
Mechkit: A continuum mechanics toolkit in Python
Julian Karl Bauer 1¶, Philipp Lothar Kinon 1, Jonas Hund 2, Lisa
Latussek 1, Nils Meyer 3, and Thomas Böhlke 4

1 Institute of Mechanics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany 2 Department of
Structural Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway 3
Institute of Vehicle System Technology, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany 4
Chair for Continuum Mechanics, Institute of Engineering Mechanics, Karlsruhe Institute of Technology
(KIT), Karlsruhe, Germany ¶ Corresponding author

DOI: 10.21105/joss.04389

Software
• Review
• Repository
• Archive

Editor: Kevin M. Moerman
Reviewers:

• @nicoguaro
• @likask
• @lizarett

Submitted: 23 March 2022
Published: 11 October 2022

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
The Python package mechkit is a toolkit for researchers in the field of continuum mechanics and
material modeling. mechkit contains methods and operators for elementary tasks concerning
tensor algebra and tensor notation, e.g., linear mapping, base transformations and active as
well as passive transformations of tensors.

In the context of engineering applications in three spatial dimensions, strains and stresses in
solids are usually described by second-order tensors. In linear elastictiy, mappings between
stresses and strains are important. To this end, the methods in mechkit are focussed on second-
and fourth-order tensors. Main motivations can thus be found in the research concerning linear
elasticity (Bertram & Glüge, 2015), (Mandel, 1965), (Fedorov, 1968), (Mehrabadi & Cowin,
1990), (Thomson, 1856), (Cowin & Mehrabadi, 1992), (Rychlewski, 2000), (Spencer, 1970),
(Böhlke & Brüggemann, 2001), (Brannon, 2018) and the description of microstructures of
fiber-reinforced composite materials (Bauer & Böhlke, 2021), (Ken-Ichi, 1984), (Advani &
Tucker III, 1987).

The implementations in mechkit aim at usability, seek to provide understandable source code,
and do not put major emphasis on performance. Furthermore, the implementations follow, as
directly as possible, the notation and formulation in the respective primary scientific sources.
A redundant implementation of identical operations based on different sources is aimed at, for
validation reasons.

Statement of need
The mathematical operators for material modeling and linear elasticity can be expressed in
a compact manner. However, their representation is not unique and the relation between
different representations is nontrivial. To the best knowledge of the authors, there is no
common library for the mathematical operators to this day. This presents an obstacle with
regard to the exchange and the reliability of research code and leads to negative consequences
for the interpretation and comparison of results.

Several multi-purpose tensor packages in Python, e.g., (Kossaifi et al., 2016), (Hauschild &
Pollmann, 2018) exist, but mainly address the manipulation of multi-dimensional matrices
which are not related to physical bases. In contrast, mechkit focuses on linear elasticity and
provides a limited scope of notations for second- and fourth-order tensors.

The main goal of mechkit is to provide reusable research code that increases the reliability
of results. It is intended to accelerate and simplify further research. mechkit is inspired by
(Meyer, 2021), (Schlömer, 2022a), (Schlömer, n.d.) and (Schlömer, 2022b).

Bauer et al. (2022). Mechkit: A continuum mechanics toolkit in Python. Journal of Open Source Software, 7(78), 4389. https://doi.org/10.
21105/joss.04389.

1

https://orcid.org/0000-0002-4931-5869
https://orcid.org/0000-0002-4128-5124
https://orcid.org/0000-0003-2140-4285
https://orcid.org/0000-0002-1093-737X
https://orcid.org/0000-0001-6291-6741
https://orcid.org/0000-0001-6884-0530
https://doi.org/10.21105/joss.04389
https://github.com/openjournals/joss-reviews/issues/4389
https://github.com/JulianKarlBauer/mechkit
https://doi.org/10.5281/zenodo.7185691
https://kevinmoerman.org
https://orcid.org/0000-0003-3768-4269
https://github.com/nicoguaro
https://github.com/likask
https://github.com/lizarett
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.04389
https://doi.org/10.21105/joss.04389


Motivation by example: Isotropic material and notations
In the overlapping area of theoretical continuum mechanics, experimental material modeling,
and numerical solution methods for boundary value problems, a multitude of different notations
exist. As an example, one may consider the description of the mechanical properties of a
homogeneous and isotropic, i.e. direction-independent, material within the framework of linear
elasticity. Such a material can be described completely by two independent scalar parameters.
However, in the disciplines mentioned above, at least six different material parameters are
commonly used, motivated by different applications, measurement techniques and tensor
decompositions. This results in fifteen possible combinations of scalar descriptions of an
isotropic material, which can be combined to the corresponding fourth-order elasticity tensor.
For this tensor, again, different representations exist, referring to different basis systems and
notations. The notations either follow the Voigt or Kelvin-Mandel notation or take account of
interfaces of finite element codes.

The translation between different notations is often tedious and prone to errors. mechkit

allows an easy exchange between different notations with user-friendly interfaces, thereby
preventing errors. The necessary number of translation functions between different notations
increases drastically with an increasing number of notations. Consequentially, even for a small
number of different notations, the implementation of all corresponding translation methods
is not feasible. Therefore, mechkit does not necessarily directly translate one notation into
another. Instead, in the case of the translation of second- and fourth-order tensors, mechkit
determines the shortest path between source and target in the set of implemented notations as
illustrated in the graph of currently supported notations, see Figure 1. This procedure greatly
facilitates the addition of further notations to mechkit. Essentially, only a translation function
from and to a new notation has to be added to the existing code, to make translations from
and to this new notation universally available in mechkit.

Stiffness

mandel9 umat

tensor

mandel6

vumat

voigt abaqusMatAniso

Figure 1: Currently supported notations and translations of fourth-order stiffness tensors.

Acknowledgements
The research documented in this manuscript has been funded by the German Research
Foundation (DFG) within the International Research Training Group “Integrated engineering
of continuous-discontinuous long fiber-reinforced polymer structures” (GRK 2078/2). The
support by the German Research Foundation (DFG) is gratefully acknowledged.

Bauer et al. (2022). Mechkit: A continuum mechanics toolkit in Python. Journal of Open Source Software, 7(78), 4389. https://doi.org/10.
21105/joss.04389.

2

https://doi.org/10.21105/joss.04389
https://doi.org/10.21105/joss.04389


References
Advani, S. G., & Tucker III, C. L. (1987). The use of tensors to describe and predict

fiber orientation in short fiber composites. Journal of Rheology, 31(8), 751–784. https:
//doi.org/10.1122/1.549945

Bauer, J. K., & Böhlke, T. (2021). Variety of fiber orientation tensors. Math. Mech. Solids,
0(0), 108128652110576. https://doi.org/10.1177/10812865211057602

Bertram, A., & Glüge, R. (2015). Solid mechanics. Springer International Publishing. https:
//doi.org/10.1007/978-3-319-19566-7

Böhlke, T., & Brüggemann, C. (2001). Graphical representation of the generalized Hooke’s
law. Technische Mechanik, 21(2), 145–158.

Brannon, R. (2018). Rotation reflection and frame changes orthogonal tensors in computational
engineering mechanics. IOP Publishing. https://doi.org/10.1088/978-0-7503-1454-1

Cowin, S. C., & Mehrabadi, M. M. (1992). The structure of the linear anisotropic elas-
tic symmetries. J. Mech. Phys. Solids, 40(7), 1459–1471. https://doi.org/10.1016/
0022-5096(92)90029-2

Fedorov, F. I. (1968). Theory of elastic waves in crystals. Springer US. https://doi.org/10.
1007/978-1-4757-1275-9

Hauschild, J., & Pollmann, F. (2018). Efficient numerical simulations with Tensor Networks:
Tensor Network Python (TeNPy). SciPost Phys. Lect. Notes, 5. https://doi.org/10.
21468/SciPostPhysLectNotes.5

Ken-Ichi, K. (1984). Distribution of directional data and fabric tensors. Int. J. Eng. Sci.,
22(2), 149–164. https://doi.org/10.1016/0020-7225(84)90090-9

Kossaifi, J., Panagakis, Y., Anandkumar, A., & Pantic, M. (2016). Tensorly: Tensor learning
in python. arXiv Preprint arXiv:1610.09555.

Mandel, J. (1965). Généralisation de la théorie de plasticité de WT koiter. Int. J. Solids
Struct., 1(3), 273–295.

Mehrabadi, M. M., & Cowin, S. C. (1990). Eigentensors of linear anisotropic elastic materials.
Quart. J. Mech. Appl. Math., 43(1), 15–41. https://doi.org/10.1093/qjmam/43.1.15

Meyer, N. (2021). Fiberoripy. In GitHub repository (Version v1.0.12) [Computer software].
GitHub. https://doi.org/10.5281/zenodo.4679756

Rychlewski, J. (2000). A qualitative approach to Hooke’s tensors. Part I. Archives of Mechanics,
52(4-5), 737–759.

Schlömer, N. (n.d.). pygalmesh: Python interface for CGAL’s meshing tools. https://doi.org/
10.5281/zenodo.5564818

Schlömer, N. (2022a). Meshio: Tools for mesh files. In GitHub repository. GitHub. https:
//doi.org/10.5281/zenodo.1173115

Schlömer, N. (2022b). Quadpy: Your one-stop shop for numerical integration in python. In
GitHub repository. GitHub. https://github.com/nschloe/quadpy

Spencer, A. (1970). A note on the decomposition of tensors into traceless symmetric tensors.
International Journal of Engineering Science, 8(6), 475–481. https://doi.org/10.1016/
0020-7225(70)90024-8

Thomson, W. (1856). Elements of a mathematical theory of elasticity. Philosophical Transac-
tions of the Royal Society of London, 146, 481–498.

Bauer et al. (2022). Mechkit: A continuum mechanics toolkit in Python. Journal of Open Source Software, 7(78), 4389. https://doi.org/10.
21105/joss.04389.

3

https://doi.org/10.1122/1.549945
https://doi.org/10.1122/1.549945
https://doi.org/10.1177/10812865211057602
https://doi.org/10.1007/978-3-319-19566-7
https://doi.org/10.1007/978-3-319-19566-7
https://doi.org/10.1088/978-0-7503-1454-1
https://doi.org/10.1016/0022-5096(92)90029-2
https://doi.org/10.1016/0022-5096(92)90029-2
https://doi.org/10.1007/978-1-4757-1275-9
https://doi.org/10.1007/978-1-4757-1275-9
https://doi.org/10.21468/SciPostPhysLectNotes.5
https://doi.org/10.21468/SciPostPhysLectNotes.5
https://doi.org/10.1016/0020-7225(84)90090-9
https://doi.org/10.1093/qjmam/43.1.15
https://doi.org/10.5281/zenodo.4679756
https://doi.org/10.5281/zenodo.5564818
https://doi.org/10.5281/zenodo.5564818
https://doi.org/10.5281/zenodo.1173115
https://doi.org/10.5281/zenodo.1173115
https://github.com/nschloe/quadpy
https://doi.org/10.1016/0020-7225(70)90024-8
https://doi.org/10.1016/0020-7225(70)90024-8
https://doi.org/10.21105/joss.04389
https://doi.org/10.21105/joss.04389

	Summary
	Statement of need
	Motivation by example: Isotropic material and notations

	Acknowledgements
	References

