discovery of X-ray diffraction can be found in Refs. [34, 35].
In the following, the approaches of kinematical and dynamical diffraction theory are briefly
outlined. It is not intended to give a complete and detailed description, which can be found
elsewhere, for example in Refs. [34, 36-38]. It should rather introduce concepts used in the

course of this thesis.

2.1.1. Kinematical diffraction

Let us first introduce Bragg’s law. As shown schematically in Fig. 2.1, the diffraction condition
for an incident wave with angular wavevector ko and wavelength Ao = 27 /|kg| at a crystal is

given by [27]
2dsin93 = m)\o, (2.1)

where m € N, 0p is the Bragg angle and d the distance between the reflecting lattice planes.
The condition can only be fulfilled for A\g < 2d, i.e., for very short wavelengths. The Laue
condition kg — kj, = h is equivalent to Bragg’s formulation and states that constructive
interference is obtained when the difference between the incident wavevector kg and the
diffracted wavevector kp corresponds to a reciprocal lattice vector h, which points from the
reciprocal lattice point O to the lattice point H, see right panel of Fig. 2.1. The Ewald
construction shows geometrically whether the Laue condition is fulfilled [34]. As a side note,
a distinction is made between Bragg and Laue geometry depending on whether the reflected
beam stays on the same side of the crystal as the incident beam or exits on the opposite side,
see also Fig. 2.1. In this thesis, the Bragg geometry is used.

In the kinematical or geometrical diffraction theory, the first Born approximation leads to a
description of the diffracted intensities [38, 39]. In this theory, each scatterer is assumed to

experience the incident field as the driving field, and each scattered wave exits the crystal
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without being re-scattered. Since this assumption violates energy conservation, it is only a
good approximation for small or imperfect crystals [38].

Being a 3D periodic array of atoms, a crystal can be described by the electron density po(r)
of one unit cell convolved by Dirac delta distributions d(r — r;) centered at the periodically
spaced position vectors 7; of the origin of each unit cell. Here, » = (x,%,2)T denotes the
spatial coordinate vector, where T stands for the transposition of the vector. To account for
the finite size of the crystal, the shape function y(r) is introduced, being 1 inside the crystal
and 0 outside. The total electron density is then given by

p(r) = [pom* > 6<r—m>] y(r), (2.2)

1=—00

where * denotes the convolution operator. The total diffracted amplitude A is obtained by
adding all diffracting centers while considering the optical path differences and taking the
diffracted amplitude of each diffraction center to be unity. In reciprocal space, one thus
obtains [38§]

A(k) = /p(r)e_ik'rd?’r (2.3)

with k = kp — kg being the diffraction vector between the incident and the diffracted wave.
The diffracted amplitude is therefore given by the Fourier transform of the electron density.
Introducing the structure factor

S °] .
Fy, :/ po(r)e P rddr (2.4)
—00
of a reciprocal lattice point H with reciprocal lattice vector h, and the Fourier transform

Y (k) = / Ty kT (2.5)

—00

of the shape function, Eq. 2.3 can now be rewritten as [38]
1
Alk) = — LY (k—h). 2.6
)= SR (2.6

Here, V is the volume element of the unit cell. As can be seen from Eq. 2.6, the diffracted
amplitude is concentrated around each reciprocal lattice vector, and the distribution is given
by the Fourier transform of the shape function weighted by the structure factor. For increasing
crystal volumes, Y (k) also increases, and the diffracted amplitude diverges to infinity. As
mentioned before, the kinematical theory is therefore only valid for thin crystals.
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2.1.2. Dynamical diffraction

In contrast to the kinematical theory, the dynamical theory provides a full description of
the diffraction process including multiple diffraction by solving Maxwell’s equations inside a
crystal. The solutions inside the crystal are linked to the wavefields on the outside by the
boundary conditions at the crystal surface. The resulting reflectivity curve describes the ratio
of the incident and exit wavefields’ intensities. This section discusses the derivation of Laue’s
formulation, following Ref. [34]. For better readability, uppercase K is used for waves inside
the crystal, lowercase k outside the crystal, and the length of the vacuum wavevector, also

called angular wavenumber, is denoted by ko = 27 /Ao, where g is the wavelength in vacuum.

Maxwell’s equations in a linear and isotropic medium

Maxwell’s equations inside a medium in the absence of free charges are given by [40]

V-D =0, (2.7) V x E = iwB, (2.9)
V-B=0, (2.8) V x H = —iwD, (2.10)

where w is the angular frequency of a time-periodic excitation. They describe the relationship
between the electric and magnetic fields E and B, the electric displacement field D and
the magnetizing field H. These quantities are connected by the polarization P and the
magnetization M of the medium. The following considerations are restricted to a linear and

isotropic medium, where

D =¢yE + P =¢coe, E, (2.11)
B = po(H + M) = popr H, (2.12)

with ¢ and pg being the permittivity and permeability of vacuum, and e, and u, the scalar
relative permittivity and permeability of the medium. In the media treated in this thesis, u,
can safely be set to 1. The relative permittivity e, = 1+ x is usually expressed via the electric
susceptibility x(r,w), which is in general spatially- and frequency-dependent.

In a homogeneous medium or empty space, x is spatially constant. Taking the curl
of Eq. 2.9 and using the curl of the curl identity as well as V - E = 0 leads to the wave
equation [41]

V2E + w?poeoe, E = 0. (2.13)

The electric field can be decomposed into monochromatic plane waves of the form E(r) =
Eei¥.ekr=iwt each solving Eq. 2.13. Here, E is the amplitude vector pointing in the direction
of the polarization, k = (k, ky, k.)T defines the propagation direction, and ¢ is a phase shift
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of the plane wave. The wavevector k = k; + ik; is in general complex-valued, leading to a
damping of the electric field. Insertion of the plane wave ansatz into Eq. 2.13 leads to the

equation [42]
(—k*+ k2n?®) - E =0, (2.14)

where kg = w/c is the angular wavenumber in vacuum, and ¢ = 1/,/10€q is the speed of light

in vacuum. In addition, the complex refractive index of the medium

n=ye=vV1l+x=1-56+ip (2.15)
has been introduced.

In Eq. 2.14, it seems that the components of E can be chosen arbitrarily. However, it follows
from Eq. 2.7 that k L E. Since X-ray imaging deals with the diffraction of X-rays to small
angles, changes in the electric field polarization can be neglected, and it is sufficient to consider

the scalar equation [43]
(V24 k2n)y(r) =0 (2.16)

for a monochromatic wavefield 1 (r) describing the electric field along the polarization axis.
This so-called Helmholtz equation is the cornerstone for X-ray imaging and will be used in
Section 2.2.

In a non-homogeneous medium, x(r) is spatially dependent. Thus, the wave equation is

of the form
V(V-E)-V?E =k2(1+)E. (2.17)

This is the basic equation of dynamical diffraction theory and will be the starting point for

the following considerations [34].

Dynamical diffraction by perfect crystals

In a perfect crystal, the charge density p(r) and hence the susceptibility x(r) are periodic.
To find solutions to the basic equation of dynamical diffraction (Eq. 2.17), x(r) can be
decomposed into a Fourier series

X(r) =" xne™", (2.18)
h
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where the sum goes over all reciprocal lattice vectors h that point from O to any reciprocal
lattice point H. Choosing as ansatz the Ewald wavefield [34]

E(r)= Kot Z Epeltr
h
=Y Ene®*", K = K, +h, (2.19)
h

where K, is the wavevector of the Ewald wave inside the crystall, it holds for the left side of
Eq. 2.17

V(V-E(r)—VE(r) == (K (Kp - Ep) —KjEp)e®r, (2.20)
h —

~0

with K % =K ,QL The wave is assumed to be transverse, as the interaction term is small for
X-rays. Together with Eq. 2.18, Eq. 2.17 becomes

3N KPEREeh T = 12NN (1 4 yp e BBl (2.21)
h h R

—ih!".r

Multiplying this equation by e and integrating over the entire space yields

S KPE / el(h=h")r 43,
h
(2m)35(h—h'")

_ kgzz(/ei(hhu).rdzsr +Xh,/ei(h+h/,h~)-rd3r ) E,. (2.92)

h h'

el (2m)33(h /)
It follows that
koEn — KiEp = —kg > X Enw, (2.23)
Iy,
or equivalently
E;, = Ko > xwEn_n- (2.24)

KfQL - k%(l + XO) h/?éh

This infinite set of equations is called the fundamental equations of dynamical theory [34].
They imply that the amplitude E}, of a diffracted wave depends on all other diffracted waves.
The denominator indicates that only waves whose wavevector has a length close to K :=
kon = kov/1 + xo will have a non-negligible amplitude.

!The same concept was introduced 15 years later by F. Bloch for solid state physics [44].
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2.1. Basics of crystal X-ray diffraction

Two-beam case

There exists no rigorous solution to the fundamental equations. However, in many cases the
problem can be reduced to the case where only one reciprocal lattice vector contributes to
the scattering process, and there are only two non-negligible plane waves E, and Ej, [34].
Eq. 2.23 then becomes

[K? — K2|Eo + kix; Ep = 0, (2:25)
k3xnEo+ [K* — K} Ep =0, (2.26)

where x7 = x—n. Projecting Eq. 2.25 to E, and Eq. 2.26 to Ej, respectively, and defining
the polarization factor C = 1 for o-polarization and C' = cos20p for m-polarization, one
obtains [34]

[K? — K Eo + kgCxj B = 0, (2:27)
k3CXnEo + [K?* — K} Ep, = 0. (2.28)

To solve this set of equations, the determinant is set equal to zero, resulting in the dispersion
equation for the two-beam case:

(K2 — K?) - (K} — K?) = k;C*xnxp,- (2.29)

The dispersion surface consists of two spheres centered at the reciprocal lattice points O and
H with radius K and connected to each other, where the strength of the connection is given by
the right-hand side of Eq. 2.29. The intersection of the dispersion surface with the scattering
plane is plotted in Fig. 2.2 (for details, see Appendix A.1). Note that the dispersion curves for
the two polarization directions are slightly different (light and dark blue lines in Fig. 2.2a, b).
The spheres with radius kg in vacuum can be understood as the dispersion surface in vacuum
and are indicated by dashed lines. Their intersection is called the Laue point L, and defines
the Bragg angle . The intersection of the inner spheres with radius K is called the Lorentz
point L,.

As a next step, a semi-infinite planar crystal is considered. The considerations here are
restricted to the case of Bragg geometry (see Fig. 2.1). The boundary condition states that
the components of the wavevector parallel to the crystal surface are preserved [34]. This
condition is visualized in Fig. 2.2 for the case of coplanar scattering geometry, where kg, h
and the normal vector e, to the crystal surface lie in one plane. The incident wave kg defines
the position of the normal on the dispersion surface. The boundary condition is satisfied
for all waves pointing from the intersections of the normal with the dispersion surface, the
so-called tiepoints, to O or H. As a result, there exist four pairs of solutions K(()J’ ,)l inside the
crystal (Fig. 2.2b). The reflected and diffracted waves in vacuum k, and kjp, as well as the
reflected diffracted wave kp, are shown in Fig. 2.2a. For symmetric reflection, e,, and h are

11



2. Fundamentals of X-ray diffraction and phase contrast imaging

for o-polarization

o-polarization

I\ Ab,

X O

Figure 2.2.: Schematic of the dispersion surface. The dispersion surface shows the solutions
of the dispersion equation for o- (dark blue) and m-polarization (light blue), neglecting absorption in
the crystal and showing all quantities as real-valued. The boundary conditions are satisfied at the
intersections with the normal e,, to the crystal surface, which here has a positive asymmetry angle a
to the lattice planes. a The wavevectors in vacuum are shown separately from b the wavevectors
inside the crystal. The incident plane wave kg defines the position of the surface normal and thus
the reflected, the diffracted, and the reflected diffracted waves k,., kp and kp,. Inside the crystal,
there are four intersections, each with two waves K,(,j ) and K ,(lj ). ¢ Vacuum wavevectors in real space.
d Zoom-in on the gap between the two branches of the dispersion surface. The center of the reflection
curve is reached when e,, crosses the Lorentz point L,, with the angular deviation Af,. from the Laue
point L,. The deviation parameter 1 goes from -1 to 1 through the Bragg gap. The Darwin width
Woe 18 shown in red. For further details see Appendix A.1.
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2.1. Basics of crystal X-ray diffraction

parallel, and the angle of the incident wavevector to the crystal surface corresponds to the
exit angle. In the case of asymmetric reflection, which is used in this work, the reflecting
lattice planes are not parallel to the crystal surface. The angle between e, and h is called
the asymmetry angle a. In the case of a positive asymmetry angle, as shown in Fig. 2.2, the
exit angle of kj, to the crystal surface is increased compared to the incident angle of k.

The amplitude ratio of the waves is obtained from Eq. 2.27 [34]:

B KK O (2.30)
EY  kCxp KV K2

The task is to find non-propagating solutions inside the crystal, i.e., complex solutions for
Ky, K. In Fig. 2.2d, the situation is considered where kg is at such an angle that e,
lies inside the gap between the two branches, and the wavevectors become imaginary. The
intensity of the diffracted wave is highest when these waves are excited inside the crystal. By
changing the incident angle of kg, the normal crosses the gap between the two branches. The
resulting reflectivity curves over the angles of incidence or exit are also known as the Darwin
curves [37]. The Darwin width wo. or wp. of the incident or outgoing curve, respectively, is
marked in Fig. 2.2d in red.

By geometrical considerations, several characteristics and analytical expressions can be de-
rived, which are briefly described in the following. For a precise derivation, see Refs. [34,
37, 45]. An overview of the parameters relevant for this thesis is given in Fig. 2.3 for the
case of a positive asymmetry angle. The angle Af is defined as the difference of the angle
between the beam to the crystal lattice planes and the Bragg angle, i.e., A8 = 0 when the
kinematical Bragg condition is satisfied (marked in green in Fig. 2.3, and see also Fig. 2.2d).
In Fig. 2.3, the reflectivity curve for the silicon (Si) (220) reflection with o = 5.92° and at
29keV is shown in blue for the incident beam and in purple for the exit beam. The curves
for o- and m-polarization are almost identical, since C' = cos20g = 0.98, which is why only
the curves for o-polarization are depicted. Due to refraction inside the crystal, the center of
the reflectivity curves is not reached when e,, crosses the Laue point L, but when it crosses
the Lorentz point L, (see Fig. 2.2d). This deviation from the kinematical Bragg condition is
denoted as A, or Ay, for the incident and exit direction, respectively (marked in orange
in Fig. 2.3). The Darwin width w,. for the incident direction is strongly increased, while wp,
is compressed for the exit direction (both shown in red). This effect will be exploited in the

remaining chapters.

Analytical expressions for the mentioned parameters and the reflectivity curve can be obtained
by approximating the dispersion equation as a second order equation, which is valid when
the tiepoint is close to the Lorentz point [34]. For highly asymmetric reflection, however, the
approximation is no longer valid, and a correction term must be included [34, 37, 45]. From
the considerations detailed in Ref. [34], it follows that the deviation from the kinematical

13



2. Fundamentals of X-ray diffraction and phase contrast imaging

angle to crystal planes (°)
O 6.394 6.396 6.398

=
o
1

Whe
Si (220)

a=5.92°

29 keV

reflectivity R
o
(6]
1

o
o

0 50 100
A0 (prad)

Figure 2.3.: Parameters resulting from dynamical diffraction theory. To illustrate the most
important parameters resulting from dynamical diffraction theory, the incident (blue) and exit (purple)
reflectivity curves of the Si (220) reflection with a positive asymmetry angle o = 5.92° is shown for
29keV. The center of the incident and outgoing curves is shifted from the Bragg angle fp (green) by
Re(Ab,.) or Re(Abp.), respectively (orange). The width of the curves is given by the Darwin width
Woe OF Whe, Tespectively (red). The angle A is defined such that A = 0 when the kinematical Bragg
condition is fulfilled.

Bragg condition is given by the real part of

Tt V72 = (o — ) VT — 12x0/ sin 265
V1-173 '

The quantity Af,. itself is complex because of absorption inside the crystal, i.e., x, is complex.

Aeoc

(2.31)

The parameters v, = —sin(fg + «) and v, = sin(fp — «) define the asymmetry ratio
y=1 (2.32)
Yo

An expression similar to Eq. 2.31 (replacing -, by —7;, and vice versa) defines the deviation
Abp. of the outgoing beam. The Darwin width for symmetric reflection is given by twice the
real part of the parameter [34]

C —
5. — [ClvxnXe (2.33)

~ sin26p

The stronger the susceptibility xp and thus the interaction of the waves with matter, the
larger the Darwin width. For asymmetric reflection, the Darwin width w,. = 2Re[dc] of the

incident beam is given by the parameter [34]

g — o
doc = o/ |V\m~ (2.34)

The expression Re][...] denotes the real part. Again, an according expression can be found for
Ope and the Darwin width wy,. of the outgoing beam. To express the amplitude ratio given by
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2.1. Basics of crystal X-ray diffraction

a b
symmetric reflection at 30 keV asymmetric Ge (220) reflection at 30 keV
1.0 1 1.0 4
0 — Si (220) — a=00°
Si (111) — a=40°
— Ge (220) — a=56°

reflectivity R

o

o1

1
reflectivity R

o

($)]
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Figure 2.4.: Example of reflectivity curves. a Reflectivity curves for the Si (111), Si (220) and
Ge (220) reflections at an X-ray photon energy of 30keV. Ge (220) has the highest susceptibility
and therefore the largest Darwin width. b Reflectivity curves for the Ge (220) reflection at different
asymmetry angles a. The closer « is to the Bragg angle, the larger the Darwin width and the shift
of the reflection curve from the kinematical Bragg condition. The peak reflectivity decreases with
increasing asymmetry angle.

Eq. 2.30, the deviation parameter 7 is introduced:

A0 Ab,,

2.
5 (2.35)

The complex field amplitude ratio can then be written as [34]

A= DO e /o~ 1] (2.36)

v Xk

where sgn(Re[n)]) is the sign of the real part of . It is —1 for the outer branch and +1 for
the inner branch (see Fig. 2.2d). Accordingly, the reflectivity curve is given by

- \n — sen(Refn)/n? — 1

Besides these analytical expressions, the amplitude and reflectivity of the refracted and re-

Xn 2

R=1]-|AP = (2.37)

flected waves can also be calculated numerically for non-coplanar diffraction from the disper-
sion equation and the boundary conditions, see, e.g., the algorithm of X. Huang [46]. For the
purpose of this work, all relevant parameters are obtained by the analytical expressions.

Fig. 2.4a shows reflectivity curves of the symmetric Si (220) and (111) reflections and the
symmetric germanium (Ge) (220) reflection at an X-ray photon energy of 30keV. Ge (220)
has a large susceptibility, resulting in a comparatively broad reflectivity curve. In Fig. 2.4b,
the reflectivity curves for different asymmetry angles are shown. The Darwin width increases
with «, while the peak reflectivity decreases due to absorption and smaller incident angles
close to specular reflection. Here, the curves are shown for the Ge (220) reflection as an
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2. Fundamentals of X-ray diffraction and phase contrast imaging

example, since the effect of decreasing reflectivity is best visible. Note that the described
behavior holds only until « reaches the Bragg angle and the geometry changes to the Laue
case [34].

The characteristics of asymmetric Bragg diffraction will be further elucidated in Chapter 3
in the context of Bragg magnifier imaging. In particular, the relation between the incident
and outgoing wavefields is exploited to modify the spatial frequencies k;, k, of the object
wavefield, which are related to the angle Af and carry information about the sample.

2.2. X-ray phase contrast imaging

In the 20th century, most applications of full-field X-ray imaging were based on absorption
contrast, where the absorption of X-rays in a sample leads to a measurable image contrast [47].
By rotating the sample and acquiring projection images at different angles, the 3D distribu-
tion of the sample’s X-ray mass attenuation coefficient can be reconstructed [48]. While
absorption-based imaging is still the predominant imaging method at laboratory sources,
phase contrast methods have emerged with the establishment of modern synchrotrons with
highly coherent X-ray beams [2]. Meanwhile, phase contrast imaging has become the standard
method for visualizing soft tissues and materials, e.g., in biological or medical specimens, re-
vealing phase changes of the X-rays penetrating through the specimen. Especially in the case
of light elements, phase variation dominates absorption by several orders of magnitude [3].
The most common full-field phase contrast imaging techniques can be divided into two areas,
namely propagation-based phase contrast imaging (PB-PCI) [4, 49, 50] and differential phase
contrast imaging (DPCI) [51-53]. DPCI techniques are typically used for spatial resolutions
of several to hundreds of micrometers and require additional elements in the beam path to
convert phase shifts into measurable intensity contrast. Here, the focus lies on parallel-beam
PB-PCI, which is the method of choice for micrometer resolution and is characterized by a
simple experimental implementation without the need for advanced optical elements.

The aim of the following sections is to introduce the contrast formation by free space propaga-
tion and to outline methods for reconstructing the object function from an intensity pattern.
In Fig. 2.5, a schematic of the general working principle and an example of PB-PCI of a
biological sample are given. The incident X-ray wavefield is transmitted through the sample,
thereby experiencing a modulation in phase and amplitude. By free space propagation, the
phase information encoded in the wavefield evolves into intensity contrast as the propagation
distance between the sample and the detector increases. The phase information can finally be
reconstructed from the recorded interference pattern. The following considerations start by
describing the influence of an object on the illuminating wavefield using the complex index of
refraction and introducing the projection approximation, which is valid for sufficiently thin
objects. Next, the diffraction of plane waves in free space is derived, leading to the so-called

free space propagator. By introducing the Fresnel approximation and the assumption of weak
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2.2. X-ray phase contrast imaging

a object 'exit plane image intensity 1/l
A 4
N
‘\Vf ; ! <>
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Fmmmm e e —m - - - - 5 > :
propagation distance z detector plane
b
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Figure 2.5.: Schematic of propagation-based phase contrast. a Working principle of PB-PCI.
The incident wavefield is diffracted by the sample, thereby experiencing attenuation and a phase
shift. By free space propagation of the transmitted wavefield, the phase shift increasingly evolves into
intensity contrast with increasing propagation distance z between sample and detector. b Examples of
increasing contrast in PB-PCI of a weevil at increasing propagation distances. The data were acquired
at the P23 beamline at PETRA IIT in Hamburg, Germany, at 30.5keV and with an indirect detector
system having an effective pixel size of Ax = 0.72 pm. For details on the indirect detector system, see
Section 4.2.

or weakly varying phase objects, well-known phase retrieval methods based on the transport
of intensity equation (TIE) [50] and the contrast transfer function (CTF) [49] are derived.
In addition, a phase retrieval method is described that considers the mean absorption in the
sample and, in the limiting cases of short distances or low absorption, corresponds to the well-
known algorithms derived from TIE and CTF. A more detailed consideration of the contrast

formation and phase retrieval algorithms can be found in Refs. [41, 43].

2.2.1. Complex index of refraction

The coherent interaction of X-rays with matter can be described by the complex index of

refraction

n=1-0+ip, (2.38)
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2. Fundamentals of X-ray diffraction and phase contrast imaging

iron carbon ratio 6/
< 104 4 S 5 g 10° 3
— X 107> —
3 10-5 g 8 A 10 4
c
= = 3
g 10—6 q>) 10-8 % 10° o
=l _ =] 2 ]
g 107 & 1 —
Y _ Y= 10— 1 1]
g 1078 g 10 3 — Fe
1079 + T T T T 100 T T
0 25 50 0 25 50 0 25 50
energy E (keV) energy E (keV) energy E (keV)

Figure 2.6.: Complex index of refraction. a, b Decrement § of the real part and imaginary part 3
of the refractive index n over photon energy E for iron and carbon. ¢ Ratio 4/ for the elements shown
in panels a and b. Especially for light elements like carbon and for high energies, the phase factor ¢ is
several orders of magnitude higher than the absorption factor 8. The data was taken from the NIST
database [56].

see also Eq. 2.15. Far from atomic resonances, it holds [54, 55]

TeA3ne 1and6=“—)\0 1

— — 2.39
2T x E? 4 x EY ( )

where 7. is the classical electron radius, n. the electron density and u the mass absorption
coefficient. For X-rays, the deviation of the index of refraction from unity is very small, i.e.,
0 <8<« 1and0 <d < 1. Therefore, it holds that

nr)? =1+x(r)=1—-6(r) +iB(r)* =~ 1 —26(r) + 2ip(r). (2.40)

Typically, the values for § are several orders of magnitude higher than 3, especially for light
elements and high energies [3], see Fig. 2.6. For this reason, phase contrast methods offer

great potential for imaging light elements.

2.2.2. Projection approximation

The first step is to find an expression for the influence of an object on a monochromatic X-ray
wavefield passing through the sample at z = 0. Following the argumentation line of Ref. [43],
the projection approximation can be derived for a sufficiently thin object. An X-ray wave
1 (r) propagating a distance z inside matter along the optical axis can be separated into a
slowly varying envelope function A(r) and a rapidly oscillating term, whose changes are on a

much shorter scale than the changes in the medium [43]:

P(r) = A('r)eikoz. (2.41)
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2.2. X-ray phase contrast imaging

Inserting this expression into the Helmholtz equation Eq. 2.16 for a homogeneous medium

and taking the derivative with respect to z yields

A& (A(r)eikoz) + kgnz(r)A(r)eikOZ =0
= [V2 A(r) + 02 A(r) + 2iko(0.A(r)) — k3 A(r) + k2n?(r)A(r) | €0z = 0 (2.42)

with the lateral derivative V3 = 07 4 2. Using 07A < k§A for paraxial beams and elimi-
nating ¢'¥0% Eq. 2.42 becomes the paraxial wave equation:

V3 + 2ikod: + K (n*(r) — 1] A(r) = 0. (2.43)

Furthermore, diffraction within the object is neglected by assuming Vi <& 0, A for the second
derivative of A in z,y, which is, however, only valid for thin objects. Together with Eq. 2.40,
it holds [43]

0, A(r) = —ikg [6(7) —iB(r)] A(r). (2.44)
This first order differential equation leads to the envelope function propagated to d:
. d .
A(z,y,d) = A(r)e o Jo (6 -1B(r)dz (2.45)

As it passes through the sample, the envelope function thus experiences an absorption a(zx,y)
given by the imaginary part § of the refractive index and a phase shift ¢(x,y) defined by the
decrement ¢ of the real part of n, integrated over the sample thickness d:

A(:p’ Y, d) = A(’I") eiqﬁ(m,y)e—a(x,y)’ (246)
|\
=f(zy)
with
d
o(z,y) = —ko | 6(r)dz, (2.47)
0
d
a(z,y) = ko/ B(r)dz. (2.48)
0

This is known as the projection approximation [43]. For an incident monochromatic plane
wave parallel to the optical axis, the phase origin is typically set to the exit plane of the object
at z = 0. The normalized wavefield at the exit plane is then given by the complex object
transmission function f(x,y). For a specimen consisting of a single material, the ratio /0 is
constant, and the object function can be expressed by the projected thickness T'(x,y) via

gb(.%’, y) = —k‘odT(%y), (2'49)
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2. Fundamentals of X-ray diffraction and phase contrast imaging

The object thickness for which the projection approximation is valid depends on the mini-
mum feature size that should be detected, expressible by the pixel size Axz. The first order
diffraction lies at an angle § = \yg/Ax and reaches the next pixel after the distance T'= Ax/0,
which yields the criterion [43]

(TAQ)‘; <1 (2.51)

for the projection approximation to be valid. At 30keV, this condition is still fulfilled for a
1 cm thick object and 1 pm resolution.

2.2.3. Free space propagation

A monochromatic wavefield 1 () can be decomposed into a linear combination of plane waves,
where k = (kg, ky, k.)T defines the propagation direction of each plane wave [42]:

w(r) = (2;)3 / / / D(k)e*r 3. (2.52)

Here, 9)(k) is the 3D Fourier transform of the wavefield (7). Inserting a single plane wave
¥ (k)e*T into the Helmholtz equation Eq. 2.16 in free space (n = 1) leads to [42]

kg =kl +k, + k2. (2.53)

Setting the coordinate z along the optical axis and considering only forward propagation with
k., > 0, the previous expression can be rewritten as

ke = /K2 — k2 — k2. (2.54)

A monochromatic wavefield ¥ (z,y, z = 0) = ¥o(x,y) given at z = 0 and propagating to z > 0
can thus be expressed as

1 ~ ) .
V:lo9) = (g / / Do ko, ey) ez thaw) i/ RS qp g (2.55)

=H: (ko ky)

Each plane wave 1/;0(1%, ky)ei(km‘“rkyy) given at z = 0 thus accumulates an additional phase
eV kg —kE—kj by propagating to a plane at z > 0, as also illustrated in Fig. 2.7. The term
H, is called the free space propagator. In position-space, the operation is equivalent to a
convolution of the wavefield at z = 0 with the inverse Fourier transform h.(x,y) of H,(ks, ky):

%(mv y) - ¢0(9€73/) * hz(xvy)' (2'56)

Due to the convolution, a lateral shift of the object yields the same, but shifted, image. This
property is denoted as shift-invariance [41].
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2.2. X-ray phase contrast imaging
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Figure 2.7.: Free space propagation. A plane wave propagating in free space at an angle ¢ to the
optical axis from the plane z = 0 towards a parallel plane at z > 0 arrives with a phase of e*V kG —k3

at this plane. In contrast, a wave propagating parallel to the axis collects a phase of e'k0%.

Notation: In the following, the image formation is always considered within an x-y-
plane at z > 0. For better readability, the vectors » = (z,9)T and k = (ky, k)T
are therefore used as 2D coordinates in the remainder of this work instead of the 3D
notation. A 3D wavevector with length kg is denoted as kg = (kx,ky,k‘z)T. Also,
the index z in the free space propagator H.(k) and in its Fourier transform h,(r) is
omitted for better readability.

Paraxial Fresnel approximation

In X-ray imaging, it is usually sufficient to consider paraxial diffraction, i.e., forward prop-
agation of all waves at only small angles to the optical axis. In this case, k? > k2, k;, and

Eq. 2.54 can be approximated as [41]

k2 + k2
k, ~ ko — IQTOy' (2.57)
Then, the free space propagator becomes
. Rk
H(ky, ky) = eF0Ze 2% (2.58)

The term e'¥07 is the global phase shown in Fig. 2.7, which can often be omitted in the case
of imaging, where only intensities are considered, and the remainder is the so-called Fresnel
propagator, quantifying the phase difference with respect to the unscattered wave in second
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2. Fundamentals of X-ray diffraction and phase contrast imaging

order. It is convenient to define the unitless Fresnel number [43]

 kot?

Np = 2,
F 2mz

(2.59)

where t is the feature size. Typically, the smallest sampled spatial wavelength 2Ax is inserted
for ¢, which defines the Nyquist frequency knyq = QQA—”:E. It now becomes clear that for Ng = 1,
destructive interference with the unscattered plane wave occurs at the Nyquist frequency,
since the exponent of the Fresnel propagator equals 7.

2.2.4. Propagation-based phase contrast

So far, the influence of an object on an incident wavefield and the propagation of electromag-
netic waves in vacuum have been elucidated. It is now of interest to see how the information
contained in the wavefield behind the object can be transformed into a recordable image in-
tensity. By detecting the wavefield directly behind the object, the absorption of the object
becomes visible. For an incident plane wave with unity amplitude Iy = 1, the intensity in the

object exit plane is given by
1(r) = [ F(n)]? = |0 a2 — =200, (2.60)

In this so-called contact image at z = 0 the phase information of the object is lost. For weakly
absorbing objects, such as biological tissues or soft materials, there will therefore be only little
contrast in the image. As an aside, for a single material, Eq. 2.60 can also be expressed in
terms of the linear mass absorption coefficient u (Eq. 2.39) as [43]

I(r) = Iye "1, (2.61)
which is known as the Lambert-Beer law.

On the contrary, converting the phase information contained in the wavefield into measur-
able image intensity can increase image contrast, since 0 > 3 (Fig. 2.6). The phase contrast
method with the simplest implementation is PB-PCI, provided that an X-ray source with suf-
ficient coherence is available [57]. It exploits the self-interference of the transmitted wavefield
behind the object, which increasingly evolves into intensity contrast with increasing propaga-
tion distance [43]. The full propagation of a wavefield behind an object can be simulated using
the free space propagator in Eq. 2.55. As an example, Fig. 2.8a shows the propagated image
intensity of an iron and a carbon sphere for different propagation distances z. Three different
regimes can be defined according to the Fresnel number: the contact regime (Np — o0),
the direct contrast regime (Ng ~ 1), and the holographic regime (Ng < 1). In the contact
regime, the phase information is completely lost, and only absorption is visible. In Fig. 2.8a
at z = Ocm, the iron sphere (top row) shows absorption contrast, while the carbon sphere
(bottom row) is not visible due to its low absorption. In the direct contrast regime, an in-
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Figure 2.8.: Propagation-based phase contrast imaging. a Simulated image intensity after
free space propagation of a wavefield behind two spheres of different materials at several propagation
distances z. In the contact image at z = Ocm (Fresnel number Ngp = o00) the iron sphere (upper
row) shows absorption contrast, while the carbon sphere (lower row) is not visible at all due to its
vanishing absorption. With increasing propagation distance, the phase information contained in the
wavefield evolves into measurable intensity contrast due to self-interference. The colorbar shows the
normalized image intensity. The simulation was performed for an X-ray photon energy of 30keV and
a sphere diameter of 50pm. b PCTF for the parameters shown in panel a. The PCTF indicates
how strongly a phase signal with spatial frequency component k is converted into measurable image
intensity. ¢ Integral of the |PCTF| over k from 0 to two exemplary maximum frequencies ky, as a
function of z (red), and corresponding percentage of k-values where |[PCTF| < 0.1 (purple).

terference fringe appears at the edges of the sample. By further increasing the propagation
distance, the holographic regime is reached. The Fresnel diffraction pattern exhibits multi-
ple interference fringes and the images show high contrast, but no longer directly resemble
the sample. Under certain assumptions, the phase and amplitude information of the object
function can be reconstructed by suitable reconstruction algorithms, see Section 2.2.7.

2.2.5. Temporal and transverse coherence

PB-PCI requires a sufficiently high degree of coherence of the illuminating X-ray field. Co-
herence describes the ability of electromagnetic waves to interfere with each other. An ideal
monochromatic point source emits perfectly coherent and monochromatic electromagnetic
waves. Real X-ray sources, however, emit X-rays within a certain bandwidth, and the sources
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2. Fundamentals of X-ray diffraction and phase contrast imaging

are spatially extended. These two aspects result in finite temporal and transverse partial
coherence [41].

Temporal coherence Light with a finite temporal coherence can only interfere with itself
within a limited time interval. According to the Wiener-Khinchin theorem, such light can be
assigned a power spectral density [58, 59], which is usually determined by the bandwidth of
the X-ray source or the monochromator. The power spectral density corresponds to a distri-
bution of wavelengths \g = Mgt A\ with Ay being a deviation around the mean wavelength
Xo. The resulting intensity image is composed of the incoherent superposition of the single
monochromatic images. Considering the free space propagator in Eq. 2.58, it becomes clear
that a monochromatic wavefield with wavelength \g + Ao will effectively propagate further
by a distance 2’ = (1 + AXg/Xg)z compared to a wavefield with wavelength \g. For syn-
chrotron beamlines with a double-crystal monochromator, the bandwidth is typically such
that |AXo|/Ao < 107% [60], which implies that this effectively varying propagation distance is
often negligible compared to the influence of transverse coherence. To estimate the resolution
limit of propagation-based phase contrast given by the temporal coherence, the image inten-
sities can be evaluated for a weak phase object using the phase contrast transfer function (see
Section 2.2.6). Assuming a Gaussian wavelength distribution with standard deviation o, the

monochromatic phase contrast transfer function sin (ﬁ)\osz) degrades to
¥ 1 (Ao—2p)? 1 k2.2 1 -
/ We_ 202 sin (47‘_)\02]{32) d>\0 = e_mo— z sin <47T>\OZII€2> . (262)
—00

A damping of the image contrast by partial temporal coherence below e~2 ~ 0.14 is reached

2k < \/moz/2. (2.63)

For a bandwidth o = 10~%)g, an energy of 30keV, and a propagation distance of z = 1m,

for structure periods of

image degradation by temporal coherence only becomes relevant for resolutions smaller than
27 /k ~ 80 nm.

Transverse coherence An extended X-ray source incoherently illuminates the sample under
different angles. With increasing source size, the transverse coherence of the probing X-rays
is thereby degraded compared to parallel plane wave illumination [61]. When an obliquely
incident plane wave with angular spatial frequency k and unity intensity illuminates an object
f(zx), the wavefield ¥y(x) at z = 0 behind the object experiences a multiplicative phase factor:

%,;;(x) = f(:c)eikx. (2.64)
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2.2. X-ray phase contrast imaging

For simplicity, only the 1D case is treated here. The wavefield after propagation by a distance
z is denoted as v ;(x). For an extended X-ray source, the final image intensity I.(x) at z
’2

is given as the incoherent superposition of the intensities ¢ ;(z)|* weighted by the source

A~

function S(k):

L) = [ S, 3Pk (2.65)
In most cases, the source illumination as a function of spatial frequencies k can be approxi-

mately described by a Gaussian distribution

1 i

Vool (2.66)

The standard deviation o of the illumination function is related to the source size s via the

S(k) =

source-to-sample distance [ by o = ko-s/l. Note that s is given here as the standard deviation
of the source size, while it is also common to state the full width at half maximum (FWHM).
With Eq. 2.66, one obtains

k.o k%zQ

e 2077 % [ (1) (2.67)

I(z) =

2moz

for a shift-invariant system. For a derivation, see Appendix A.2. The total image intensity
is thus given by the image intensity IS°"(z) = |¢,0(z)|? for perfect coherence convolved with
a Gaussian function with standard deviation oz/ky. In Fourier space, this is equivalent to a

multiplication with a Gaussian function:

02222

Lk)y=e >0 .I°Mk), (2.68)

where the standard deviation of the Gaussian function is given by ko/(cz) = 1/(sz). High
spatial frequencies are thus suppressed, resulting in a blurred image. For this reason, the effect
of an extended X-ray source on the image is called source blur or penumbral blur [62]. The
amount of blur increases with the source size s and the propagation distance z and decreases
with the source distance [. As a rough orientation for the largest reasonable propagation
distance z, one may introduce the criterion that the Gaussian envelope should not fall below
e~? ~ 0.14 at the Nyquist frequency knyq = 7/Az. Using o = ko - s/l, one obtains

z= Q—ZAJ: (2.69)

™8

as an estimate of the maximum useful propagation distance before the source blur becomes too
dominant. Since the source has different extensions in the vertical and horizontal directions,
especially in third-generation synchrotrons, the source blur will be different in the respective
directions, and the propagation distance is typically adapted to the direction with stronger
source blur [63]. For a simulation example including source blur, see Section 3.4.5.
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2. Fundamentals of X-ray diffraction and phase contrast imaging

2.2.6. Weak phase approximation and contrast transfer function

For a better understanding of the contrast formation in propagation-based phase contrast
imaging, it is convenient to consider the weak phase object approximation. For objects with
a weak or weakly varying phase, an expression for the CTF is obtained that describes how
strongly spatial frequencies k contained in the wavefield behind the object are translated into
measurable image intensity. While initially derived in electron microscopy by D. Gabor and
O. Scherzer [64, 65], the concept of the CTF is equally applicable to X-ray imaging [49].
A widely used approach for deriving the CTF-formula in X-ray imaging was presented by
P. Guigay et al. [66], as detailed in Appendix A.3. Here, an alternative approach is used, as
pursued in electron microscopy [67-70], which involves linearizing the object wave function
and directly calculating the resulting image intensity from a convolution with the Fourier

transform of the free space propagator.

For an incident monochromatic plane wave, and assuming that the phase shift ¢ and the
attenuation a of the object are small (¢ < 1,a < 1), the normalized wavefield ¢y(r) can be

written as
Yo(r) = £(r) = €070 % 1+ ig(r) — a(r). (2.70)

This weak phase object approximation is valid for high energies or sufficiently thin samples,
which is fulfilled for many cases of high-resolution biological X-ray imaging. Using Eq. 2.56,
the intensity I.(7) of the propagated wavefield at a distance z is given by

L(r)/Io = [$=(r)* = [ho(r) * h(r)|?
= |1 % h(r) +ip(r) * h(r) — a(r) * h(r)|* + O(¢?)
= [H(0)]” + ¢(r) * i[H*(0)h(r) — H(0)h*(7)]
—a(r) * [H*(0)h(r) + H(0)h*(r)] + O(¢?)
= [H(0)* — ¢(r) * 2 - Tm[H*(0) - A(r)]
—a(r) * 2-Re[H*(0) - h(r)] + O(¢?), (2.71)
where Iy & const. is the intensity of the incident wavefield. Here, the identity

1xh(r)=F ' [2n6(k) - H(k)] = H(0) (2.72)

was used, where F~! denotes the inverse Fourier transform and 6(k) the Dirac delta distri-
bution. Using the convolution theorem [71], Eq. 2.71 can be written in Fourier space as

L(k)/Io =~ 2r|H(0)|*5(k) — 2Im[H*(0)H (k)] - ¢(k) — 2Re[H*(0)H (k)] - a(k),  (2.73)

with I., ¢ and @ being the Fourier transforms of I., ¢ and a, respectively. For the free
space propagator given in Eq. 2.58, it holds H*(0) = e~%0* and H (k) = e"*0%e~x(K) where
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2.2. X-ray phase contrast imaging

x(k) = z(kZ + k2)/2ko was introduced for the exponent of the Fresnel propagator. Here, it

becomes clear that the global phase term e'*0% cancels out, and the intensity reads

L(r)/Io =~ 1+ 2F sin x(k) - 6(k)] — 2F ' [cos x(k) - a(k)]. (2.74)

Under the further assumption of a single material sample, i.e., ¢(k)/a(k) = —3/3 (see
Egs. 2.49 and 2.50), one obtains

L(r)/Iop~ 1+ 2F Yg(k) - (sin y(k) + ?cos x(k)]. (2.75)

=CTF

The sine and cosine terms are called phase and absorption CTF, respectively, and describe
the conversion of phase or absorption information into image intensity in PB-PCI [70]. The
absorption CTF usually only plays a minor role for z > 0 due to /6 < 1 (Fig. 2.6). In
Fig. 2.8b, the 1D phase contrast transfer function (PCTF) is shown for different propagation
distances z, given by

z

PCTF (k) = sin (2k0

(k2 + k;)) (2.76)
or, expressed in spatial frequencies g = (¢, q,)* = k/(27),
PCTF(q) = sin (mXoz(¢2 +¢2)) - (2.77)

In the current chapter, the notation with angular spatial frequency k = 2mq is used, while
in the experimental part, a notation with q is sometimes chosen to make the conversion
to corresponding structure sizes more convenient. The amplitude of the PCTF over spatial
frequency defines how strongly information about the sample is translated to measurable
image contrast. Fig. 2.8b shows the PCTF for different propagation distances. In the contact
regime (z ~ 0 cm, blue), the PCTF is zero, and no phase contrast is transferred to the image.
With increasing z (direct contrast regime, orange), the values of the PCTF increase, and thus
the image contrast becomes higher. For even larger z (holographic regime, green, brown),
the PCTF starts to oscillate and exhibits zero-crossings. On the one hand, the contrast for
sufficiently small k increases steadily with z, on the other hand the number of zero-crossings in
the considered k-interval also increases with z, making phase reconstruction more challenging
(see Section 2.2.7).

The integral fokm |PCTF (k)|dk can serve as a measure for the general contrast transfer at a
certain distance z, averaged over all k < ky,, where ky, is any maximum spatial frequency of
interest. As can be seen from Fig. 2.8¢ (red curves), the overall contrast increases with z.
A distance of only a few centimeters strongly increases the contrast integrated up to ky =
27 /1 pm, where the latter corresponds to a structure wavelength of 1 pm in position space. For
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Figure 2.9.: Experimental visualization of the PCTF via Thon rings. a Experimental image
of a thin piece of plastic representing a weak phase amorphous sample, acquired with an indirect
detector system (see Chapter 4) at 30keV at the P23 beamline at PETRA III, Hamburg, Germany.
b Fourier transform of experimental images acquired at three different propagation distances z. So-
called Thon rings appear at spatial frequencies k where the PCTF is close to zero. The decrease in
signal towards higher & is attributed to partial coherence (see Section 2.2.5). Since the images were
acquired at a third-generation synchrotron source, the coherence in the vertical direction is higher
than in horizontal direction, which is especially well visible for z = 1m. ¢ Azimuthal average of the
Fourier transforms shown in panel b. At low spatial frequencies, the signal increases with z, while at
high k it decreases slightly due to source blur (Section 2.2.5).

lower spatial frequencies, here shown as an example for ky = 27/4 pm, distances of at least
several decimeters are favorable for high contrast. The integrals have been normalized to the
integral for a hypothetical ideal contrast transfer (PCTFigeal = 1 = [y [PCTFigeal|dk = k).
At frequencies where the PCTF is close to zero, the image signal may be below the noise floor,
and the corresponding object information may be lost in the image. Fig. 2.8¢ (purple curve)
shows the fraction of k-values where |PCTF| is less than a certain value, in this example 0.1.
It decreases with increasing z, which means that less of the image signal lies below the noise
floor.

The appearance of zero-crossings in the PCTF can be explored experimentally by acquiring
images of an amorphous weak phase sample at several propagation distances. An example
is shown in Fig. 2.9. Here, a thin piece of plastic was chosen that contains many different
spatial frequencies and therefore behaves approximately like a white noise object. The Fourier
transform of the sample images shows that the signal is lost at certain spatial frequencies
where the PCTF is close to zero. In electron microscopy, these circular rings are called Thon
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Figure 2.10.: Resolution line pattern imaged at different distances. The bar period in the line
pattern changes continuously with height. Depending on the propagation distance z, some frequencies
in the line pattern disappear due to zero-crossings in the PCTF, marked by white arrows in the
flatfield-corrected holograms for two exemplary distances (left). In the right graph, vertical intensity
line profiles are given for six distances, revealing that the missing frequencies shift towards larger
structure periods with increasing z. For better visibility, the curves are offset by z. The gray dashed
lines show which structure periods are expected to be suppressed due to the zero-crossings in the
PCTF. The data were acquired with an indirect detector system (see Chapter 4) at 30.5keV at the
P23 beamline at PETRA III, Hamburg, Germany.

rings [72] and can be used, for example, to study astigmatism or the performance of optical
devices [73, 74]. In PB-PCI, the position of Thon rings can be used to precisely determine
the Fresnel number and thus the propagation distance.

The suppression of spatial frequencies can also be visualized by imaging a line pattern with
a continuously changing bar period, see Fig. 2.10. Depending on the propagation distance,
certain spatial frequencies are not transferred to the image, as marked by white arrows. In
the intensity line profiles at different distances, the movement of these missing frequencies
towards larger structure periods becomes apparent. The missing frequencies, which are to
be expected due to the zero-crossings of the PCTF (Eq. 2.77), are marked by a dashed gray
line and coincide with the experimental areas with no image contrast. The dark areas at the
lower end of the line pattern can be attributed to suppression by source blur, which increases

with z.
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2. Fundamentals of X-ray diffraction and phase contrast imaging

2.2.7. Phase reconstruction

The aim of phase retrieval algorithms is to reconstruct the projected object phase and atten-
uation in the object exit plane z = 0, which is encoded in the detected image intensity at
z > 0. Several approaches have been proposed and successfully applied, which can be divided
into non-iterative and iterative methods [75]. The focus of this section lies on non-iterative
methods due to their relatively simple implementation and fast performance. Non-iterative
methods describe the dependence between object phase and image intensity by a linear rela-
tionship in Fourier space, resulting in a Fourier filter [49, 50]. They are widely used because
of their numerical simplicity and speed [75]. However, they make several assumptions on the
imaging system and the object. Iterative methods are less stringent and allow for a priori con-
straints such as sample support, but are numerically more complex, resulting in rather long
reconstruction times [76]. Here, only the case of a single material sample is considered, i.e.,
a(r)/¢(r) = —f/d = const., which is a reasonable assumption for many biological samples

and monochromatic illumination.

First, the TIE and CTF methods are summarized, which are the most popular approaches
in the literature [49, 50, 75, 77]. Practical reconstruction examples are given in Chapters 3
and 4. For the limiting case of large Fresnel numbers, i.e., small propagation distances, the
CTF formula is almost identical to the TIE formula, they only differ by a logarithm. In
order to combine these two formulas and to explain the origin of their difference, another
approach is presented below that takes into account the mean absorption of the sample and
is therefore referred to as mean-field CTF here. In essence, the diffracted light interferes with
the attenuated zero-order beam.

2.2.8. Transport of intensity equation (TIE) method

Starting with the paraxial wave equation (Eq. 2.43) in free space (n = 1) and expressing
the envelope function A(r) = /I(r)e’*™) by its phase ¢(r) and intensity I(r) = |A(r)]? =
Tpe=2%(") leads to the transport of intensity equation (TIE) [78]:

V. (I(r)V 1 (1) = —kodI(r). (2.78)

The propagation distance z is assumed to be small so that the right-hand side of Eq. 2.78
can be expressed as a differential quotient between the intensity at the object exit plane and
the intensity I, measured at z. Then, for a single material sample with a(r) = —3/6 - ¢(r),
the TIE leads to [50]

I L(r) — Iye259()
V. (Ioe*30v 1o(r)) = 2%v362§¢<r> ~ iy () Zoe 5
5
_ A oo 284y La(r)
_>< 2k05VL“>6 B (2.79)
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2.2. X-ray phase contrast imaging

In Fourier space, one obtains

o)) o L)/ 1]
F {ezgqs( )} ~ T +01, (2.80)

where again (k) = z(k2 + kz) /2ko. The object phase can thus be reconstructed by

0 o [Fle)/m)
o= (= [0 aan

The Fourier filter 1/(6/8 - x(k) + 1) in Eq. 2.81 acts as a low-pass filter and suppresses
high-frequency noise. The parameter §/d can either be estimated by a priori knowledge on
the sample material or adjusted during the reconstruction to yield a satisfying result. The
method was derived by D. Paganin et al. [50] and is therefore often also referred to as the
Paganin reconstruction. It is widely used in nearfield X-ray imaging of biological specimens
and tissues due to its speed and robustness.

2.2.9. Contrast transfer function (CTF) method

The TIE method is only valid for small z. In the holographic regime and for homogeneous
objects with a weak phase, the linearity of Eq. 2.75 can be exploited to retrieve the phase
from the recorded intensity pattern, denoted as CTF phase retrieval [43, 49]:

f[IZ(T)/IO - 1] > ) (2.82)

)= — 71
o) 2 (Sinx(k)+§cosx(k)+e

Since the zero-crossings of the CTF discussed above hinder proper phase reconstruction, a
regularization term e is introduced to avoid amplification of noise at spatial frequencies where
the denominator would become arbitrarily small. It is typically defined separately for low
and high spatial frequencies [79]:

eo for x| < 7/2,
€ =
e; for x| > w/2.

In the case of an absorbing sample, €y can be set to zero because 3/4 itself acts as a regu-
larization term for z ~ 0. Typical values for ¢; are 107! [79]. Alternatively, small regions
around the zero-crossings can be masked, which is known as quasi-particle approach and has
the advantage of being also valid for non-weak phase objects, but introduces artifacts due to
the missing frequencies [80].

Acquiring images at N multiple propagation distances reduces the amount of suppressed
spatial frequencies in the set of images and leads to an overall higher information content and
more accurate phase reconstruction. This method corresponds to a defocus series in electron
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2. Fundamentals of X-ray diffraction and phase contrast imaging

microscopy [81] and was transferred to X-ray imaging by P. Cloetens et al. [57]. Using a
least-square minimization, the phase can be reconstructed by

; (sinxn(k) + § cos xu(k)) - FIL(r)/To — 1]

p(r)=F" = 5 , (2.83)
+ Z 2 (sin xn(k) + gcosxn(k:)) +e€

2\

referred to as multi-distance CTF method. Multi-distance phase reconstruction suppresses
typical artifacts of single-distance reconstruction, but can only be applied to samples that do
not move during acquisition at the different distances.

2.2.10. Relation between TIE and CTF: mean-field CTF

The TIE and CTF methods look very similar, the main difference being the logarithm and
the first order approximation of the CTF in the TIE formula (sin x &~ x, cosx ~ 1). In this
section, a formula is derived that takes into account the influence of a reduced mean intensity
due to non-negligible absorption. It is referred to here as the mean-field CTF method and can
be considered as a generalization of the TIE and CTF phase retrieval approaches, covering
both methods simultaneously and converging to the TIE or CTF formula within the respective
limits. The result is the same as in Ref. [82], and the approach is similar to Ref. [83], with the
difference that here the derivation is performed by directly calculating the image intensity in
real space. For a derivation analogous to Guigay’s approach, see Appendix A.3.

In the CTF derivation presented in Section 2.2.6, the phase shift and attenuation are assumed
to be small so that the exponential function in Eq. 2.70 can be linearized. Here, an object
is considered where the deviation of phase and absorption to the mean phase ¢y and mean
absorption ag is small (|¢(r) — ¢o| < 1,]a(r) — ag| < 1), but ¢ and ag themselves may be
large. The object function can then be written as

Yo(r) = ei(r)—a(r) _ gido—ao i(d(r)—¢o)—(a(r)—ao)
~ 7O+ i(g(r) = do) — (alr) — ao)]. (2.84)
In first order, the image intensity propagated in free space becomes

I(7)

L~ [0 (14 i(0(r) = 60) — (alr) = ao))  h(r)
0

~ 672(10 (‘H(0)|2 + (¢(T) _ (ZSO) %9 . Im[H*(O) . h] — (a(r) — ao) *2 - RG[H*(O) . h("")])
= 720 (14 F [2(d(k) — go2md(k)) sin x (k) — 2(a(k) — ag2r6(k)) cos x(k)] )

_ 2 <1+2a0+f— [ (k:)-(gsinx(k)—kcosx(k))D. (2.85)

’ 2
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In the last step, a single-material object was assumed. Solving for a(k) in Fourier space yields

o FIL(r)e*® /To — (1 + 2ao)]
2a(k) = % sin x (k) + cos x (k) (2.86)

leading to

2a(r) = —F1 []—"[Iz(r)e?% JIo— (1 + 2a0)]1

% sin x (k) + cos x (k)

I FlL(r)e?w /Iy — 1]
= alr) = 2]: lg sin x (k) + cos x (k) a0 (2.87)
or expressed by ¢:
1y | FlL(r)e** /Ty 1]
olr) = 2]: sin x (k) + %COS x(k) + o (2.88)

By taking the mean attenuation ag into account, this formula is thus a generalization of the
CTF-formula (Eq. 2.82). Intuitively, it becomes clear that the measured intensity /, must
be corrected for the mean intensity loss e 2% to obtain a quantitatively more correct result.
The global phase ¢¢ does not affect the image intensity, but is kept here for consistency. In
analogy to Ref. [57], the formula can also be extended to multi-distance data.

To understand the relation to the TIE-formula (Eq. 2.81), Eq. 2.87 can be rewritten as

1—2(a(r) — ag) = F ' [5 FIL(r)/ o]

, - %0, (2.89)
g sinx (k) 4 cos x(k)

The left-hand side came from the approximation e~2(#(")=%) ~ 1 —-2(a(r)—ag). In first order,

one may therefore also write

6—2((1(1“) ag) _ — F! l [IZ( )/IO] ] . g200
% sin x (k) + cos x (k)
(e[ FlL/m)
- B 1 F lg, sin x (k) + cos x (k) ) ’ (2:90)

or expressed by ¢:

i 0 1 ]:[Iz(r)/IO]
¢(r) = 251 ('7: [gsinx(k) + cos x (k)

) . (2.91)

In first order approximation, Eq. 2.87 and Eq. 2.90 have mathematically the same validity.
However, with the logarithm and not having to determine the mean absorption ag, the latter
is more convenient. Furthermore, in the case of vanishing propagation (x ~ 0), it returns the
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correct attenuation a(r) = —1/2-In(I,(r)/Iy). In the approximation of short distances, i.e.,
X €1 —=siny = x,cosy =~ 1, Eq. 2.90 coincides with the TIE formula. In summary, the
mean-field CTF formulas Eq. 2.87 and Eq. 2.90 have a broader validity, while being equally
simple to implement as the TIE and CTF formulas.

Nonlinear Tikhonov method

Assumptions on the sample or the imaging system can be relaxed by iterative phase retrieval
algorithms. However, iterative phase retrieval is typically numerically orders of magnitude
more expensive than the direct methods presented above. Numerous approaches have been
proposed and investigated [76, 84-87]. In this thesis, the nonlinear Tikhonov regularization
(NLTikh) is employed, which can be considered as a nonlinear generalization of the CTF
method [79]. It also assumes a homogeneous object (5/d = const.), but is valid not only
for objects with weakly varying phase, but also for moderately strong phase gradients. Fur-
thermore, it offers the possibility to introduce a priori constraints on the sample support or
on the phase range. The algorithm uses the CTF method as an initial guess and iteratively
optimizes the result using the full nonlinear Fresnel propagator as forward model (Eq. 2.58).
In contrast to other iterative methods, it shows reasonable numerical efficiency so that it can
also be applied to large datasets [79].

2.3. X-ray area detectors

While in the past X-ray images were mainly detected using photographic films, these have
been replaced by digital sensors over the last few centuries. Digital detector systems can
be divided into two groups — direct and indirect detectors [88]. The main difference lies in
the way in which X-ray photons are converted into a measurable electrical signal. In direct
detectors, X-ray photons generate an electric charge directly, whereas in indirect detectors X-
rays photons are converted into visible light photons, which are then recorded by an electronic
image sensor, see Fig. 2.11. The functional principle of these two detector systems is briefly
outlined below.

2.3.1. Indirect detector systems

An indirect detector consists of a scintillator, a lens system or fiber optics, and an image sen-
sor. The scintillator converts X-ray photons into visible light photons. Important properties
of a scintillator for its performance are the absorption coefficient, the light yield, the decay
time, and the thickness [89]. For a high detection efficiency, as many X-ray photons as possi-
ble should be absorbed by the scintillator, which is facilitated by a high absorption coefficient,
e.g., provided by high-Z materials. The light yield is defined as the number of luminescence
photons generated by one absorbed X-ray photon per energy. A short decay time between
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Figure 2.11.: Indirect and direct X-ray detectors. Working principle of a indirectly and b
directly converting detectors. In indirect detectors, a scintillator converts the X-rays into visible
light, which is either guided onto a camera sensor by fiber optics or, as sketched here, magnified by
visible light optics. In direct detectors, an absorbed X-ray photon creates electron-hole pairs in the
semiconductor sensor material, which are collected by pixelated readout electronics. Adapted from
Ref. [88].

excitation and emission is especially important for fast time-resolved experiments. Typical
scintillator materials employed for high-resolution X-ray imaging are YAG (Y3Al5012:Ce),
LuAG (Lu3Al;0;2:Ce), and LSO (LugSiOs:Ce) [90], while Gadox (Gd202S:Th) is often used
in flat panel detectors with medium resolution [88]. The visible photons are imaged onto
a camera sensor through a lens system or fiber optics. Flat panel detectors can achieve a
large field of view of several centimeters with medium resolutions of several tens of microm-
eters. In contrast, to achieve high resolutions of 1pm, a magnifying objective lens is placed
between the scintillator and the sensor, allowing effective pixel sizes in the sub-micron res-
olution range. The numerical aperture (NA) of the objective is defined by half the opening
angle 8 as NA = nsin 6, where n is the refractive index of the surrounding medium such as
air or water. A high NA ensures a high collection efficiency 7. of the objective, i.e., the ratio
of photons collected by the objective [91]:

1 0 1
770:@/0 27rsin9’d9':§ 1—y/1-—-]. (2.92)

Furthermore, the NA affects the point spread function (PSF) of the optical system, which
describes the response of the system to a point object. The Fourier transform of the PSF is
the optical transfer function (OTF). The OTF specifies how strongly spatial frequencies are
transmitted through the optics, i.e., the scintillator and the objective. The OTF of a perfect
spherical lens is given by [92]

OTF(v) = ; (arccos lv| — [v|V1— V2) . (2.93)

Here, v is the spatial frequency normalized to the highest transmitted spatial frequency
Gmax = Fmax/(27) = 2NA/Aoptical With Agptical being the wavelength of the scintillating light.
For a diffraction-limited system and incoherent light, the finite aperture of the lens defines
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2. Fundamentals of X-ray diffraction and phase contrast imaging

the smallest resolvable spatial wavelength Anin, which is given as Rayleigh’s resolution crite-
rion [93]:

Aoptical

Amin = 0.61 NA (2.94)
The objective has a certain depth of field [92], defined by the NA. The thickness of the
scintillator should be within or at most slightly above the depth of field in order not to degrade
the OTF and thus the spatial resolution. As a rule of thumb, a thickness of twice the depth
of field has proven useful [90]. Finally, the image is detected by a camera sensor. The main
types of image sensors are charge-coupled device (CCD) and complementary metal-oxide-
semiconductor (CMOS) sensors. In the last decade, the development of so-called scientific
CMOS (sCMOS) sensors has further improved the performance of cameras due to the sensors’
low readout noise, high speed and good quantum efficiency, which describes the conversion
efficiency of photons into electrical charges.

2.3.2. Single photon counting detectors

In a single photon counting detector (SPCD), X-rays directly create electron-hole pairs within
a semiconductor sensor material. The probability that an X-ray will interact with the detector
is determined by the absorption probability of the sensor and therefore by the sensor material
and thickness. The sensor material and thickness can be optimized for the energy range of
interest. Suitable sensor materials are Si, gallium arsenide (GaAs) and cadmium telluride
(CdTe), and the typical thickness varies between 0.3 mm to 1 mm. Detailed information on
the performance of the different sensor materials can be found in the literature [94-97]. In
this work, a 500 pm thick GaAs sensor material is used, which exhibits nominally 97 % of
absorption at 30keV [98]. The sensor material is physically connected to a pixelated readout
electronics by flip-chip bonding. This assembly is called hybrid detector [99]. The generated
electron-hole pairs are accelerated towards the electrodes by an applied electric field and
induce an electrical current. The signal of each X-ray photon is separately counted and
amplified. It is further processed by a group of discriminators and counters. The amplitude
of the pulse is proportional to the charge generated in the sensor. The discriminators compare
the detected pulse amplitude with several energy thresholds and increment the counter of the
energy bin in which the measured pulse lies. By this procedure, energy-resolved measurements
are possible. Furthermore, electronic noise is rejected by setting the lowest energy threshold
above the intrinsic system noise [100].

The electron-hole pairs induced by an X-ray photon in the sensor diffuse and generate a charge
cloud with finite lateral extent. This leads to a sharing of the charge between neighboring
pixels. This charge-sharing effect falsifies the detected energy or number of photons. Certain
readout chips, such as the Medipix3RX [101] used in this work, can account for charge sharing
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2.3. X-ray area detectors

by event correlation. The corresponding readout mode is called charge-sharing mode (CSM),
while in single-pixel mode (SPM) each pixel is read out independently [101].

The PSF of an SPCD is typically very sharp and only slightly degraded by charge sharing
effects. In turn, the modulus of its Fourier transform, the modulation transfer function
(MTF), shows only minor deviations from the ideal MTF of a detector with finite pixel size
Az, given by a sinc-function [97]:

MTFgeal(g) = W- (2.95)
The MTF can be influenced by changing the energy threshold and operating mode [94], or by
applying advanced single-event processing methods [102]. The linear regime of the detector
is limited by pile-up, which occurs at high fluxes when two pulses arrive in close succession
and the signals overlap due to their finite decay time. The Medipix3RX readout chip behaves
linearly up to a flux of ~2 x 107 counts/mm?/s for CSM and ~1 x 108 counts/mm?/s for
SPM [103].
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3. X-ray imaging with Bragg crystal optics

The aim of this thesis is to improve dose efficiency in X-ray imaging of soft tissues and soft
materials, which exhibit only weak absorption contrast. As approach to solving this task, the
suitability of Bragg crystal optics in combination with phase contrast imaging is investigated.
Bragg crystal optics can coherently magnify of demagnify an incident wavefield, making them
a versatile tool for X-ray imaging. So far, however, Bragg crystal optics have not yet found
widespread application in X-ray imaging due to their rather complex design and operation,
coupled with the fact that they only accept a small energy bandwidth of AE/E ~ 1074
For low-dose applications, however, the latter restriction becomes less significant, as low flux
is required anyway. The following chapter lays the basis for Chapters 4 and 5, where the
suitability of Bragg crystal optics for dose-efficient applications is investigated in detail.

This chapter introduces the concept of Bragg crystal optics and presents characterization mea-
surements of the Bragg magnifier system developed and used in this work. First, a historical
overview and an introduction to the working principle are given, followed by a theoretical
description of the image formation, which allows image simulations. Furthermore, the align-
ment process of a Bragg magnifier is described, and the developed Bragg magnifier system
is characterized experimentally in terms of resolution, magnification, and the achievable field
of view (FOV). The system consists of two silicon (Si) crystals with an asymmetry angle of
«a = 5.92°, and operates at X-ray energies of 29 keV to 31 keV. The choice of these parameters
is explained in detail in Chapter 4. Parts of this chapter have been published in Ref. [104].

3.1. Historical overview

The idea of using asymmetric Bragg diffraction for beam magnification or demagnification
dates back to the 20" century. W. Boettinger et al. developed the first 2D Bragg magni-
fier [24]. Tt consisted of two Si crystals and operated at 8keV using the Si (111) diffraction.
The authors experimentally demonstrated a magnification factor of 25 and recognized the po-
tential to improve the spatial resolution of an imaging system while maintaining the efficiency
of large-area detectors. A decade later, several works were performed that involved a Bragg
magnifier [105-109]. For example, K. Sakamoto et al. used 1D magnification to improve the
resolution in computed tomography [105]. M. Kuriyama et al. applied a 2D Bragg magnifier
to topography and achieved micrometer resolution [106], while D. Korytar et al. built a Bragg
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3. X-ray imaging with Bragg crystal optics

magnifier from a monolithic crystal [107] and U. Bonse et al. performed a material study
using a Bragg magnifier [109].

The first combination of Bragg magnifiers with phase-contrast imaging was shown by Y. Ka-
goshima et al. [110]. They used the Bragg magnifier as a beam conditioner to expand the
X-ray illumination (see next section) and placed a living insect and frog in the magnified
beam. By positioning the detector several meters away from the sample to take advantage
of propagation-based phase contrast imaging (PB-PCI), the image contrast was improved
compared to absorption-based imaging. At the beginning of the 215* century, further progress
was made, both in terms of the theoretical description [111, 112] and the experimental im-
plementation [113-115]. Notably, the image quality improved with respect to distortions and
aberrations caused by imperfections and strain in the crystals or by poor detector quality.
M. Stampanoni et al. combined a Bragg magnifier and a single photon counting detector
(SPCD) at 23keV to exploit the increased efficiency of a PILATUS detector with a 300 pm
thick Si sensor while maintaining high resolution [116, 117]. P. Vagovic et al. established an
in-line configuration and the use of germanium (Ge) crystals, whose 220 reflection has a larger
Darwin width and thus a higher intrinsic resolution than the 220 reflection of Si [118, 119].
A method to tune the magnification at constant energy has been introduced by K. Hirano et
al. [120], with the drawback that the resulting image is distorted and must be corrected by

post-processing.

While Bragg magnifiers enlarge the beam cross section, Bragg demagnifiers work in the op-
posite way and demagnify the beam. So far, they have been used to collimate and focus
the incident X-ray beam [121, 122], to obtain a high angular sensitivity in analyzer-based
imaging [10], or to resize a large X-ray image to fit on a smaller detector [123].

In the last decade, the development of Bragg crystal optics has tailed off, possibly due to the
comparably low energy acceptance of ~ 1074, further improvements in high-resolution detector
systems, and alternative beam expansion techniques based on, e.g., Fresnel zone plates [124],
compound refractive lenses [125], or Kirkpatrick-Baetz mirrors [126], which allow even higher
resolutions down to tens of nanometers [127, 128].

3.2. Working principle of Bragg crystal optics

Bragg crystal optics consist of one or more perfectly flat crystals with an asymmetry angle
«a between the crystal surface and the reflecting lattice planes. Most commonly, the 220
reflection of Si crystals is used [113], but other reflexes [114] or Ge crystals [119] can also be
employed (see also Fig. 2.4). The crystals operate within a predefined energy range given
by the asymmetry angle. Asymmetric Bragg reflection either enlarges or demagnifies the
cross-section of a monochromatic incident beam. To enlarge the beam, a positive asymmetry
angle a > 0 is used, and one speaks of a Bragg magnifier (BM). Correspondingly, a Bragg
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Figure 3.1.: Working principle of Bragg crystal optics. a-c Bragg magnifier and d-f Bragg
demagnifier. a With a Bragg magnifier, the monochromatic millimeter-sized incident X-ray beam is
magnified by asymmetric Bragg reflection. The diffracting crystal planes have an asymmetry angle
a > 0 to the crystal surface. The angle of incidence i, between the crystal surface and the optical
axis is adjusted to the center of the crystal’s reflectivity curve, given by the Bragg angle g and
the correction term Re(Af,.) from dynamical diffraction theory [34]. Correspondingly, Re(A#f},.) is
the correction term for the outgoing beam, thereby defining the outgoing angle B..:. b Reflectivity
curves on the incident and outgoing side of the Bragg magnifier crystal, shown for 29 keV and plotted
over angular spatial frequencies k. The outgoing curves are compressed with respect to the incident
curves, as also indicated in panel a. ¢ Magnification and achievable resolution as a function of the
X-ray photon energy, shown for the Si (220) reflection with o« = 5.92°. d A Bragg demagnifier works
in the opposite direction of a Bragg magnifier. A large incident X-ray beam is demagnified using
an asymmetry angle a < 0. e The outgoing spatial frequency distribution is magnified compared
to the incident curves. f Demagnification factor and intrinsic resolution limit for the case a Bragg
demagnifier. Partly reproduced from Ref. [104].

demagnifier demagnifies the incident beam using a negative asymmetry angle o < 0. A sketch
of the working principles of a BM and a Bragg demagnifier are shown in Fig. 3.1a, d. The
center of the crystal’s reflectivity curve is aligned with the incident beam, which lies on the

optical axis. Two crystals in a vertical arrangement magnify the beam in two dimensions.

3.2.1. Configurations

In principle, an arbitrary number of crystals can be arranged in a row and in different orien-
tations. In the following, a brief overview of the configurations used in this work is presented.

Bragg magnifier microscope For microscopy, a millimeter-sized object is placed in front of
the BM (Fig. 3.2a). In this way, the X-ray wavefield behind the sample is magnified, resulting
in micrometer resolution even when using a large-area detector with a moderate pixel size of,
e.g., 55nm [98, 113]. By combining highly-efficient detectors with BMs, high dose efficiency
at high resolution can be achieved, as will be exploited in Chapter 4.
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3. X-ray imaging with Bragg crystal optics

Figure 3.2.: Bragg magnifier as microscope and beam conditioner. a Sketch of the microscopy
mode, flatfield-corrected radiograph and 3D volume rendering of the proboscis of a weevil. The
specimen was preserved in ethanol. b Sketch of the conditioner mode and flatfield-corrected radiograph
of a 5cm large pine cone as well as 3D volume rendering of the reconstructed tomogram. The data
in microscopy mode were acquired at 30.5keV at the P23 beamline of PETRA III, DESY, Hamburg,
Germany, and in conditioner mode at 29keV at the IMAGE beamline of the KIT Light Source,
Karlsruhe, Germany. As a side note, an additional pair of reflecting crystals was used here to bring
the beam back in-line, see Ref. [129] and main text, and a Shad-o-box 1k HS detector was employed
(Teledyne DALSA, Waterloo, Canada). Renderings were done in Drishti [130] and Cinema 4D by
Thomas van de Kamp and Pauline Pfeiffer (IPS, KIT, Karlsruhe, Germany).

Bragg magnifier beam conditioner Typically, the beam diameter at a synchrotron is only
a few millimeters large, which limits the applicability of full-field imaging to millimeter-sized
samples. A BM allows single-shot imaging of large, centimeter-sized objects by placing the
sample in the enlarged beam profile behind the BM (see Fig. 3.2b) [10, 131-133]. This
operation mode is called a Bragg conditioner.

In-line configuration When imaging a sample stored in a liquid, it may be advantageous to
mount the sample vertically in order to avoid sample movement during tomographic rotation.
A second pair of reflecting crystals with little or no magnification can reflect the beam in
front of or behind the magnifier crystals in such a way that the outgoing beam is parallel
to the incident beam. This so-called in-line configuration allows vertical sample mounting
in conditioner mode [118]. However, the Darwin width of the additional pair of reflecting
crystals is in the range of a few microradians (see Fig. 2.4), which requires a high short-
and long-term stability of the crystal mechanics and makes the experimental realization of
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3.3. Image formation with Bragg magnification

a stable in-line configuration challenging [129]. For the microscopy mode, there is no strong
advantage of using the in-line configuration. For this reason, the present work focuses on the
simpler two-crystal-configuration shown in Fig. 3.2.

Bragg demagnifier Demagnification of the wavefield behind the sample allows for PB-PCI
of large, centimeter-sized samples at medium resolution, as discussed in detail in Chapter 5.
To obtain a large illuminated area at the sample position, an additional Bragg conditioner is
used in front of the sample. Since the Darwin width of the demagnifier crystals is very small
(~1yprad), the simplest 2D configuration of two conditioner and two demagnifier crystals is

realized in this thesis for the proof-of-concept experiment.

3.3. Image formation with Bragg magnification

The remainder of this chapter is mainly dedicated to the Bragg magnifier in microscopy
mode and lays the basis for Chapter 4. The following section starts by summarizing the most
important properties of a BM, namely the magnification and achievable spatial resolution.
Subsequently, a method for simulating the image formation process is elaborated. The image
formation process is considered in reciprocal space in order to describe how the crystals
affect the incident wavevectors. The presented approach results in a formalism similar to a
method that was introduced by P. Modregger et al. [134] and extended to two dimensions
by S. Hrivnak et al. [135]. The method presented here is exact in 1D, as it does not use
the Fresnel propagator. The propagated wavefield is calculated by a non-uniform discrete
Fourier transform (DFT). In the 2D case, the x and y components can in good approximation
be treated independently, as discussed later, whereby rather efficient simulation times are
achieved despite the non-uniform DFT.

3.3.1. Magnification

Since the Bragg angle g changes with energy, the magnification can be adjusted continuously
by slightly tuning the energy of the incident X-ray beam, see Fig. 3.1c¢ (blue curve). The
magnification M is given by [136]

_ sinfBoue  sin (0 + Re(Aby.) + )

M = = 1
sin Sy sin (0g + Re(Abye) — )’ (3.1)

where Bi, = 0 + Re(Ab,.) — a and Bout = 0 + Re(Aby.) + « are the incoming and outgoing
angles between the optical axis and the crystal surface, and Re(Af. 4.) are correction terms
of the incoming and outgoing beam, obtained from dynamical diffraction theory (Eq. 2.31).
The magnification in real space is tantamount to a demagnification in reciprocal space, as
illustrated by the incident and outgoing reflectivity curves in Fig. 3.1b (see also Section 2.1.2).

43



3. X-ray imaging with Bragg crystal optics

3.3.2. Spatial resolution

The smallest spatial wavelength in an object that is transmitted through an imaging system
defines the Abbe resolution limit, which is given by the system’s numerical aperture as Ayin =
Ao/NA [137]. For the BM in microscopy mode, the smallest resolvable spatial wavelength Apin
is therefore limited by the angular acceptance of the crystals, i.e., the Darwin width w,., and
given by [111]

N Ao o
T sin wee /2 - Re(doc)’

(3.2)

as shown in Fig. 3.1b (orange curve). For examples of the Darwin curves, see Sections 4.1.2
and 4.1.3. The resolution can be further affected by source blur (Section 2.2.5) and by the
resolution of the detector. The effective pixel size in the object is given by Az = Ax,/M,
where Az, is the physical pixel size of the detector, and should ideally be smaller than half
the resolution limit. It is therefore advantageous to choose a crystal reflex and asymmetry
angle that provide a large Darwin width and high magnification [129].

As a side note, the resolution can be increased by detuning the angular position of the
crystals [138]. This approach is known as analyzer-based imaging, but requires acquisitions
at multiple angles and is therefore not suitable for dose-efficient in vivo imaging.

In the case of a Bragg demagnifier, the optical path is reversed compared to the BM, i.e.,
a < 0. In this case, the outgoing angle G,y is smaller than the incident angle (i, and
the beam cross section is demagnified (Fig. 3.1d), while the spatial frequency distribution
is enlarged (Fig. 3.1e). This effect will be exploited for the realization of PB-PCI of large
samples, see Chapter 5. Eqgs. 3.1 and 3.2 for the magnification and resolution remain valid.
For a < 0, the incident angular acceptance is smaller than for o > 0, which results in a lower
achievable resolution compared to the BM (Fig. 3.1f).

3.3.3. Plane wave mapping

Let us consider the image formation process in a BM in reciprocal space. As described in
Section 2.2.3, the wavefield f(xi,) in the object exit plane z = 0 can be decomposed into
plane waves kg, with amplitudes f (ki) and angular spatial frequencies kj, in the object
exit plane. The aim is to find an expression that describes how each plane wave kg, with
angular spatial frequencies kj, incident on the crystals is transformed into a corresponding
outgoing plane wave kg ¢ with angular spatial frequencies kot in the detector plane. This
procedure is called the plane wave mapping procedure here, because each incident plane wave
is coherently mapped exactly to one outgoing plane wave by dynamical diffraction at the
crystal. The resulting expression for k., is given as a function of ki, and the angles Si,
and Sout, which depend only on the working energy and the crystal parameters, and can be
determined from dynamical diffraction theory (see Sections 2.1.2 and 3.3.1). In addition, the
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Figure 3.3.: Sketch for determining kou¢(kin). @ A plane wave kg, propagating at an angle
in to the optical axis has an angular spatial frequency k;, in the object plane and an angular spatial
frequency kf, on the crystal surface, which has the surface normal e,. It is diffracted by the crystal
to a plane wave ko out that propagates at an angle ¢, to the optical axis, resulting in an angular
spatial frequency kg, on the crystal surface and ko, in the detector plane. The optical axis runs along
the zero-order beam (ki, = 0,1, = 0) and has an incident angle i, to the crystal surface and an
outgoing angle Bout, which can be computed from dynamical theory (see Section 2.1.2). b Situation in
reciprocal space on the dispersion surface. During diffraction at the crystal, the incident plane wave
experiences the crystal momentum h. Due to the in-plane Bragg law, the angular spatial frequencies
kf, and kg, are connected by h|| = ko (cos Bous — cos Bin), which is the component of h parallel to the
crystal surface.

crystal imprints an attenuation and a phase shift on each plane wave koyt, which are given
by the complex field amplitude ratio A and can likewise be computed from dynamical theory
(Section 2.1.2). Knowing ko in the detector plane as well as the wavefield propagator allows
the image to be determined by an inverse Fourier transformation.

Notation reminder: A 3D plane wave with wavenumber ky = 27/)\g is denoted as
ko = (kz,ky, k.)T with the index 0, while the angular spatial frequencies in the object
plane, crystal plane or detector plane are written as k = (k, ky)T.

For simplicity and didactic reasons, the 1D case with coplanar diffraction is treated first, i.e.,
considering only the case where the spatial frequencies in y-direction are zero (kyin = 0).
After the following derivation, it will become apparent why the z- and y-directions can in
good approximation be treated independently. The 1D situation is sketched in Fig. 3.3a in
real space and Fig. 3.3b in reciprocal space. An object wavefield f(zi,) propagates in free
space and is diffracted by a crystal. The aim is to calculate the propagated wavefield in the
detector plane behind the crystal. The optical axis is defined in such a way that a plane
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3. X-ray imaging with Bragg crystal optics

wave ko i, with angular spatial frequency ki, = 0 traveling perpendicular to the object plane
propagates along this axis. The crystal is aligned so that the optical axis is in the center of
the reflection curve. The incident angle of the optical axis to the crystal surface is given by
Bin and the outgoing angle is [ou (Fig. 3.1). These angles can be computed from dynamical
theory, see Section 2.1.2. An arbitrary plane wave ki, with angular spatial frequency ki, in
the object plane travels at an angle

(3.3)

in = arcsin @
Pin kO
to the optical axis, see Fig. 3.3a. On the tilted crystal surface, this plane wave has the angular

spatial frequency

ki = ko cos(Bin — @in)- (3.4)
The crystal adds its reciprocal lattice vector h to the incident plane wave, causing a change
in propagation direction [112].

However, as known from dynamical theory, the Bragg

condition is only sharply fulfilled for the wavevectors

inside the crystal (see Section 2.1.2). Since the compo- e

(e}

ut = Ko cos Bout
nents at the crystal surface are preserved as stated by
the boundary condition, the outgoing angular spatial ~ / \ . -~
frequency k¢, in the crystal surface plane is related
to the incident angular spatial frequency kf, in the

crystal plane by the in-plane Bragg law:

kgut = klcn + hH7 (35)

where

b = ko(cos Bout — cos Bin) (3.6)

is the component of h parallel to the crystal surface, crystal

see Fig. 3.4. The outgoing angle ¢o,; and the angular

Figure 3.4.: Sketch for determin-
ing hj. Situation from Fig. 3.3 for
kin = 0, ie., koin travels parallel to

spatial frequency kot in the detector plane are then

given by

C

k
out
Pout = Bout — arccos ko
0

kout = kO sin Pout -
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the optical axis and impinges on the
crystal surface with the angle f;,. Af-
ter diffraction, ko out leaves the crystal
at an angle Bou. The in-plane com-
ponent of the crystal momentum h is
h)| = ko(cos Bout — €0 Bin)-
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Using Eqgs. 3.3 - 3.6, the expression

L
Eout (kin) = ko sin <Bout — arccos {COS (ﬁin — arcsin k:m) + cos Bout — COS Bin]> (3.9)
0
is obtained, which describes how each incident plane wave ki, is mapped to an outgoing plane
wave kout. As will be shown later, the nonlinear dependence of koyut(kin) implies that the
imaging system is shift-variant and therefore the propagated wavefield cannot be calculated
by a simple fast Fourier transform (FFT).

3.3.4. Calculation of the propagated wavefield

After knowing how the incident wavevectors are transferred to the detector plane, the next
step is to consider the propagator H that describes the phase and amplitude collected by each
plane wave during propagation in free space and diffraction at the crystal. The free space
propagator was introduced in Eq. 2.55. It describes the phase that each plane wave collects
relative to a plane wave along the optical axis as it propagates along a distance z. Besides,
the crystal imparts a frequency-dependent damping and phase shift to each plane wave, which
is described by the complex field amplitude ratio A and can be calculated analytically using
Eq. 2.36. Thus, the propagator for the 1D case is given by

H(kous) = Alkin) - €51VR K L ei22V/k K (3.10)

where z1 and zo are the distances between the sample and the center of the crystal surface or

the crystal surface and the detector, respectively.

Finally, the propagated wavefield in the detector plane is given by superimposing all propa-
gated and reflected plane waves weighted by the object’s Fourier transform f (zin) and mul-
tiplied by the phase of the plane waves at the coordinate gyut:

1 x i _ zz i in )T dkou kin
9(Tout) = %/f(kin) - Alki) - em\/kg k2, izan/k2—k2y (kin) . etkout (kin) Tout | (;]{f)dkin_

(3.11)

The derivative

dkoyt  Sin(fin — arcsin '};‘") c0s(Bout — arccos[cos Bout — €08 Bin + cos(Bin — arcsin %I)l)])

dkin \/7 \/ 1 — [coS Bout + cos(fBin — arcsin §i2) — cos iy ]2

1
= M) (3.12)

accounts for the substitution kou(kin) and corresponds to the inverse of the frequency-
dependent magnification M (ki,) with M (0) = sin Sout/ sin fin, cf. Eq. 3.1.
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Numerically, f(kin) can be computed by an FFT, but the nonlinear dependence of oyt (kin )
prevents the use of an inverse FFT to compute g(xoyt). Instead, the propagated wavefield
is computed by a non-uniform inverse DFT. In 1D, the non-uniform DFT can be computed

rather quickly by storing the plane waves with non-equidistant frequencies in a matrix.

Two-dimensional formulation and multi-crystal arrangements

So far, the 1D case with ky i, = 0 has been considered. Since the reciprocal lattice vector
h of the first crystal is, without loss of generality, aligned in the z-z-plane, it transfers its
momentum only to the z- and z-components of the incident plane wave kg ;,, while ky i,
remains unchanged. As the length of kg i, is preserved, the z-component changes slightly for
kyin # 0 compared to the case ki, = 0 considered above. However, since the diffraction of
X-rays at the sample is small (k;,/ko < 107%), this change can in good approximation be
neglected, and the angular spatial frequencies ki, and ki, can be treated independently.
Eq. 3.9 thus remains valid for both components. For the sake of completeness, the image
formation is presented in the following for two crystals with perpendicularly oriented surfaces.
The first crystal magnifies the beam in the horizontal z-direction and the second crystal in
the vertical y-direction. After propagating the distance z; , to the first crystal and diffracting
at this crystal, the wavefield propagates a distance 21, — 21, to the second crystal, where
21, is the distance along the optical path between the sample and the center of the second
crystal. After diffraction at the second crystal, the wavefield further propagates a distance
294 to the detector. The wavefield in the image plane is then given by

1 ~ . 2 12 12 . o 3 12 I
o) = (oasz [ TChn) - Alk) -5 R e R T

. eiZQ,y \/k(%fk;out(kzyin)iki,out(ky»in) . eikout(kin)""out

. dkx,out(kx,in) dky,out(ky,in)
dkx,in dky,in

dkx,indky,in7 (313)

where A(kiy,) is the complex field amplitude ratio comprising both crystals. For propagation
through multiple crystals, Eq. 3.9 is applied multiple times, resulting in a single formula for
the final spatial frequencies as a function of the incident spatial frequencies, and the phase
factors in the propagator are adapted accordingly. The method then allows the final wavefield
to be calculated by a single non-uniform 2D DFT, which decomposes into two non-uniform
1D DFTs. To simulate various samples with identical setup parameters, the calculation of
kout(kin) and the propagator H (koyt) needs to be performed only once, irrespective of the
sample. This can be useful, e.g., for iterative phase retrieval, where the image intensity has to
be simulated for various objects. As mentioned above, it would be even slightly more precise
to consider the interdependence of the coordinates k, i, and ky in, and the vectorial character
of light, i.e., the polarization. This small correction may be incorporated using the algorithm
of X. Huang [46], which would, however, be computationally more demanding.
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3.3. Image formation with Bragg magnification

3.3.5. Shift-variance and linearization

The non-linearity of kout (kin) leads to a shift-variant behavior of the image formation, i.e., the
propagated wavefield cannot be expressed by a convolution of the object function f(zi,) with
the propagator in real space. As a result, the propagated wavefield of a symmetric object will
not be symmetric [112, 139]. A 1D simulation example using the formalism presented above
is given in Fig. 3.5. The object consists of two Gaussians with a maximum thickness of 20 pm
and a lateral spacing of 150 pm. The material is carbon, which gives a vanishing absorption
< 0.1% and a maximum phase shift of 1.6rad (Fig. 3.5a). The image in the detector plane
reveals that the left object experiences less phase propagation than the right one (Fig. 3.5f).
In position space, this can be understood from Fig. 3.5¢c. The lower part of the image has a
shorter propagation distance zpottom between object and crystal than the upper part zop,. The
kout values behind the crystal are much smaller than the ky, values, which causes the image
propagation to be ‘frozen’ behind the crystal, see paragraph below and Fig. 3.5b. In good
approximation, the phase contrast will therefore only evolve in front of the crystal, resulting
in a shorter propagation distance zyottom for the lower object. The effect of the shift-variance
on the image depends on the sample itself and the imaging parameters, in particular the ratio
between zpottom and ziop [139].

In the case of negligible shift variance, a linear approximation of Eq. 3.9 can be performed:

kin
kout - M (314)

The linearization of koy in Eq. 3.11 and the Fresnel approximation (Eq. 2.57) lead to a simple

Fourier transform:

2 k2
in 7

9(Tout) ~ QL / Flkin) - Alksn) - eFozF22) e kg g Boh? ki
T

g dhin g 1)
Here, it can be seen again that for large M the third exponential for propagation along zo
behind the crystal is much smaller than the second exponential for propagation in front of
the crystal. This means that the propagation along 25 contributes very little to the overall
propagation, and the propagation of the wavefield after magnification by the crystal can in
good approximation be said to be ‘frozen’. With zoy = Mz, and omitting the constant
phase term e”0(21+22) and the negligible propagation behind the crystal, Eq. 3.15 further
simplifies to

1 ~ —1iz k?“ ikin s dkin
9(Tout) = o / Flhim) - A(kin) - €525 . gibinain Cin (3.16)
27 M

which can be expressed by a convolution:

9(@out) ~ f(xin) # F' l (3.17)
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Figure 3.5.: Image simulation using the plane wave mapping procedure. The simulation
was performed for a photon energy of 31 keV, a propagation distance of z; = 0.2 m between the object
and the center of the crystal surface, and using the Si 220 reflex with o = 5.92°. a The object consists
of two Gaussians with a spatial separation of 150 pm, a thickness of 20 pm and carbon as material.
b Mapping the incident angular spatial frequencies ki, of the object function to the angular spatial
frequencies kot in the detector plane yields a non-linear dependence (exact model, dark blue curve, see
also Eq. 3.9). The linearization kouy = kin/M of Eq. 3.9 is shown as well (light blue curve). Note that
kout < kin, which leads to a magnification in position space and ’freezes’ the propagation behind the
crystal (see main text). ¢ The shift-variance can be understood by looking at the situation in position
space. The lower side of the object has a shorter distance zpottom to the crystal than the upper
side ziop, Whereby the lower Gaussian experiences less propagation. d Image intensity at z; = 0.2m
after free space propagation without crystal and e behind the crystal using the linear model, where
the result is almost the same as for simple free space propagation, except that the mean intensity is
slightly damped by the finite crystal reflectivity. Note also the magnification of zy,¢. f Image intensity
behind the crystal with the full nonlinear model shows the shift-variant behavior.

Within the linear approximation in Eq. 3.14, the propagated wavefield can thus be computed
by conventional free space propagation with the mean propagation distance z;. For this case,
Fig. 3.5e shows the simulated image intensity. Both objects have propagated the same distance
and show the same intensity pattern as for conventional free space propagation (Fig. 3.5d),
except for a damping of the mean intensity due to some minor absorption in the crystals. In
the literature, Eq. 3.16 is referred to as the effective distance method [112, 135].

Source blur The image quality is degraded by the finite X-ray source. This effect can be
incorporated in the simulations by incoherently superimposing the image intensities resulting
from illumination at different angles, see also Eq. 2.65 and Appendix A.2. For the linear
approximation (Eq. 3.14), i.e., a shift-invariant system, the operation reduces to a convolution

of the coherent image intensity with the source function (Eq. 2.67).
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Relation to reciprocal space coordinate transformation (RCT)

The reciprocal coordinates transformation (RCT) method was introduced by Modregger et
al. [134] and further developed by Hrivnak et al. [135]. It is a numerically efficient simulation
method for the image formation in a BM that takes into account the shift variance. The
RCT method leads to a very similar result as the plane wave mapping procedure presented
here, but is motivated mathematically by a coordinate transformation. In particular, the
diffraction at the crystals is not described in the derivation of the RCT formula, while in the
plane wave mapping procedure the diffraction at the crystal surface is taken as the basis for
the derivation. Also, the mapping method does not require an interpolation of the object
FFT. A more detailed comparison of the RCT method and the mapping procedure is given
in Appendix A.4.

3.3.6. Phase reconstruction

In general, the phase reconstruction of holograms acquired with a BM is not straightforward
due to the inherent shift-variance of the system, and iterative methods are required [139].
However, under certain conditions, such as small FOV, large propagation distances, or mod-
erate magnifications, where shift-variance effects are negligible [139], the image formation can
be described by a simple convolution, as shown in Eq. 3.17. In two dimensions and neglecting
propagation behind the crystals, the propagator in Fresnel approximation reads

k2 . K2
—_— . e

H(kx,ina ky,in) - JVE 2ko . (318)

Except for the field amplitude reflection curve and the separate horizontal and vertical propa-
gation distances 21, and z1 4, the propagator is identical to the free space Fresnel propagator
(Eq. 2.58). Hence, the reconstruction algorithms presented in Section 2.2.7 can be applied.
In the simplest approach where the crystal function is also neglected, it is therefore sufficient
to replace z(k2 + /{:32/) by Z1,$k)2(,in + Zl,ykiin in existing implementations for phase retrieval
of conventional propagation-based phase contrast [140]. The publicly available HoloTomo-
Toolbox [77] and Tofu framework [141] provide such a functionality. In the reconstruction, A
can also be taken into account, but its influence is generally not significant, especially in the
presence of source blur, and is therefore omitted in the reconstructions performed here.

3.4. Realization of the Bragg magnifier system and experimental
characterization

This section describes the general design of a BM and the specific implementation and char-
acterization realized in this thesis. After a general description of the aspects that should
be taken into account when designing a BM, this section presents the experimental setup
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3. X-ray imaging with Bragg crystal optics

that was developed and applied in this work, describes the steps necessary to align a BM,
and characterizes the BM system experimentally. Since the propagation after magnification
can be neglected, the distances 27, and z1, are written as 2., 2, in the following for better
readability.

3.4.1. General requirements

For designing a BM experiment, several aspects have to be considered. In general, an X-ray
source with sufficient coherence is required for being able to perform PB-PCI. Due to the
small energy acceptance of the BM crystals, a monochromator is used in front of the sample.
The amount of additional components in the beam path should be kept as low as possible
in order not to degrade the coherence and to obtain a homogeneous illumination. Typically,
beamline mirrors for suppression of higher harmonics are not required for reasons explained

below.

For the crystals, it is essential to choose a high-quality material that is free of defects and can
be polished well to obtain a strain-free and flat surface. The chosen reflex should have a high
susceptibility, resulting in a large Darwin width w,.. In this way, the crystal reflex will have a
large angular acceptance, allowing for a high spatial resolution. In addition, the chosen reflex
requires a large Bragg angle to enable high magnification factors. According to the desired
highest working energy, the asymmetry angle « should be specified such that w,. reaches its
maximum at this energy (see also Fig. 4.4a). Due to the asymmetric reflection, the crystals
typically have a considerably larger Darwin width than the preceding monochromator. The
crystal dimensions define the FOV and should ideally be chosen to fit the incident beam size.

The crystal has to be precisely aligned with the
beam in all six degrees of freedom. Therefore,

the mechanics of the crystals require high angu-

X-rays roll

—_—

lar precision and stability. Especially the motor
for the pitch angle ¥ (see Fig. 3.6) should en-
able a step size and stability of at least about

one tenth of the Darwin width. To simplify the Figure 3.6.: Definition of the pitch, roll
and yaw angles. The red dot indicates the
pivot point in the center of the crystal surface.

alignment process, the rotation axes and the pivot
point should lie as depicted in Fig. 3.6.

The simplest realization of a 2D BM system comprises two identical crystals mounted verti-
cally to each other and a highly-efficient large-area detector. In addition, a sample stage is
required in front of the BM crystals. The propagation distances z, and z, in horizontal and
vertical direction are given by the distances between the sample and the surface center of the
horizontally or vertically diffracting crystal, respectively, and can be individually maximized
according to the dimensions of the X-ray source (see also Eq. 2.69).
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Figure 3.7.: Beamline layout and experimental setup. a Sketch of the P23 beamline and
experimental layout in microscopy mode. An undulator serves as X-ray source, followed by a Si (111)
double crystal monochromator, slits and a fast shutter. b Picture of the experimental setup at P23,
PETRA III, DESY, Hamburg, Germany. Reproduced from Ref. [104].

3.4.2. Beamline layout and experimental setup

The specific BM system developed and realized in this work was designed for usage at the P23
beamline at PETRA III, DESY, in Hamburg. Unless otherwise stated, the data presented
in this work were acquired at this beamline. For reasons detailed in Chapter 4, the working
energy range was chosen to be 29keV to 31 keV. A sketch of the P23 beamline layout and the
experimental setup is given in Fig. 3.7. The main beamline components are the undulator
source, a symmetrically diffracting double-crystal Si (111) monochromator, sample slits, and

a fast shutter.

The BM consists of two Si crystals with dimensions of 21cmx8cm=x2cm and a nominal
asymmetry angle of & = 5.92° between the crystal surface normal and the crystallographic
[110] direction, resulting in a physical input FOV of 0.3mm=x0.3mm to 1.5 mmx 1.5 mm,
depending on the magnification, and an output FOV of 45 mm x 45 mm. For more information
on the crystal quality, see Ref. [129]. Both crystals are mounted on a hexapod each (HP-
840.G1, Physik Instrumente (PI) GmbH & Co. KG, 76228 Karlsruhe, Germany). At third-
generation synchrotrons such as PETRA III, the source is larger in the horizontal direction,
which leads to more source blur in this direction. Therefore, the horizontal magnification
is performed first (crystal surface is oriented vertically), resulting in a shorter horizontal

propagation distance z.

After vertical magnification by the second crystal (with horizontal surface orientation), the
X-ray image is detected by a large-area detector. Unless otherwise stated, the detector in
use is a LAMBDA 750k detector (X-Spectrum GmbH, 22547 Hamburg, Germany) with a
500 pm thick gallium arsenide (GaAs) sensor [98]. It consists of a 6x2 Medipix3RX chip
array, where a single chip has 256 x 256 pixels with a physical pixel size of 55 pm, resulting in
a chip size of 1.4cmx1.4cm and a total FOV of 8.4cmx 2.8 cm. By design, there are 6 pixels
wide dead zones between the individual chips, which are bridged by interpolation between the

surrounding pixels. For automated data acquisition the control system Concert is used [142].
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3. X-ray imaging with Bragg crystal optics

3.4.3. Alignment procedure

Before operating a BM in an experiment, the system has to be precisely aligned to the incident
X-ray beam. In the following, a general procedure for aligning the crystals in a two-crystal
BM is described. The procedure is illustrated in Fig. 3.8 using the specific implementation

of the two-crystal BM realized in this work.

Prior to the crystal alignment, a detector is placed in the direct beam and the beamline is
optimized to provide homogeneous illumination. Depending on the detector in use, filters
should be added in front of the detector to avoid damage by the high flux of the direct beam.
The beamline slits are centered around the beam.

Next, the actual alignment procedure for the crystals is performed. The pitch, roll and
yaw angles ¢, o and ¢ that are adjusted during alignment are designated in Fig. 3.6. Three
alignment steps are conducted for each crystal: i) placing the crystal parallel to the beam and
moving the crystal surface to the center of the beam, ii) finding the asymmetric Bragg reflex
by aligning the pitch angle ¥, and iii) adjusting the roll angle p. Fig. 3.8a-c shows these three
steps for the first crystal (the horizontally diffracting crystal in the present implementation),
and Fig. 3.8d-f for the second crystal (vertically diffracting crystal, see also Fig. 3.7).

In the first step, the first crystal is moved into the beam so that its shadow becomes visible on
the camera. The crystal is brought into parallel position by adjusting the pitch angle 9 while
minimizing the shadow, see Fig. 3.8a, and then centered to the center of the beam. In the
experimental images in Fig. 3.8a, the crystal is positioned in the right part of the FOV. The
total reflex appears when the crystal is tilted too much towards the source, see the middle
image (red arrow). In the lower image (green frame), the shadow is minimized, meaning that
the crystal is oriented parallel to the beam. Adjusting the crystal to this parallel position
makes it easier to find the Bragg reflex in the next step. Finally, the crystal is moved laterally
in such a way that it cuts the illuminated area in half.

In the second step, the pitch angle ¥ is rotated by 8 —q, revealing a diffracted and horizontally
magnified beam (Fig. 3.8b). A subsequent rocking scan allows fine-tuning of the pitch angle
to the center of the rocking curve. The graph shows the pitch angle relative to the peak
position.

In the last alignment step for the first crystal, the roll angle g is adjusted in such a way
that the reflected beam lies in one line with the direct beam, as shown by the green line in
Fig. 3.8c. As mentioned above, the direct beam on the right side of the image was attenuated
by filters that were placed in front of the detector, and the contrast in the displayed image
had to be adjusted to make the direct beam visible.

The alignment procedure for the second crystal is very similar. This time, the three steps
are performed in the diffracted beam of the first crystal. First, the crystal is brought into
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Figure 3.8.: Alignment procedure of the BM. Sketch of the alignment of a-c the first crystal and
d-f the second crystal. a and d illustrate how to place the crystal into parallel position by minimizing
its shadow on the camera. Afterwards, the crystal is moved laterally to cut half of the beam, so that
the crystal center lies in the center of the beam. In panel b and e, the reflex is found by tilting the
pitch angle 9 to the expected Bragg angle and fine-tuning to the peak of the rocking curve. In ¢ and
f, the roll angle p is aligned. In the rocking curve in panel b, the pitch angle ¥ is shown relative to the
peak position.
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Figure 3.9.: Experimental rocking curves of the first crystal. a Rocking curve acquired with
different filter strengths at P23, PETRA III. At 10 attenuation, the reflection peak of the main energy
(29keV) is well visible. The smaller peak on the left results from the reflection of higher harmonics.
For a beam attenuation of 10%, the intensity of the main peak decreases, while the peak from higher
harmonics does not change, since higher energies are less affected by the filters. Setting the threshold
energy Fy, of the SPCD in use to 35keV, the main peak disappears completely while the higher
harmonics remain visible, which is consistent with the interpretation of the observed peaks. b 2D
rocking curve over the pitch and yaw angles 9 and &, acquired at 31keV at the IMAGE beamline, KIT
Light Source, Karlsruhe. The intensity is scaled to the maximum intensity I ax.

parallel position and centered to the beam (Fig. 3.8d). Again, the total reflex appears when
the crystal is tilted too much towards the beam (middle image, red arrow). Second, after
aligning the crystal to the parallel position, the reflex is found by moving the pitch angle ¢
to the Bragg condition and subsequent fine-tuning (Fig. 3.8¢). Finally, the roll angle p of the
crystal is adjusted using a pattern with right angles, e.g., a grid (green frame in Fig. 3.8f). If
o0 is not well adjusted, the image will be sheared (left and right images).

For the alignment of the first crystal, it is worth noting that the higher harmonics are only
weakly blocked by the filters added to protect the detector. The resulting rocking curve
should therefore be interpreted with care: depending on the amount of filters, the diffracted
higher harmonics might have a higher intensity than the primary energy, which can lead to
a misinterpretation of the curve. An experimental example is shown in Fig. 3.9a. In the
rocking curve acquired with a single photon counting detector and a filter attenuation factor
of 10% (blue curve), two peaks are visible - the primary energy with highest intensity and
a smaller peak from higher harmonics. The latter is shifted towards smaller angles due to
asymmetric diffraction. As the amount of filters is increased, the main peak decreases and the
higher harmonics become relatively more prominent (orange curve). The green curve shows
the rocking scan when the threshold energy FEiy, of the SPCD is set above the primary energy.
As expected, the main peak disappears completely. For correct alignment, the pitch angle has
to be adjusted to the peak of the principal energy, thereby rejecting the higher harmonics.
Due to this rejection, beamline mirrors are not required for suppressing higher harmonics,
unless the intensity of the harmonics is so high compared to the primary energy that it would

increase the dose deposited in the sample.
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3.4. Realization of the Bragg magnifier system and experimental characterization

In principle, the yaw angle £ can also be aligned for both crystals. A misalignment of the
yaw angle results in a smaller effective asymmetry angle. For the alignment, a 2D scan is
performed over the yaw and pitch angles, as shown in Fig. 3.9b. The yaw angle is aligned
when the effective asymmetry angle is maximized. This is the case when the reflex appears
at the smallest pitch angle. However, this alignment step can usually be skipped, since a
minor misalignment in the yaw angle would cause only a negligible change in the effective
asymmetry angle [143].

3.4.4. Characterization of the Bragg magnifier system
Magnification and field of view

The tunability of the magnification factor M is demonstrated by imaging a TEM gold grid
with a mesh size of 127 pm at various X-ray photon energies. Flatfield-corrected radiographs
are shown in Fig. 3.10b, and the extracted magnification factors are plotted in Fig. 3.10a.
The asymmetry angles o and ay of the horizontally and vertically diffracting Si crystals
deviate from their nominal value of @ = 5.920°, resulting in a slightly stronger horizontal
magnification. The values ay, = 5.928° and a,, = 5.916° have been determined experimentally
in previous work [129], and the magnification factors calculated from these asymmetry angles

200
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Figure 3.10.: Demonstration of variable magnification. a Horizontal and vertical magnification
as expected from the experimentally measured asymmetry angles of the crystals given in Ref. [129]
(solid lines) and extracted from the experimental images shown in panel b and marked by crosses.
b Flatfield-corrected images of a TEM gold grid at various energies, acquired with the Shad-o-box.
c Flatfield-corrected images of a chalcid wasp stored in ethanol, acquired at various energies. Note
that the SPCD in use was close to saturation at 29 keV, leading to malfunctioning of the pixels in the
bonding areas between the detector chips. At the higher energies, i.e., lower counts per pixel, this
effect is no longer visible. Partly reproduced from Ref. [104].
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Figure 3.11.: Holograms and phase reconstruction of a Siemens star test pattern acquired
with the BM system at 31 keV. Flatfield-corrected holograms at horizontal and vertical propaga-
tion distances of a z, = 0.15m, 2z, = 0.53m and b 2, = 0.41m, z, = 0.79m. ¢ Multi-distance phase
reconstruction using ten propagation distances. Smallest structure periods of 1 pm are discernible in
the inner ring of the star. The reconstruction was performed with the NLTikh algorithm implemented
in the HoloTomoToolbox [77).

agree well with the values obtained from the TEM images, see the blue and purple lines
in Fig. 3.10a, computed from Eq. 3.1. The attainable input FOV was 1.6 mmx 1.6 mm at
29keV and 0.3mmx0.3mm at 31keV, as expected from the length of the crystals, and the
output FOV was 44.8 mm x44.8 mm. To demonstrate the tunable magnification on a biological
sample, Fig. 3.10c shows a chalcid wasp stored in ethanol and imaged at different magnification
factors. Hot pixels in the detector were removed by interpolation.

Spatial resolution

For the crystals in use, the theoretical resolution limit as defined by Eq. 3.2 is 1.3pm at
31keV, cf. Fig. 3.1c. The resolution was investigated experimentally by imaging a test pattern
(model X500-200-16, Carl Zeiss Microscopy GmbH, 07745 Jena, Germany). The test pattern
contains gold structures with a nominal height of (1.6 £+ 0.2) pm and structure periods down
to 1pm, i.e., 0.5pm gold bridge followed by 0.5 pm empty space. Acquiring holograms at
multiple propagation distances allows for a multi-distance phase reconstruction as described
in Section 2.2.7. The HoloTomoToolbox [77] with the nonlinear Tikhonov algorithm [79] was
employed for the reconstruction and ten distances were used (z; = 0.15m to 0.41m and
zy = 0.53m to 0.79m), taking into account the different horizontal and vertical propagation
distances in the reconstruction (Chapter 3.3.6). Fig. 3.11 depicts flatfield-corrected holograms
of a Siemens star structure at two exemplary distances as well as the phase reconstruction,
where the smallest structures of 1 pm period in the inner ring are discernible in the vertical
direction. In the horizontal direction, the resolution is partially degraded by source blur.
In the reconstructed line patterns shown in Fig. 3.12, structure periods are resolved down
to the theoretical limit as well, marked by a green line in the line profiles. In the latter,
the background gradient has been subtracted for better visibility, which can be attributed to
source blur and intrinsic partial suppression of high spatial frequencies by the detector MTF
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Figure 3.12.: Resolution line patterns. Multi-distance phase reconstruction of a horizontal and
b vertical line patterns. Line profiles along the indicated direction are also shown. The background
gradient has been subtracted for better visibility. The intrinsic resolution limit of 1.3 pm at 31keV is
indicated by a green line. Partly reproduced from Ref. [104].

(see Eq. 2.95). Also here, despite the larger vertical propagation distance, the resolution in
vertical direction is slightly higher due to the asymmetric source properties at P23 [144]. The
reconstruction parameters were 3/J = 107133 (gold), and the regularization parameters were

Qlow-freq = 0 and Apigh-freq = 10~ for low and high spatial frequencies, respectively.

Tomography

The suitability of BM imaging for tomography is demonstrated by acquiring a single-distance
tomogram of a mouse nerve. The specimen is an EPON-embedded sciatic nerve stained with
osmium tetroxide, borrowed from the Institut fiir Rontgenphysik, Georg-August-Universitét
Gottingen, Germany. Detailed information on the sample can be found in Ref. [145]. A 180°
scan with 1000 projections and propagation distances of z; = 0.22m and z, = 0.60m was
performed at 30.5keV. Fig. 3.13a-c shows a projection image and its retrieved phase using
the contrast transfer function (CTF) and transport of intensity equation (TIE) algorithms.
In Fig. 3.13d-h, virtual slices through the reconstructed 3D volume are shown for different
orientations as indicated by the colored lines. The good image quality and the small voxel
size of 0.7 pm allows the distinction of axons and their myelin sheaths inside the nerve as well
as fat and blood vessels on the outside of the nerve. To compare the three most common
phase retrieval methods (CTF, nonlinear Tikhonov regularization (NLTikh) and TIE, see
Section 2.2.7), the respective reconstructions are shown for the green orientation. In the
zoom-in (Fig. 3.13i-k), CTF and NLTikh look identical, while TIE suppresses high spatial

frequencies and thus induces a slight blurring due to the large propagation distance. Phase
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Figure 3.13.: Exemplary tomogram of a sciatic mouse nerve. a Flatfield-corrected projection
image acquired with the BM at 30.5keV. b, ¢ Retrieved phase map obtained using the CTF algorithm
and the TIE method. d-h Virtual slices through the reconstructed volume along the colored lines. For
comparison, panels e-f show the same slice reconstructed using CTF, NLTikh, and TIE. i-k Zoom-in
on the areas marked in panels e-g. Details about the specimen can be found in Ref. [145].

retrieval was performed with the HoloTomoToolboz [77] (8/5 = 10~!3%) and tomographic
reconstruction with filtered back-projection with the tofu framework [141].

3.4.5. Comparison between experiment and simulation

Fig. 3.14 shows a comparison between experimental data and a simulation of the test pattern.
The experimentally acquired hologram is shown in Fig. 3.14a. Vertical and horizontal line
profiles of the experimental data and the simulations are depicted in Fig. 3.14b, ¢. The
simulation was performed for perfect coherence (green curves) and including source blur (red
curves) with the Gaussian distributions shown in Fig. 3.14d. The source blur was included via
the general expressions Eq. 2.65 and Eq. 2.67, since the system is in general shift-variant. The
image was recorded at 30.57keV and propagation distances of z, = 0.21m and z; = 0.59m.
In the Fourier transform shown in the inset of Fig. 3.14a, the Thon rings exhibit an elliptical

60



3.4. Realization of the Bragg magnifier system and experimental characterization

a b I//o
: //0 0.8 1.0 1.2

20 1 1 1
15 £

1.0
0.5

~

€
=
c
<
—10
—20
......... —30
c _3 5 1 Xout (mm) 1 2 3
1 1 L L : : I
experiment i
124 # simulation

---=simulation with source blur

normalized source function

T T
—40 -30 -20 -10 O 10 20 30 40 -m/4 0 /4
Xin (Hm) kin (rad/pm)

Figure 3.14.: Comparison between measurement and simulation. a Flatfield-corrected image
of the gold test pattern acquired at 30.57 keV and inset showing the modulus of its Fourier transform.
b, ¢ Experimental (blue) and simulated (green, red) vertical and horizontal intensity profiles along
the lines marked in panel a. d Gaussian source function used for the simulations with source blur (red
curves in panels b and ¢). The fluctuations in the experimental line in panel ¢ are surface irregularities
of the test pattern.

shape due to the different horizontal and vertical propagation distances. The larger vertical
propagation distance results in stronger phase contrast and broader Fresnel fringes in the
vertical direction. The position of the fringes is in good agreement to the simulation. The
strength of the experimental fringes, i.e., the image contrast, is partly reduced compared to
the simulation with ideal coherence. This damping is well described by the simulation with
source blur, assuming Gaussian functions with sy, = 164 pm and s, = 38 pm for the horizontal
and vertical source size, respectively. These determined values agree well with the values of
sp = 140 pm and s, = 32 pm measured by the beamline scientists of P23. Note that the source
size values are given by the standard deviation of the Gaussian source function here, while it
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is often also common to state the full width at half maximum (FWHM) (2.3555s = FWHM).
For the simulation, a gold thickness of 1.2ppum had to be used to obtain congruence with
the experimental data, indicating that the actual thickness of the test pattern deviates from
the specified thickness. The manufacturer confirmed that the gold is diluted to 90 %, which
explains the reduction in effective thickness. The good agreement between simulation and
experiment illustrates the validity of the presented simulation method and at the same time
confirms that the imaging performance of the BM system meets the expectations. Also, the
results demonstrate that the Bragg magnifier can be used to estimate the X-ray source size.

3.5. Summary

In the first part of this section, the general working principle of a Bragg magnifier was in-
troduced, and a formalism for describing the image formation in a Bragg magnifier including
effects of shift-variance was given. The result is in agreement with previously published meth-
ods [134, 135], but here the image formation was derived similar to Ref. [112] by mapping each
plane wave incident on the crystal surface onto its outgoing plane wave, taking into account
the attenuation and phase shift induced by the crystal. This physical motivation allows to
develop an intuitive understanding of the image formation process. In addition, an arbitrary
number of crystals can be described by a single mapping function, which can be useful for
image simulations or iterative phase reconstruction [135]. Furthermore, the formalism can

also be applied to a reversed orientation of the crystals, i.e., in demagnifier mode.

Subsequently, the BM system developed in this work was introduced, the alignment procedure
was described, and the system was experimentally characterized in terms of magnification and
attainable resolution. The predicted magnification factors of 20- to 150-fold were shown, and
the tunable magnification was further demonstrated on a biological sample. To prove the
achievable resolution, multidistance phase contrast images of a test pattern were acquired at
the highest magnification of 150-fold. In the reconstructed images, structures of 1.3 pm pe-
riod could be discerned, which agreed to the expected resolution. Despite the longer vertical
propagation distance, the observed resolution was better in this direction due to the smaller
vertical source size. To demonstrate the applicability of Bragg magnifier imaging to tomogra-
phy, a mouse nerve was imaged in 3D. The image quality was sufficient to distinguish axons
and their surrounding myelin sheaths in all three perpendicular orientations. Finally, as an ex-
ample, a test pattern was imaged experimentally and the image intensity was compared with
simulations obtained with the mapping procedure. By including the effects of an extended
X-ray source size in the simulations, the simulated data agreed well with the measurements,
and the horizontal and vertical source sizes of the P23 source could be determined. The
resulting source size values were in good agreement with those previously measured by the
beamline scientists. The presented considerations form the basis for the next two chapters,

in which the Bragg magnifier technology will be applied to achieve dose-efficient imaging.
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contrast imaging at micrometer resolution

High-resolution X-ray imaging enables visualizing the morphology of small organisms, ad-
dressing biological and biomedical questions in a wide range of fields [15, 146-151], e.g.,
developmental biology [147, 150] or functional morphology [146, 149]. In this context, also
time-resolved in wvivo X-ray imaging has gained increasing interest [20-23, 152-155]. How-
ever, the fact that biological samples tolerate only a limited radiation dose due to radiation
damage is a major issue, especially for in vivo studies. With increasing resolution, the X-ray

flux density has to be increased, which further exacerbates the dose issue.

The aim of this chapter is to increase the dose efficiency in X-ray imaging of millimeter-sized
biological samples and other soft tissues at micrometer resolution. First, three main aspects
are simultaneously optimized for this purpose: the generation of contrast, the overall X-ray
detection efficiency, and the transfer of information from the virtual X-ray image to the de-
tected digital image (Section 4.1). On the basis of these considerations, a highly dose-efficient
imaging setup is realized by combining propagation-based phase contrast imaging (PB-PCI),
a Bragg magnifier (BM) and a single photon counting detector (SPCD). In Section 4.2, an
experimental investigation is given to compare the developed BM system with a conventional
indirect detector system and to determine the gain in dose efficiency of the BM system. Fi-
nally, the high dose efficiency is exploited for a pilot in vivo study of parasitoid wasps emerging
from their host eggs (Section 4.3). The main results of this chapter have been published in
Ref. [104], while further essential details are given here.

4.1. Design considerations for dose efficiency

First, three aspects are considered that are decisive to achieve highest dose efficiency: (i) op-
timizing the generation of contrast, especially in view of the optimal X-ray photon energy
that allows for highest information content on the sample per dose, (ii) achieving high X-ray
detection efficiency for those energies, and (iii) ensuring a high optical transfer function of

the detector system up to the resolution limit.
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4. Bragg magnifier for dose-efficient phase contrast imaging at micrometer resolution

4.1.1. Relation between energy, dose and phase contrast - determining the
optimal X-ray photon energy

By revealing phase changes of the X-rays penetrating through the specimen, propagation-
based phase contrast imaging has turned out to be a highly effective method for generating
high image contrast of soft tissues [5, 10] and is therefore the method of choice here. Both
the contrast in PB-PCI and the dose deposited in the sample depend on the X-ray photon
energy. As a first step, the X-ray photon energy E thus needs to be optimized such that the
wavefield behind the sample achieves highest information content per dose. On the one hand,
the deposited dose per incident X-ray photon decreases with increasing energy. On the other
hand, the phase shift imposed on X-rays by a medium also decreases with increasing energy,
leading to a reduction in image contrast in PB-PCI. In the following, these two points are

considered in order to determine the ideal photon energy for dose-efficient imaging.

The dose D absorbed by a sample scales with the number of incident X-ray photons and their
average deposited energy. It is defined as the total energy E't

+be deposited per sample mass

m = pdA, with p being the sample density, d the sample thickness, and A the area of the
sample that is exposed to radiation, and reads

tot

D = —abs 4.1
- (4.1)

Applying the Lambert-Beer law with the linear mass attenuation coefficient u, the number
of X-ray photons absorbed or scattered by the sample per unit area is given by [156]

Nabs = N0 — Nty = N0 * (1 - e—ﬂd). (42)

Here, ng denotes the number of incident X-ray photons per unit area, known as photon
fluence, and ny, is the number of photons transmitted through the sample. In the energy
range of interest (5keV to 100 keV), the linear attenuation coefficient comprises photoelectric
absorption as well as coherent Thomson and incoherent Compton scattering. For soft tissue,
these contributions are shown in Fig. 4.1a together with the total linear mass attenuation
coefficient (red curve). On average, only a fraction of the primary X-ray photon energy E is
delivered to the sample, which is quantified by the energy absorption coefficient pe, (green
curve in Fig. 4.1a). The average absorbed energy per interacting photon is

Eape = % E. (4.3)

The dose deposited in the sample is therefore given by [156]

en E enE —
:'uupd—A'nabs-A:MM mno-(l—e“d). (4.4)

For thin samples, it can be assumed that the probability of undergoing an interaction process
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Figure 4.1.: Considerations for dose-efficient imaging. a Total linear attenuation coefficient
w of soft tissue as a function of energy E with its contributions (photoelectric absorption, coherent
and incoherent scattering), and energy absorption coefficient p.,,. b Dose deposited in soft tissue as a
function of E for the linear regime (ud < 1) and a fixed incident X-ray photon fluence of 100 ph/pm?.
¢ Achievable SNR? for a fixed dose in soft tissue and different sample thicknesses. These curves
represent the theoretical limit of dose efficiency in PB-PCI and have been normalized to the maximum.
Attenuation coefficients were taken from the NIST database [56]. Reproduced from Ref. [104].

is low, so that multiple scattering is negligible and the present considerations can be performed
without the need for elaborate simulations. This assumption has been verified for d = 1 mm
by Monte Carlo simulations with the software tookit Geant4 [157], where multiple scattering is
taken into account (simulation performed by Marcus Zuber, IPS, KIT, Karlsruhe, Germany).
For ud < 1, i.e., high energies or thin samples, Eq. 4.4 can be linearized, and the dose becomes
independent of the sample thickness and the linear attenuation coefficient:

D=t g, (4.5)
P

At low energies (FE < 20keV), photoelectric absorption is the dominant interaction process,
while contributions from incoherent Compton scattering can be neglected (cf. Fig. 4.1a).
Here, one finds pten &~ 1 < E~% with z & 3, and consequently, the dose decreases rapidly with
D « E~2 at low energies. At higher energies, Compton scattering becomes the dominant
interaction process, and the curve for pe, flattens out. This leads to a minimum in the
deposited dose per incident photon fluence at 64 keV [156], see green curve in Fig. 4.1b. At
this energy, one can in principle obtain the highest photon statistics for a given dose. However,
as F increases, the phase shift imposed on X-rays as they pass through a medium decreases
as well, and with it the image contrast in PB-PCI. The phase shift ¢ is proportional to § - F
and therefore decreases with E~!. Here, Eq. 2.39 is rewritten as

5= TeNone _ reng me  p nsp (4.6)
27 2t n¥p E?2  E?’ '
~—~——
Tls

where the electron density nY of water is introduced as reference value and n. is expressed via

p and a material-dependent quantity 7s, which is approximately constant [158]. A measure
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4. Bragg magnifier for dose-efficient phase contrast imaging at micrometer resolution

of image quality and dose efficiency is the signal-to-noise ratio (SNR), defined as the ratio of
the phase-induced signal S and the noise N of the unscattered background field (zero-order
beam). For PB-PCI and weak phase objects, the signal is proportional to the phase, as
derived in Section 2.2.6, and hence S o ¢ x nspE~'. In total, one obtains the dependency

N Apx - @ _ 1 DdAx 1
SNR ﬁ 0.8 ntrApx : TISPE t= nspg/Z\/,uen E3p ell«d -1 (47)

with Apx being the pixel size of the detector. For a constant dose and different sample
thicknesses, the energy-dependence of the attainable SNR? behind a soft tissue sample is
shown in Fig. 4.1c. The SNR? is proportional to the dose because it scales with the number
of X-ray photons. Since the signal in the SNR is sample-dependent, the curves have been
normalized to the theoretical maximum. For d < 1 mm, the highest theoretically achievable
SNR per dose is obtained at 30 keV, which is per se the optimal working energy. For thicker
samples (dashed curve), the X-ray transmission decreases, especially at low energies (see also
the black curves in Fig. 4.1b), thereby shifting the optimal working energy to slightly higher

values.

As a side note, to get a better intuition for the energy regime where photoelectric absorption
is dominant (pen ~ p < E~3), Eq. 4.7 can be rewritten as

DAp,
1484 Led

SNR nsps/z\l (4.8)

Here, one sees the relevant dependencies. With increasing energy, i.e., decreasing u, the SNR
for a given dose increases at first and eventually becomes constant when the X-ray energy
is high enough (ud < 1) so that most of the incident photons pass through the sample. For
even higher energies where Compton scattering comes into play, the SNR decreases, leading
to a maximum in the SNR curve at about 30keV.

4.1.2. X-ray detection efficiency

Secondly, after selecting the optimal working energy, achieving high dose efficiency also re-
quires the detection of ideally every X-ray photon that passes through the sample. However,
this is technically challenging. For micrometer resolution X-ray imaging, the image has to
be magnified before being recorded by a pixel-array camera. In commonly-used scintillator-
based indirect detector systems, the X-ray wavefield is transformed into a visible light image
by a scintillator, which is then magnified by light optics and detected by a sCMOS or CCD
sensor (Fig. 4.2a). As described in Section 2.3.1, the applicable scintillator thickness is limited
by the objective’s depth of field, which is constrained by the desired spatial resolution [92].
The absorption of the scintillator is an upper bound on the indirect system’s X-ray detection
efficiency, i.e., the probability of detecting an X-ray photon. The limited thickness of the scin-
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tillator results in a reduced X-ray detection efficiency, which exacerbates as the photon energy
and resolution increase. An example of the expected absorption of LSO:Tb scintillators with
three different thicknesses is shown in Fig. 4.3a. LSO is one of the most suited thin-film
scintillators for high-resolution X-ray imaging [92, 159, 160]. At the targeted working energy
of 30keV, the X-ray detection efficiency is, e.g., only 12.5% for 12 um LSO. Multiplication
with the theoretically achievable SNR? (Fig. 4.1c) yields the SNR? that can be maximally
achieved by an indirect detector system with the respective scintillators, omitting any further
possible losses due to electronic conversion and readout. The result is shown in Fig. 4.3c. For
dose-relevant imaging, the indirect detector system would therefore be operated at a lower
energy, for example at 11 keV for a millimeter-thick sample and the 12 um LSO scintillator.
With increasing sample thickness, e.g., in local tomography, the transmission of the sample
decreases and one is thus forced to increase the operating energy, which in turn reduces the
detection efficiency (dashed lines in Fig. 4.3c).

While indirect detector systems convert the
X-ray image into a visible light image and

magnify the latter by light optics, direct

magnification of the X-ray image offers Xerays [ [ %
the advantage of exploiting the high de-

tection efficiency of large-pixel array detec- sample scintillator
tors (Fig. 4.2b). For the targeted X-ray
energy of 30keV, an X-ray detection effi-

sCMOS

optics
camera

b BM system

ciency of nearly 100% can be achieved by

direct-converting SPCDs with a reasonably Bragg
thick high-Z sensor, e.g., GaAs or CdTe, see . t magnifier
Section 2.3.2. Currently available readout ‘ [ %

chips have typical pixel sizes of 50 pm to .

highly-efficient
100 pm [101, 161]. To achieve micrometer SPCD

resolution, the X-ray image can be magni-

fied with a BM [24, 111-113, 119, 136, 162] Figure 4.2.: Schematic of indirect detector
as described in the previous chapter. In this system and BM system. a In an indirect sys-
tem, the X-rays are transformed into a visible light
image, which is then magnified and detected by a
camera. b In the BM system, the X-ray wavefield
crystals. For energies > 20keV the (220) is directly magnified by a BM and detected by a

reflection of a silicon (Si) crystal has a re- highly-efficient SPCD.
flectivity of over 90 %. Taking into account

way, the X-ray detection efficiency is inher-
ently limited only by the reflectivity of the

that a 2D BM consists of at least two reflections, the reflectivity of two crystals is plotted
in Fig. 4.3b (blue curve). Here, the asymmetry angle was chosen for each energy to yield a
resolution of 1.6 nm, see Eq. 3.2 and Fig. 4.3b (black curve). Fig. 4.3¢ depicts the resulting
SNR2-curves (blue), which run just below the theory curve (green). At the targeted energy
of 30keV, the BM has a total reflectivity of 94 %, and the combination of BM and SPCD
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Figure 4.3.: X-ray detection efficiency of the indirect and the BM system. a Energy-
dependent absorption of an LSO:Tb scintillator with different thicknesses. b Asymmetry angle required
to obtain a resolution of 1.6 pm with the Si (220) reflection at the given energy, and resulting reflectivity
of a BM composed of two Si crystals. ¢ Normalized SNR? for a fixed dose in soft tissue and different
sample thicknesses d. The green curves indicate the theoretical limit given by Poisson statistics, see
Fig. 4.1c. The red, orange and purple curves show the SNR? achievable by an indirect detector with
different LSO scintillator thicknesses, and the blue curves show the SNR? for a Si (220) BM system,
omitting further possible losses in the specific pixel-array detectors used [94, 97, 163]. The asymmetry
angle of the BM crystals was chosen for each energy according to panel b to yield 1.6 pm resolution.
Attenuation coefficients were taken from the NIST database [56]. Partly reproduced from Ref. [104].

thus enables a factor of 7.5 higher X-ray detection efficiency than the indirect detector system
with a 12 pm thick LSO scintillator. In addition, the BM system operates close to the highest
achievable SNR per dose.

For the presented experiments, the BM asymmetry angle was chosen to be a = 5.92°, op-
timized for a working energy of 29keV to 31keV and yielding a maximum Darwin width at
31keV, see Fig. 4.4a, which corresponds to a nominal resolution limit of 1.3 um. The Darwin
curves of the Si (220) reflection are depicted in Fig. 4.4b for different energies. For compar-
ison, the symmetric curve is also shown to highlight the increase in Darwin width due to
asymmetric diffraction. Alternatively, the BM system developed in this work can be operated
with Ge crystals with o = 5.66°, which have twice the Darwin width and thus a factor of
two higher resolution, i.e., 0.6 pm, at the expense of a slightly lower reflectivity, see Fig. 4.4c.
At 30.5keV, which was used in the experiments here, the Si crystals provide a resolution of
1.6 pm. To attain a similar nominal resolution with the indirect system, a numerical aperture
(NA) of 0.28 and a 12 pm thick LSO scintillator were chosen.

4.1.3. Optical transfer function and detective quantum efficiency

Lastly, for the imaging performance of an optical system it is even more crucial how the
spatial frequencies of the object are transferred into the digital image. After maximizing the
information content carried by the X-ray wavefield as well as the X-ray detection efficiency, the
phase shift imprinted by the sample must be converted into a measurable contrast. The image
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Figure 4.4.: Properties of the BM system. a Darwin width of the Si (220) reflection at 31keV
in dependency of the asymmetry angle «, taking into account dynamical diffraction with a strongly
asymmetric diffraction geometry [34]. Here, an asymmetry angle of @ = 5.92° was chosen in order
to reach highest possible resolution at 31keV. b Simulated reflectivity curves [34] of the Si (220)
reflection for the symmetric case (brown) and for an asymmetry angle of 5.92° at several energies (for
colors, see panel ¢). The Darwin width and thus the resolution limit vary with energy, as does the
reflectivity of the crystal. ¢ Simulated reflectivity curves of the Ge (220) reflection. Compared to Si,
the Darwin width is larger, but the crystal reflectivity is reduced. Partly reproduced from Ref. [104].

formation is best described in Fourier space by a cascade of transfer functions that indicate
how strongly the spatial frequency components ¢ in the wavefield are transferred through
the imaging system. For weak phase objects, the total transfer function is comprised of the
contrast transfer function (CTF) for PB-PCI (see Section 2.2.6), the optical transfer function
(OTF) of the magnifying optics (see Section 2.3.1), and the transfer functions of the pixel-
array detector. The latter are strongly dependent on the particular device and are discussed
in the literature [94, 97, 163]. The CTF and thus the contrast in the measurable holograms is
maximized by choosing the largest reasonable propagation distance z of the X-ray wavefield
behind the sample, which is typically limited by source blur due to the extended X-ray source
size (see Eq. 2.69). Besides the propagation contrast formation, which both systems have in
common, each detector system has its own additional OTF(q), which quantifies how strongly
the signal is diminished by the respective magnifying optics and the detectors [71]. The
coherent OTF of the BM system, relevant for PB-PCI of weak phase objects, is given by the
square root of the reflectivity curves of the crystals [34, 164]. The OTF of the indirect system
is determined by the transfer function of the scintillator and the OTF of the microscope. The
former accounts for the spread of energy deposition generated by secondary particles [160],
the latter is defined by the numerical aperture and is analytically accessible, see Eq. 2.93.

In Fig. 4.5, the normalized OTF of the BM and the microscope used in this work is shown for
30.5keV. The ideal OTF of the microscope is only an upper bound. Additional losses in the
indirect system due to the scintillator transfer function are not considered here, but can be
accessed via Monte Carlo simulations [160] (see also Appendix A.5). The OTF of the indirect
system suppresses image information, especially at high ¢, which contain the high-resolution
components of the image. In contrast, the normalized modulus of the BM’s OTF is close
to unity up to the resolution limit, ensuring almost ideal transfer of information. Combined
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Figure 4.5.: Optical transfer function. Normalized coherent |OTF| of the magnifying optics of
the Si (220) BM system and normalized incoherent OTF of the indirect system. The OTF of the BM
system is shown for 30.5keV, corresponding to a resolution of 1.6 pm. The OTF of the indirect system
is depicted for an NA of 0.28. Partly reproduced from Ref. [104].

with its high X-ray detection efficiency, the BM system thus allows operation close to the
highest achievable dose efficiency for PB-PCI.

To compare the image quality of the two imaging systems experimentally, it is useful to con-
sider the ¢g-dependent SNR?(q, D), which is also referred to as noise-equivalent quanta [165].
Since it is proportional to the dose D, the dose efficiency can be defined as SNR?(q, D)/D.
For a sample-independent comparison of the two imaging systems, the detective quantum
efficiency (DQE)

DQE(q) = SNR?(q)/SNRj(q) (4.9)

is used here as a figure of merit for the dose efficiency [165]. Ensuring the same input SNR3(q),
the gain in DQE is given by

_ DQEgp(g9)  SNRiM(9)

Gla) = DQE;q(q)  SNRZ4(q)"

(4.10)

At ¢ = 0, it is expected to be at least the X-ray detection efficiency ratio, as discussed
in Section 4.1.2, while it increases even further with ¢ due to the higher OTF of the BM
system. In summary, the BM system is expected to significantly improve the ¢-dependent
dose efficiency and thus the image quality compared to an indirect system.

It should be noted that the BM also acts as an energy discriminator and filters out inelastic
scattering from the object, further improving its image quality compared to an indirect system,
where inelastic scattering contributes to the background noise [24]. Furthermore, since the
SPCD’s modulation transfer function (MTF) is close to the ideal MTF (Eq. 2.95) [94, 97],
one can generally expect aliasing at high spatial frequencies. Fortunately, the OTF of the
BM suppresses this effect.
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4.2. Experimental comparison of dose efficiency between the BM
and a conventional indirect detector system

To prove the benefit of the BM system in terms of dose efficiency, an experimental comparison
with the indirect system is performed. In the evaluation, particular attention is paid to the
transfer of high spatial frequencies, which are decisive for high resolution. First, the high re-
flectivity of the BM crystals is confirmed experimentally. Combined with the nominal absorp-
tion of the scintillator, this allows for stating the expected gain in X-ray detection efficiency.
In a second step, the imaging performance of the BM system is compared experimentally with
that of the indirect system. The data are evaluated visually and quantitatively, the latter by
extracting the SNR over spatial frequency ¢ and thus determining the ¢-dependent gain in
dose efficiency.

4.2.1. Reflectivity measurement of the BM crystals

The X-ray reflectivity of the BM is determined by using the photon-counting capability of
the SPCD. Since the direct beam is too intense for the SPCD, filters are used to attenuate
the beam by a factor of ~2000. However, higher harmonics generated by the X-ray source
are hardly blocked by the filters, making it impractical to operate the SPCD in the direct
beam. Instead of measuring the reflectivity of both crystals simultaneously, the reflectivity of
only the second crystal is determined. Assuming that both crystals behave in the same way,
the measured value can be squared to obtain the reflectivity of two successive crystals. First,
the slits are closed so that the illuminated area behind the second crystal is < 1cm x 1cm
to ensure that all the diffracted photons can be collected by a single chip of the SPCD.
In this way, the areas between two adjacent chips can be avoided, reducing the probability
of including dead pixels. Next, the X-ray flux between the first and the second crystal is
measured by acquiring 100 images with the SPCD. The amount of filters is chosen so that
the flux remains below 20 000 counts/s/pixel, ensuring that the detector operates in the linear
region [103]. Finally, the SPCD is placed in the reflex of the second crystal, and a comparison
of the measured total counts yields the crystal reflectivity. The measurement is repeated for
five different lateral positions of the SPCD in order to reduce the potential error from dead
pixels. The SPCD is operated in charge-sharing mode (CSM) with lower and upper energy
thresholds of 6 keV and 20 keV, respectively. The reflectivity of a single crystal is measured to
be (96.5 &+ 0.6) % at 30.5keV, which is in good agreement with the theoretical value of 97.4 %.
The absorption of the 500 pm thick GaAs sensor of the SPCD is expected to be 97.6 % [56,
98]. The BM system consisting of two Si crystals and the SPCD therefore has an overall
X-ray detection efficiency of 91 %.
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4.2.2. The indirect detector system

The indirect detector system consists of a 12 pm thick LSO:Tb scintillator [166], a diffraction-
limited optical microscope (Optique Peter, 69210 Lentilly, France, 10x objective lens with
NA = 0.28, model 378-803-3, Mitutoyo Deutschland GmbH, 41469 Neuss, Germany, and
180 mm tubus lens giving 9x total magnification [90]), and a pco.edge 5.5 CMOS camera
(PCO AG, 93309 Kelheim, Germany) with a physical pixel size of 6.5 umx 6.5 pm, yielding
an effective pixel size of 0.72 pm. The objective has a collection efficiency of the scintillation
light of 0.5 - (1 — /1 —NA?/n?2) = 0.6% (Eq. 2.92), where n = 1.82 is the refractive index
of the scintillator. With the light yield of the scintillator being 40 photons/keV [166], an
average of 7.3 visible photons are expected to be collected by the objective per 30.5keV X-
ray photon absorbed by the scintillator. Taking into account the quantum efficiency of the
camera (> 60 %), the Poisson distribution of the optical photons will therefore lead to only
a small increase of the noise floor. Thus, the X-ray detection efficiency depends primarily on
the X-ray absorption of the scintillator (12.3 % at 30.5keV). In contrast to the SPCD, which
is essentially free of readout noise, the CMOS camera adds a minor readout noise of 3 counts
(root-mean-square) per pixel. This corresponds to ~4 X-ray photons incident on the indirect
system, meaning that for more than ~ 16 incident X-ray photons per pixel, the photon shot

noise is the dominant noise source.

Overall, given the measured reflectivity, the X-ray detection efficiency of the BM system is
expected to be more than a factor of 7.4 higher than that of the indirect system at 30.5 keV.

4.2.3. Qualitative comparison of imaging performance

In order to assess the improvement in imaging performance, the BM system and the indi-
rect system are installed one behind the other in the experimental hutch to allow for quick
switching between the two setups. In this way, the two systems can be directly compared
by imaging a test pattern with both systems at the same experimental parameters, i.e., the
same incident X-ray beam with a photon energy of 30.5keV, an exposure time of 67 ms, and
horizontal propagation distances of z = z, = 0.15-0.41 m. For the BM system, the vertical
propagation distance is z, = 0.53-0.79m. Images were acquired at ten distances. Addition-
ally, an acquisition was conducted at z = 0.59m for the indirect system. The energy was
set to 30.5keV so that the effective pixel sizes of the BM system (0.72 um horizontally and
0.66 pm vertically) are similar to the pixel size of the indirect system. Information on the test
pattern can be found in Section 3.4.4.

Fist, images were taken at the same X-ray fluence of ~ 6000 ph/pm? per frame with both
systems. The X-ray fluence was determined with the SPCD. Second, the fluence was increased
by a factor ~7 for the indirect system by removing absorption filters to compensate for the
low X-ray absorption of the scintillator and to achieve the same nominal X-ray detection
efficiency as in the BM system.

72



4.2. Experimental comparison between BM and indirect detector system

indirect detector b Bragg magnifier c indirect detector
z=021m 1/l z,=021m,z, =059m /], z=0.59m 1/l
= 1.4
— 1.2
- 1.0
0.8
horizontal e vertical
1.2 4 12 -
So 1.0 + So 1.0 +
0.8 1 — Bragg magnifier 0.8 7
— indirect detector
T T T T T T T T
—40 —-20 0 20 40 —40 —20 0 20 40
x (um) y (um)

Figure 4.6.: Image contrast in the BM system and the indirect system. Flatfield-corrected
holograms acquired with a, ¢ the indirect system at an X-ray fluence of ~44 000 ph/pm? and b the BM
system at an X-ray fluence of ~ 6000 ph/pm? while keeping the other imaging parameters constant,
i.e., 30.5keV energy and 15 Hz image repetition rate. The propagation distances of the indirect system
were adapted to a the horizontal distance z, = 21 cm and c the vertical distance z, = 59cm of the
BM system. Note the smaller color range in panels a and ¢ compared to panel b. d, e Horizontal and
vertical intensity profiles along the lines marked in panels a-c.

Fig. 4.6 depicts holograms of the test pattern acquired at the same nominal X-ray detection
efficiency, averaged over 50 sample and flatfield images to obtain a low noise level. For
the indirect system, the propagation distances were chosen to correspond to the horizontal
(Fig. 4.6a) and vertical (Fig. 4.6c) distances in the BM image (Fig. 4.6b). In this way,
horizontal and vertical intensity profiles can be directly compared (Fig. 4.6d, e). In both
directions, the BM system provides significantly higher image contrast, which can be seen

from the strength of the interference fringes.

Fig. 4.7 shows simulated and experimental images as well as multi-distance phase reconstruc-
tions of a Siemens star in the test pattern. The reconstructions and the simulated images
will be discussed below. The second column of Fig. 4.7 shows experimental holograms of
the Siemens star for the same X-ray fluence or the same nominal X-ray detection efficiency,
respectively. Here as well, the contrast and visibility of fine interference patterns in the
hologram of the BM image is by far superior, even at increased flux in the indirect system.
The increased image contrast in the BM images can be attributed to the BM’s higher OTF,

especially at high spatial frequencies.
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Figure 4.7.: Visual comparison of the BM system and the indirect system. Simulations,
flatfield-corrected experimental holograms, and multi-distance NLTikh phase reconstructions of a
Siemens star test pattern are shown for the BM and the indirect system. The X-ray fluence is given
in the headings. Reproduced from Ref. [104].

The higher information content also translates to the multi-distance phase reconstructed
images, see third and fourth columns of Fig. 4.7. Prior to phase reconstruction, the indirect
system images were corrected by the incoherent OTF of the microscope [49] given by Eq. 2.93.
The OTF of the scintillator can be estimated by Monte Carlo simulations [160] (see also
Fig. A.4), but has not been included here, which explains the deviation of the reconstructed
values for the indirect system from the expected phase shift of —0.8rad. These findings
emphasize the importance of correcting the indirect system data for the total transfer function
of the optical system if a quantitative reconstruction is to be achieved. On the downside, noise
is amplified by this correction as well. For comparison, the last row in Fig. 4.7 shows the
reconstruction without OTF correction. As a side note, the test pattern unfortunately moved
slightly out of the field of view (FOV) of the BM at four propagation distances. Therefore,
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a single distance TIE b multidistance CTF C multidistance NLTikh

Figure 4.8.: Comparison of phase reconstruction algorithms for the BM data. a With the
TIE algorithm, resolution is lost due to suppression of high spatial frequencies. The quality of b the
CTF and c the NLTikh reconstruction is comparable, with NLTikh being slightly sharper and more
homogeneous.

the missing pixel rows were completed by duplicating the corresponding pixel rows from the
opposite side of the image (4 % of the total dataset). For the phase reconstruction, raw images
acquired with the BM system were flatfield-corrected, and raw images from the indirect system
were flat- and darkfield-corrected. In all images, hot pixels were removed by interpolation.
Multi-distance phase reconstruction was performed with the HoloTomoToolbox [77] using
the nonlinear Tikhonov regularization (NLTikh) algorithm [79] and taking into account the
different horizontal and vertical propagation distances [135]. A comparison with the CTF
and single-distance transport of intensity equation (TIE) phase reconstructions is given in
Fig. 4.8. While TIE induces strong blurring due to suppression of high spatial frequencies,
CTF and NLTikh yield almost identical results, with NLTikh being slightly sharper and more
homogeneous.

4.2.4. Gain in detective quantum efficiency

For a further quantitative analysis, the g-dependent SNR of the Siemens star holograms is
compared for the same incident X-ray intensity. In the following, the evaluation procedure is

described and the results are presented and discussed.

Procedure for evaluating the SNR

The aim is to evaluate the gain G(gq) in DQE of the BM compared to the indirect system
over spatial frequency ¢q. According to Eq. 4.10, G(q) is determined by evaluating SNR?(q)
of both systems at the same dose and energy. The procedure is illustrated in Fig. 4.9. At
each of the ten propagation distances mentioned in the previous section, 50 sample images of
a Siemens star test pattern as well as 50 flatfield images are recorded in quick succession.

For a precise determination of the noise (first row in Fig. 4.9), two subsequent flatfield images
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Figure 4.9.: Procedure for evaluating the signal and noise in Fourier space. 50 sample
images and 50 flatfield images are used to extract the signal and noise. The top row shows the
procedure for determining the noise and the bottom row for evaluating the signal. In both cases,
flatfield images are subtracted in order to eliminate inhomogeneities in the illuminating wavefront and
in the detector response. The resulting images are Fourier transformed, and for each ¢, g, the noise
and signal are determined by computing the standard deviation o and the mean value, respectively,
over time. In a final step, the noise and signal are azimuthally averaged. A BM dataset is shown
here as an example. The procedure is equivalent for the indirect system, but additionally the camera
readout noise is extracted from 50 darkfield images.

are subtracted to eliminate inhomogeneities in the flatfields (second column in Fig. 4.9).
The resulting additional factor of v/2 in the noise (Gaussian error propagation) is taken into
account in the further evaluation. From the resulting 25 images, the Fourier transform is
computed (third column) and the noise N(gz,qy) is obtained by determining the standard
deviation of the 25 images for each ¢, ¢, (fourth and fifth columns). Due to vertical shaking
of the monochromator, the noise is increased along the central pixel column ¢, = 0 for both
systems. This column is omitted in the evaluation so that the shaking does not falsify the
results. For the indirect system, N is corrected for the readout noise of the camera, extracted
from 50 darkfield images (without X-ray illumination).

To determine the signal (second row in Fig. 4.9), the flatfields are first subtracted from the
sample images at each propagation distance in order to remove inhomogeneities. In phase
contrast imaging, strictly speaking, neither division [167] nor subtraction provides a perfect
correction. Since it is found that subtraction works equally well as division for the removal of
inhomogeneities here, subtraction is used due to the simpler error propagation. The complex
measured signal S, (¢z,qy) is determined in Fourier space by averaging over all 50 sample
images. Because of the averaging, Sy, can be determined below the noise floor of a single
image. To be precise, the variance of the average measured signal is N2/25. The spectral
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density S? of the signal S(qy,gy) can then be determined by S? = S% — N?/25. Next, the
azimuthal average of the energy density S?(q) and the squared noise N2(g) emitted at spatial
frequencies with radius ¢ is computed (last column in Fig. 4.9). Finally,

SNR?(q) = S*(q)/N?(q) (4.11)

is obtained for each propagation distance. The procedure has been verified on artificial data.

As mentioned in Section 3.3, the BM system has a larger propagation distance in the vertical
than in the horizontal direction. Here, the aim is to compare the indirect and the BM system
independently of the free space contrast transfer function [43]. For the calculation of the DQE
ratio, a small correction is therefore made by simulating holograms of the Siemens star test
pattern for both systems and for each propagation distance. Using the measured incident
photon fluence, 50 sample and 50 flatfield images are generated. Following the procedure
described above for the measured data, the ideal input SNR%’BM and SNRg,ind are obtained.
The simulation was performed for the ideal case of no source blur and an ideal OTF(q) = 1.
The sample is generated numerically and the propagated image intensity is simulated using
the full free space propagator for the indirect system (Eq. 2.55) and the mapping procedure
for the BM system (Section 3.3), though shift-variance does not have a visible effect here.
The simulation includes oversampling, padding, and then binning and cropping to avoid
aliasing. Furthermore, the simulation takes into account the different horizontal and vertical
propagation distances z, and z, of the BM system and the slightly different magnifications
M, and M, as well as the slight discrepancy in the pixel areas of both systems. Examples of
the simulated image intensity are given in the first column of Fig. 4.7.

In summary, the gain in DQE is given by

_ SNRQBM(Q) SNRg,ind(Q)

G(q) = : ’
@ SNR{4(q) SNR§ pui(q)

(4.12)

where SNR},; and SNR2 , are extracted from the experimental data of the BM and indirect
system, respectively.

Experimental results

As an example, the simulated and experimentally measured signal and noise are shown in
Fig. 4.10a, b for one propagation distance. For the BM system, the experimental data run only
slightly below the simulation of the input field SNRg g, indicating that the system works
close to the optimum. The minor deviation at high spatial frequencies can be explained
by source blur and the MTF of the SPCD [94, 98|, which behaves close to the sinc-shaped
MTF of an ideal detector. The SPCD was operated in SPM with an energy threshold of
16keV. Operation in CSM may increase the performance even further [94]. In contrast, the
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Figure 4.10.: Signal, noise, and SNR over spatial frequency g of the Siemens star holo-
grams imaged with the BM and the indirect system at 30.5 keV. a Experimental signal Spy
and noise Npy measured with the BM system (blue) and simulated signal Sppm and noise Ny gm
of the input wavefield (purple). As an example, the data are shown for a propagation distance of
Zzz = 0.18m and 2z, = 0.56m. b Experimental signal Sinq, noise Nij,q and camera readout noise
measured with the indirect system (orange) and simulated signal Sy ing and noise Ny inq of the input
wavefield (red). The propagation distance is z = 0.18 m. ¢ Resulting SNR(q) of the BM system (blue)
and the indirect system (orange), as well as SNR(q) of the input fields for both systems. The data
were acquired at an incident X-ray fluence of 6000 ph/pm? and a photon energy of 30.5 keV.

measured signal of the indirect system deviates considerably from the input field SNRg ind,
as expected from its lower X-ray detection efficiency and its OTF. As mentioned above, the
camera readout noise is of no significance here, but has yet been subtracted to obtain the SNR
of a camera without readout noise. Note that the Thon rings become visible in the azimutal
scan of the signal for the indirect system, while they are not visible for the BM system due

to the difference in horizontal and vertical propagation distances (see Section 2.2.6).

Fig. 4.10c shows the resulting SNR curves for the propagation distance used in Fig. 4.10a, b,
and Fig. 4.11a displays the SNR averaged over all ten propagation distances. Compared to
the indirect system, it is significantly higher for the BM system. Note that the expected
contrast enhancement of the BM due to the larger vertical propagation distance becomes
apparent when comparing the simulated SNRg gy with the simulated SNRy inq, especially at
low ¢ (Fig. 4.11a, red and purple curve).

The resulting gain in DQE at this energy, obtained from Eq. 4.10, is shown in Fig. 4.11b, c
without and with correction, respectively. The correction term SNRg’md(q) / SNR%}BM(q) re-
duces the spread in G(q). For ¢ = 0, the expected increase in DQE of 2> 7 given by the
scintillator’s absorption is observed. For increasing ¢, G(q) increases even further and reaches
more than two orders of magnitude for ¢ > 0.3 pm ™! due to the distinct OTFs of the systems.

The measurements show that the indirect system behaves even less efficiently than expected
from the scintillator absorption and the OTF of the microscope. This can be explained by the
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Figure 4.11.: Average SNR and resulting DQE at 30.5 keV. a SNR extracted from the Siemens
star holograms over spatial frequency ¢, averaged over ten propagation distances. The SNR measured
with the BM and the indirect system are shown, as well as the simulated input SNRy for perfect
coherence. b Ratio of measured SNR? over ¢. The solid line is a moving average and serves as a
guide for the eye. ¢ Experimental gain G(q) in DQE, given as the ratio of measured SNR? including
the correction term (Eq. 4.12) that accounts for the different input signals. Partly reproduced from
Ref. [104].

above-mentioned spread of energy deposition in the scintillator, which increases with X-ray
energy [160, 168] (see also Fig. A.4). Thus, to operate the indirect system at the optimal
energy ~30keV for the highest possible dose efficiency, the scintillator should not only have
a high absorption but also a low spread of energy deposition.

As discussed in Fig. 4.3c, for the specific application with samples of size d < 1mm the
indirect system would be best operated at a lower energy of ~ 11keV. In this case, it can
be estimated that the overall gain in dose efficiency of the BM system is about a factor of
two at low spatial frequencies and one order of magnitude at the desired resolution (see also
Appendix A.5). For thicker samples or samples in a medium, higher energies are required for
the indirect system, and the gain in dose efficiency of the BM system increases accordingly.

4.2.5. Comparison on biological sample

The impact of the BM system’s higher detection efficiency on biological imaging is illustrated
by imaging a chalcid wasp (Lariophagus distinguendus) with both systems at 30.5keV and
identical and relatively low photon fluences of 200 ph/pm? and 30 ph/pm? per frame (Fig. 4.12).
At 200 ph/pm?, attained by attenuating the beam by a factor of about 400, the specimen is
barely discernible in the hologram of the indirect system (Fig. 4.12a), whereas the BM system
exhibits good contrast (Fig. 4.12b). The superior imaging performance of the BM system be-
comes also evident in the tomographic reconstruction, where insets provide a closer look at
the compound eye of the wasp, resolving finer details. At 30 ph/pm?, the data of the indirect
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Figure 4.12.: Chalcid wasp imaged with the BM and the indirect system at 30.5keV.
Flatfield-corrected holograms and single-distance tomographic reconstruction of a critical point dried
Lariophagus distinguendus for a comparatively low incident X-ray fluence of a, b 200ph/pm? and
¢, d 30 ph/pm? per frame.

system are strongly dominated by noise (Fig. 4.12c), while the BM still reveals sample struc-
tures (Fig. 4.12d). The exposure time was 67 ms, propagation distances were z = 0.22 cm for
the indirect detector and z, = 0.22m and z, = 0.60m for the BM system, and the tomo-
grams were acquired with 1000 projections each. TIE phase retrieval [50] and tomographic
reconstruction with filtered back-projection was performed with the tofu framework [141].
The value for 3/6 was visually adjusted to 10717,

4.3. In vivo study of Trichogramma wasps emerging from their
host eggs

Increasing the dose efficiency in X-ray imaging is highly desirable for a wide range of fields and
applications, ranging from dose-sensitive soft materials studies over biological tissue imaging
up to in situ and in vivo imaging. The high dose efficiency of the developed Bragg magni-
fier system now enables the prolongation of observation times before the onset of radiation
damage.

As in vivo pilot application, the high dose efficiency of the BM system is exploited to study
the concealed behavior of parasitoid Trichogramma wasps related to the emergence from
their host eggs over tens of minutes up to hours (see Fig. 4.13). Trichogramma wasps belong
to the tiniest known insects. By parasitizing the eggs of numerous crop-infesting butterfly
and moth species, they have become the most widely used biological control agent [169] and
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therefore possess enormous economic value [170-172]. However, despite being extensively
studied [173], their concealed behavior within their hosts is still largely unknown. The high
dose efficiency of the BM system now allows the recording of long in vivo cine-radiographic
data, revealing morphodynamics before and during emergence from the eggs. For the study,
eggs of the Angoumois grain moth (Sitotroga cerealella (Lepidoptera: Gelechiidae)) were
parasitized by Trichogramma cacoeciae (Hymenoptera: Chalcidoidea: Trichogrammatidae),
incubated at 25°C, 70 % relative humidity, under long-day conditions (16h light, 8 h dark)
until just before emergence and then brought to room temperature. The specimens were
provided by Annette Herz (Julius Kiithn-Institute, Dossenheim, Germany).

For a first specimen shortly before emergence, an in vivo tomogram was acquired with
1000 projections, an image repetition rate of 15 Hz, propagation distances of z; = 22 cm and
zy = 60 cm, and a photon energy of 30.4keV. At this energy, the nominal spatial resolution
is 1.7 um, the magnification is 64, and the whole insect fits into the FOV of 0.6 mm x 0.4 mm.
The X-ray fluence was 100 ph/pm? per frame and the corresponding dose was ~ 7 mGy, result-
ing in an estimated total dose of ~7 Gy. TIE phase retrieval (3/5 = 107%5) and tomographic
reconstruction were performed with the tofu framework [141]. The number of projections
may be further reduced, e.g., by using algebraic methods or neural networks for tomographic
reconstruction [174-176]. Fig. 4.13a shows a volume rendering of the egg shell and Fig. 4.13b
depicts the sample with the egg shell virtually sliced, revealing the Trichogramma wasp that
has developed inside the moth egg.

Radiographic in vivo data were acquired for 68 individuals with the same imaging parameters
as listed above, of which six emerged during the observation under radiation and three datasets
of the complete emergence process were acquired. The specimens were selected with a light
optical microscope and individually scanned in Eppendorf tubes. Since it is not possible to
predict the time of emergence from the outside, a dark discoloration of the egg shell was
used as an indication of whether the wasp was about to emerge. The images were acquired in
several sequences, intermitted by radiation-free pauses to reduce the total dose and to capture
the emergence phase. The total exposure time to X-rays of the emerging wasps varied between
15-72 min with a total observation time of up to 2h.

Fig. 4.13c-f displays phase reconstructed radiographs of a wasp during emergence at different
times. The full cine-radiographic dataset spans a total duration of 1.25h and a total X-
ray exposure of 30 min and is given as a video in Ref. [104]. The wasp performs coordinated
movements of the body, head, and mandibles in order to perforate the egg. At the beginning of
the series (Fig. 4.13c¢), it bites continuously into the egg shell. After 43 minutes, the antennae
protrude the egg shell (Fig. 4.13d). The wasp now tries to break through the shell by stretching
its entire body several times, pushing its legs and still biting permanently into the shell.
When a contiguous hole is large enough, the wasp manages to emerge (Fig. 4.13¢). Finally,
it grooms itself in vicinity of the egg (Fig. 4.13f) and eventually departs. No abnormalities
in the wasp’s behavior were observed after emergence. The estimated total dose is ~200 Gy,
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Figure 4.13.: Trichogramma cacoeciae wasps imaged in vivo with the BM system. Volume
rendering of a tomographic dataset of a first individual inside its parasitized moth egg showing a the
egg shell and b the wasp by virtual slicing of the egg shell. The renderings were created in Drishti [130]
by Pauline Pfeiffer (IPS, KIT, Karlsruhe, Germany). c-f Phase reconstructed radiographs of a second
individual emerging from its host egg. g-i Flexible movement of mandibles, observed in a third
individual. The arrows highlight that the wasp moves its mandibles independently from each other.
Reproduced from Ref. [104].

which agrees to dose levels reported in the literature to have no observable physiological
effects on small animals [20]. Prior to phase retrieval, the images were denoised by a neural
network trained with the Noise2Noise method [177]. The denoising was performed by Yaroslav
Zharov (IPS, KIT, Karlsruhe, Germany). Details of the method application can be found in
Ref. [178]. In order to fully exploit the information contained in the recorded image up to
the resolution limit, phase retrieval for all in vivo radiographic measurements was performed
using the NLTikh algorithm [79] implemented in the Holo TomoToolbox [77) (Qow-freq = 10742,

-1
Qlhigh-freq = 10 )
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In the dataset of another individual, the mandible movement during the biting process be-
came particularly well visible (Fig. 4.13g-i). Here, a higher flux and Ge crystals were used
at 30.5keV, with a dose of ~ 70 mGy per frame and a total dose of ~ 90 Gy. Unlike the
larger Lariophagus distinguendus, which employs its mandibles in a chisel-like manner to bite
through a stiff wheat grain [179], Trichogramma cacoeciae is observed here to use its mandibles
separately from one another to penetrate the more pliable egg shell. This versatility show-
cases how flexible mandibular movement allowed chalcid wasps to exploit a variety of hosts,
which is likely a key factor for their evolutionary success and remarkable diversification [179].

4.4. Conclusion

A considerable increase in dose efficiency in micrometer-resolution X-ray imaging of soft tis-
sues was achieved by combining highly coherent synchrotron radiation, a Bragg magnifier,
and a high-Z single photon counting detector. Magnifying the propagated X-ray wavefield
behind the sample by a Bragg magnifier and detection by a high-Z SPCD allows exploiting
the high detection efficiency of the SPCD while maintaining micrometer resolution. The sys-
tem was designed for X-ray energies ~ 30keV, which allow a minimum dose for a desired
SNR. The experiment showed that the BM system works close to the highest possible dose
efficiency for PB-PCI, owing not only to its high X-ray detection efficiency of over 90 % but
also its constantly high OTF over all spatial frequencies up to the micrometer resolution
limit. In contrast, the OTF of the objective in conventional scintillator-based indirect detec-
tor systems decreases significantly with increasing spatial frequencies. Comparing the imaging
performance of the BM system to an indirect detector system at the same energy of 30.5 keV
revealed an increase in DQE of more than two orders of magnitude for high spatial frequencies,
which are crucial for high spatial resolution. For applications where the efficiency of indirect
systems can be improved by working at a lower energy, the estimated gain in dose efficiency
of the BM system is still higher by one order of magnitude at the high spatial frequencies
that contain the relevant high-resolution components of the image. Although indirect detec-
tors benefit from continuously ongoing developments of scintillators [180], optics [181], and
cameras [182], the BM system inherently outperforms any lens-based optically magnifying
system by its constantly high OTF for all spatial frequencies up to its resolution limit.

The high dose efficiency of the BM system enables a substantial increase of observation times
in in vivo studies at micrometer resolution, which was exploited for an in vivo pilot study of
tiny parasitoid wasps inside their host eggs. The concealed behavior of Trichogramma wasps
could be filmed for more than 30 minutes, providing the possibility for a detailed analysis
of their movement patterns and behavioral acts before and during emergence. Due to its
high dose efficiency, Bragg magnifier based X-ray imaging holds a wide range of potential
applications, not only for high-resolution in vivo imaging in life sciences but also for in situ

studies of dose-sensitive materials and processes.
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5. Bragg demagnifier for propagation-based
phase contrast imaging of large samples

In the last decade, there has been increasing interest in applying phase contrast imaging not
only to small specimens but also to large, centimeter-sized samples [183-186]. In the pursuit
of low-dose imaging, a compromise has to be taken between dose and spatial resolution, since
for a given signal-to-noise ratio, the dose scales with the square of the desired resolution. For
large samples, it is therefore essential to generate high contrast at low spatial frequencies. The
same holds true for fast applications, where high contrast at low spatial frequencies allows a
reduction in resolution and thus exposure times. The most prominent approaches for phase
contrast imaging of large samples at moderate resolutions down to ~ 10 um are differential
phase contrast such as grating- [8, 187, 188], speckle- [13, 14], or analyzer-based [10, 11],
and propagation-based phase contrast. In propagation-based phase contrast imaging (PB-
PCI), the image contrast increases with increasing propagation distances. To visualize low
spatial frequencies of ~27/10 pm to ~27/1 mm, however, long propagation distances of tens
to hundreds of meters are necessary [17, 183-185, 189-192]. Recently, a new beamline was
built at the ESRF with a remarkably long experimental hutch of 45 m, facilitating PB-PCI
at propagation distances of up to 36 m, tailored to the X-ray source size [17, 193, 194].

To overcome the need to build extremely long beamlines and experimental hutches, this chap-
ter introduces a new imaging technique for PB-PCI at moderate resolution with a physical
distance between sample and detector in the meter-range, yet allowing long effective propaga-
tion distances of hundreds to thousands of meters. The underlying concept is to broaden the
spatial frequency distribution, whereby the image contrast is strongly amplified within a short
physical distance. Simultaneously, the technique significantly reduces the image blur caused
by the finite size of the X-ray source. Section 5.1 introduces the general working principle,
which is realized by a Bragg demagnifier. Section 5.2 gives a description of the linear and
the full image formation with the Bragg demagnifier, Section 5.3 discusses dispersion effects
and source blur, and Section 5.4 shows simulation examples. In Section 5.5, the concept
is experimentally proven and compared to conventional free space propagation at the same
physical propagation distance. Parts of this chapter have been published in Ref. [195].
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5.1. Working principle of a Bragg demagnifier

The aim of the presented method is to enable PB-PCI at moderate resolution with a physical
distance between sample and detector in the meter range, yet allowing long effective propa-
gation distances of hundreds to thousands of meters. For this purpose, the spatial frequency
distribution of the diffracted X-ray wavefield behind the sample is magnified, resulting in a
strongly increased effective propagation distance and thus an enhanced image contrast. This
section introduces the basic working principle, followed by a description of its realization by
Bragg crystal optics implemented as a Bragg demagnifier.

5.1.1. Boosting the propagation distance - basic idea

Let us revisit Eq. 2.55 for free space propagation with the Fresnel propagator (Eq. 2.58). The
sample exit wavefield f(r) can be expressed by its Fourier transform f(k), where r = (z, )T
and k = (kg, ky)T are the spatial coordinate and angular frequency, respectively, in the object
or image plane. After free space propagation along a propagation distance z, the propagated

wavefield ¢g(r) in the image plane is given by
1 Z o ke —itez
o) = o //f(k)e ¢ %% k. (5.1)

The argument %z in the Fresnel propagator shows that low spatial frequencies in the wave-
field must propagate a long distance z in order to accumulate a certain phase shift that can be
transformed into measurable image contrast. For large samples, it would be advantageous to
magnify the spatial frequencies before free space propagation. After magnification by a factor
M, the wavefield f'(k) is given by f'(k) = f(k/M), where the ’ (prime) sign denotes the
wavefield after magnification of the spatial frequencies. Rewriting k/M — k, the propagated
wavefield reads

/ M2 r3 —iﬁ 221‘ r
g'(r) = W/f(k:)e g M2 kM g, (5.2)

The magnification of the spatial frequencies thus results in a drastically increased effective
propagation distance

Zof = M2z (5.3)

that is quadratic in M. In other words, the image will have the same contrast as the unaltered
wavefield propagated to a physical distance of M?z. The term M in Eq. 5.2 shows that the
magnification of the spatial frequencies by a factor M comes along with a demagnification by
a factor M in real space.
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Figure 5.1.: PCTF for large objects. The PCTF is shown for different propagation distances z at
low spatial frequencies k, which are decisive for imaging large objects at moderate resolution. Large
distances of tens to hundreds of meters are required to attain phase contrast at low frequencies.

As discussed in Section 2.2.6, for weak phase objects the image formation reduces to a linear
process, and the situation can be illustrated by the phase contrast transfer function (PCTF)
(Eq. 2.77), which describes how strongly the phase signal at each spatial frequency is trans-
lated into measurable image contrast:

k2
PCTF(k) =sin | —=z | . (5.4)
2ko
As an example, Fig. 5.1 displays the PCTF for different z and low spatial frequencies up to
27 /50 um. At a propagation distance of 5m (blue), the PCTF reaches only low values. At
50m (orange), the contrast transfer is high for frequencies between 27 /100 pm and 27 /50 pm,
while it is still rather low for structures of 200 pm and larger. At z = 500m (green), these
structure sizes attain high contrast. However, the experimental realization of such long dis-
tances is exceedingly challenging. In contrast, after magnification of the spatial frequencies
k — Mk, the PCTF becomes
k2
PCTF (k) = sin | — M?z ] . (5.5)
2kg
The propagation distance z.g = M?z is thus effectively enhanced by a factor M?, thereby

attaining strong phase contrast at a substantially shorter physical distance between the sample
and detector.

5.1.2. Contrast amplification by demagnification with asymmetric Bragg
diffraction

Demagnifying the X-ray wavefield behind the sample in two dimensions with minimal distor-
tion can be achieved by using a Bragg magnifier with inverse diffraction geometry, i.e., using
a negative asymmetry angle. So far, Bragg diffraction with a negative asymmetry angle has
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5. Bragg demagnifier for propagation-based phase contrast imaging of large samples

been used to focus and collimate the incident X-ray illumination [121, 122], to achieve high
angular sensitivity in analyzer-based imaging [10] or to fit a large X-ray image onto a smaller
detector [123]. Here, demagnification of the X-ray wavefield is used to enhance the image
contrast. The effect of a Bragg demagnifier on PB-PCI is illustrated in Fig. 5.2 in 1D. In
conventional PB-PCI, the wavefield behind a large, centimeter-sized sample does not create
measurable phase contrast within a rather short distance z, of, say, 1m. To obtain image
contrast with conventional PB-PCI, the wavefield would have to propagate by a long distance
zp of, say, 625m. By demagnifying the wavefield with a Bragg demagnifier, strong image
contrast is achieved after the short physical distance z, = z1 + 22, where z; is the distance
between the sample and the demagnifier and 29 is the distance between the demagnifier and
the detector. The demagnification in real space and the magnification in reciprocal space
results in a boost of the effective propagation distance by a factor of M?. For example, a
demagnification of M = 25 and subsequent propagation by a physical distance of zo = 1m
would yield the same image contrast as the unaltered wavefield propagated by 2z, = 625 m.

5.2. Image formation

For simplicity and to give a general idea of the image formation process for the Bragg demag-
nifier, this section first discusses the image formation under the assumption of shift-invariance.
Subsequently, a full description including shift-variance is given. A method to counteract the

shift-variance while simultaneously further increasing the dose efficiency is also presented.

5.2.1. Linear approximation

As discussed in Section 3.3, the dependence between the spatial frequencies ki, and Koyt
is in general a slightly nonlinear function, causing the image formation to be shift-variant.
Approximating the dependency as kout(kin) &~ M kiy, the shift-invariance is fulfilled. Similar
to the Bragg magnifier, the wavefield is demagnified in the horizontal and the vertical direc-
tions by one crystal each. Since the two crystals have a certain distance to each other, the
demagnification takes place at different distances 21, and 21, along the optical axis between
the sample and the crystal centers. Likewise, the distances 22, and 22, between the crystal
centers and the detector differ as well. The demagnified wavefield in the detector plane is

given by
M, M, = - ;
0(r) = T [ T ) M mehn a, (5.6)
T
with the propagator
. k% M2 . k12; M2
H(k) = A(k)e "2 (1t Mez2a) =iz (1t My z2) (5.7)
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Figure 5.2.: Working principle of a Bragg demagnifier in 1D. a PB-PCI of a large object at
moderate resolution yields hardly any phase contrast at rather short propagation distances of, e.g., z, ~
1m, as typically provided by experimental hutches at a synchrotron. b Obtaining measurable image
contrast with conventional PB-PCI at moderate resolution requires very long propagation distances z;
of tens or hundreds of meters and more. ¢ Demagnification of the X-ray wavefield by asymmetric Bragg
diffraction by a factor M leads to a strongly increased effective propagation distance zeg = 21 + M?22,
where z; and 29 are the physical distances between the sample and the demagnifier or the demagnifier
and the detector, respectively.

A is the complex field amplitude ratio comprised of both crystals (see also Eq. 2.36), M, and
M, are the demagnification factors in horizontal and vertical direction, and kj, is written as
k here for better readability. The different distances and possibly different magnifications
lead to different effective propagation distances

Zeffi = 214+ M¢2Z2,i- (5.8)

For large M, the propagation along z1 ; in front of the demagnifier can be neglected.
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5. Bragg demagnifier for propagation-based phase contrast imaging of large samples

Analogous to the Bragg magnifier, the demagnification factor is given by

sin(fp + Re(Aby) — )
M = .
sin(6p + Re(Abp.) + Oz)’ (5.9)

where o < 0. The crystal function A(k) acts as a low-pass filter. It cancels the contributions
of high spatial frequencies to the background noise and defines the intrinsic spatial resolution
of the Bragg demagnifier, given by the incident Darwin width w,., see Eq. 3.2.

The PCTF for the demagnifier is obtained by inserting the propagator H (k) into Eq. 2.73:

PCTF(k) = |A*(0)A(k)| sin (:;)zeff + ¢>A) : (5.10)

where k?z.g = k%ZGﬁVw + kzgzefgy. The crystal reflection curve enters through an envelope
function given by |A*(0)A(k)| and a slowly varying phase factor ¢ 4. Similarly, the amplitude
contrast transfer function is obtained by replacing the sine with a cosine.

5.2.2. Shift-variant image formation

For a more precise description of the image formation, the nonlinear dependence of koyt (kin )
is considered. The mapping procedure described in Section 3.3 for the Bragg magnifier, which
describes the transformation of a plane wave incident on a crystal into a plane wave diffracted
by the crystal, is equally valid for the Bragg demagnifier. For clarity, only the 1D case is
discussed here, but the considerations can easily be transferred to the 2D case by treating
the x- and y-directions as independent. The nonlinear dependence of the outgoing spatial
frequencies on the incident frequencies is given by Eq. 3.9, which is repeated here:

k'in
kout (kin) = ko sin (ﬁout — arccos [cos (Bin — arcsin k:) + ¢0s Bout — COS ﬁinD . (5.11)
0

A sketch for the demagnifier is given in Fig. 5.3a. The magnification of the spatial frequency
distribution is further illustrated in Fig. 5.3b. The wavefield propagated by the distance zo
behind the demagnifier is given by

2 2
ki . kgut (Fin)

/ — i/ £ . . _Z2k 41 ZT'Z2 7;kout(kin)if dkout(kin) .
g(@) =5 | flkim) Alkin) -e 0™ e 0 e BT dki,.  (5.12)

5.2.3. Aberration-free demagnifier and high dose efficiency

The nonlinear dependence koyt(kin) leads to a shift-variant behavior in the image formation
(Section 3.3). Shift-invariance can be restored by re-magnifying the propagated wavefield
behind the demagnifier with a Bragg magnifier of the same crystal type and the same (but
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Figure 5.3.: Sketch for the calculation of kout(kin) for the Bragg demagnifier. a Mapping
between incident and outgoing spatial frequencies ki, and kous, which can be obtained in analogy to
the Bragg magnifier. b Illustration of the magnification of the spatial frequencies, which corresponds
to a demagnification in real space. In linear approximation, the incident waves k;, are magnified by a
factor of M.

positive) asymmetry angle (see Fig. 5.4b). This follows from the fact that a plane wave with
spatial frequency ki, incident on the demagnifier results in a plane wave with the same spatial
frequency kout = kin, as can easily be derived from Eq. 5.11. Only the phase and amplitude
are altered by the crystals and the free space propagation. The wavefield at a distance z3

behind the Bragg magnifier is given by

gBM 27T/f 1n 1n kaacd]fm (5.13)
= f(z) x h(z) (5.14)
with the propagator
kD ch)ut(kin)
H(/‘Jin) — A(kin)e 2k0(21+23) T 22 (5.15)

Here, A(kiy) is the product of the complex amplitude ratios of all four crystals. The final
image can thus be described by a convolution of the object wavefield f(x) with the PSF
h(z) = F~[H (kin)], which simplifies phase reconstruction and allows the use of conventional

reconstruction techniques.

Even more importantly, the combination with a Bragg magnifier allows the detection of the
propagated image with a highly-efficient large-area detector, see Chapter 4. This further
increases the dose efficiency of the proposed technique, rendering it a potential candidate for
low-dose medical diagnostics such as the early detection of breast cancer or other diseases,

especially in conjunction with currently emerging compact X-ray sources [196-198|.
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a > z
demagnifier |
high-resolution detector
sample z
low-resolution and
highly-efficient detector
conditioner \
b e Z 7
demagpnifier | 1§
Z magnifier

conditioner

Figure 5.4.: Schematic of the combination of a Bragg conditioner and a Bragg demagnifier
in 1D. First, the beam is magnified to obtain a sufficiently large field of view (FOV). After demagnifi-
cation of the diffracted wavefield behind the sample by the demagnifier, free space propagation leads to
strong interference of low spatial frequencies within a short distance. The generated intensity pattern
can either a be recorded by a high-resolution indirect detector or b be re-magnified by a subsequent
Bragg magnifier. The Bragg magnifier allows the use of an efficient large-area detector. In addition,
the Bragg magnifier compensates for the shift-variance of the demagnifier if the same type of crystals
is used. Partly reproduced from Ref. [195].

5.2.4. Bragg conditioner

Imaging of low spatial frequencies by PB-PCI with a Bragg demagnifier requires a monochro-
matic X-ray beam with sufficient transversal coherence and a large beam cross section to
illuminate the centimeter-sized sample. To achieve a large FOV, a Bragg conditioner is placed
in front of the sample, see also Fig. 3.2a. In addition, the Bragg conditioner can counteract
dispersion effects induced by the demagnifier, as will be discussed in Section 5.3. Fig. 5.4a
displays a 1D sketch of the setup with a Bragg conditioner, a demagnifier and high-resolution
detector that records the demagnified image after propagation. In Fig. 5.4b, a Bragg mag-
nifier has been added behind the demagnifier so that the shift-invariance is restored and the
image can be acquired with a highly efficient large-area detector. A schematic for the 2D case
is depicted in Fig. 5.5.
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Bragg demagnifier

......

Bragg conditioner

s
z

detector

Bragg conditioner

Figure 5.5.: Sketch of a 2D Bragg demagnifier. The incident beam is magnified by a Bragg
conditioner in 2D to obtain an illuminated area of several centimeters despite the millimeter-sized beam
cross section typically provided by synchrotrons. The wavefield behind the sample is then demagnified
and a detected by a high-resolution detector or b re-magnified by a Bragg magnifier and detected by
an efficient large-area detector. The order of the horizontal and vertical crystals in each component
(conditioner, demagnifier, magnifier) may also be changed. Partly reproduced from Ref. [195].

5.3. Influence of Bragg demagnifier on transverse coherence

In the following, the influence of the Bragg demagnifier on the transverse coherence and
thus on the source blur is discussed. The source blur depends on the angular distribution of
the plane waves illuminating the sample and the propagation distance z between the sample
and the detector (see Section 2.2.5). The former is defined by the ratio of the physical
source size s and the source-to-sample distance [. Since a change in the angular distribution
alters the source blur, the term angular source size is used here synonymously to the angular

distribution seen by the sample.

From the perspective of a monochromatic wavefield, the Bragg conditioner in front of the
sample reduces the angular distribution of the incident X-rays. However, for polychromatic X-
rays, the total polychromatic angular distribution is increased by asymmetric diffraction [199,
200]. Since the radiation behind the monochromator has a small but finite bandwidth of
~107%4, the total polychromatic angular distribution must be considered here. The following
section shows that the demagnifier allows taking advantage of the monochromatic reduction
in the angular source size provided by the conditioner and that the demagnifier reduces the

source blur, which is a crucial advantage for enabling long propagation distances.
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5. Bragg demagnifier for propagation-based phase contrast imaging of large samples

5.3.1. Dispersion effects

First, the influence of the Bragg conditioner and demagnifier on the angular source size is
considered. An example of the propagation of the angular and energy-dispersive intensity
distributions behind the source, monochromator, Bragg conditioner and demagnifier crystals
is shown in Fig. 5.6 for the center of the crystal surface. For the simulation, the amplitude
and spatial frequency k of each plane wave coming from the source with energy E and angle
0 = arcsin(k/kg) is tracked on its way through the crystal arrangement. The nonlinear
mapping between the incident waves and the diffracted waves is taken into account (Eq. 5.11).
As described in Section 2.2.5, the amplitudes of the waves emanated from the source can
be modeled by a normal distribution with a standard deviation o = ko - s/l. The source
distribution is assumed to be identical for all energies. In Fig. 5.6a, the source distribution is
shown for the horizontal source size s;, = 164 pm and a source-to-sample distance of [ = 86 m
of the P23 beamline. Fig. 5.6b-d illustrates the FE-k-intensity distribution of the X-rays
behind each optical element, which are a double-crystal Si (111) monochromator followed
by a conditioner and a demagnifier crystal with asymmetry angles o = 5.92° and —5.92°,
respectively, and using the Si (220) reflection. All crystals are in a non-dispersive arrangement,
i.e., the normal vectors e, to the crystal surfaces point alternately in opposite directions. The
crystals are all aligned to an energy of 29keV. The plots are shown as a function of spatial
frequency k rather than angle 6, although the latter is more commonly used, because using
k allows the values to be directly related to the object frequencies.

For the sufficiently small source sizes provided by 3" generation synchrotrons, the monochro-
mator acts as an energy filter and transmits only a small energy bandpass of the order of 10™*
(Fig. 5.6b). The subsequent conditioner crystal transmits the entire incident beam due to
its large angular acceptance. The angular acceptance of the conditioner crystal is indicated
by the white area in Fig. 5.6b. From a monochromatic point of view, the k-values are com-
pressed by the conditioner by a factor of M, as can be seen in Fig. 5.6c. However, waves of
different energies are diffracted to different angles, whereby only the monochromatic angular
distribution is reduced, not the polychromatic angular distribution. In fact, the total angular
source size behind the conditioner is even slightly increased. This is shown in Fig. 5.7, where
the intensity was integrated over the energy and is depicted as a function of k. The colors
indicate the energy composition and show the dispersion over the angular range. The distri-
bution behind the conditioner (middle row) is expanded by a factor of ~ 3 for the example
shown at a central energy of 29keV. Next, the demagnifier magnifies the monochromatic
k-values to their original angular distribution, while inverting the energy-dependent shift. As
a result, the E-k-distribution behind the demagnifier is the same as behind the monochroma-
tor (except for a slight attenuation). Thus, the Bragg demagnifier makes it possible to take
advantage of the reduction in the monochromatic angular distribution caused by the Bragg

conditioner. In other words, if the source size is small enough to provide reasonable phase
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Figure 5.6.: Dispersion. Intensity distribution over E and k behind a the source, b the monochro-
mator, ¢ the conditioner and d the demagnifier. The color shows the energy. The intensity distribution
is shown for the horizontal source size of P23 of s;, = 164 um and the settings used in the proof-of-
concept experiment, i.e., a source-to-sample distance of [ = 86 m, a double-crystal Si (111) monochro-
mator aligned to 29keV, and a conditioner and a demagnifier Si (220) crystal with & = £5.92°. In
panels b-d, the acceptance angles of the conditioner and demagnifier crystals are indicated by the

white area.

contrast in free space propagation a for small sample, the same holds true for a large sample

demagnified with the demagnifier and imaged at the same effective resolution.

5.3.2. Reduction of source blur

Knowing that the total angular distribution of the plane wave illumination is not affected by
the combination of conditioner and demagnifier, the question remains how the magnification
of the spatial frequencies affects the final image quality compared to conventional PB-PCI

at the same effective propagation distance. In general, the finite source size leads to source

95



5. Bragg demagnifier for propagation-based phase contrast imaging of large samples

blur in the image (Section 2.2.5). The source blur increases with the propagation distance
between the sample and the detector and with the spatial frequency k. Since the demagnified
wavefield experiences the original source size, the source blur in the demagnified image is a
factor of M larger compared to the original image at the same physical propagation distance.
Simultaneously, demagnification increases the effective propagation distance by M?2. In total,
the source blur for the demagnifier is thus improved by a factor of M compared to conven-
tional PB-PCI at the same long effective propagation distance. This also becomes clear from
Eq. 2.68. Recall that the image degradation is given by

_ 022212

Lky=e 0 .I°Mk).

The standard deviation of the Gaussian envelope is given by ko/(0z) = [/(sz) for a conven-
tional propagation-based phase contrast image at the physical propagation distance z. With
the demagnifier, the same image contrast of the coherent wavefield is attained after the short
physical distance z/M?, while the small spatial frequencies k of the object are magnified by
M. In total, the source blur for the demagnifier therefore becomes M1 /(sz). This corresponds
to an effective source size of

Seff = s/ M. (5.16)

The demagnifier thus reduces the source blur by a factor of M, allowing for longer effective

propagation distances before the onset of source blur.

The maximum useful propagation distance before the onset of source blur can be calculated
using Eq. 2.69. As an example, the maximum distances for the horizontal and vertical source
sizes of the P23 beamline are z, = 17m and z, = 72m for conventional PB-PCI with a pixel
size of 50 pm, while employing a demagnifier with M = 25, the maximum distances would
considerably increase to z; = 420m and z, = 1800 m.
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Figure 5.7.: Projected angular source size and dispersion. Angular intensity distribution
behind the monochromator, conditioner and demagnifier, extracted from Fig. 5.6 and plotted as a
function of k. The colors indicate the energy composition at each angle. The graph shows that although
the monochromatic angular distribution is reduced by M behind the conditioner, the overall angular
source size is increased. This is also predicted by the divergence formula given by J. Hartwig [199],
which is shown in gray (for details, see Appendix A.7). Behind the demagnifier, the distribution is
the same as behind the monochromator, showing that the demagnifier counteracts the angular spread
of the conditioner. The curves are shifted vertically for better visibility.

5.4. Simulation of image formation

To visualize numerically the validity and benefits of the proposed approach, the image inten-
sity is simulated for conventional PB-PCI and using a Bragg demagnifier. First, a 1D example
is given, computed for ideal coherence, to show the increase in image contrast and the effects
of shift variance. Second, a 2D object is simulated including source blur to illustrate not
only the increase in contrast for the demagnifier but also the reduction of source blur. The
simulation is performed with the framework derived in Chapter 3, which is implemented in
such a way that an arbitrary number of crystals with both positive or negative asymmetry

geometry can be added one after the other.

Fig. 5.8 shows 1D simulations for three Gaussian-shaped pure phase objects with a maximum
phase shift of 7, placed 15 mm apart from each other (Fig. 5.8a). The simulation is performed
for perfect coherence, an energy of 29keV and the crystals used previously in this work
(v = £5.92°), resulting in a demagnification factor of M = 25.7. With conventional PB-PCI,
the contrast at 1 m propagation distance is very low (Fig. 5.8b, note the intensity values),
while 1 m propagation behind the demagnifier results in strong contrast (Fig. 5.8¢c). With
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conventional free space propagation, a distance of 25.72 - 1m = 660m would be required to
achieve comparable image contrast (Fig. 5.8d). In the demagnifier image, the shift-variance is
noticeable in the different intensities of the interference patterns, which increase from right to
left, according to the orientation of the crystal. Adding a Bragg magnifier at a distance of 1 m
behind the demagnifier restores the shift-variance (Fig. 5.8¢). The PCTF for Fig. 5.8b and e
is shown in Fig. 5.8f. Conventional PB-PCI at 1 m generates almost no contrast (orange), in
agreement with the simulation. In contrast, the PCTF of the demagnifier after 1 m reaches
high values and corresponds to the PCTF for conventional PB-PCI at 660 m, overlaid by the
crystal amplitude reflection curve (blue, black envelope). A further example for the same 1D
object measured at even higher demagnification (M = 71.3) is given in Fig. A.5 (Appendix).

As a 2D example, the image intensity is simulated for the pure phase object depicted in
Fig. 5.9a for conventional PB-PCI at physical propagation distances of z = 36 m and z =
660 m (Fig. 5.9b, d) and an energy of 30keV, and using a Bragg demagnifier with a demag-
nification factor of M = 25.7 (E = 29keV) and M = 71.3 (E = 30.5keV) and physical
propagation distances of z, = 0.8m, z, = 1m, corresponding to effective propagation dis-
tances of zer, = 530m, zefry = 660 m OF Zegr, = 4km, 2o, = 5km, respectively (Fig. 5.9¢, e).
The simulations account for source blur, with a source-to-sample distance of 86 m and a source
size of 38 um, as derived in Section 3.4.5 for the vertical source size of P23. This value was
used here for both the horizontal and the vertical source size, thereby simulating an achievable
contrast at P23 towards the perspective PETRA IV synchrotron radiation facility [201]. A
simulation example for the current values at PETRA III is given in Fig. A.6, revealing the
benefits of the reduced horizontal source size expected for PETRA IV. While conventional
PB-PCI at 36 m yields only vanishingly low contrast (Fig. 5.8b), the demagnifier with an
effective propagation distance of z.s = 660 m significantly increases the contrast (Fig. 5.8¢).
For a hypothetical physical propagation distance of 660 m in conventional PB-PCI, the source
blur strongly impairs the image quality and resolution (Fig. 5.8d), which is not the case for
the demagnifier, since the source size is effectively reduced by a factor M. Further increasing
the demagnification factor leads to even stronger image contrast (Fig. 5.8¢). Conventional
PB-PCI at 5km would not yield any contrast at all due to source blur, and is therefore not
shown here. The contrast enhancement obtained by the demagnifier is also evident in the line
profiles shown in Fig. 5.8f. An appropriate measure for the increase in dose efficiency is the
mean squared deviation of the image (see also Section 4.2.4). In comparison to the longest
currently available physical propagation distance of 36 m at BM18 [17, 193, 194] at the above-
mentioned parameters of P23 and for this example object, a loss in dose efficiency of 0.2 is
extracted for conventional PB-PCI at 660 m (due to source blur), but a gain in dose efficiency
of 94 and 358 for the Bragg demagnifier with M = 25.7 and 71.3, respectively. Compared
to a physical propagation distance of 10 m (not shown in Fig. 5.9), as used, e.g., at ID17 at
the ESRF [189, 202] and at the Imaging and Medical Beamline (IMBL) of the Australian
Synchrotron [191], the extracted gain in dose efficiency is a factor of 2, 488, and 1909 for
conventional PB-PCI at 660 m and the demagnifier with M = 25.7 and 71.3, respectively.
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Figure 5.8.: Simulated image intensities for conventional PB-PCI and the Bragg demag-
nifier at 29keV and M = 25.7. a Pure phase object consisting of three Gaussian-shaped peaks
with a separation of 15 mm. b Image intensity after 1 m conventional free space propagation. ¢ Image
intensity at 1m behind the demagnifier with o = —5.92°. The image contrast is strongly increased
(note the intensity scale). The average intensity is slightly reduced due to the finite reflectivity of
the crystal. d To achieve a similar contrast in conventional PB-PCI, a propagation distance of 660 m
would be required. e Re-magnifying the propagated wavefield behind the demagnifier with a Bragg
magnifier with the same but positive asymmetry angle counteracts the shift-variance. In addition,
the Bragg magnifier allows the resulting shift-invariant image to be acquired with a highly-efficient
large-area detector. f PCTF at a physical distance of 1m for conventional PB-PCI (orange) and for
the demagnifier (blue, black envelope). Except for minor influences of the complex crystal reflection
curve, the PCTF of the demagnifier corresponds to the free space PCTF at 660 m, multiplied by the
envelope function. All simulations have been performed for perfect coherence.
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Figure 5.9.: Simulated 2D image intensities for conventional PB-PCI and the Bragg
demagnifier. PB-PCI of the pure phase object shown in a for b, d conventional PB-PCI at 36 m
and 660 m propagation distance, respectively, and c, e a Bragg demagnifier at 29keV and 30.5 keV
with physical propagation distances of z; = 0.8m, 2z, = 1m, corresponding to effective propagation
distances of zerz = 530m, zegry = 660m and zeg, = 4km, zegy = Skm. The simulations take into

account source blur (for details, see text). f Line profiles along the lines marked in b-e.
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5.5. Proof-of-concept experiment - 0.6 km propagation distance

5.5. Proof-of-concept experiment - 0.6 km propagation distance

A 2D Bragg demagnifier was realized as a proof-of-concept experiment at the P23 beamline
at PETRA III, DESY, Hamburg, Germany. The following sections describe the imaging

properties of the demagnifier crystals, the setup, and the experimental results obtained at an
operating energy of 29 keV.

5.5.1. Imaging properties

The imaging properties of the demagnifier are defined by the crystal material, the chosen
reflex, the asymmetry angle, the size of the crystals, and the operating energy. Here, the
same type of crystals was used as for the Bragg magnifier experiments presented in Chapter 3
and Chapter 4, i.e., an asymmetry angle of @« = —5.92° and dimensions of 21 cmx8 cm x 2 cm.
Fig. 5.10 gives an overview of the crystals’ imaging properties, and Tab. 5.1 lists the parame-
ters for several energies. The demagnification factor M defines the gain factor M? in effective
propagation distance (Fig. 5.10a). Theoretically, effective propagation distances of several
kilometers can be reached. In practice, the setup requires a very high angular stability due to
the extremely small angular acceptance of the demagnifier crystals (< 2prad). The angular
acceptance w,. decreases with increasing energy, which reduces the resolution (Fig. 5.10b).
The input and output FOVs are set by the incident and outgoing angles Si, and Boyut and the
size of the crystals (Fig. 5.10c). The proof-of-concept experiment was performed at 29 keV.
At this energy, the demagnification factor is M = 25.7, resulting in an increase of the prop-
agation distance by M? = 660 and an effective pixel size of 37 pm in the indirect detector.
The resolution limit at this energy is Apin = 68 pm.
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Figure 5.10.: Imaging properties of the Si (220) demagnifier used in the experiment.
Energy-dependence of a the demagnification factor M and the resulting gain M? in effective propa-
gation distance, b the angular acceptance given by the Darwin width w,. and the resulting resolution
limit Apin, and ¢ the input and output FOV in front of and behind the demagnifier crystal, respectively.
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5. Bragg demagnifier for propagation-based phase contrast imaging of large samples

E (keV) | input FOV (mm) | wee (prad) | A (nm) | M | Gain factor M?
27.0 46.5 1.9 48.7 13.4 178
28.0 45.6 1.6 56.1 17.7 312
29.0 44.8 1.3 67.8 25.7 659
30.0 44.0 0.9 91.0 45.4 2057
30.5 43.7 0.7 116.4 71.3 5090
31.0 43.3 0.4 190.4 144.7 20947

Table 5.1.: Imaging parameters for the Si (220) demagnifier used in the experiment (21 cm crystal
length, o = —5.92°). The input FOV, Darwin width w,., intrinsic resolution limit A, demagnifica-
tion factor M and gain factor M? are given for several energies E.

5.5.2. Experimental setup

The setup consists of two conditioner crystals that enlarge the beam in 2D in front of the
sample, a sample stage, two demagnifier crystals and a high-resolution indirect detector sys-
tem to detect the demagnified image after a certain physical propagation distance. A sketch
of the crystal arrangement is depicted in Fig. 5.5a and a photograph of the experimental
demonstrator setup at the P23 beamline is shown in Fig. 5.11. The same type of crystals was
used for the conditioner as for the demagnifier. Each crystal was mounted on a high-precision
hexapod, using the same type of hexapods as in Chapters 3 and 4. Due to the very small
angular acceptance of the demagnifier crystals, the precision and stability of these hexapods
would be too poor for routine use. Still, it was sufficient for being able to prove the working
principle of the demagnifier. The hexapods were mounted on an item frame that was designed
for the experiment (for a 3D CAD illustration, see Appendix A.8). Vertical demagnification
was performed first because the smaller vertical source size allows for a longer propagation

Figure 5.11.: Experimental setup for the proof-of-principle experiment. The synchrotron
beam is magnified by two conditioner crystals, illuminates the centimeter-sized sample, and the wave-
field behind the sample is demagnified by a second pair of crystals. The demagnified image is detected
by a high-resolution indirect detector, placed at a certain distance from the demagnifier, here at 0.9 m
from the first demagnifier crystal. The detector shown in the picture is a LAMBDA 250k detector
(X-Spectrum GmbH, 22547 Hamburg, Germany), which was used for alignment.
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5.5. Proof-of-concept experiment - 0.6 km propagation distance

distance before the onset of source blur. A single photon counting detector was used to
align the crystals. The high-resolution detector (same model as employed in Chapter 4) was
operated with a 5x objective (NA = 0.14, model 378-802-6, Mitutoyo Deutschland GmbH,
41469 Neuss, Germany), yielding a pixel size of 1.44pm in the image plane and of 37 pm
in the object plane, a 24 um thick LSO scintillator and an exposure time of 67 ms. It was
placed at a distance of 22, = 0.9m from the first demagnifier crystal and z3 , = 0.57m from
the second crystal. These distances result in effective propagation distances of zeg, ~ 380 m
and zefy ~ 600m. For a comparison with conventional free space propagation at the same
physical distance, images were additionally acquired without the demagnifier and using a
large-area detector of similar pixel size (49.5 pm, Shad-o-Box 1k HS, Teledyne DALSA, Wa-
terloo, Canada), placed at 1 m from the sample. To prevent saturation of the camera at 67 ms
exposure time, the beam was attenuated by a factor of 500 and the images were averaged
over 20 acquisitions. The tiger salamander (Ambystoma tigrinum) used in the experiment is
a museum specimen that was loaned for the experiment. The mouse liver was obtained from
The Jackson Laboratory, USA. Both specimens were fixed in paraformaldehyde solution and
subsequently stored in 70 % ethanol.

5.5.3. Experimental results and discussion
Increase in image contrast

Example images of several objects were acquired and are displayed in Fig. 5.12 (after flat- and
darkfield correction), namely a blackberry leaf, a mouse liver lobe in a plastic bag filled with
ethanol, and a salamander in a tube with ethanol. The left column shows images obtained with
conventional PB-PCI, the right column presents the demagnifier images. With conventional
PB-PCI, the blackberry leaf exhibits only very weak contrast caused by absorption in the
sample, as shown in the inset (note the large difference in the intensity scale), while the leaf
veins become well visible with the demagnifier (Fig. 5.12a). The mouse liver is not discernible
at all in the conventional image. In contrast, the demagnifier brings to light a net of blood
vessels (Fig. 5.12b). Also, a piece of tape becomes visible on the left of the liver, whereas
in the conventional PB-PCI image, there is no contrast. A similar increase in contrast is
observed for the salamander: in the conventional PB-PCI image, only the bones are weakly
visible, while the demagnifier reveals internal structures (Fig. 5.12¢). The experiment thus

confirms that the demagnifier allows for significantly improved image contrast.

The stripes that appear mainly in the liver and salamander images can be attributed to
crystal polishing artifacts in combination with drifts in the flatfield, which are related to the
limited mechanical stability of the demonstrator setup compared to the very small angular
acceptance of the demagnifier crystals (< 1prad). A dedicated setup for routine applications,

such as recording tomograms, would require an appropriate mechanical stability.
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Figure 5.12.: Comparison of phase contrast imaging using conventional free space prop-
agation (left) and the Bragg demagnifier (right). In both setups, the incident X-ray beam was
expanded in front of the sample using a Bragg conditioner [10] to obtain a sufficiently large illuminated
area, and the physical propagation distance was ~1m. a Blackberry leaf in air. With conventional
PB-PCI, only weak absorption contrast of ~ 2% can be seen at these energies, as shown in the inset
with adjusted gray scale. The demagnifier provides strong propagation-based phase contrast. b Mouse
liver lobe in ethanol. Conventional PB-PCI shows no contrast, while the demagnifier reveals a net
of blood vessels. The tape left to the sample also becomes visible. ¢ Salamander in ethanol. The
demagnifier provides strong image contrast and allows visualization of soft tissues, while conventional
PB-PCI yields only little absorption and no phase contrast. The colorbar indicates the intensity values
of the flat- and darkfield-corrected images. Reproduced from Ref. [195].
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5.5. Proof-of-concept experiment - 0.6 km propagation distance

Contrast contributions

The images taken with the Bragg demagnifier certainly show patterns that are brighter than
the background intensity, indicating constructive interference generated by PB-PCI. However,
at the edges of the crystals, where the background intensity is reduced, other bright patterns
are also observed after flatfield correction, e.g., at the upper edge of the leaf and at the
mouth of the salamander. These artifacts arise most likely due to the curvature of the incident
wavefield, which, at the crystal edges, deviates from the center of the crystal reflectivity curve,
generating diffraction-enhanced contrast [11]. In addition, the presented images partially
contain extinction contrast, as known from analyzer-based imaging [203], which occurs when
X-rays are scattered to angles higher than the crystal’s angular acceptance and are therefore
not transmitted into the image. For example, the dark spots in the salamander, presumably
in the otic region, can be attributed not only to absorption but also to extinction contrast,
since their intensity is reduced by the demagnifier. Extinction contrast can also be observed
in the bones. Note that although the angular acceptance of the demagnifier crystals is small
and therefore sensitive to extinction contrast, there is no average intensity decrease in the
soft tissue regions of the specimens. This implies that valuable information is encoded in low
spatial frequencies within the angular acceptance, which is now made visible by the Bragg
demagnifier through the enhanced PB-PCI.

Thon rings as confirmation for the presence of interference

To prove the presence of interference resulting from the increased effective propagation dis-
tance, a plastic spoon with a rough surface was imaged, which acts as a weak phase noise
object. The image formation can thus be described by the PCTF given by Eq. 5.10. The
PCTF for the experimental settings is plotted in Fig. 5.13a, b for the horizontal and vertical
directions, respectively. It is close to zero for conventional PB-PCI (orange), while it exhibits
high values for the Bragg demagnifier (blue). The latter corresponds to conventional free
space propagation with a very long distance of zef, = 380m and zeg, = 600m, superim-
posed by the field amplitude reflection of the crystals (black). In the Fourier spectrum of
the plastic spoon, Thon rings become visible, see Fig. 5.13c, d. They correspond to spatial
frequencies at which the PCTF is close to zero and are additional evidence for the presence of
interference effects (see also Section 2.2.6). From the position of the Thon rings, the defocus
and astigmatism can be extracted [204], as commonly done in electron microscopy [74, 205].
Here, propagation distances of zeg, ~ 380 m and z.g, ~ 600 m were extracted, in accordance
with the experimental settings.

Source blur

Next, the effect of source blur on the image degradation is considered. As discussed in
Section 5.3, the source blur in the demagnified image propagated to the physical distance z
(and the effective distance z.g = M?22) is expected to be a factor of M better than the source

105



5. Bragg demagnifier for propagation-based phase contrast imaging of large samples

a horizontal propagation b vertical propagation

P T L L T T e —

- o

£ 01

U \/ \/

[a

—1
—z=1m —Zeff—380m |A* 0)A(k)| —z=1m = z{f=0600m
T T T T T T T
—27/50 pm 0 27r/50 pm —27/50 pm 0 27 /50 pm
k k
c ____ [/l d

1.5
1.0
0.5

Figure 5.13.: PCTF with Bragg demagnifier. a, b PCTF of weak phase objects at moderate
resolution for conventional PB-PCI (orange) and using the Bragg demagnifier (blue, black envelope)
for the settings used in the experiment, i.e., 2o, = 0.57m, 22, = 0.90m, E = 29keV and M = 25.7,
resulting in effective propagation distances of zeg » ~ 380 m and zef,y ~ 600 m in horizontal and vertical
direction, respectively. ¢ Plastic spoon imaged with the Bragg demagnifier and d Fourier spectrum
of the area marked in b, plotted as log(|I(k)|). The rough surface of the spoon acts as a weak phase
noise object. The elliptic Thon rings originate from the roots of the PCTF with z.g, ~ 380m and
Zeft,y ~ 600m. The first two zero-crossings are indicated in blue. The contrast degradation to 1/e
at z; = 0.57m and z, = 0.90m due to the finite source size is shown by the outer green line. The
expected contrast degradation at a hypothetical physical propagation distance of z; = z.g; is indicated
by the inner green line. The red circle shows the 1/e contrast degradation by the optical microscope.
Reproduced from Ref. [195].

blur of the large image at a hypothetical physical propagation distance of M?z. This effect
is demonstrated in Fig. 5.13d: In Section 3.4.5, source sizes of s, = 164pm and s, = 38 pm
have been extracted for the P23 beamline. The resulting contrast degradation to 1/e at the
physical propagation distance of z, = 0.57m and z, = 0.90m is depicted by the outer green
line (Eq. 2.68). A hypothetical physical propagation distance of z.g; without demagnifier
would suppress most of the image information, as shown by the inner green line. As predicted,
signal is present in the Fourier spectrum up to the outer green line in horizontal direction.
In vertical direction, the source blur is also strongly increased compared to the inner green
line. However, the signal does not reach out to the outer green line. This degradation results
from the limited optical transfer function (OTF) of the indirect system. The 1/e degradation
by the OTF is indicated by a red line (Eq. 2.93). Adding a Bragg magnifier and a large-area
detector behind the demagnifier would improve the OTF and the detection efficiency and

presumably reveal even more Thon rings.
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5.6. Prospects of Bragg demagnifiers

As demonstrated above, the proposed technique enables a strong increase of propagation-
based phase contrast for low spatial frequencies by drastically increasing the effective propa-
gation distance. Achieving high phase contrast at low spatial frequencies is crucial for imaging
large specimens at moderate or low resolutions of tens to hundreds of micrometers. In ad-
dition, the source blur is reduced compared to a hypothetical image at the same physical
propagation distance. The achieved image contrast would otherwise only be accessible by
unrealistically long synchrotron beamlines and propagation distances of hundreds of meters
up to kilometers. In combination with an additional Bragg magnifier, the method there-
fore promises highest dose efficiency for large soft tissue samples. Another advantage of a
demagnifier is the vanishing absorption of X-rays in air along the short physical distance.
The transmission of X-rays through 600 m or 5km of air at 30keV would be I/Iy = 0.2% or
0.02 %, respectively. A transmission of 95% would require a vacuum of 2mbar or 0.2 mbar
along the flight tube.

A future dedicated setup should address several technical aspects, which were encountered in
the course of the experiment with the presented demonstrator setup. Due to the very small
Darwin width of the crystals (< 2prad), a high angular mechanical stability and precision is
required. With an accordingly high mechanical stability in the 0.1 prad range, in principle
even higher demagnifications of up to about M = 150 would be achievable, which would allow
for even longer effective propagation distances of up to zeg ~ 20km (see also Tab. 5.1). In
addition, the horizontal and vertical stripes observed in the images of the proof-of-concept
experiment, which are presumably caused by the surface of the crystals, have to be counter-
acted, e.g., by better polishing or more sophisticated flatfield correction. Moreover, although
the size of the current crystals would allow for a FOV of 4.5cmx4.5cm, the actual FOV is
currently limited to ~2cm vertically and ~ 4 cm horizontally, presumably due to dispersion
and a curvature of the wavefield at the edges of the crystals. These effects may be minimized
by using the same crystal material and reflex for the monochromator, and by collimating the
X-ray beam in front of the Bragg conditioner, e.g., with compound refractive lenses [206] or
Kirkpatrick-Baez mirrors [207]. Then, the crystals can be replaced with larger ones to fur-
ther increase the FOV. Furthermore, the Bragg demagnifier may be designed for even higher
energies in order to reduce extinction contrast and to increase the possible sample thickness.
In this way, the method may render useful for single-shot in vivo imaging of large biological
samples or low-dose medical diagnostics, e.g., for the early detection of breast cancer or other
diseases, especially in combination with currently emerging compact X-ray sources [196-198].
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6. Conclusion and outlook

The aim of the present work was to push the limits of dose-efficient X-ray imaging of soft
materials and tissues both at high, micrometer resolution and at moderate resolutions of tens
to hundreds of micrometers. The imaging process can be divided into three main steps: First,
the sample information is conveyed to the incident X-ray wavefield. Second, the information
encoded in the wavefield is made accessible by generating detectable image contrast. Third,
the provided information is extracted during image detection. This thesis addressed the
optimization of each of these steps with respect to the dose deposited in the sample in order
to achieve highest dose efficiency.

As a general approach for the generation of information (step 1), the phase shifting prop-
erties of the sample can be exploited, since they are typically several orders of magnitude
stronger than attenuation and therefore have a high potential for reducing the dose. For the
provisioning of the sample information (step 2), phase contrast methods convert the phase
information encoded in the wavefield into measurable intensity contrast. With the advent
of high-brilliance third-generation synchrotron radiation sources, propagation-based phase
contrast imaging (PB-PCI) has become a widely used and effective technique, and was the
method of choice here due to its simplicity, robustness, and the fact that it allows acquisi-
tion of single-shot images. In PB-PCI, the contrast is generated by self-interference of the
propagating wavefield behind the sample, which increasingly evolves into intensity contrast as
the propagation distance increases. To extract the provided information (step 3), a detector
system that offers the desired spatial resolution is employed.

In this work, these three main aspects were optimized in view of the dose deposition in the
sample. Since the contrast formation in PB-PCI and its detection depend strongly on the
spatial frequency, the task was divided into two resolution regimes, namely high, micrometer
resolution, and moderate resolutions of tens to hundreds of micrometers. These two regimes
come along with distinct challenges. On the one hand, while for high resolution, i.e., large
spatial frequencies, propagation-based phase contrast is readily generatable (step 2), conven-
tional high-resolution indirect detector systems have a limited detection efficiency (step 3).
On the other hand, for PB-PCI of large, centimeter-sized samples at moderate resolution,
i.e., low spatial frequencies, propagation distances between the sample and the detector of
ideally several hundreds to thousands of meters would be required to achieve sufficient image
contrast (step 2).
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The first step was tackled by simultaneously considering the energy dependence of the de-
posited dose and of the phase shift generated by the sample. To overcome the above-mentioned
challenges (steps 2 and 3), the suitability of Bragg crystal optics was considered for both res-
olution regimes. They were found to be well suited to address the different challenges of
both resolution regimes. For high resolution, the propagated wavefield behind the sample
was magnified by a Bragg magnifier and detected by a highly-efficient single photon counting
detector (SPCD), thereby maintaining micrometer resolution and achieving high detection
efficiency. For moderate resolution, a new method has been introduced to allow long effec-
tive propagation distances up to kilometers, thereby generating high image contrast within a
meter-scale setup. This method is based on magnifying the spatial frequency distribution of
the diffracted wavefield behind the sample by image demagnification using a Bragg magnifier
with reversed optical path, i.e., a Bragg demagnifier.

Experimental investigations and demonstrations of the increased dose efficiency were per-
formed for both resolution regimes. For the experiments, the high coherence of the P23
beamline at PETRA III in Hamburg was exploited, and preparatory beamtime was carried
out at the IMAGE beamline of the KIT Light Source in Karlsruhe. The experiments could
demonstrate the increased dose efficiency, which opens new opportunities for studies of dose-
sensitive materials and biological samples up to in vivo imaging and medical diagnostics.

6.1. Dose-efficient high-resolution imaging using a Bragg magnifier

In the pursuit of dose-efficient imaging of small, millimeter-sized samples at high, microm-
eter resolution, X-ray imaging close to the highest possible dose efficiency for PB-PCI was
realized by optimizing the operating energy, the detection efficiency, and the optical transfer
function (OTF) of the detector system. The energy that allows for the highest signal-to-noise
ratio (SNR) per dose was determined to be 30keV for a millimeter-sized soft tissue sam-
ple. For thicker samples, the ideal energy increases slightly. The low detection efficiency of
high-resolution scintillator-based indirect systems at these energies can be overcome by direct
magnification of the propagated wavefield behind the sample. This allows the detection of the
magnified image by an SPCD with a detection efficiency of nearly 100 % while maintaining
high, micrometer resolution despite the rather large pixel sizes of SPCDs. Coherent magni-
fication of the X-ray wavefield was realized by a Bragg magnifier. In addition to the high
detection efficiency, the combination of a Bragg magnifier and an SPCD provides a constantly
high OTF over all spatial frequencies up to the micrometer resolution limit. In contrast, the
OTF of the objective in indirect systems decreases significantly with increasing spatial fre-
quencies. In sum, since the crystals’ reflectivity is nominally above 90 %, the Bragg magnifier
(BM) system allows operation close to the highest possible dose efficiency for PB-PCI.

After a theoretical description of the image formation process in a Bragg magnifier, a BM
system was designed according to the considerations of dose efficiency optimization. The sys-
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6.2. Bragg demagnifier for dose-efficient imaging at moderate resolution

tem consisted of two asymmetrically cut crystals with an operating energy around 30 keV and
a highly-efficient GaAs SPCD. An experimental characterization of the developed BM sys-
tem showed micrometer resolution, the expected magnification factors, and a good agreement

between image simulations and experiment.

An experimental comparison of the developed BM system with a conventional high-resolution
indirect detector system at the same energy revealed a spatial frequency dependent gain in
dose efficiency, which reached more than two orders of magnitude at the decisive spatial
frequencies close to the resolution limit. Considering the fact that the crystal reflectivity of
over 90 % was confirmed experimentally, and that the measured SNR of the BM system was
close to the simulated input SNR, it could be concluded that the BM system operates close
to the highest possible dose efficiency.

The high dose efficiency of the BM system expands the horizons of imaging biological and
other dose-sensitive samples, creating opportunities for substantially increasing observation
times in in vivo and in situ imaging. As a pilot application, the developed system was
applied to an in vivo behavioral study of parasitoids wasps with prolonged observation times,
revealing their behavior before and during emergence from their host eggs.

As demonstrated by the pilot study, the BM system in its current implementation can readily
be employed for dose-efficient investigations of biological samples or soft materials. Yet, an
optimized setup may enable an even higher mechanical stability and a larger field of view
(FOV) to further increase the reliability and application range of the method. To increase
the FOV, both the size of the crystals and the active area of the SPCD would have to be
increased. Furthermore, it may be necessary to collimate the incident beam, e.g., using
compound refractive lenses [206] or Kirkpatrick-Baez mirrors [207] in order to counteract
the curvature of the wavefield at the crystal edges, which results from the finite distance
between the source and the BM crystals and causes improper illumination at the crystal
edges, especially for accordingly large crystals. Finally, the steps performed during crystal
alignment could be automated to simplify the user experience. In this way, high-resolution
PB-PCI with highest dose efficiency can become routine in the biological and materials science
communities.

6.2. Bragg demagnifier for dose-efficient imaging of large samples
at moderate resolution

Although the above approach significantly improves dose efficiency in high-resolution X-ray
imaging, high doses are still required due to the high resolution. Imaging at low resolution
requires less dose per se, since the dose for a desired SNR scales with the square of the
resolution. Keeping the dose to a minimum is especially important for medical diagnostics.
Small animal in vivo imaging would likewise benefit from a reduced dose at the expense of
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lower resolution. However, the generation of propagation-based phase contrast for low spatial
frequencies would require unrealistically long propagation distances between the sample and
the detector of hundreds to thousands of meters. The second part of this work was therefore
devoted to enhancing image contrast in PB-PCI for low spatial frequencies.

For this purpose, a new technique was proposed to generate propagation-based phase contrast
within a meter-scale setup. By magnifying the spatial frequency distribution behind the
sample, the effective propagation distance is increased by a factor of M?. In this way, strong
image contrast is obtained within a short physical propagation distance. Simultaneously, the
source blur is reduced by a factor of M, making imaging at such long effective propagation

distances usable in the first place.

The magnification in reciprocal space is tantamount to a demagnification in real space, which
was realized here by a Bragg demagnifier. The image formation with the Bragg demagnifier
was treated theoretically in analogy to the formalism described previously for the Bragg
magnifier. By re-magnifying the propagated wavefield behind the demagnifier with a Bragg
magnifier of the same crystal type, the propagated wavefield can be detected in a dose-efficient
manner. Moreover, shift-variance effects can be counteracted, as was shown theoretically and
by image simulations. A Bragg conditioner in front of the sample allows a large illuminated
area at the sample position although synchrotron beams typically have diameters of only a
few millimeters. In addition, it was shown that the conditioner reduces the monochromatic
divergence, which can, however, only be exploited in combination with a demagnifier, since
the latter inverts the energy-dependent shift of the Bragg angle. Image simulations including
source blur could show an increase in dose efficiency of two orders of magnitude compared
to the currently longest available beamline BM18 at the ESRF with a physical propagation
distance of 36 m.

The working principle of the proposed method was demonstrated by a proof-of-concept ex-
periment. The previously developed Bragg magnifier was used as a Bragg conditioner in front
of the sample, and the setup was extended by two additional crystals of the same type, but
in the opposite direction, serving as demagnifier crystals. After free space propagation of
the demagnified wavefield, the image was recorded with a high-resolution indirect detector
system. The strong increase in image contrast achieved with the demagnifier was demon-
strated on several biological samples. In addition, the expected improvement in source blur
was observed.

Since the crystals act as a frequency filter, also two other types of contrast can appear in
the images. First, strongly scattering components in the sample are not reflected by the
crystals due to their limited angular acceptance, resulting in extinction contrast. Second, if
the incident beam is not centered to the crystal reflection curve, diffraction-enhanced contrast
forms. Future research should address the suppression or exploitation of these other two types
of contrast.
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6.2. Bragg demagnifier for dose-efficient imaging at moderate resolution

In conclusion, the Bragg demagnifier appears to be a valuable candidate for dose-efficient
X-ray imaging of large samples at moderate resolution. The proposed technique paves the
way for low-dose studies of large, centimeter-sized radiation-sensitive samples, especially in

the context of small animal in vivo and biomedical soft tissue imaging.

A future dedicated setup should address several aspects in order to facilitate routine usage.
The crystal mechanics require an angular stability and precision < 0.1 purad due to the small
angular acceptance of the crystals, which is a factor M smaller than the corresponding mag-
nifier crystals. As for the Bragg magnifier, larger crystals will further increase the FOV.
Efforts should also be placed on achieving an even higher quality of the crystal surfaces. Be-
sides, an in-line conditioner in front of the sample will facilitate horizontal sample movement.
From a scientific perspective, the imaging performance may be characterized in more detail,
especially with respect to the occurrence of extinction contrast and in comparison with other
phase contrast techniques for moderate resolution, e.g., grating- and speckle-based imaging [8,
9, 12-14, 208]. The formation of extinction and diffraction-enhanced contrast may be reduced
by using even higher energies and by employing a collimator to reduce the curvature of the
incident beam, respectively. In parallel with instrumental advances, PB-PCI reconstruction
techniques need to be adapted to the rather large phase shifts of large samples [76, 87].

In the future, highest dose efficiency can be achieved by detecting the demagnified wavefield
after propagation with a BM system as developed in the first part of the thesis. The high
coherence of currently emerging fourth-generation synchrotrons will facilitate even longer
effective propagation distances. Ultimately, combining the technique with compact X-ray
sources of sufficient coherence may further extend its application area up to low-dose medical
diagnostics, e.g., for the early detection of breast cancer or other diseases.
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A. Appendix

A.1. Explicit form of the dispersion curve

For a graphical understanding of the dispersion equation (Eq. 2.29), its intersection with
the scattering plane is plotted in Fig. 2.2 for coplanar geometry. The procedure is shortly
outlined here. The aim is to express the coordinate K, from Eq. 2.29 as a function of the
coordinate K. Without loss of generality, the coordinate system is chosen in such a way that
the scattering plane lies in the z-plane. Also, the reciprocal lattice vector h is parallel to the
x-axis, i.e., h = (h,0, O)T, the reciprocal lattice point O is at —h/2 and the reciprocal lattice
point H is at +h/2, see Fig. A.1. With Ko, = K; —h/2, Koy = K, and using Ky = K,+h,

the dispersion equation
h\? h\?
[Q@—2>+Jﬁ—ﬁﬂ-[@g+2>44@—4@]—%C%m@_0 (A.1)

is solved for K, resulting in

h2
.@:K%J@—Zi¢QM+%mmm. (A.2)
Plotting only the real-valued results for K, over K, gives the shape of the dispersion curve.

Typical values for yp are in the order of 1074 to 107% [45]. Since the interaction term is
so small, the gap in the dispersion surface would hardly be visible when plotting the curve
for the physical values. To generate the schematic curves shown in Fig. 2.2, the following
parameters have been used: kg = 1, h = 1, n = 0.8 so that K = kgn = 0.8, and the factor
C%xnXj, was set to 0.01 for o-polarization and 0.005 for 7-polarization.
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o-polarization

—-15 —-1.0 -0.5 0.0 0.5 1.0 1.5
K (a.u.)

Figure A.1l.: Dispersion surface. Definition of the coordinate system used to plot the schematic
of the dispersion surface in Fig. 2.2. For details, see text.

A.2. Source blur

As described in Section 2.2.5, an extended X-ray source leads to a blurring of the final image
intensity. The aim here is to derive Eq. 2.68, which describes the image intensity obtained
when an object is illuminated by an extended X-ray source. For simplicity, only the 1D case
is considered here. Furthermore, shift-invariance is assumed. First, the wavefunction in the

sample exit plane with oblique plane wave illumination k propagated to z is given by
1 7 ikz ji\/k2—k2z
b, (@) = %/woﬁ(k)e ke i/ ko —k=2 g
1 - N
_ 27/f(k: o k‘)emxe“/kg_k%d/{
s
_ 2i / f'(k_)ei(fc—&—k)xei\/k%—(k+l%)2zdk' (A3)
T

Here, it was used that 1;0 (k) = f(k — k), see also Eq. 2.64. The image intensity reads

L @)/ Io = [, 4 ()]

N (21)2 // FORF ()] R0z =ik +R)z i/ K= (k022 =i/ K= (022 g g !
™

R [ T e

K2 (k' —k)k

e ,
2o e’ R0 Cdkdk. (A.4)

For plane waves illuminating the sample incoherently from different directions 12:, the total
image intensity is given by a superposition of the intensities I_; (), weighted by the source

A k2
function. For a Gaussian amplitude distribution S(k) = \/%e_ 207 the total intensity
Yi¥ea
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A.2. Source blur

becomes

e 2021 (z)/Io - dk

2 k—k)k . . . , _ik27k'2z ~
/// eame Tt F(R) )] e R me IR dkdk dk

2
M 2_ 2

f(k) () R)we ™ 30 qRai, (A.5)

I(x)/1y = \/7

2y 271'02

where the integral over k was computed in the last step. In Fourier space, it holds for the
intensity

LK"Y/ Iy = / L(z)/Iy- e *"*dx

(k —k)z 2 B _ ) , . B2 2
o/ / ) fwizony [ et g T ara
7T
26 (k—k' k)
2 12 2

1 - k I 71 k2 3 z( kHQz
= e TR [ e e ke T

m

=9 (k) =[: (k—k"")]*

G2 k12,2

—e 2 kg ICOh(kN)/ (A6>

In the last step, the intensity 7¢°"(k”) for coherent non-oblique illumination was identified.
Thus, incoherent illumination with a Gaussian angular distribution yields a Gaussian envelope
function in Fourier space with variance k% /(02)?, meaning that high spatial frequencies are
increasingly suppressed with z. In real space, Eq. A.6 is a convolution between the image
intensity 7¢°P(z) for perfect coherence and a Gaussian point spread function, see also Eq. 2.67.
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A.3. Derivation of CTF and mean-field CTF by Guigay’s approach

The contrast transfer function (CTF) for propagation-based phase contrast imaging gives a
linear dependence in Fourier space between the image intensity and the object’s phase and
absorption, assuming the object is weak and composed of a single material (¢/a = —6/).
In Section 2.2.6, the phase contrast transfer function (PCTF) was derived by calculating
the propagated image intensity I,(r), keeping only first order terms in ¢ [67-70]. J. Guigay
et al. [66] proposed another approach, which yields the same expression for the CTF and
is outlined here. The mean-field CTF introduced in Section 2.2.10 can also be derived in
analogy to Guigay’s approach, which is shown here as well. For better readability, only the
1D case is written out, but the considerations are equally valid in 2D.

The normalized Fresnel-propagated image intensity I,(x)/Iy = v,(x) -9} (x) can be expressed
in Fourier space by

k)/Io = /wz b (K — k)]*dK
::é‘}/ ¢@C®e‘““d$'EAﬁ%MQ/}MKxSe“”—@fdx el R g
T
= % / / dolw)u(a)e ¢ / R TP P
T

:271'5(1‘7x/+ﬁ2k‘)

= /1/10 x)o(z + —Zk) —ikz 125k 4

2ko

(El =Ty

—/% %(+—@*Mm, (A7)
o %/—’

where the z-coordinate was shifted in the last step. The next step is to approximate
Yol (ay) = ¢~ iFlaen ol _ g (A8)

in such a way that an expression for the image intensity is obtained that can be solved for
the absorption a in order to retrieve the object function.

CTF
The standard derivation of J. Guigay makes a first order approximation of G [66]:

« 0
Yo(z)vo(zr) = 1 —alxy) — alz,) + "
This condition is satisfied for 6/8|a(z;) — a(z,)| < 1, which is less restrictive than the weak

phase assumption |a(x)| < 1. Inserting L into Eq. A.7 and using the Fourier shift theorem

[a(z;) — a(z,)] = L. (A.9)
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A.3. Derivation of CTF and mean-field CTF by Guigay’s approach

as well as the exponential trigonometric identities, one obtains

(k) /1y ~ / (1 ~ alm) — alz,) + ig[a(xl) - a(mr)]> eike g

— 2n8(k) — e T a(k) — €T " a(k) + ig[e‘izio’“ga(k) T ()]
— 2mo(k) — 2 {cos (k) + gsinx(k)} a(k) (A.10)

with x = 2zk%/(2ko). This expression is equivalent to Eq. 2.75.

Mean-field CTF

To derive the mean-field CTF in analogy to Guigay’s approach, G is approximated as

() * (z,) = e~ o@)=alzr) {COS [g[a(a:r) — a(a;l)]} + isin [g[a(xr) — a(xl)]} }

~ e—a(xl)—a(l"r) {1 —+ 2;[0,(377’) - a’(‘rl)]}

o ol —a(er) {Cosh (alzp) — a(z)] + Zg sinh[a(z1) — a(a:r)]} —E (A1)

In the first step, the exponential absorption term is kept. In the second step, a small error is
added by writing 1 as cosh[a(x;) — a(z,)] and [a(z;) — a(z,)] as sinh[a(x;) — a(x,)]. With this
modification, the imaginary part remains correct in the second order, while a small error is
introduced in the real part, which is however only marginal, since |a(z;) — a(z,)] < 1. The
approximation E leads to an expression for the image intensity that can be solved for a: By

rewriting

. 0 —2a(z;) —2a(zy)
z% [e V—e } , (A.12)

using the Fourier shift theorem and the exponential trigonometric identities, one obtains

E = 5 [672(1(3:1) + 672(1(1%)} +
L(k)/Io=F [efza(x)} <2 sin x (k) + cos X(k)) . (A.13)

This leads to the inversion formula

1 <f_1 l FIL(@)/1

a(x) = —=1In e
2 G sin x(k) + cos x (k)

) , (A.14)

which corresponds to Eq. 2.90.
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A.4. Relation between mapping procedure and RCT method

In Section 3.3, the mapping procedure was introduced, which describes the mapping of plane
waves in front of a reflecting crystal surface onto outgoing plane waves. Here, the plane
wave mapping procedure is compared with the reciprocal coordinates transformation (RCT)
method found in the literature [134, 135]. Without loss of generality, only the 1D image
propagation between sample and crystal is considered here. With Eqgs. 3.3 and 3.4, one can

rewrite

c . kin
kS, = ko cos(Bin — arcsin k—) (A.15)

0
= kjp sin Bin + \/ ka - k?n COs /Bin (Alﬁ)

k2
~ kin sin Bin - 2]1;1 COs /Bin + ko cos Biny (A17)
0

where the Fresnel approximation was used in the last step (Eq. 2.57). According to Eq. 3.11,
the image wavefront at the crystal surface in Fresnel approximation is given by

1 73 —1z i ikC
000 = o [ Flh) - Alh) o558 e
7T

12 2

_ 1 3 —iZingi®  ikinsin Bin-ze 0 ;}C“ cos Bin-Tc _iko cos fin-Te dkg,
- % f(km) : A(kln) - € 0-€ - € 0 - € @dkin
1mn
K2 , . k2
— 2ieikzo cos Bin-Tc /f(km) 'A(kin) . e—mnﬁ . el(kin Slnﬁin—ﬁcosﬁin)xc 3:icndkin, (A.18)
7'[' in

where z. is the spatial coordinate on the crystal surface. The RCT formula for 1D is given
as [135]

2

1 [ B
g(zc) = %/f(k‘in)A(k:in) e ok L tRRoT e q (A.19)

In the RCT method, the transformation

kicr = Kin sin fin — kin oS Bin (A.20)
2k
of the reciprocal coordinate is mathematically motivated. The equation is similar to the
mapping procedure (Eq. A.17) but the last term is missing. Accordingly, the phase modulation
etkocos fine is missing in the RCT formula, which is physically incorrect. Fig. A.2 illustrates
that a plane wave with k;;, = 0 in the object plane generates a wave with the phase factor
etkocos fin-Tour on the crystal surface.

After propagation to the crystal plane, the crystal adds its crystal momentum h to the
plane wave, as considered in the mapping procedure in Eq. 3.5. The crystal momentum
hH = ko(cos Bout — €os fin) counteracts the phase factor etko cos Bin-Tout from propagation to the
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object plane

crystal plane

ﬁin_

Zin

Figure A.2.: Propagation of a plane wave to a tilted plane. A plane wave exiting the object
plane with kj, = 0 generates a wave with phase e?*0 ¢2%fin"Tout on the tilted plane.

inclined plane as well as the phase factor e "0 s fout-Zout from propagation from the inclined
plane to the detector plane, and causes an incident plane wave with ki, = 0 to become a plane
wave with kqyt = 0 in the detector plane. In contrast, the diffraction by the crystal is not
described by the RCT method, and it is not clear why the change in propagation direction

occurs.

As a further difference, the calculation of the image comes with the challenge to account for
the nonlinear dependence of the spatial frequencies. The RCT method solves this problem
by interpolating the fast Fourier transform (FFT) of the object such that it can be evaluated
at equidistant spatial frequencies in the image plane. This method may introduce numerical
instabilities. In contrast, the mapping procedure keeps the original equidistant coefficients
of the object FFT by applying a non-uniform discrete Fourier transform (DFT) over the
irregular sampling grid in the image plane. This method is exact, but cannot use the FFT
for calculating the image intensity. However, there exist fast methods to compute the DFT
that are based on the FFT [209].

To summarize, the RCT formula can be obtained from the mapping procedure by using
the Fresnel approximation and performing an interpolation of the object Fourier transform.
In most cases, the image intensities calculated by the RCT and the mapping procedure
will be in good agreement. Still, the plane wave mapping method does not require Fresnel
approximation and interpolation of the object FFT, and the propagation and diffraction of

plane waves are derived in a rigorous manner.
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A.5. Optimization of indirect system

The experimental comparison presented in Section 4.2 was performed for a specific spatial
resolution of 1.6 pm, where both the indirect and the Bragg magnifier (BM) system have the
same pixel size with respect to the sample. The question arises whether the parameters for the
indirect detector, namely the numerical aperture (NA), scintillator thickness, and operating
energy could be further optimized and adjusted in dependence of the sample thickness and the
desired resolution. The value to be maximized is the normalized SNR? as shown in Fig. 4.3c.
This optimization is a rather complex problem, for which an idealized upper estimate is

presented here.

For each sample thickness, the theoretically achievable SNR? over energy at constant dose
is calculated, assuming a perfect detector, and its maximum is found for the normalization
(see green curves in Fig. 4.3¢). Next, the SNR? that is maximally detectable by the indirect
system at the desired spatial resolution is computed. Varying the NA determines the allowable
scintillator thickness. As a rule of thumb, the thickness ¢ can be chosen relative to the depth
of field of the objective in the scintillator [42, 210]:

(A.21)

where the refractive index n = 1.82 of the LSO scintillator is taken into account, and x is a
factor typically chosen in the range of 1 to 2. Here, the results are shown for x = 2. From
the thickness, the SNR? can be determined for each NA in dependence of the energy, where
also the decrease by the optical transfer function (OTF) at the desired spatial resolution is
included. For very low energies, care is taken to ensure that at least three optical photons
are detected per each absorbed X-ray photon in order not to degrade the X-ray statistics.
The highest detectable SNR? specifies the optimal NA and energy for each sample thickness
and desired resolution. Division by the maximum of the theoretical SNR? determines the
normalized SNR?, i.e., the dose efficiency of the indirect system.

Fig. A.3 shows the results of the optimization for different desired resolutions and sample
thicknesses. The graphs indicate that for high resolution, the NA should be chosen rather
high instead of optimizing the detection efficiency by increasing the scintillator thickness. This
could be understood as follows: increasing the OTF contributes linearly to the SNR, while
the scintillator absorption contributes with the square root. In the presented experiment,
it would probably have been beneficial to use a larger NA of 0.4 rather than increasing the
scintillator thickness. This would have increased the OTF by a factor of 1.2 at ¢ = 0.3 um ™!
and by a factor of 1.6 at the desired resolution of ¢ = 0.6 um~'. For lower resolutions, it is
advantageous to decrease the NA in favor of a thicker scintillator and better X-ray statistics.

The NA approaches a lower limit due to the collection efficiency of optical photons.

As mentioned in Section 4.1.2, for thin samples (< 5mm) the ideal operating energy for the
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A.5. Optimization of indirect system

indirect system would be 11keV. Even in this case and with a larger NA, the dose efficiency
of the BM system would be one order of magnitude higher than that of the indirect system
at the desired resolution. For higher resolutions, e.g., using Germanium crystals with 0.6 pm
achievable resolution, the gain increases further, and liquid immersion would have to be used

to achieve such high NAs in the indirect system.

The efficiency calculated here is only an upper estimate. For example, the degradation of
the OTF by generation of secondary particles in the scintillator is not included. Ref. [160]
describes a method to include these effects using Geantj simulations. The authors have kindly
provided the simulated modulation transfer function (MTF) curves for several energies and
two scintillator thicknesses, see Fig. A.4. The curves show that the MTF for 30 keV deviates
from the OTF of an ideal lens. In the case of NA = 0.28, the scintillator thickness could
have been increased to 24 nm (Fig. A.4b). This was tested experimentally, but the resulting
SNR(q) was very similar to the 12pm thick LSO, and is therefore not shown here. One
explanation for the reduced performance of the 24 pm thick LSO scintillator could be that it
becomes increasingly difficult to maintain a high doping concentration during the fabrication
process. For an NA of 0.4, Fig. A.4c shows that the 12 pm thick scintillator should be chosen
because the microscope optics would cause blurring with the 24 ym thick scintillator.

The curves shown in Fig. A.3 were calculated for an LSO scintillator and a soft tissue sam-
ple. The source code is available in Ref. [104] so that the interested reader can adapt the
calculations for other sample materials and thicknesses, resolutions or scintillator materials.
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Figure A.3.: Optimized parameters for the indirect system and an LSO scintillator for
different sample thicknesses (soft tissue) and resolutions. a Optimized numerical aperture
versus specimen thickness for different resolutions. The yellow color indicates that objectives with
immersion liquids are required for a high NA. b Spatial frequency g5 corresponding to the desired
resolution in relation to the spatial frequency gma.x at which the OTF of the objective becomes zero.
c Optimal operating energy. A lower limit is given by the light yield of the scintillator per absorbed
X-ray photon (gray arrow). The absorption edge of LSO determines an optimal energy of 11keV for
thin samples (black arrow). d Resulting normalized SNR? at the desired resolution, which is an upper
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Figure A.4.: Simulated transfer function of a 12 pm and a 24 pm thick LSO:Tb scintillator
at different energies. MTF a without optics, b with an objective lens of NA = 0.28 and ¢ with an
objective lens of NA = 0.4. The effects of secondary particles generated in the scintillator are simulated
by Geantj simulations [157, 160], and the effect of blurring introduced by the microscope optics is
calculated analytically, as described in Refs. [88, 160, 211]. For low energies, the transfer function of
the scintillator (panel a) remains close to unity. For high energies, shown here for 30 keV, it decreases
strongly with increasing spatial frequency, which further degrades the overall imaging performance of
the indirect detector system, as mentioned in Chapter 4. The combined MTF of the scintillator and
the objective lens lies below the OTF of an ideal lens (black curves in panels b and c¢), and decreases
with increasing thickness due to blurring by the optics. The simulation data were kindly provided by
Kristof Pauwels and Laura Wollesen (ESRF, Grenoble, France) [160].
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A.6. Additional simulations with demagnifier
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Figure A.5.: Simulated 1D image intensities for conventional propagation-based phase
contrast imaging (PB-PCI) and the Bragg demagnifier at 30.5keV and M = 71. PB-PCI
of a pure phase object as shown in Fig. 5.8, here for a higher energy and thus even higher magnification.
The simulations have been performed for perfect coherence. Note the small intensity scale in panel b.
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Figure A.6.: Simulated 2D image intensities using the demagnifier for the source size
of P23 at PETRA III and the perspective source size at PETRA IV. PB-PCI of a pure
phase object as shown in Fig. 5.9, simulated with the Bragg demagnifier at 30.5keV (M = 71.3) and
physical propagation distances of z; = 1.3m and z, = 1.5m, corresponding to effective propagation
distances of zegr, = 6.6 km and zeg,, = 7.6 km. The simulations include source blur from the measured
horizontal and vertical source sizes s = 164pm and s, = 38 pum of P23 at PETRA III (left), and
from the perspective fourth-generation synchrotron radiation facility PETRA IV [201] by assuming a
symmetric source size s = 38 pm (right).

A.7. Divergence formula by J. Hartwig

In Section 5.3, the angular distribution of the illumination from a polychromatic source with
a finite source size was discussed in combination with a monochromator, a Bragg conditioner
and a Bragg demagnifier, and an example was shown for the P23 source (horizontal direction).
Although in general asymmetric Bragg diffraction with a positive asymmetry angle o reduces
the monochromatic angular distribution, as is the case in a Bragg conditioner, the overall
angular distribution is deteriorated due to the polychromaticity of the incident waves. This
effect was simulated in Figs. 5.6 and 5.7. J. Hartwig formulated a dependence of the outgoing
beam divergence oy oy from the incident beam divergence oy iy, the energy spread Ao/,
and the factors v, = sin(fp — «) and ~, = —sin(fp + «) introduced in Section 2.1 [199, 212]:

Ao \/1 =7 — V1 =72
+5 . (A.22)
0 Yh

Yo
|0'9,out| ~ —0fin
Th
The Gaussian function obtained from this spread in polychromatic divergence behind the

conditioner has been plotted in Fig. 5.7 and agrees well with the results obtained in the
simulations.

127



Appendix

A.8. Demagnifier setup

Figure A.7.: Layout of the Bragg demagnifier setup. The four crystals of the Bragg demagnifier
are mounted on four separate hexapods. The hexapods are integrated into an item frame such that the
crystals are in correct arrangement relative to each other. The frame was designed to provide a high
degree of flexibility, allowing adjustments to variable table and beam heights at different synchrotron
beamlines. The CAD model of the item frame was constructed with the item online engineering tool
(Item Industrietechnik GmbH, 42653 Solingen, Germany). The virtual assembly was accomplished
with Autodesk Inventor Professional (Autodesk Inc., 94105 San Francisco, United States of America)
with the help of Kevin Zachmann (IBG, KIT, Karlsruhe, Germany).
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List of abbreviations

BM
CCD
CdTe
CMOS
CSM
CTF
DFT
DPCI
DQE
FFT
FOV
FWHM
GaAs
Ge
MTF
NA
NLTikh
OTF
PB-PCI
PCTF
PSF
RCT
sCMOS
Si

SNR
SPCD
SPM
TIE

Bragg magnifier

charge-coupled device

cadmium telluride

complementary metal-oxide-semiconductor
charge-sharing mode

contrast transfer function

discrete Fourier transform
differential phase contrast imaging
detective quantum efficiency

fast Fourier transform

field of view

full width at half maximum

gallium arsenide

germanium

modulation transfer function
numerical aperture

nonlinear Tikhonov regularization
optical transfer function
propagation-based phase contrast imaging
phase contrast transfer function
point spread function

reciprocal coordinates transformation
scientific CMOS

silicon

signal-to-noise ratio

single photon counting detector
single-pixel mode

transport of intensity equation

129






Bibliography

1]

[10]

[11]

X. Ou, X. Chen, X. Xu, L. Xie, X. Chen, Z. Hong, H. Bai, X. Liu, Q. Chen, L. Li, and
H. Yang, “Recent Development in X-Ray Imaging Technology: Future and Challenges”,
Research 2021, 1-18 (2021) (cited on p. 1).

D. H. Bilderback, P. Elleaume, and E. Weckert, “Review of third and next generation
synchrotron light sources”, J. Phys. B: At. Mol. Opt. Phys. 38, S773 (2005) (cited on
pp. 1, 16).

A. Momose and J. Fukuda, “Phase-contrast radiographs of nonstained rat cerebellar
specimen”, Med. Phys. 22, 375-379 (1995) (cited on pp. 1, 16, 18).

S. W. Wilkins, T. E. Gureyev, D. Gao, A. Pogany, and A. W. Stevenson, “Phase-
contrast imaging using polychromatic hard X-rays”, Nature 384, 335-338 (1996) (cited
on pp. 1, 16).

A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, and I. Schelokov, “On the possibilities
of x-ray phase contrast microimaging by coherent high-energy synchrotron radiation”,
Rev. Sci. Instrum. 66, 5486-5492 (1995) (cited on pp. 1, 64).

U. Bonse and M. Hart, “An X-ray interferometer”, Appl. Phys. Lett. 6, 155-156 (1965)
(cited on p. 1).

A. Momose, T. Takeda, Y. Itai, and K. Hirano, “Phase—contrast X-ray computed
tomography for observing biological soft tissues”, Nat. Med. 2, 473-475 (1996) (cited
on p. 1).

A. Momose, S. Kawamoto, I. Koyama, Y. Hamaishi, K. Takai, and Y. Suzuki, “Demon-
stration of X-Ray Talbot Interferometry”, Jpn. J. Appl. Phys. 42, L866 (2003) (cited
on pp. 1, 85, 113).

F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, “Phase retrieval and differen-
tial phase-contrast imaging with low-brilliance X-ray sources”, Nat. Phys. 2, 258261
(2006) (cited on pp. 1, 113).

T. J. Davis, D. Gao, T. Gureyev, A. Stevenson, and S. Wilkins, “Phase-contrast imag-
ing of weakly absorbing materials using hard X-rays”, Nature 373, 595-598 (1995)
(cited on pp. 1, 40, 42, 64, 85, 88, 104).

D. Chapman, W. Thomlinson, R. Johnston, D. Washburn, E. Pisano, N. Gmdir, Z.
Zhong, R. Menk, F. Arfelli, and D. Sayers, “Diffraction enhanced X-ray imaging”,
Physics in Medicine & Biology 42, 2015 (1997) (cited on pp. 1, 85, 105).

131


https://doi.org/10.34133/2021/9892152
https://doi.org/10.1088/0953-4075/38/9/022
https://doi.org/10.1118/1.597472
https://doi.org/10.1038/384335a0
https://doi.org/10.1063/1.1146073
https://doi.org/10.1063/1.1754212
https://doi.org/10.1038/nm0496-473
https://doi.org/10.1143/JJAP.42.L866
https://doi.org/10.1038/nphys265
https://doi.org/10.1038/nphys265
https://doi.org/https://doi.org/10.1038/373595a0
https://doi.org/10.1088/0031-9155/42/11/001

Bibliography

[12]

[13]

[16]

[17]

[22]

[23]

132

A. Olivo and R. Speller, “A coded-aperture technique allowing x-ray phase contrast
imaging with conventional sources”, Appl. Phys. Lett. 91, 10.1063/1.2772193 (2007)
(cited on pp. 1, 113).

K. S. Morgan, D. M. Paganin, and K. K. W. Siu, “X-ray phase imaging with a paper
analyzer”, Appl. Phys. Lett. 100, 10.1063/1.3694918 (2012) (cited on pp. 1, 85, 113).
M.-C. Zdora, “State of the Art of X-ray Speckle-Based Phase-Contrast and Dark-Field
Imaging”, J. Imaging 4, 60 (2018) (cited on pp. 1, 85, 113).

O. Betz, U. Wegst, D. Weide, M. Heethoff, L. Helfen, W.-K. Lee, and P. Cloetens,
“Imaging applications of synchrotron X-ray phase-contrast microtomography in bio-
logical morphology and biomaterials science. I. General aspects of the technique and
its advantages in the analysis of millimetre-sized arthropod structure”; Journal of Mi-
croscopy 227, 51-71 (2007) (cited on pp. 2, 63).

M. Eckermann, B. Schmitzer, F. van der Meer, J. Franz, O. Hansen, C. Stadelmann,
and T. Salditt, “Three-dimensional virtual histology of the human hippocampus based
on phase-contrast computed tomography”, Proc. Natl. Acad. Sci. 118, €2113835118
(2021) (cited on p. 2).

M. Cotte, K. Dollman, V. Fernandez, V. Gonzalez, F. Vanmeert, L. Monico, C. Dejoie,
M. Burghammer, L. Huder, S. Fisher, et al., “New Opportunities Offered by the ESRF
to the Cultural and Natural Heritage Communities”, Synchrotron Radiation News 35,
3-9 (2022) (cited on pp. 2, 85, 98).

S. C. Mayo, A. W. Stevenson, and S. W. Wilkins, “In-line phase-contrast X-ray imaging
and tomography for materials science”, Materials 5, 937-965 (2012) (cited on p. 2).
P. Pietsch, D. Westhoff, J. Feinauer, J. Eller, F. Marone, M. Stampanoni, V. Schmidt,
and V. Wood, “Quantifying microstructural dynamics and electrochemical activity
of graphite and silicon-graphite lithium ion battery anodes”, Nat. Commun. 7, 1-11
(2016) (cited on p. 2).

J. J. Socha, M. W. Westneat, J. F. Harrison, J. S. Waters, and W.-K. Lee, “Real-
time phase-contrast x-ray imaging: a new technique for the study of animal form and
function”, BMC Biol. 5, 1-15 (2007) (cited on pp. 2, 63, 82).

J. Moosmann, A. Ershov, V. Altapova, T. Baumbach, M. S. Prasad, C. LaBonne, X.
Xiao, J. Kashef, and R. Hofmann, “X-ray phase-contrast in vivo microtomography
probes new aspects of Xenopus gastrulation”, Nature 497, 374-377 (2013) (cited on
pp. 2, 63).

C. Schmitt, A. Rack, and O. Betz, “Analyses of the mouthpart kinematics in Periplan-
eta americana (Blattodea, Blattidae) using synchrotron-based X-ray cineradiography”,
J. Exp. Biol. 217, 3095-3107 (2014) (cited on pp. 2, 63).

T. dos Santos Rolo, A. Ershov, T. van de Kamp, and T. Baumbach, “In vivo X-ray
cine-tomography for tracking morphological dynamics”, Proc. Natl. Acad. Sci. 111,
3921-3926 (2014) (cited on pp. 2, 63).


https://doi.org/10.1063/1.2772193
https://doi.org/10.1063/1.2772193
https://doi.org/10.1063/1.3694918
https://doi.org/10.1063/1.3694918
https://doi.org/10.3390/jimaging4050060
https://doi.org/10.1111/j.1365-2818.2007.01785.x
https://doi.org/10.1111/j.1365-2818.2007.01785.x
https://doi.org/10.1073/pnas.2113835118
https://doi.org/10.1073/pnas.2113835118
https://doi.org/https://doi.org/10.1080/08940886.2022.2135958
https://doi.org/https://doi.org/10.1080/08940886.2022.2135958
https://doi.org/https://doi.org/10.3390/ma5050937
https://doi.org/10.1038/ncomms12909
https://doi.org/10.1038/ncomms12909
https://doi.org/10.1186/1741-7007-5-6
https://doi.org/10.1038/nature12116
https://doi.org/10.1242/jeb.092742
https://doi.org/10.1073/pnas.1308650111
https://doi.org/10.1073/pnas.1308650111

Bibliography

[24]

[28]

[29]

W. J. Boettinger, H. E. Burdette, and M. Kuriyama, “X-ray magnifier”, Rev. Sci.
Instrum. 50, 26-30 (1979) (cited on pp. 3, 39, 67, 70).

P. P. Ewald, Dispersion und Doppelbrechung von Elektronengittern (Kristallen) (Die-
terichsche Universitats-Buchdruckerei, 1912) (cited on p. 5).

W. Friedrich, P. Knipping, and M. Laue, “Interferenzerscheinungen bei Rontgenstrah-
len”, Annalen der Physik 346, 971-988 (1913) (cited on p. 5).

W. L. Bragg, “The structure of some crystals as indicated by their diffraction of X-
rays”, Proceedings of the Royal Society of London A 89, 248-277 (1913) (cited on
pp. 5, 6).

C. Darwin, “XXXIV. The theory of X-ray reflexion”, The London, Edinburgh, and
Dublin Philosophical Magazine and Journal of Science 27, 315-333 (1914) (cited on
p. 5).

C. G. Darwin, “LXXVIII. The theory of X-ray reflexion. Part II”, The London, Edin-
burgh, and Dublin Philosophical Magazine and Journal of Science 27, 675-690 (1914)
(cited on p. 5).

P. P. Ewald, “Zur Theorie der Interferenzen der Réntgenstrahlen in Kristallen”, Phy-
sikalische Zeitschrift 14, 465 (1913) (cited on p. 5).

P. Ewald, “Zur Begriindung der Kristalloptik”, Annalen der Physik 49, 117-143 (1916)
(cited on p. 5).

P. Ewald, “Zur Begriindung der Kristalloptik (Fortsetzung)”, Annalen der Physik 54,
557-597 (1916) (cited on p. 5).

M. Laue, “Ergebnisse der Exakten Naturwissenschaften”, 10, 133-158 (1931) (cited on
p. 6).

A. Authier, Dynamical theory of X-ray diffraction, Vol. 11 (Oxford University Press,
2004) (cited on pp. 6, 8-11, 13-16, 41, 69).

P. P. Ewald, “Chapter 4: Laue’s Discovery of X-ray Diffraction by Crystals”, in Fifty
Years of X-Ray Diffraction: Dedicated to the International Union of Crystallography on
the Occasion of the Commemoration Meeting in Munich July 1962 (Springer Science
& Business Media, 2012) (cited on p. 6).

W. H. Zachariasen and E. Hill, “Theory of X-ray Diffraction in Crystals”, The Journal
of Physical Chemistry 50, 289-290 (1946) (cited on p. 6).

B. W. Batterman and H. Cole, “Dynamical Diffraction of X Rays by Perfect Crystals”,
Rev. Mod. Phys. 36, 681-717 (1964) (cited on pp. 6, 13).

A. Authier and C. Malgrange, “Diffraction Physics”, Acta Crystallogr., Sect. A: Found.
Crystallogr. 54, 806-819 (1998) (cited on pp. 6, 7).

J. Stohr, The Nature of X-Rays and Their Interactions with Matter, Vol. 288 (Springer
Nature, 2023) (cited on p. 6).

D. J. Griffiths and C. Inglefield, Introduction to Electrodynamics, Vol. 73, 6 (AIP
Publishing, 2005) (cited on p. 8).

133


https://doi.org/10.1063/1.1135662
https://doi.org/10.1063/1.1135662
https://doi.org/doi.org/10.1002/andp.19133461004
https://doi.org/10.1098/rspa.1913.0083
https://doi.org/10.1080/14786440208635093
https://doi.org/10.1080/14786440208635093
https://doi.org/10.1080/14786440408635139
https://doi.org/10.1080/14786440408635139
https://doi.org/10.1002/andp.19163540102
https://doi.org/10.1002/andp.19163540102
https://doi.org/10.1002/andp.19163540102
https://doi.org/10.1103/RevModPhys.36.681
https://doi.org/10.1107/S0108767398011271
https://doi.org/10.1107/S0108767398011271

Bibliography

1)
42)
43]
44]
145)

[46]

[47]

[48]

[49]

134

D. Paganin, Coherent X-ray Optics (Oxford University Press, 2013) (cited on pp. 8,
17, 20, 21, 24).

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation,
Interference and Diffraction of Light (Elsevier, 2013) (cited on pp. 9, 20, 122).

T. Salditt, T. Aspelmeier, and S. Aeffner, Biomedical Imaging (De Gruyter, Berlin,
Germany, 2017) (cited on pp. 9, 17-20, 22, 31, 77).

F. Bloch, “Uber die Quantenmechanik der Elektronen in Kristallgittern”, Z. Phys. 52,
555-600 (1929) (cited on p. 10).

J. Hartwig, “Review of the X-ray diffraction in extreme asymmetric cases”, Krist. Tech.
13, 1117-1126 (1978) (cited on pp. 13, 115).

X. Huang and M. Dudley, “A universal computation method for two-beam dynamical
X-ray diffraction”, Acta Crystallogr., Sect. A: Found. Crystallogr. 59, 163-167 (2003)
(cited on pp. 15, 48).

R. S. Ledley, G. Di Chiro, A. J. Luessenhop, and H. L. Twigg, “Computerized Transax-
ial X-ray Tomography of the Human Body”, Science 186, 207-212 (1974) (cited on
p. 16).

A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (STAM,
2001) (cited on p. 16).

P. Cloetens, W. Ludwig, J. Baruchel, D. Van Dyck, J. Van Landuyt, J. P. Guigay,
and M. Schlenker, “Holotomography: Quantitative phase tomography with micrometer
resolution using hard synchrotron radiation x rays”, Appl. Phys. Lett. 75, 2912-2914
(1999) (cited on pp. 16, 17, 26, 30, 31, 74).

D. Paganin, S. C. Mayo, T. E. Gureyev, P. R. Miller, and S. W. Wilkins, “Simultane-
ous phase and amplitude extraction from a single defocused image of a homogeneous
object”, J. Microsc. 206, 33—40 (2002) (cited on pp. 16, 17, 30, 31, 80).

T. Weitkamp, A. Diaz, C. David, F. Pfeiffer, M. Stampanoni, P. Cloetens, and E.
Ziegler, “X-ray phase imaging with a grating interferometer”, Opt. Express 13, 6296—
6304 (2005) (cited on p. 16).

A. Momose, W. Yashiro, Y. Takeda, Y. Suzuki, and T. Hattori, “Phase Tomography
by X-ray Talbot Interferometry for Biological Imaging”, Jpn. J. Appl. Phys. 45, 5254
(2006) (cited on p. 16).

P. C. Diemoz, P. Coan, C. Glaser, and A. Bravin, “Absorption, refraction and scattering
in analyzer-based imaging: comparison of different algorithms”, Optics Express 18,
3494-3509 (2010) (cited on p. 16).

J. Als-Nielsen and D. McMorrow, Elements of Modern X-ray Physics (John Wiley &
Sons, 2011) (cited on p. 18).

E. Hecht, Optics (Pearson Education, 2017), p. 139 (cited on p. 18).

J. H. Hubbell and S. M. Seltzer, “Tables of X-ray mass attenuation coefficients and mass
energy-absorption coefficients 1 keV to 20 MeV for elements Z=1 to 92 and 48 additional


https://doi.org/10.1007/BF01339455
https://doi.org/10.1007/BF01339455
https://doi.org/10.1002/crat.19780130915
https://doi.org/10.1002/crat.19780130915
https://doi.org/10.1107/S0108767303000485
https://doi.org/10.1126/science.186.4160.207
https://doi.org/10.1063/1.125225
https://doi.org/10.1063/1.125225
https://doi.org/10.1046/j.1365-2818.2002.01010.x
https://doi.org/10.1364/OPEX.13.006296
https://doi.org/10.1364/OPEX.13.006296
https://doi.org/10.1143/JJAP.45.5254
https://doi.org/10.1143/JJAP.45.5254
https://doi.org/10.1364/OE.18.003494
https://doi.org/10.1364/OE.18.003494

Bibliography

[57]

substances of dosimetric interest”, National Inst. of Standards and Technology-PL,
Ionizing Radiation Div. (1995) (cited on pp. 18, 65, 68, 71).

P. Cloetens, W. Ludwig, J. Baruchel, J.-P. Guigay, P. Pernot-Rejmankova, M. Salomé-
Pateyron, M. Schlenker, J.-Y. Buffiere, E. Maire, and G. Peix, “Hard x-ray phase
imaging using simple propagation of a coherent synchrotron radiation beam”, J. Phys.
D: Appl. Phys. 32, A145 (1999) (cited on pp. 22, 32, 33).

N. Wiener, “Generalized harmonic analysis”, Acta Mathematica 55, 117-258 (1930)
(cited on p. 24).

A. Khintchine, “Korrelationstheorie der stationdren stochastischen Prozesse”, Mathe-
matische Annalen 109, 604-615 (1934) (cited on p. 24).

H. Tajiri, H. Yamazaki, H. Ohashi, S. Goto, O. Sakata, and T. Ishikawa, “A middle
energy-bandwidth X-ray monochromator for high-flux synchrotron diffraction: revis-
iting asymmetrically cut silicon crystals”, J. Synchrotron Radiat. 26, 750-755 (2019)
(cited on p. 24).

A. Pogany, D. Gao, and S. W. Wilkins, “Contrast and resolution in imaging with a
microfocus x-ray source”, Rev. Sci. Instrum. 68, 2774-2782 (1997) (cited on p. 24).
B. Kozioziemski, B. Bachmann, A. Do, and R. Tommasini, “X-ray imaging methods for
high-energy density physics applications”; Rev. Sci. Instrum. 94, 10.1063/5.0130689
(2023) (cited on p. 25).

J. Moosmann, A. Ershov, V. Weinhardt, T. Baumbach, M. S. Prasad, C. LaBonne, X.
Xiao, J. Kashef, and R. Hofmann, “Time-lapse X-ray phase-contrast microtomography
for in vivo imaging and analysis of morphogenesis”, Nat. Protoc. 9, 294-304 (2014)
(cited on p. 25).

D. Gabor, “A New Microscopic Principle”, Nature 161, 777-778 (1948) (cited on p. 26).
O. Scherzer, “The Theoretical Resolution Limit of the Electron Microscope”, J. Appl.
Phys. 20, 20-29 (1949) (cited on p. 26).

P. Guigay, “Fourier-transform analysis of Fresnel diffraction patterns and in-line holo-
grams”, Optik 49, 121-125 (1977) (cited on pp. 26, 118).

F. Lenz and W. Scheffels, “Das Zusammenwirken von Phasen- und Amplitudenkontrast
in der elektronenmikroskopischen Abbildung”, Zeitschrift fiir Naturforschung A 13,
226-230b (1958) (cited on pp. 26, 118).

V. E. Cosslett and R. Barer, Advances in Optical and Electron Microscopy: Volume 4
(Academic Press, Jan. 1971), pp. 1-82 (cited on pp. 26, 118).

V. E. Cosslett and R. Barer, Advances in Optical and Electron Microscopy: Volume 5
(Academic Press, 1973), pp. 163181 (cited on pp. 26, 118).

E. J. Kirkland, “Some Image Approximations”, in Advanced Computing in FElectron
Microscopy (Springer, 2020), pp. 37-80 (cited on pp. 26, 27, 118).

J. M. Blackledge, Digital Image Processing: Mathematical and Computational Methods
(Elsevier, 2005) (cited on pp. 26, 69).

135


https://doi.org/10.1088/0022-3727/32/10A/330
https://doi.org/10.1088/0022-3727/32/10A/330
https://doi.org/10.1007/BF02546511
https://doi.org/10.1007/BF01449156
https://doi.org/10.1007/BF01449156
https://doi.org/10.1107/S1600577519003473
https://doi.org/10.1063/1.1148194
https://doi.org/10.1063/5.0130689
https://doi.org/10.1063/5.0130689
https://doi.org/10.1063/5.0130689
https://doi.org/10.1038/nprot.2014.033
https://doi.org/10.1038/161777a0
https://doi.org/10.1063/1.1698233
https://doi.org/10.1063/1.1698233
https://doi.org/10.1515/zna-1958-0309
https://doi.org/10.1515/zna-1958-0309
https://doi.org/10.1007/978-3-030-33260-0_3
https://doi.org/10.1007/978-3-030-33260-0_3

Bibliography

[72]

73]

[74]

[75]

[76]

[77]

[83]

136

F. Thon, “Notizen: Zur Defokussierungsabhingigkeit des Phasenkontrastes bei der
elektronenmikroskopischen Abbildung”, Zeitschrift fiir Naturforschung A 21, 476-478
(1966) (cited on p. 29).

M. Vulovi¢, E. Franken, R. B. G. Ravelli, L. J. van Vliet, and B. Rieger, “Precise and
unbiased estimation of astigmatism and defocus in transmission electron microscopy”,
Ultramicroscopy 116, 115-134 (2012) (cited on p. 29).

R. Pretzsch, M. Dries, S. Hettler, M. Spiecker, M. Obermair, and D. Gerthsen, “In-
vestigation of hole-free phase plate performance in transmission electron microscopy
under different operation conditions by experiments and simulations”, Adv. Struct.
Chem. Imag. 5, 1-11 (2019) (cited on pp. 29, 105).

A. Burvall, U. Lundstrém, P. A. C. Takman, D. H. Larsson, and H. M. Hertz, “Phase
retrieval in X-ray phase-contrast imaging suitable for tomography”, Optics Express
19, 10359-10376 (2011) (cited on p. 30).

J. Hagemann, M. Tépperwien, and T. Salditt, “Phase retrieval for near-field X-ray
imaging beyond linearisation or compact support”, Appl. Phys. Lett. 113, 041109
(2018) (cited on pp. 30, 34, 113).

L. M. Lohse, A.-L. Robisch, M. T6pperwien, S. Maretzke, M. Krenkel, J. Hagemann,
and T. Salditt, “A phase-retrieval toolbox for X-ray holography and tomography”,
Journal of Synchrotron Radiation 27, 852-859 (2020) (cited on pp. 30, 51, 58, 60, 75,
82).

T. E. Gureyev, A. Roberts, and K. A. Nugent, “Phase retrieval with the transport-of-
intensity equation: matrix solution with use of Zernike polynomials”, J. Opt. Soc. Am.
A, JOSAA 12, 1932-1941 (1995) (cited on p. 30).

S. Huhn, L. M. Lohse, L. M. Lohse, J. Lucht, T. Salditt, and T. Salditt, “Fast al-
gorithms for nonlinear and constrained phase retrieval in near-field X-ray holography
based on Tikhonov regularization”, Optics Express 30, 32871-32886 (2022) (cited on
pp. 31, 34, 58, 75, 82).

J. Moosmann, R. Hofmann, and T. Baumbach, “Single-distance phase retrieval at large
phase shifts”, Opt. Express 19, 1206612073 (2011) (cited on p. 31).

W. Coene, G. Janssen, M. Op de Beeck, and D. Van Dyck, “Phase retrieval through
focus variation for ultra-resolution in field-emission transmission electron microscopy”,
Phys. Rev. Lett. 69, 3743-3746 (1992) (cited on p. 32).

T. Faragd, R. Spiecker, M. Hurst, M. Zuber, A. Cecilia, and T. Baumbach, “Phase
retrieval in propagation-based X-ray imaging beyond the limits of transport of intensity
and contrast transfer function approaches”, Optics Letters 49, 5159-5162 (2024) (cited
on p. 32).

T. E. Gureyev, A. Pogany, D. M. Paganin, and S. W. Wilkins, “Linear algorithms
for phase retrieval in the Fresnel region”, Opt. Commun. 231, 53-70 (2004) (cited on
p. 32).


https://doi.org/10.1515/zna-1966-0417
https://doi.org/10.1515/zna-1966-0417
https://doi.org/10.1016/j.ultramic.2012.03.004
https://doi.org/10.1186/s40679-019-0067-z
https://doi.org/10.1186/s40679-019-0067-z
https://doi.org/10.1364/OE.19.010359
https://doi.org/10.1364/OE.19.010359
https://doi.org/10.1063/1.5029927
https://doi.org/10.1063/1.5029927
https://doi.org/10.1107/S1600577520002398
https://doi.org/10.1364/JOSAA.12.001932
https://doi.org/10.1364/JOSAA.12.001932
https://doi.org/10.1364/OE.462368
https://doi.org/10.1364/OE.19.012066
https://doi.org/10.1103/PhysRevLett.69.3743
https://doi.org/10.1364/OL.530330
https://doi.org/10.1016/j.optcom.2003.12.020

Bibliography

[84]

[85]

V. Davidoiu, B. Sixou, M. Langer, and F. Peyrin, “Non-linear iterative phase retrieval
based on Frechet derivative”, Optics Express 19, 22809-22819 (2011) (cited on p. 34).
S. Maretzke, M. Bartels, M. Krenkel, T. Salditt, and T. Hohage, “Regularized Newton
methods for x-ray phase contrast and general imaging problems”, Optics Express 24,
6490-6506 (2016) (cited on p. 34).

M. Langer, Y. Zhang, D. Figueirinhas, J.-B. Forien, K. Mom, C. Mouton, R. Mokso,
and P. Villanueva-Perez, “PyPhase — a Python package for X-ray phase imaging”, J.
Synchrotron Radiat. 28, 1261-1266 (2021) (cited on p. 34).

F. Wittwer, J. Hagemann, D. Briickner, S. Flenner, and C. G. Schroer, “Phase re-
trieval framework for direct reconstruction of the projected refractive index applied to
ptychography and holography”, Optica 9, 295-302 (2022) (cited on pp. 34, 113).

F. Riva, “Development of new thin film scintillators for high-resolution X-ray imaging”,
PhD thesis (Université de Lyon, Oct. 2016) (cited on pp. 34, 35, 125).

T. Martin, P.-A. Douissard, M. Couchaud, A. Cecilia, T. Baumbach, K. Dupre, and A.
Rack, “LSO-Based Single Crystal Film Scintillator for Synchrotron-Based Hard X-Ray
Micro-Imaging”, IEEE Trans. Nucl. Sci. 56, 1412-1418 (2009) (cited on p. 34).

P.-A. Douissard, A. Cecilia, X. Rochet, X. Chapel, T. Martin, T. van de Kamp, L.
Helfen, T. Baumbach, L. Luquot, X. Xiao, J. Meinhardt, and A. Rack, “A versatile
indirect detector design for hard X-ray microimaging”, Journal of Instrumentation 7,
P09016 (2012) (cited on pp. 35, 36, 72).

M. Muller, “Appendix B: Formulae, Relations and Definitions”, in Introduction to
Confocal Fluorescence Microscopy, Vol. 69 (SPIE Press, 2005) (cited on p. 35).

J. W. Goodman, Introduction to Fourier Optics (Roberts and Company Publishers,
2005), pp. 143, 372 (cited on pp. 35, 36, 66, 67).

L. Rayleigh, “XII. On the manufacture and theory of diffraction-gratings”, The London,
Edinburgh, and Dublin Philosophical Magazine and Journal of Science 47, 81-93 (1874)
(cited on p. 36).

E. Hamann, T. Koenig, M. Zuber, A. Cecilia, A. Tyazhev, O. Tolbanov, S. Procz, A.
Fauler, T. Baumbach, and M. Fiederle, “Performance of a Medipix3RX Spectroscopic
Pixel Detector With a High Resistivity Gallium Arsenide Sensor”, IEEE Trans. Med.
Imaging 34, 707-715 (2014) (cited on pp. 36, 37, 68-70, 77).

M. Fiederle, S. Procz, E. Hamann, A. Fauler, and C. Fréjdh, “Overview of GaAs und
CdTe Pixel Detectors Using Medipix Electronics”, Cryst. Res. Technol. 55, 2000021
(2020) (cited on p. 36).

S. Procz, G. Roque, C. Avila, J. Racedo, R. Rueda, I. Santos, and M. Fiederle, “In-
vestigation of CdTe, GaAs, Se and Si as Sensor Materials for Mammography”, IEEE
Trans. Med. Imaging 39, 3766-3778 (2020) (cited on p. 36).

J. Scholz, L. Birnbacher, C. Petrich, M. Riedel, L. Heck, S. Gkoumas, T. Sellerer, K.
Achterhold, and J. Herzen, “Biomedical x-ray imaging with a GaAs photon-counting

137


https://doi.org/10.1364/OE.19.022809
https://doi.org/10.1364/OE.24.006490
https://doi.org/10.1364/OE.24.006490
https://doi.org/10.1107/S1600577521004951
https://doi.org/10.1107/S1600577521004951
https://doi.org/10.1364/OPTICA.447021
https://doi.org/10.1109/TNS.2009.2015878
https://doi.org/10.1088/1748-0221/7/09/P09016
https://doi.org/10.1088/1748-0221/7/09/P09016
https://doi.org/10.1117/3.639736
https://doi.org/10.1117/3.639736
https://doi.org/10.1109/TMI.2014.2317314
https://doi.org/10.1109/TMI.2014.2317314
https://doi.org/10.1002/crat.202000021
https://doi.org/10.1002/crat.202000021
https://doi.org/10.1109/TMI.2020.3004648
https://doi.org/10.1109/TMI.2020.3004648

Bibliography

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

138

detector: A comparative study”, APL Photonics 5, 106108 (2020) (cited on pp. 36, 37,
68-70).

D. Pennicard, S. Smoljanin, B. Struth, H. Hirsemann, A. Fauler, M. Fiederle, O. Tol-
banov, A. Zarubin, A. Tyazhev, G. Shelkov, and H. Graafsma, “The LAMBDA photon-
counting pixel detector and high-Z sensor development”, J. Instrum. 9, C12026 (2014)
(cited on pp. 36, 41, 53, 71, 77).

R. Ballabriga, M. Campbell, and X. Llopart, “Asic developments for radiation imaging
applications: The medipix and timepix family”, Nucl. Instrum. Methods Phys. Res.,
Sect. A 878, 10-23 (2018) (cited on p. 36).

R. Ballabriga, J. Alozy, F. N. Bandi, M. Campbell, N. Egidos, J. M. Fernandez-
Tenllado, E. H. M. Heijne, I. Kremastiotis, X. Llopart, B. J. Madsen, D. Pennicard,
V. Sriskaran, and L. Tlustos, “Photon Counting Detectors for X-Ray Imaging With
Emphasis on CT”, IEEE Trans. Radiat. Plasma Med. Sci. 5, 422-440 (2020) (cited on
p. 36).

R. Ballabriga, J. Alozy, G. Blaj, M. Campbell, M. Fiederle, E. Frojdh, E. H. M. Heijne,
X. Llopart, M. Pichotka, S. Procz, L. Tlustos, and W. Wong, “The Medipix3RX: a
high resolution, zero dead-time pixel detector”, Journal of Instrumentation 8, C02016
(2013) (cited on pp. 36, 37, 67).

P. Zambon, “Enhanced DQE and sub-pixel resolution by single-event processing in
counting hybrid pixel electron detectors: A simulation study”, Front. Phys. 11, 1123787
(2023) (cited on p. 37).

E. Frojdh, R. Ballabriga, M. Campbell, M. Fiederle, E. Hamann, T. Koenig, X. Llopart,
D. de Paiva Magalhaes, and M. Zuber, “Count rate linearity and spectral response of
the Medipix3RX chip coupled to a 300 um silicon sensor under high flux conditions”,
Journal of Instrumentation 9, C04028 (2014) (cited on pp. 37, 71).

R. Spiecker, P. Pfeiffer, A. Biswal, M. Shcherbinin, M. Spiecker, H. Hessdorfer, M.
Hurst, Y. Zharov, V. Bellucci, T. Faragd, M. Zuber, A. Herz, A. Cecilia, M. Czyzycki,
C. S. B. Dias, D. Novikov, L. Krogmann, E. Hamann, T. van de Kamp, and T. Baum-
bach, “Dose-efficient in vivo X-ray phase contrast imaging at micrometer resolution by
Bragg magnifiers”, Optica 10, 1633-1640 (2023) (cited on pp. 39, 41, 53, 57, 59, 63,
65, 68-70, 74, 79, 81, 82, 123, 124).

K. Sakamoto, Y. Suzuki, T. Hirano, and K. Usami, “Improvement of Spatial Resolution
of Monochromatic X-ray CT Using Synchrotron Radiation”, Jpn. J. Appl. Phys. 27,
127 (1988) (cited on p. 39).

M. Kuriyama, B. W. Steiner, and R. C. Dobbyn, “Dynamical Diffraction Imaging
(Topography) with X-Ray Synchrotron Radiation”, Annu. Rev. Mater. Sci. 19, 183—
207 (1989) (cited on p. 39).

D. Korytar, “Basic equations for multiple successive diffraction and angle distortion
minimization in X-ray magnifiers”, Czech. J. Phys. 40, 495-512 (1990) (cited on pp. 39,
40).


https://doi.org/10.1063/5.0020262
https://doi.org/10.1088/1748-0221/9/12/C12026
https://doi.org/10.1016/j.nima.2017.07.029
https://doi.org/10.1016/j.nima.2017.07.029
https://doi.org/10.1109/TRPMS.2020.3002949
https://doi.org/10.1088/1748-0221/8/02/C02016
https://doi.org/10.1088/1748-0221/8/02/C02016
https://doi.org/10.3389/fphy.2023.1123787
https://doi.org/10.3389/fphy.2023.1123787
https://doi.org/10.1088/1748-0221/9/04/C04028
https://doi.org/10.1364/OPTICA.500978
https://doi.org/10.1143/JJAP.27.127
https://doi.org/10.1143/JJAP.27.127
https://doi.org/10.1146/annurev.ms.19.080189.001151
https://doi.org/10.1146/annurev.ms.19.080189.001151
https://doi.org/10.1007/BF01599773

Bibliography

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117)

[118]

[119]

M. Kuriyama, R. C. Dobbyn, R. D. Spal, H. E. Burdette, and D. R. Black, “Hard
X-Ray Microscope With Submicrometer Spatial Resolution”, J. Res. Nat. Inst. Stand.
Technol. 95, 559 (1990) (cited on p. 39).

U. Bonse, R. Nusshardt, F. Busch, R. Pahl, J. H. Kinney, Q. C. Johnson, R. A. Saroyan,
and M. C. Nichols, “X-ray tomographic microscopy of fibre-reinforced materials”, J.
Mater. Sci. 26, 4076-4085 (1991) (cited on pp. 39, 40).

Y. Kagoshima, Y. Tsusaka, K. Yokoyama, K. Takai, S. Takeda, and J. Matsui, “Phase-
Contrast X-Ray Imaging Using Both Vertically and Horizontally Expanded Synchro-
tron Radiation X-Rays with Asymmetric Bragg Reflection”, Jpn. J. Appl. Phys. 38,
L470 (1999) (cited on p. 40).

R. D. Spal, “Submicrometer Resolution Hard X-Ray Holography with the Asymmetric
Bragg Diffraction Microscope”, Phys. Rev. Lett. 86, 3044-3047 (2001) (cited on pp. 40,
44, 67).

P. Modregger, D. Liibbert, P. Schéfer, and R. Kohler, “Magnified x-ray phase imaging
using asymmetric Bragg reflection: Experiment and theory”, Phys. Rev. B 74, 054107
(2006) (cited on pp. 40, 46, 49, 50, 62, 67).

M. Stampanoni, G. Borchert, R. Abela, and P. Riiegsegger, “Bragg magnifier: A de-
tector for submicrometer x-ray computer tomography”, J. Appl. Phys. 92, 7630-7635
(2002) (cited on pp. 40, 41, 67).

R. Kéhler and P. Schéfer, “Asymmetric Bragg Reflection as Magnifying Optics”, Cryst.
Res. Technol. 37, 734-746 (2002) (cited on p. 40).

M. Stampanoni, G. Borchert, R. Abela, and P. Riiegsegger, “Nanotomography based
on double asymmetrical Bragg diffraction”, Appl. Phys. Lett. 82, 2922-2924 (2003)
(cited on p. 40).

M. Stampanoni, G. Borchert, and R. Abela, “Progress in microtomography with the
Bragg Magnifier at SLS”, Radiat. Phys. Chem. 75, 1956-1961 (2006) (cited on p. 40).
E. F. Eikenberry, C. Bronnimann, G. Hiilsen, H. Toyokawa, R. Horisberger, B. Schmitt,
C. Schulze-Briese, and T. Tomizaki, “PILATUS: a two-dimensional X-ray detector for
macromolecular crystallography”, Nucl. Instrum. Methods Phys. Res., Sect. A 501,
260-266 (2003) (cited on p. 40).

P. Vagovi¢, D. Korytar, P. Mikulik, A. Cecilia, C. Ferrari, Y. Yang, D. Hénschke, E.
Hamann, D. Pelliccia, T. A. Lafford, M. Fiederle, and T. Baumbach, “In-line Bragg
magnifier based on V-shaped germanium crystals”, Journal of Synchrotron Radiation
18, 753-760 (2011) (cited on pp. 40, 42).

P. Vagovi¢, D. Korytér, A. Cecilia, E. Hamann, L. Svéda, D. Pelliccia, J. Hirtwig,
7. Zaprazny, P. Oberta, I. Dolbnya, K. Shawney, U. Fleschig, M. Fiederle, and T.
Baumbach, “High-resolution high-efficiency X-ray imaging system based on the in-line
Bragg magnifier and the Medipix detector”, Journal of Synchrotron Radiation 20, 153—
159 (2013) (cited on pp. 40, 67).

139


https://doi.org/10.6028/jres.095.044
https://doi.org/10.6028/jres.095.044
https://doi.org/10.1007/BF00553491
https://doi.org/10.1007/BF00553491
https://doi.org/10.1143/JJAP.38.L470
https://doi.org/10.1143/JJAP.38.L470
https://doi.org/10.1103/PhysRevLett.86.3044
https://doi.org/10.1103/PhysRevB.74.054107
https://doi.org/10.1103/PhysRevB.74.054107
https://doi.org/10.1063/1.1520722
https://doi.org/10.1063/1.1520722
https://doi.org/10.1002/1521-4079(200207)37:7<734::AID-CRAT734>3.0.CO;2-I
https://doi.org/10.1002/1521-4079(200207)37:7<734::AID-CRAT734>3.0.CO;2-I
https://doi.org/10.1063/1.1569428
https://doi.org/10.1016/j.radphyschem.2005.11.017
https://doi.org/10.1016/S0168-9002(02)02044-2
https://doi.org/10.1016/S0168-9002(02)02044-2
https://doi.org/10.1107/S090904951102989X
https://doi.org/10.1107/S090904951102989X
https://doi.org/10.1107/S0909049512044366
https://doi.org/10.1107/S0909049512044366

Bibliography

[120]

[121]

[122]

[123]

[124]
[125]
[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

140

K. Hirano, Y. Yamashita, Y. Takahashi, and H. Sugiyama, “Development of variable-
magnification X-ray Bragg optics”, J. Synchrotron Radiat. 22, 956-960 (2015) (cited
on p. 40).

N. Watanabe, M. Suzuki, Y. Higashi, and N. Sakabe, “Rotated-inclined focusing mono-
chromator with simultaneous tuning of asymmetry factor and radius of curvature over
a wide wavelength range”, J. Synchrotron Radiat. 6, 6468 (1999) (cited on pp. 40,
88).

Y. Tsusaka, K. Yokoyama, S. Takeda, M. Urakawa, Y. Kagoshima, J. Matsui, S.
Kimura, H. Kimura, K. Kobayashi, and K. Izumi, “Formation of Parallel X-Ray Mi-
crobeam and Its Application”, Jpn. J. Appl. Phys. 39, L635 (2000) (cited on pp. 40,
88).

K. Hirano and Y. Takahashi, “Applications of x-ray magnifier and demagnifier to angle-
resolved x-ray computed tomography”, J. Phys. Conf. Ser. 425, 192004 (2013) (cited
on pp. 40, 88).

J. Kirz, “Phase zone plates for x rays and the extreme uv”, JOSA 64, 301-309 (1974)
(cited on p. 40).

A. Snigirev, V. Kohn, I. Snigireva, A. Souvorov, and B. Lengeler, “Focusing high-energy
x rays by compound refractive lenses”, Appl. Opt. 37, 653-662 (1998) (cited on p. 40).
P. Kirkpatrick and A. V. Baez, “Formation of Optical Images by X-Rays”, JOSA 38,
766-774 (1948) (cited on p. 40).

R. Mokso, P. Cloetens, E. Maire, W. Ludwig, and J.-Y. Buffiére, “Nanoscale zoom
tomography with hard x rays using Kirkpatrick-Baez optics”, Appl. Phys. Lett. 90,
144104 (2007) (cited on p. 40).

S. Flenner, A. Kubec, C. David, M. Storm, C. F. Schaber, F. Vollrath, M. Miiller,
I. Greving, and J. Hagemann, “Hard X-ray nano-holotomography with a Fresnel zone
plate”, Optics Express 28, 37514-37525 (2020) (cited on p. 40).

H. Hessdorfer, “A novel 2D in-line Bragg magnifier imaging system for dose-efficient X-
ray imaging at synchrotrons”, PhD thesis (Universitdt Freiburg, 2020), 29, 54ff (cited
on pp. 42-44, 53, 57).

A. Limaye, “Drishti: a volume exploration and presentation tool”, in Proceedings Vol-
ume 85006, Developments in X-Ray Tomography VIII, Vol. 8506 (SPIE, Oct. 2012),
pp. 191-199 (cited on pp. 42, 82).

T. Matsushita and H. Hashizume, Handbook on Synchrotron Radiation, edited by E.
Koch, Vol. 1 (North Holland Publishing Company, 1983) Chap. 4 (cited on p. 42).

F. E. Christensen, A. Hornstrup, P. K. Frederiksen, S. Abdali, P. Grundsoe, H. W.
Schnopper, R. A. Lewis, C. J. Hall, and K. N. Borozdin, “Expanded beam X-ray optics
calibration facility at the Daresbury Synchrotron”, in Multilayer and Grazing Incidence
X-ray/EUV Optics II, Vol. 2011 (SPIE, 1994), pp. 540-548 (cited on p. 42).

C. Kamezawa, K. Hyodo, C. Tokunaga, T. Tsukada, and S. Matushita, “Large-view
X-ray imaging for medical applications using the world’s only vertically polarized syn-


https://doi.org/10.1107/S1600577515008802
https://doi.org/10.1107/S0909049599000229
https://doi.org/10.1143/JJAP.39.L635
https://doi.org/10.1088/1742-6596/425/19/192004
https://doi.org/10.1364/JOSA.64.000301
https://doi.org/10.1364/AO.37.000653
https://doi.org/10.1364/JOSA.38.000766
https://doi.org/10.1364/JOSA.38.000766
https://doi.org/10.1063/1.2719653
https://doi.org/10.1063/1.2719653
https://doi.org/10.1364/OE.406074
https://doi.org/10.1117/12.935640
https://doi.org/10.1117/12.935640
https://doi.org/https://doi.org/10.1117/12.167225
https://doi.org/https://doi.org/10.1117/12.167225

Bibliography

134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

chrotron radiation beam and a single asymmetric Si crystal”, Phys. Med. Biol. 68,
195010 (2023) (cited on p. 42).

P. Modregger, D. Liibbert, P. Schéfer, R. Kohler, T. Weitkamp, M. Hanke, and T.
Baumbach, “Fresnel diffraction in the case of an inclined image plane”, Optics Express
16, 5141-5149 (2008) (cited on pp. 43, 51, 62, 120).

S. Hrivnak, J. Uli¢cny, and P. Vagovi¢, “Fast Fresnel propagation through a set of
inclined reflecting planes applicable for X-ray imaging”, Optics Express 26, 34569—
34579 (2018) (cited on pp. 43, 50, 51, 62, 75, 120).

K. Kobayashi, K. Izumi, H. Kimura, S. Kimura, T. Ibuki, Y. Yokoyama, Y. Tsusaka, Y.
Kagoshima, and J. Matsui, “X-ray phase-contrast imaging with submicron resolution
by using extremely asymmetric Bragg diffractions”, Appl. Phys. Lett. 78, 132-134
(2001) (cited on pp. 43, 67).

E. Abbe, “Ueber einen neuen Beleuchtungsapparat am Mikroskop”, Archiv fiir mikros-
kopische Anatomie 9, 469-480 (1873) (cited on p. 44).

P. Modregger, “The Bragg magnifier: a phase sensitive X-ray imaging technique for
sub-micrometer resolution”, PhD thesis (Humbold-Universitit zu Berlin, 2009) (cited
on p. 44).

P. Vagovi¢, L. Svéda, A. Cecilia, E. Hamann, D. Pelliccia, E. N. Gimenez, D. Korytar,
K. M. Pavlov, Z. Zaprazny, M. Zuber, T. Koenig, M. Olbinado, W. Yashiro, A. Mo-
mose, M. Fiederle, and T. Baumbach, “X-ray Bragg magnifier microscope as a linear
shift invariant imaging system: image formation and phase retrieval”, Optics Express
22, 21508-21520 (2014) (cited on pp. 49, 51).

S. Hrivnak, A. Hovan, J. Uli¢ny, and P. Vagovic, “Phase retrieval for arbitrary Fresnel-
like linear shift-invariant imaging systems suitable for tomography”, Biomed. Opt.
Express 9, 4390-4400 (2018) (cited on p. 51).

T. Faragd, S. Gasilov, I. Emslie, M. Zuber, L. Helfen, M. Vogelgesang, and T. Baum-
bach, “Tofu: a fast, versatile and user-friendly image processing toolkit for computed
tomography”, Journal of Synchrotron Radiation 29, 916-927 (2022) (cited on pp. 51,
60, 80, 81).

M. Vogelgesang, T. Faragd, T. F. Morgeneyer, L. Helfen, T. dos Santos Rolo, A.
Myagotin, and T. Baumbach, “Real-time image-content-based beamline control for
smart 4D X-ray imaging”, Journal of Synchrotron Radiat. 23, 1254-1263 (2016) (cited
on p. 53).

K. Hirano, Y. Takahashi, and H. Sugiyama, “Development and application of variable-
magnification x-ray Bragg magnifiers”, Nucl. Instrum. Methods Phys. Res., Sect. A
741, 78-83 (2014) (cited on p. 57).

D. H. Bilderback, P. Elleaume, and E. Weckert, “Review of third and next generation
synchrotron light sources”, J. Phys. B: At. Mol. Opt. Phys. 38, S773 (2005) (cited on
p. 59).

141


https://doi.org/10.1088/1361-6560/acf640
https://doi.org/10.1088/1361-6560/acf640
https://doi.org/10.1364/OE.16.005141
https://doi.org/10.1364/OE.16.005141
https://doi.org/10.1364/OE.26.034569
https://doi.org/10.1364/OE.26.034569
https://doi.org/10.1063/1.1337621
https://doi.org/10.1063/1.1337621
https://doi.org/10.1364/OE.22.021508
https://doi.org/10.1364/OE.22.021508
https://doi.org/10.1364/BOE.9.004390
https://doi.org/10.1364/BOE.9.004390
https://doi.org/10.1107/S160057752200282X
https://doi.org/10.1107/S1600577516010195
https://doi.org/10.1016/j.nima.2013.12.038
https://doi.org/10.1016/j.nima.2013.12.038
https://doi.org/10.1088/0953-4075/38/9/022

Bibliography

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]

[156]

142

M. Bartels, M. Krenkel, P. Cloetens, W. Md&bius, and T. Salditt, “Myelinated mouse
nerves studied by X-ray phase contrast zoom tomography”, J. Struct. Biol. 192, 561—
568 (2015) (cited on pp. 59, 60).

T. van de Kamp, P. Vagovi¢, T. Baumbach, and A. Riedel, “A Biological Screw in a
Beetle’s Leg”, Science 333, 52 (2011) (cited on p. 63).

M. E. Dickinson, A. M. Flenniken, X. Ji, L. Teboul, M. D. Wong, J. K. White, T. F.
Meehan, W. J. Weninger, H. Westerberg, H. Adissu, et al., “High-throughput discovery
of novel developmental phenotypes”, Nature 537, 508-514 (2016) (cited on p. 63).

A. Cau, V. Beyrand, D. F. A. E. Voeten, V. Fernandez, P. Tafforeau, K. Stein, R.
Barsbold, K. Tsogtbaatar, P. J. Currie, and P. Godefroit, “Synchrotron scanning reveals
amphibious ecomorphology in a new clade of bird-like dinosaurs”, Nature 552, 395-399
(2017) (cited on p. 63).

M. Tépperwien, F. van der Meer, C. Stadelmann, and T. Salditt, “Three-dimensional
virtual histology of human cerebellum by X-ray phase-contrast tomography”, Proc.
Natl. Acad. Sci. 115, 6940-6945 (2018) (cited on p. 63).

Y. Ding, D. J. Vanselow, M. A. Yakovlev, S. R. Katz, A. Y. Lin, D. P. Clark, P. Vargas,
X. Xin, J. E. Copper, V. A. Canfield, K. C. Ang, Y. Wang, X. Xiao, F. De Carlo,
D. B. van Rossum, P. La Riviere, and K. C. Cheng, “Computational 3D histological
phenotyping of whole zebrafish by X-ray histotomography”, eLife 8, e44898 (2019)
(cited on p. 63).

K. Trinajstic, J. A. Long, S. Sanchez, C. A. Boisvert, D. Snitting, P. Tafforeau, V.
Dupret, A. M. Clement, P. D. Currie, B. Roelofs, J. J. Bevitt, M. S. Y. Lee, and P. E.
Ahlberg, “Exceptional preservation of organs in Devonian placoderms from the Gogo
lagerstéatte”, Science 377, 1311-1314 (2022) (cited on p. 63).

M. W. Westneat, O. Betz, R. W. Blob, K. Fezzaa, W. J. Cooper, and W.-K. Lee,
“Tracheal Respiration in Insects Visualized with Synchrotron X-ray Imaging”, Science
299, 558-560 (2003) (cited on p. 63).

S. M. Walker, D. A. Schwyn, R. Mokso, M. Wicklein, T. Miiller, M. Doube, M. Stam-
panoni, H. G. Krapp, and G. K. Taylor, “In Vivo Time-Resolved Microtomography
Reveals the Mechanics of the Blowfly Flight Motor”, PLoS Biol. 12, ¢1001823 (2014)
(cited on p. 63).

R. Mokso, D. A. Schwyn, S. M. Walker, M. Doube, M. Wicklein, T. Miiller, M. Stam-
panoni, G. K. Taylor, and H. G. Krapp, “Four-dimensional in vivo X-ray microscopy
with projection-guided gating”, Sci. Rep. 5, 1-6 (2015) (cited on p. 63).

O. Bolmin, J. J. Socha, M. Alleyne, A. C. Dunn, K. Fezzaa, and A. A. Wissa, “Non-
linear elasticity and damping govern ultrafast dynamics in click beetles”, Proc. Natl.
Acad. Sci. 118, €2014569118 (2021) (cited on p. 63).

J. B. Wolfgang Schlegel, Medizinische Physik 2 (Springer, Berlin, Germany, 2002),
p. 49 (cited on pp. 64, 65).


https://doi.org/10.1016/j.jsb.2015.11.001
https://doi.org/10.1016/j.jsb.2015.11.001
https://doi.org/10.1126/science.1204245
https://doi.org/10.1038/nature19356
https://doi.org/10.1038/nature24679
https://doi.org/10.1038/nature24679
https://doi.org/10.1073/pnas.1801678115
https://doi.org/10.1073/pnas.1801678115
https://doi.org/10.7554/eLife.44898
https://doi.org/10.1126/science.abf3289
https://doi.org/10.1126/science.1078008
https://doi.org/10.1126/science.1078008
https://doi.org/10.1371/journal.pbio.1001823
https://doi.org/10.1038/srep08727
https://doi.org/10.1073/pnas.2014569118
https://doi.org/10.1073/pnas.2014569118

Bibliography

[157]

[158]

[159]

[160]

[161]

[162]

[163)]

[164]

[165]

[166]

[167]

[168]

[169)]

J. Allison, K. Amako, J. Apostolakis, P. Arce, M. Asai, T. Aso, E. Bagli, A. Bagulya,
S. Banerjee, G. Barrand, et al., “Recent developments in Geant4”, Nucl. Instrum.
Methods Phys. Res., Sect. A 835, 186-225 (2016) (cited on pp. 65, 125).

N. Hiinemohr, H. Paganetti, S. Greilich, O. Jékel, and J. Seco, “Tissue decomposition
from dual energy CT data for MC based dose calculation in particle therapy”, Med.
Phys. 41, 061714 (2014) (cited on p. 65).

T. Martin and A. Koch, “Recent developments in X-ray imaging with micrometer
spatial resolution”, Journal of Synchrotron Radiation 13, 180-194 (2006) (cited on
p. 67).

L. Wollesen, F. Riva, P.-A. Douissard, K. Pauwels, T. Martin, and C. Dujardin, “Scin-
tillating thin film design for ultimate high resolution X-ray imaging”, J. Mater. Chem.
C 10, 9257-9265 (2022) (cited on pp. 67, 69, 74, 79, 123, 125).

I. Johnson, A. Bergamaschi, H. Billich, S. Cartier, R. Dinapoli, D. Greiffenberg, M.
Guizar-Sicairos, B. Henrich, J. Jungmann, D. Mezza, A. Mozzanica, B. Schmitt, X.
Shi, and G. Tinti, “Eiger: a single-photon counting x-ray detector”, J. Instrum. 9,
C05032 (2014) (cited on p. 67).

K. Hirano, Y. Yamashita, Y. Takahashi, and H. Sugiyama, “Development of variable-
magnification X-ray Bragg optics”, Journal of Synchrotron Radiation 22, 956-960
(2015) (cited on p. 67).

A. Mittone, I. Manakov, L. Broche, C. Jarnias, P. Coan, and A. Bravin, “Character-
ization of a sCMOS-based high-resolution imaging system”, Journal of Synchrotron
Radiation 24, 1226-1236 (2017) (cited on pp. 68, 69).

T. J. Davis, “X-Ray Diffraction Imaging Using Perfect Crystals”, J. X-Ray Sci. Technol.
6, 317-342 (1996) (cited on p. 69).

I. A. Cunningham and R. Shaw, “Signal-to-noise optimization of medical imaging sys-
tems”, J. Opt. Soc. Am. A, JOSAA 16, 621-632 (1999) (cited on p. 70).

P.-A. Douissard, A. Cecilia, T. Martin, V. Chevalier, M. Couchaud, T. Baumbach,
K. Dupré, M. Kiihbacher, and A. Rack, “A novel epitaxially grown LSO-based thin-
film scintillator for micro-imaging using hard synchrotron radiation”, J. Synchrotron
Radiat. 17, 571-583 (2010) (cited on p. 72).

C. Homann, T. Hohage, J. Hagemann, A.-L. Robisch, and T. Salditt, “Validity of the
empty-beam correction in near-field imaging”, Phys. Rev. A 91, 013821 (2015) (cited
on p. 76).

Modelling of the MTF performance of high spatial resolution X-ray detectors, https:
//vwww.esrf.fr/home/UsersAndScience/Publications/Highlights/highlights-
2014/ET/ET04.html, [online; accessed 18/07/2023] (cited on p. 79).

L.-Y. Li, “Worldwide use of Trichogramma for biological control on different crops: a
survey”, Biological control with egg parasitoids, 37-53 (1994) (cited on p. 80).

143


https://doi.org/10.1016/j.nima.2016.06.125
https://doi.org/10.1016/j.nima.2016.06.125
https://doi.org/10.1118/1.4875976
https://doi.org/10.1118/1.4875976
https://doi.org/10.1107/S0909049506000550
https://doi.org/10.1039/D2TC01274J
https://doi.org/10.1039/D2TC01274J
https://doi.org/10.1088/1748-0221/9/05/C05032
https://doi.org/10.1088/1748-0221/9/05/C05032
https://doi.org/10.1107/S1600577515008802
https://doi.org/10.1107/S1600577515008802
https://doi.org/10.1107/S160057751701222X
https://doi.org/10.1107/S160057751701222X
https://doi.org/10.3233/XST-1996-6402
https://doi.org/10.3233/XST-1996-6402
https://doi.org/10.1364/JOSAA.16.000621
https://doi.org/10.1107/S0909049510025938
https://doi.org/10.1107/S0909049510025938
https://doi.org/10.1103/PhysRevA.91.013821
https://www.esrf.fr/home/UsersAndScience/Publications/Highlights/highlights-2014/ET/ET04.html
https://www.esrf.fr/home/UsersAndScience/Publications/Highlights/highlights-2014/ET/ET04.html
https://www.esrf.fr/home/UsersAndScience/Publications/Highlights/highlights-2014/ET/ET04.html

Bibliography

[170]

[171]

[172]

[173]

[174]

[175]

176

[177]

[178]

[179]

[180]

[181]

144

7Z.-Y. Wang, K.-L. He, F. Zhang, X. Lu, and D. Babendreier, “Mass rearing and release
of Trichogramma for biological control of insect pests of corn in China”, Biol. Control
68, 136-144 (2014) (cited on p. 81).

L.-S. Zang, S. Wang, F. Zhang, and N. Desneux, “Biological Control with Trichogramma
in China: History, Present Status, and Perspectives”, Annu. Rev. Entomol. 66, 463—
484 (2021) (cited on p. 81).

A. Cherif, R. Mansour, and K. Grissa-Lebdi, “The egg parasitoids Trichogramma: from
laboratory mass rearing to biological control of lepidopteran pests”, Biocontrol Science
and Technology 31, 661-693 (2021) (cited on p. 81).

A. Ivezi¢, B. Trudi¢, and G. Draskié¢, “The usage of beneficial insects as a biological
control measure in large-scale farming - a case study review on 7Trichogramma spp.”,
Acta agriculturae Slovenica 118, 1-13 (2022) (cited on p. 81).

X. Yang, R. Hofmann, R. Dapp, T. van de Kamp, T. dos Santos Rolo, X. Xiao, J.
Moosmann, J. Kashef, and R. Stotzka, “TV-based conjugate gradient method and
discrete L-curve for few-view CT reconstruction of X-ray in vivo data”, Optics Express
23, 5368-5387 (2015) (cited on p. 81).

J. Dong, J. Fu, and Z. He, “A deep learning reconstruction framework for X-ray com-
puted tomography with incomplete data”, PLoS One 14, 0224426 (2019) (cited on
p. 81).

X. Duan, X. F. Ding, N. Li, F.-X. Wu, X. Chen, and N. Zhu, “Sparse2Noise: Low-dose
synchrotron X-ray tomography without high-quality reference data”, Comput. Biol.
Med. 165, 107473 (2023) (cited on p. 81).

J. Lehtinen, J. Munkberg, J. Hasselgren, S. Laine, T. Karras, M. Aittala, and T. Aila,
“Noise2Noise: Learning Image Restoration without Clean Data”, arXiv, 10.48550/
arXiv.1803.04189 (2018) (cited on p. 82).

Y. Zharov, E. Ametova, R. Spiecker, T. Baumbach, G. Burca, and V. Heuveline,
“Shot noise reduction in radiographic and tomographic multi-channel imaging with
self-supervised deep learning”, Optics Express 31, 2622626244 (2023) (cited on p. 82).
T. van de Kamp, I. Miké, A. H. Staniczek, B. Eggs, D. Bajerlein, T. Faragd, L. Hagel-
stein, E. Hamann, R. Spiecker, T. Baumbach, P. Jansta, and L. Krogmann, “Evolution
of flexible biting in hyperdiverse parasitoid wasps”, Proc. R. Soc. B. 289, 20212086
(2022) (cited on p. 83).

7. Zhang, H. Dierks, N. Lamers, C. Sun, K. Novakové, C. Hetherington, I. G. Scheblykin,
and J. Wallentin, “Single-Crystalline Perovskite Nanowire Arrays for Stable X-ray
Scintillators with Micrometer Spatial Resolution”, ACS Appl. Nano Mater. 5, 881-889
(2022) (cited on p. 83).

M. Biihrer, M. Stampanoni, X. Rochet, F. Biichi, J. Eller, and F. Marone, “High-
numerical-aperture macroscope optics for time-resolved experiments”, Journal of Syn-
chrotron Radiation 26, 1161-1172 (2019) (cited on p. 83).


https://doi.org/10.1016/j.biocontrol.2013.06.015
https://doi.org/10.1016/j.biocontrol.2013.06.015
https://doi.org/10.1146/annurev-ento-060120-091620
https://doi.org/10.1146/annurev-ento-060120-091620
https://doi.org/10.1080/09583157.2020.1871469
https://doi.org/10.1080/09583157.2020.1871469
https://doi.org/10.14720/aas.2022.118.2.2402
https://doi.org/10.1364/OE.23.005368
https://doi.org/10.1364/OE.23.005368
https://doi.org/10.1371/journal.pone.0224426
https://doi.org/10.1016/j.compbiomed.2023.107473
https://doi.org/10.1016/j.compbiomed.2023.107473
https://doi.org/10.48550/arXiv.1803.04189
https://doi.org/10.48550/arXiv.1803.04189
https://doi.org/10.48550/arXiv.1803.04189
https://doi.org/10.48550/arXiv.1803.04189
https://doi.org/10.1364/OE.492221
https://doi.org/10.1098/rspb.2021.2086
https://doi.org/10.1098/rspb.2021.2086
https://doi.org/10.1021/acsanm.1c03575
https://doi.org/10.1021/acsanm.1c03575
https://doi.org/10.1107/S1600577519004119
https://doi.org/10.1107/S1600577519004119

Bibliography

[182]

[183]

[184]

[185]

[186]

187

[188]

[189]

[190]

[191]

7. Wang, K. Anagnost, C. W. Barnes, D. M. Dattelbaum, E. R. Fossum, E. Lee, J.
Liu, J. J. Ma, W. Z. Meijer, W. Nie, C. M. Sweeney, A. C. Therrien, H. Tsai, and
X. Yue, “Billion-pixel X-ray camera (BiPC-X)”, Rev. Sci. Instrum. 92, 043708 (2021)
(cited on p. 83).

A. Zamir, O. J. Arthurs, C. K. Hagen, P. C. Diemoz, T. Brochard, A. Bravin, N. J.
Sebire, and A. Olivo, “X-ray phase contrast tomography; proof of principle for post-
mortem imaging”, The British Journal of Radiology 89, 20150565 (2016) (cited on
p. 85).

M. Donnelley, K. S. Morgan, R. Gradl, M. Klein, D. Hausermann, C. Hall, A. Mak-
simenko, and D. W. Parsons, “Live-pig-airway surface imaging and whole-pig CT at
the Australian Synchrotron Imaging and Medical Beamline”, Journal of Synchrotron
Radiation 26, 175-183 (2019) (cited on p. 85).

W. L. Wagner, F. Wuennemann, S. Pacilé, J. Albers, F. Arfelli, D. Dreossi, J. Biederer,
P. Konietzke, W. Stiller, M. O. Wielpiitz, et al., “Towards synchrotron phase-contrast
lung imaging in patients - a proof-of-concept study on porcine lungs in a human-scale
chest phantom”, Journal of Synchrotron Radiation 25, 1827-1832 (2018) (cited on
p. 85).

K. S. Morgan, D. Parsons, P. Cmielewski, A. McCarron, R. Gradl, N. Farrow, K. Siu, A.
Takeuchi, Y. Suzuki, K. Uesugi, M. Uesugi, N. Yagi, C. Hall, M. Klein, A. Maksimenko,
A. Stevenson, D. Hausermann, M. Dierolf, F. Pfeiffer, and M. Donnelley, “Methods
for dynamic synchrotron X-ray respiratory imaging in live animals”, J. Synchrotron
Radiat. 27, 164-175 (2020) (cited on p. 85).

C. David, B. N6hammer, H. H. Solak, and E. Ziegler, “Differential X-ray phase contrast
imaging using a shearing interferometer”, Appl. Phys. Lett. 81, 3287-3289 (2002) (cited
on p. 85).

F. Pfeiffer, J. Herzen, M. Willner, M. Chabior, S. Auweter, M. Reiser, and F. Bamberg,
“Grating-based X-ray phase contrast for biomedical imaging applications”, Z. Med.
Phys. 23, 176-185 (2013) (cited on p. 85).

C. Tavakoli, E. Cuccione, C. Dumot, D. Cormode, M. Wiart, H. Elleaume, and E. Brun,
“Tracking cells in the brain of small animals using synchrotron multi-spectral phase
contrast imaging”, in Medical Imaging 2021: Physics of Medical Imaging, Vol. 11595
(SPIE, 2021), pp. 1218-1224 (cited on pp. 85, 98).

C. Walsh, P. Tafforeau, W. Wagner, D. Jafree, A. Bellier, C. Werlein, M. Kiihnel, E.
Boller, S. Walker-Samuel, J. Robertus, et al., “Imaging intact human organs with local
resolution of cellular structures using hierarchical phase-contrast tomography”, Nature
Methods 18, 1532-1541 (2021) (cited on p. 85).

B. D. Arhatari, A. W. Stevenson, B. Abbey, Y. I. Nesterets, A. Maksimenko, C. J.
Hall, D. Thompson, S. C. Mayo, T. Fiala, H. M. Quiney, et al., “X-ray Phase-Contrast
Computed Tomography for Soft Tissue Imaging at the Imaging and Medical Beamline

145


https://doi.org/10.1063/5.0043013
https://doi.org/https://doi.org/10.1259/bjr.201505650
https://doi.org/https://doi.org/10.1107/S1600577518014133
https://doi.org/https://doi.org/10.1107/S1600577518014133
https://doi.org/https://doi.org/10.1107/S1600577518013401
https://doi.org/10.1107/S1600577519014863
https://doi.org/10.1107/S1600577519014863
https://doi.org/10.1063/1.1516611
https://doi.org/10.1016/j.zemedi.2013.02.002
https://doi.org/10.1016/j.zemedi.2013.02.002
https://doi.org/https://doi.org/10.1117/12.2580841
https://doi.org/https://doi.org/10.1038/s41592-021-01317-x
https://doi.org/https://doi.org/10.1038/s41592-021-01317-x

Bibliography

[192]

193]

[194]

[195]

[196]

[197]

198

[199]

[200]

[201]

[202]

146

(IMBL) of the Australian Synchrotron”, Applied Sciences 11, 4120 (2021) (cited on
pp. 85, 98).

I. Haggmark, K. Shaker, S. Nyrén, B. Al-Amiry, E. Abadi, W. P. Segars, E. Samei,
and H. M. Hertz, “Phase-contrast virtual chest radiography”, Proc. Natl. Acad. Sci.
120, 2210214120 (2023) (cited on p. 85).

F. Cianciosi, A.-L. Buisson, P. Tafforeau, and P. Van Vaerenbergh, “BM18, the New
ESRF-EBS Beamline for Hierarchical Phase-Contrast Tomography”, JACOW Publish-
ing, 1-5 (2021) (cited on pp. 85, 98).

T. Lang, N. Saeidnezhad, K. Dremel, D. Weller, M. Diez, A. M. Stock, T. Sauer, F.
Cianciosi, C. Jarnias, P. Tafforeau, and S. Zabler, “Multiscale Phase-Contrast Tomog-
raphy at BM18”, e-Journal of Nondestructive Testing 28, 3 (2023) (cited on pp. 85,
98).

R. Spiecker, M. Spiecker, A. Biswal, M. Shcherbinin, and T. Baumbach, “The Bragg de-
magnifier: X-ray imaging with kilometer propagation distance within a meter”, arXiv,
10.48550/arXiv.2310.16771 (2023) (cited on pp. 85, 92, 93, 104, 106).

Z. Huang and R. D. Ruth, “Laser-electron storage ring”, Phys. Rev. Lett. 80, 976
(1998) (cited on pp. 91, 107).

B. Giinther, R. Gradl, C. Jud, E. Eggl, J. Huang, S. Kulpe, K. Achterhold, B. Gleich,
M. Dierolf, and F. Pfeiffer, “The versatile X-ray beamline of the Munich Compact Light
Source: design, instrumentation and applications”, Journal of Synchrotron Radiation
27, 1395-1414 (2020) (cited on pp. 91, 107).

B. Hornberger, J. Kasahara, R. Ruth, R. Loewen, and J. Khaydarov, “Inverse Compton
scattering X-ray source for research, industry and medical applications”, in Proceedings
Volume 11886, International Conference on X-Ray Lasers 2020, Vol. 11886 (SPIE,
July 2021), pp. 51-60 (cited on pp. 91, 107).

J. Hartwig, Introduction into the dynamical theory of X-ray diffraction for perfect crys-
tals, https://www.esrf.fr/files/live/sites/www/files/Instrumentation/
friday-lectures-slides/Talk_Hartwig.pdf, [online; accessed 10/10/2023] (cited
on pp. 93, 97, 127).

X. Huang, A. Macrander, M. Honnicke, Y. Cai, and P. Fernandez, “Dispersive spread
of virtual sources by asymmetric X-ray monochromators”, Journal of Applied Crystal-
lography 45, 255-262 (2012) (cited on p. 93).

C. G. Schroer, H.-C. Wille, O. H. Seeck, K. Bagschik, H. Schulte-Schrepping, M. Tis-
cher, H. Graafsma, W. Laasch, K. Baev, S. Klumpp, R. Bartolini, H. Reichert, W.
Leemans, and E. Weckert, “The synchrotron radiation source PETRA III and its fu-
ture ultra-low-emittance upgrade PETRA IV”, Eur. Phys. J. Plus 137, 1312 (2022)
(cited on pp. 98, 127).

G. E. Barbone, A. Bravin, A. Mittone, S. Grosu, J. Ricke, G. Cavaletti, V. Djonov, and
P. Coan, “High-Spatial-Resolution Three-dimensional Imaging of Human Spinal Cord


https://doi.org/https://doi.org/10.3390/app11094120
https://doi.org/https://doi.org/10.1073/pnas.2210214120
https://doi.org/https://doi.org/10.1073/pnas.2210214120
https://doi.org/10.18429/JACoW-MEDSI2020-MOIO02
https://doi.org/10.18429/JACoW-MEDSI2020-MOIO02
https://doi.org/10.58286/27746
https://doi.org/10.48550/arXiv.2310.16771
https://doi.org/10.48550/arXiv.2310.16771
https://doi.org/10.48550/arXiv.2310.16771
https://doi.org/https://doi.org/10.1103/PhysRevLett.80.976
https://doi.org/https://doi.org/10.1103/PhysRevLett.80.976
https://doi.org/https://doi.org/10.1107/S1600577520008309
https://doi.org/https://doi.org/10.1107/S1600577520008309
https://doi.org/10.1117/12.2591977
https://doi.org/10.1117/12.2591977
https://www.esrf.fr/files/live/sites/www/files/Instrumentation/friday-lectures-slides/Talk_Hartwig.pdf
https://www.esrf.fr/files/live/sites/www/files/Instrumentation/friday-lectures-slides/Talk_Hartwig.pdf
https://doi.org/https://doi.org/10.1107/S0021889812003366
https://doi.org/https://doi.org/10.1107/S0021889812003366
https://doi.org/10.1140/epjp/s13360-022-03517-6

Bibliography

203]

[204]

[205]

206]

[207]

208]

209

[210]
[211]

[212]

and Column Anatomy with Postmortem X-ray Phase-Contrast Micro-CT”, Radiology
(2020) (cited on p. 98).

A. Bravin, “Exploiting the X-ray refraction contrast with an analyser: the state of the
art”, Journal of Physics D: Applied Physics 36, A24 (2003) (cited on p. 105).

A. J. Morgan, K. T. Murray, M. Prasciolu, H. Fleckenstein, O. Yefanov, P. Villanueva-
Perez, V. Mariani, M. Domaracky, M. Kuhn, S. Aplin, I. Mohacsi, M. Messerschmidt,
K. Stachnik, Y. Du, A. Burkhart, A. Meents, E. Nazaretski, H. Yan, X. Huang, Y. S.
Chu, H. N. Chapman, and S. Bajt, “Ptychographic X-ray speckle tracking with multi-
layer Laue lens systems”, J. Appl. Crystallogr. 53, 927-936 (2020) (cited on p. 105).
A. Rohou and N. Grigorieff, “CTFFIND4: Fast and accurate defocus estimation from
electron micrographs”; J. Struct. Biol. 192, 216-221 (2015) (cited on p. 105).

S. D. Shastri, “Combining flat crystals, bent crystals and compound refractive lenses
for high-energy X-ray optics”, Journal of Synchrotron Radiatiation 11, 150-156 (2004)
(cited on pp. 107, 111).

P. Kirkpatrick and A. V. Baez, “Formation of Optical Images by X-Rays”, JOSA 38,
766-774 (1948) (cited on pp. 107, 111).

D. Berthe, L. Heck, S. Resch, M. Dierolf, J. Brantl, G. Benedikt, C. Petrich, K. Achter-
hold, F. Pfeiffer, S. Grandl, K. Hellerhoff, and J. Herzen, “Grating-Based Phase-
Contrast Breast ComputedTomography at an Inverse Compton Source”, Research
Square, 10.21203/rs.3.rs-3891369/v1 (2024) (cited on p. 113).

A. H. Barnett, J. F. Magland, and L. af Klinteberg, “A parallel non-uniform fast
Fourier transform library based on an "exponential of semicircle" kernel”, arXiv, 10.
48550/arXiv.1808.06736 (2019) (cited on p. 121).

X. Chen, L. Ren, Y. Qiu, and H. Liu, “New method for determining the depth of field
of microscope systems”, Appl. Opt. 50, 5524-5533 (2011) (cited on p. 122).

H. Hopkins H., “The frequency response of a defocused optical system”, Proc. R. Soc.
London A - Math. Phys. Sci. 231, 91-103 (1955) (cited on p. 125).

F. Masiello, “X-ray diffraction and imaging with a coherent beam: application to X-Ray
optical elements and crystal exhibiting phase inhomogeneities”, PhD thesis (Université
de Grenoble; Universita di Torino, 2011), p. 24 (cited on p. 127).

147


https://pubs.rsna.org/doi/full/10.1148/radiol.2020201622
https://pubs.rsna.org/doi/full/10.1148/radiol.2020201622
https://doi.org/10.1088/0022-3727/36/10A/306
https://doi.org/10.1107/S1600576720006925
https://doi.org/10.1016/j.jsb.2015.08.008
https://doi.org/10.1107/S0909049503023586
https://doi.org/10.1364/JOSA.38.000766
https://doi.org/10.1364/JOSA.38.000766
https://doi.org/10.21203/rs.3.rs-3891369/v1
https://doi.org/10.21203/rs.3.rs-3891369/v1
https://doi.org/10.21203/rs.3.rs-3891369/v1
https://doi.org/10.48550/arXiv.1808.06736
https://doi.org/10.48550/arXiv.1808.06736
https://doi.org/10.48550/arXiv.1808.06736
https://doi.org/10.48550/arXiv.1808.06736
https://doi.org/10.1364/AO.50.005524
https://doi.org/10.1098/rspa.1955.0158
https://doi.org/10.1098/rspa.1955.0158




List of publications

T. Faragd, R. Spiecker, M. Hurst, M. Zuber, A. Cecilia, and T. Baumbach, “Phase retrieval
in propagation-based X-ray imaging beyond the limits of transport of intensity and contrast
transfer function approaches”, Optics Letters 49, 5159-5162 (2024).

R. Spiecker, P. Pfeiffer, A. Biswal, M. Shcherbinin, M. Spiecker, H. Hessdorfer, M. Hurst,
Y. Zharov, V. Bellucci, T. Faragd, M. Zuber, A. Herz, A. Cecilia, M. Czyzycki, C. S. B. Dias,
D. Novikov, L. Krogmann, E. Hamann, T. van de Kamp, and T. Baumbach, “Dose-efficient

in vivo X-ray phase contrast imaging at micrometer resolution by Bragg magnifiers”, Optica
10, 1633-1640 (2023).

R. Spiecker, M. Spiecker, A. Biswal, M. Shcherbinin, and T. Baumbach, “The Bragg de-
magnifier: X-ray imaging with kilometer propagation distance within a meter”, arXiv, 10.
48550/arXiv.2310.16771 (2023).

Y. Zharov, E. Ametova, R. Spiecker, T. Baumbach, G. Burca, and V. Heuveline, “Shot
noise reduction in radiographic and tomographic multi-channel imaging with self-supervised
deep learning”, Optics Express 31, 26226-26244 (2023).

T. van de Kamp, 1. Miké, A. H. Staniczek, B. Eggs, D. Bajerlein, T. Faragd, L. Hagelstein,
E. Hamann, R. Spiecker, T. Baumbach, P. Jansta, and L. Krogmann, “Evolution of flexible
biting in hyperdiverse parasitoid wasps”, Proc. R. Soc. B. 289, 20212086 (2022).

M. Obermair, S. Hettler, M. Dries, M. Hugenschmidt, R. Spiecker, and D. Gerthsen,
“Carbon-film-based Zernike phase plates with smooth thickness gradient for phase-contrast
transmission electron microscopy with reduced fringing artefacts”, J. Microsc. 287, 45-58
(2022).

R. Pretzsch, M. Dries, S. Hettler, M. Spiecker, M. Obermair, and D. Gerthsen, “Investiga-
tion of hole-free phase plate performance in transmission electron microscopy under different

operation conditions by experiments and simulations”, Adv. Struct. Chem. Imag. 5, 1-11
(2019).

149


https://doi.org/10.1364/OL.530330
https://doi.org/10.1364/OPTICA.500978
https://doi.org/10.1364/OPTICA.500978
https://doi.org/10.48550/arXiv.2310.16771
https://doi.org/10.48550/arXiv.2310.16771
https://doi.org/10.48550/arXiv.2310.16771
https://doi.org/10.48550/arXiv.2310.16771
https://doi.org/10.1364/OE.492221
https://doi.org/10.1098/rspb.2021.2086
https://doi.org/10.1111/jmi.13108
https://doi.org/10.1111/jmi.13108
https://doi.org/10.1186/s40679-019-0067-z
https://doi.org/10.1186/s40679-019-0067-z




Acknowledgments

Many people supported me in accomplishing the project presented in this thesis. I would like

to thank everyone involved during these years.

First of all, I would like to thank Prof. Tilo Baumbach for giving me the opportunity to
join the institute and for supervising my thesis. You woke my fascination about the topic
of X-ray imaging and Bragg magnifiers, and gave me the perfect balance between guidance,
support and new perspectives on the one hand, and freedom and encouragement to follow my
own ideas on the other hand. I am grateful for your supervision and mentorship throughout
these years, as well as the possibility to travel to conferences for presenting and discussing
my research. I always felt encouraged and appreciated by you, and I value the discussions we
had together, your never-ending energy that gave me courage when needed, and the joy we

had experimenting not only with electromagnetic but also with acoustic waves.

I also express my gratitude to Prof. Michael Fiederle for his willingness to serve as second

referee for my thesis and for sharing his expertise on X-ray detectors.

I would like to thank all my colleagues at IPS and LAS with whom T have shared unforgettable
moments at the institute, at beamlines and conferences, during lunches and coffee breaks,
as well as activities outside of work. Special thanks go to Holger for introducing me to
the topic and working closely with me during the first years. Ady and Mykola, since you
joined the institute, we have shared both stressful and enjoyable moments during experiments,
discussions, and breaks. I appreciate your friendly and cooperative nature. Elias, Mathias and
Valerio, thank you for sharing your experience and joining beamtimes. Pauline and Thomas,
the in vivo study would not have been possible without you, thanks a lot for your commitment.
I am also grateful to Thomas for always having an open ear for me and supporting me
whenever possible. Angelica, I could always come to you and count on your support. Your
Italian spirit enriches our institute. I extend my thanks to Angelica, Dmitri, Sato, and
Mateusz for their support during beamtimes. Marcus and Tomas, thank you for teaching me
how to operate concert and helping me with motor and camera control issues, not to mention
the smooth management of endless storage space and computing power on the servers. I would
also like to thank Daniel for his support, Ralf for passionate discussions during my early time
at IPS, all the colleagues from the computing group for bringing in fresh wind during the last
year, Janes for his never-ending thoughtfulness, and Jenny for being an excellent office mate.

151



Acknowledgments

Finally, I thank Michat for insightful and instructive discussions on dynamical diffraction
theory.

The realization of this work would not have been possible without the unwavering support of
our administration, I'T and technical staff, and the mechanical workshop. A big thank you to
all of you, especially Bianca, Margit, Jan, Stefan, David, Julian and Tobias.

My special thanks go to my parents, who made this education possible for me and have
always believed in me, to my sisters, who were always by my side, and to my father-in-law
for his interest in my work and support. Lastly, I cannot express enough gratitude to my
husband, Martin. Your unwavering support, both scientifically and emotionally, has been
truly incredible.

152



	Abstract
	Introduction
	Fundamentals of X-ray diffraction and phase contrast imaging
	Basics of crystal X-ray diffraction
	Kinematical diffraction
	Dynamical diffraction

	X-ray phase contrast imaging
	Complex index of refraction
	Projection approximation
	Free space propagation
	Propagation-based phase contrast
	Temporal and transverse coherence
	Weak phase approximation and contrast transfer function
	Phase reconstruction
	Transport of intensity equation method
	Contrast transfer function method
	Relation between TIE and CTF: mean-field CTF

	X-ray area detectors
	Indirect detector systems
	Single photon counting detectors


	X-ray imaging with Bragg crystal optics
	Historical overview
	Working principle of Bragg crystal optics
	Configurations

	Image formation with Bragg magnification
	Magnification
	Spatial resolution
	Plane wave mapping
	Calculation of the propagated wavefield
	Shift-variance and linearization
	Phase reconstruction

	Realization of the Bragg magnifier system and experimental characterization
	General requirements
	Beamline layout and experimental setup
	Alignment procedure
	Characterization of the Bragg magnifier system
	Comparison between experiment and simulation

	Summary

	Bragg magnifier for dose-efficient phase contrast imaging at micrometer resolution
	Design considerations for dose efficiency
	Determining the optimal X-ray photon energy
	X-ray detection efficiency
	Optical transfer function and detective quantum efficiency

	Experimental comparison between BM and indirect detector system
	Reflectivity measurement of the BM crystals
	The indirect detector system
	Qualitative comparison of imaging performance
	Gain in detective quantum efficiency
	Comparison on biological sample

	In vivo study of Trichogramma wasps emerging from their host eggs
	Conclusion

	Bragg demagnifier for propagation-based phase contrast imaging of large samples
	Working principle of a Bragg demagnifier
	Boosting the propagation distance - basic idea
	Contrast amplification by demagnification with asymm. Bragg diffraction

	Image formation
	Linear approximation
	Shift-variant image formation
	Aberration-free demagnifier and high dose efficiency
	Bragg conditioner

	Influence of Bragg demagnifier on transverse coherence
	Dispersion effects
	Reduction of source blur

	Simulation of image formation
	Proof-of-concept experiment - 0.6 km propagation distance
	Imaging properties
	Experimental setup
	Experimental results and discussion

	Prospects of Bragg demagnifiers

	Conclusion and outlook
	Dose-efficient high-resolution imaging using a Bragg magnifier
	Bragg demagnifier for dose-efficient imaging at moderate resolution

	Appendix
	Explicit form of the dispersion curve
	Source blur
	Derivation of CTF and mean-field CTF by Guigay's approach
	Relation between mapping procedure and RCT method
	Optimization of indirect system
	Additional simulations with demagnifier
	Divergence formula by J. Härtwig
	Demagnifier setup

	List of abbreviations
	Bibliography
	List of publications
	Acknowledgments

