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Summary
The Python package mechkit is a toolkit for researchers in the field of continuum mechanics and
material modeling. mechkit contains methods and operators for elementary tasks concerning
tensor algebra and tensor notation, e.g., linear mapping, base transformations and active as
well as passive transformations of tensors.

In the context of engineering applications in three spatial dimensions, strains and stresses in
solids are usually described by second-order tensors. In linear elastictiy, mappings between
stresses and strains are important. To this end, the methods in mechkit are focussed on second-
and fourth-order tensors. Main motivations can thus be found in the research concerning linear
elasticity (Bertram & Glüge, 2015), (Mandel, 1965), (Fedorov, 1968), (Mehrabadi & Cowin,
1990), (Thomson, 1856), (Cowin & Mehrabadi, 1992), (Rychlewski, 2000), (Spencer, 1970),
(Böhlke & Brüggemann, 2001), (Brannon, 2018) and the description of microstructures of
fiber-reinforced composite materials (Bauer & Böhlke, 2021), (Ken-Ichi, 1984), (Advani &
Tucker III, 1987).

The implementations in mechkit aim at usability, seek to provide understandable source code,
and do not put major emphasis on performance. Furthermore, the implementations follow, as
directly as possible, the notation and formulation in the respective primary scientific sources.
A redundant implementation of identical operations based on different sources is aimed at, for
validation reasons.

Statement of need
The mathematical operators for material modeling and linear elasticity can be expressed in
a compact manner. However, their representation is not unique and the relation between
different representations is nontrivial. To the best knowledge of the authors, there is no
common library for the mathematical operators to this day. This presents an obstacle with
regard to the exchange and the reliability of research code and leads to negative consequences
for the interpretation and comparison of results.

Several multi-purpose tensor packages in Python, e.g., (Kossaifi et al., 2016), (Hauschild &
Pollmann, 2018) exist, but mainly address the manipulation of multi-dimensional matrices
which are not related to physical bases. In contrast, mechkit focuses on linear elasticity and
provides a limited scope of notations for second- and fourth-order tensors.

The main goal of mechkit is to provide reusable research code that increases the reliability
of results. It is intended to accelerate and simplify further research. mechkit is inspired by
(Meyer, 2021), (Schlömer, 2022a), (Schlömer, n.d.) and (Schlömer, 2022b).
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Motivation by example: Isotropic material and notations
In the overlapping area of theoretical continuum mechanics, experimental material modeling,
and numerical solution methods for boundary value problems, a multitude of different notations
exist. As an example, one may consider the description of the mechanical properties of a
homogeneous and isotropic, i.e. direction-independent, material within the framework of linear
elasticity. Such a material can be described completely by two independent scalar parameters.
However, in the disciplines mentioned above, at least six different material parameters are
commonly used, motivated by different applications, measurement techniques and tensor
decompositions. This results in fifteen possible combinations of scalar descriptions of an
isotropic material, which can be combined to the corresponding fourth-order elasticity tensor.
For this tensor, again, different representations exist, referring to different basis systems and
notations. The notations either follow the Voigt or Kelvin-Mandel notation or take account of
interfaces of finite element codes.

The translation between different notations is often tedious and prone to errors. mechkit

allows an easy exchange between different notations with user-friendly interfaces, thereby
preventing errors. The necessary number of translation functions between different notations
increases drastically with an increasing number of notations. Consequentially, even for a small
number of different notations, the implementation of all corresponding translation methods
is not feasible. Therefore, mechkit does not necessarily directly translate one notation into
another. Instead, in the case of the translation of second- and fourth-order tensors, mechkit
determines the shortest path between source and target in the set of implemented notations as
illustrated in the graph of currently supported notations, see Figure 1. This procedure greatly
facilitates the addition of further notations to mechkit. Essentially, only a translation function
from and to a new notation has to be added to the existing code, to make translations from
and to this new notation universally available in mechkit.
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Figure 1: Currently supported notations and translations of fourth-order stiffness tensors.
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