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Highlights

Local Structure Effects on Hydrodynamics in Slender Fixed Bed
Reactors: Spheres and Rings

Steffen Flaischlen, Thomas Turek, Gregor D. Wehinger

• Packed beds of spheres and rings are studied over wide range of 1.5 <
D/dp < 9.3

• Characterized are void fraction, tortuosity, pressure drop, residence
time

• Packed bed of spheres can be clustered in four distinct regions depend-
ing on D/dp

• Novel parameters are presented for correlations of pressure drop and
tortuosity

• Excellent agreement between particle-resolved CFD and experiments
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Abstract

Fixed bed reactors play a crucial role in the chemical industry, and their
performance is influenced by the unique structural effects observed in the
small tube-to-particle diameter ratio range (1.5 < D/dp < 9.3) . Experimen-
tal void fraction data for beds made of spherical and ring-shaped particles
reveal sudden changes, deviating significantly from theoretical calculations.
These effects, categorized into four zones for spherical particles, i.e., single
particle string, central channel, annular gap, and central channel + annu-
lar gaps, exhibit varying impacts on pressure drop. To describe this, the
factors of the Ergun equation are modified accordingly. Furthermore, tor-
tuosity is introduced as an additional parameter to describe the structural
effects on fixed bed behavior. Classic correlations prove inadequate, leading
to the adaptation of the Millington correlation for random beds, as well as
those with a central channel and/or annular gaps. With particle-resolved
Computational Fluid Dynamics (PRCFD) simulations, the residence time
behavior is quantified of differently structured beds of spheres and rings, re-
vealing deviations from plug flow and the presence of stagnation zones in
beds containing a central channel. Notably, beds with an annular gap dis-
plays residence time behavior akin to plug flow, with lower pressure drop
and an ordered, reproducible structure. These results highlight the impor-
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tance of the D/dp ratio as an additional descriptor to characterize transport
phenomena in slender fixed-bed reactors.

Keywords:
Fixed-bed reactor, Pressure drop, Void fraction, Tortuosity, PRCFD

1. Introduction1

Fixed bed catalytic reactors play a crucial role in the chemical industry [1].2

Due to the inherent exo- or endothermic nature of catalytic reactions, pre-3

cise thermal control is imperative in the catalytic fixed bed reactors. Hence,4

it becomes crucial to establish and maintain a specified temperature range5

throughout the process. To ensure optimal heat exchange, narrow tubes ar-6

ranged in tube bundles are typically used as they offer a higher heat exchange7

surface area relative to their volume. Additionally, the utilization of larger8

particles helps to minimize the pressure drop in the reactor. Consequently,9

fixed bed reactors with a small tube-to-particle diameter ratio (D/dp < 10)10

are preferred [2]. As a consequence of the confining wall, the fixed beds often11

no longer possess a random structure. Contrarily, fixed beds with a large12

D/dp ratio (> 30) exhibit a random structure and tend to approach a ran-13

dom close pack configuration, resulting in an asymptotic value of the mean14

bed void fraction (ε = Free V olume/Overall V olume). The local void frac-15

tion, however, depends on the distance from the confining wall. Especially16

for low D/dp ratios, a non-random local structure of a fixed bed leads to17

deviations from plug flow behavior and gives rise to a flow field with local18

extrema. Instead, radial profiles exhibiting local maxima and minima with a19

dependence on particle shape are observed [3, 4]. As the structure of the fixed20

bed always affects the flow, this effect is also reflected in the velocity distri-21

bution. Regions with high void fraction are associated with high velocities,22

and the radial velocity profile closely follows the radial void fraction profile23

[5, 6, 7]. The intricate structure of the fixed bed can also influence tortuosity24

(τ = actual pathway/direct pathway), as local structural effects give rise to25

preferred paths within the bed. Previous studies have demonstrated the for-26

mation of highly organized structures, especially for beds of spheres with low27

D/dp ratios, including annular gaps and direct channels [8, 9, 10, 11]. The28

fluid dynamics and heat transfer characteristics of a fixed bed are strongly29

influenced by its underlying structure. Traditional correlations for pressure30

drop and heat transfer typically rely on a single value to describe the packed31
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bed, as well as on the plug flow assumption [12, 13]. In the Ergun equation32

to predict pressure drop, for instance, the fixed bed is only characterized33

by the void fraction value (ε), while the Eisfeld-Schnitzlein equation incor-34

porates the wall effect through the D/dp ratio [14, 15]. However, even the35

Eisfeld-Schnitzlein equation may fail to capture the specific effects within the36

fixed bed structure, as it assumes plug flow. Recently, Dixon [16] introduced37

a novel pressure drop correlation for randomly packed beds with negligible38

wall effects (unbounded fixed beds of spheres with D/dp > 30). For low D/dp39

ratio beds, wall effects might influence the inertial terms. For beds with very40

low D/dp < 5 ratios, structural effects significantly influence the entire trans-41

port phenomena, which was recently shown with experimental data for radial42

heat transfer [10]. Describing a fixed bed solely based on spatially averaged43

values (void fraction, interstitial velocity, heat conductivity) may overlook44

the positional dependency of these effects (bed structuring and associated45

transport phenomena). Moreover, recent studies have shown that effects,46

such as the closure of a central channel, can occur with minimal changes47

in the D/dp ratio, leading to the formation of a random bed structure once48

again [8, 10, 11]. The above mentioned studies investigated packed beds con-49

sisting mainly of spheres, and only in a relatively small range of D/dp ratios.50

The overall picture of the connection between bed structure and transport51

phenomena is missing for slender packed beds. Currently, Particle-Resolved52

Computational Fluid Dynamics (PRCFD) simulations are used to model in53

great detail flow and associated transport in slender packed bed reactors,54

where the bed structure is fully resolved in three dimensions [17, 18]. Previ-55

ous investigations have demonstrated the capability of PRCFD to accurately56

capture fixed bed structures and hydrodynamic properties, including pressure57

drop [19, 20] and local velocity profiles [6, 21]. Furthermore, some studies58

involving PRCFD have highlighted the limitations of pressure drop correla-59

tions in accounting for structural effects within fixed beds of spheres with60

low D/dp ratios, see e.g. [8].61

In this contribution, a broader range of tube-to-particle diameter ratios62

(1.51 < D/dp < 11.5) is considered for packed beds of spheres and hollow63

cylinders. These beds are studied with the combination of experiments and64

PRCFD simulations. The focus of this study extends beyond the analysis of65

the overall void fraction (with experiments and PRCFD) and encompasses a66

comprehensive examination of structural effects. Through the classification67

of these effects in the small D/dp range, it is possible to introduce tortu-68

osity (with PRCFD) as an additional factor for characterizing fixed beds.69
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Furthermore, this classification enables to elucidate the specific impact of70

each effect on pressure drop (with experiments and PRCFD), thus offering71

the opportunity to enhance existing correlations by adjusting relevant pa-72

rameters. Additionally, it is assessed how these structural effects influence73

residence time behavior (with PRCFD), a critical parameter for the safe and74

efficient operation of fixed bed reactors. This understanding will facilitate75

the identification of optimal parameters for configuring fixed beds.76

2. Methods77

2.1. Experimental Setup78

Tubular packed beds of spheres and hollow cylinders with various dimen-79

sions were studied experimentally in terms of void fraction determination80

and pressure drop measurement, see Tab. 1 for spheres and Tab. 2 for hollow81

cylinders. The void fraction was investigated in tubes with different diam-82

eters D, leading to a wide range of D/dpv ratios, i.e., 1.51 < D/dpv < 11.583

for spheres and 2.50 < D/dpv < 11.1 for hollow cylinders. While dpv (Eq. 1)84

refers to the diameter of the volume-equivalent sphere, deq (Eq. 2) refers to85

the equivalent diameter of a sphere with the same surface-to-volume ratio as86

the particle:87

dpv =

(
6 · Vp

π

) 1
3

(1)

deq =
6 · Vp

Sp

(2)

Table 1: Dimensions of spheres (S) and resulting tube-to-particle diameter ratio for D =
24.14mm. These particles were also packed into measuring cylinders of varying diameters
for the Void Fraction investigation.

Particle label dp / mm D/dp
S1 16 1.51
S2 12.7 1.90
S3 11.5 2.10
S4 10 2.41
S5 9 2.68
S6 8 3.02
S7 7 3.45
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Table 2: Dimensions of the hollow cylinders (HC) and resulting tube-to-particle diameter
ratio for D = 24.14mm. The particles were also filled into measuring cylinders with
different diameters for the void fraction analysis.

Particle label d0 / mm di / mm h / mm di/do/ D/dpv D/deq
HC1 9.5 5.5 10 0.579 2.50 4.83
HC2 9 4.8 9 0.533 2.62 4.73
HC3 8 4.6 6 0.575 3.32 6.07
HC4 6.2 4.1 5.1 0.661 4.40 9.24
HC5 4.8 2.6 4.9 0.54 4.90 8.96
HC6 2.2 1.4 2.4 0.636 11.07 23.47

The tube was filled by manually dropping one particle at a time (single88

particle drop) or by funnel filling for higher D/dpv-ratios. The funnel used for89

this purpose had the same opening size as the diameter of the cylinder used.90

The void fraction was calculated by counting particles or by the weighting91

method with the number of particle N and the fixed bed length L:92

ε =
Vfree

Vfull

=
Vfull − Vparticles

Vfull

= 1−
2 ·N · d3pv
3 ·D2 · L

(3)

Pressure drop was measured in an experimental setup, as described in our93

previous works [8, 20], with a reactor diameter ofD = 24.14mm and a reactor94

height of 600mm. Therefore, the pressure was determined before and after95

the fixed bed with two pressure sensors (Swagelok Company, Ohio, USA,96

model: PTI-S-AA2.5-11AQ). While the first pressure sensor was positioned97

directly above the fixed bed, located at the reactor inlet, the second pressure98

measurement was taken downstream, behind the wire mesh, which serves as99

the reactor’s bottom where the particles are resting. The volume flow rates100

(2 to 60 LN min−1) and working pressure (950 to 1500mbar) were varied.101

The pressure drop experiments were performed 10 times for each particle102

type for repeatability. For each new pressure measurement, a new fixed bed103

was poured, resulting in a distribution of void fraction and resulting pressure104

drop.105

2.2. Modeling and CFD Simulations106

2.2.1. Synthetic Packed Bed Generation107

For PRCFD simulations of packed beds, the first step is to create a suf-108

ficient representation of the fixed bed. For this purpose, a synthetic fixed109
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bed is generated using the Rigid Body Approach (RBA). This method al-110

lows both fast simulation times for the generation of the fixed bed and an111

accurate representation of complex particles such as hollow cylinders [6]. The112

bed structures were generated synthetically with single particle drop or fun-113

nel filling with the video animation software Blender 2.79b, which uses the114

Bullet Physics Library for animation of rigid body collision based on Newton-115

Euler equations, see details elsewhere [6]. The rate at which particles were116

introduced into the funnel for filling in the simulation was determined by gen-117

erating and releasing all particles simultaneously from various layers above118

the funnel. The resulting particle flow through the funnel determined the119

speed at which the particles entered the reactor. This approach is consistent120

with our experimental methodology. When the particles are at rest, the sim-121

ulation is stopped and the bed structure is exported as an STL file. This is122

used as input for subsequent PRCFD simulations.123

2.2.2. Meshing124

Numerical discretization of the tubular packed beds was performed by125

generating a mesh consisting of polyhedral cells in the bulk and two prism126

cells at solid walls with the commercial CFD software Siemens Simcenter127

STAR-CCM+ v.15.06. The particle-particle contacts were modified using128

the local caps method [22, 23]. For this purpose, the particle contact zone is129

cut off and filled with fluid mesh cells. The cap size was kept below 1% of the130

particle diameter, which is a good compromise between geometric accuracy131

and mesh quality, see details about meshing in packed beds elsewhere [24].132

To improve the mesh quality in the small caps, the Thin Mesher in STAR-133

CCM+ was used. It provides a structured hexagonal mesh for regions, where134

a user-defined threshold value of the surface distance is not met. These or-135

thogonal cells, which have angles close to 90 degrees between their edges and136

faces, contribute to an overall higher Cell Quality. A higher Cell Quality137

indicates that the cells are well-shaped and less distorted. Additionally, the138

use of orthogonal cells results in lower Skewness Angles, which measure the139

deviation of cell angles from their ideal 90-degree orientation. The meshes140

were generated following the guidelines based on our previous work and ex-141

tended with the Thin Mesher method, which further enhances the quality at142

the particle-particle contact regions [8, 23, 25, 26].143
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2.2.3. CFD Model144

The steady-state, isothermal CFD model is based on the conservation of145

mass and momentum, where the details can be found in general literature, see146

eg., [17]. Using the fluid density ρ and the velocity vector v, the conservation147

of mass reads:148

∇ · (ρv) = 0 (4)

The momentum conservation reads:149

∇ · (ρvv) = T (5)

where the stress tensor T is described by the pressure p, the gas dynamic150

viscosity µ, the unit tensor I:151

T = −
(
p+

2

3
µ∇ · v

)
I+ 2µD (6)

The deformation tensor D reads:152

D =
1

2

[
∇v+ (∇v)T

]
(7)

The outlet of the fixed bed simulation was set to a constant pressure of153

1 atm. The gas density was calculated with the ideal gas law based on the154

inlet conditions of the experiments and was set to a constant value. The pres-155

sure and gas density calculation was based on the pressure measured above156

the fixed bed in the experiments. This pressure, along with the measured157

volumetric flow rate and the fluid’s density, determined the inlet velocity158

for CFD simulations. The outlet boundary condition was set to atmospheric159

pressure, and due to the low pressure drop across the bed (less than 50mbar),160

we assumed constant density for the calculations. All solid walls were set to161

the no-slip boundary condition. The pressure drop simulations were per-162

formed with STAR-CCM+ in steady-state mode, using a segregated solver163

with the SIMPLE algorithm for pressure-velocity coupling. In order to make164

a decision on the convergence of the simulation, a report was created which165

monitors the pressure drop of the fixed bed. The residence time simulations166

were performed solving the transient passive scalar transport with an im-167

plicit solver to determine the residence time distribution (RTD). Details and168

the formulation of the passive scalar transport equation can be found in one169
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of our previous works [27]. The transport equation for the passive scalar170

component ϕ can be written as follows:171

∂

∂t

∫
V

ρ · ϕ · dV +

∮
A

ρ · ϕ · v · da = 0 (8)

In this equation, the diffusion flux is neglected and thus only the con-172

vective term is considered. This was done to account only for the structural173

effects of the packed bed and not to obtain additional effects due to diffusion174

transport. This simplification aligns with the typical operating conditions175

in fixed-bed reactors, where low superficial velocities are rarely encountered,176

rendering diffusive transport negligible. Additionally, it should be noted that177

the objective was to provide a generalized understanding of the structural178

effects in packed beds, applicable across diverse processes, and thus obtain179

a representation independent of substance-specific diffusion coefficients. The180

passive scalar was set at the beginning of the bed to a value of one and181

the tracer concentration at the end of the fixed bed was recorded over time.182

The simulation time step was set to 1 · 10−5 s, which guarantees a convective183

Courant number of less than one in all cells. The simulations were performed184

with five inner iterations. All simulations accounting for turbulence use the185

RANS (Reynolds Averaged Navier Stokes) model, where the realizable k− ε186

turbulence model with an all y+ wall treatment was applied. The PRCFD187

framework employed in this study is well-established and has been previ-188

ously applied and validated against experimental data and/or correlations in189

multiple publications for void fraction (both mean bed and radial profiles)190

[6, 28], pressure drop [8, 26], heat transfer [20, 29], and chemical reactions191

[25, 30].192

2.2.4. Derivation Tortuosity193

In heterogeneous catalysis, tortuosity is typically associated with the194

transport of reactants and products through the pores of a catalyst par-195

ticle (pore scale). However, in this study, tortuosity is employed on the196

pellet scale. It is utilized to characterize the intricate flow paths through197

the open volume of the packed bed. In this regard, it becomes a property198

that describes the elongation of the fluid pathway compared to a direct route199

through the fixed bed, thereby providing insights into the underlying bed200

structure. The tortuosity τ describes the enlarged pathway of a fluid passing201

a porous medium (see Fig. 1). In this work, the tortuosity in axial direction202

through the packed bed was calculated with 3D PRCFD simulations. For203

8



this, the heat and mass transfer analogy is used. Heat conduction in axial204

direction through the void of a packed bed of length L with adiabatic walls205

can be written as:206

Q̇Bed = −A · k · ε
τ

∆T

L
(9)

Where A is the cross sectional area of the tube, k the heat conductivity207

and L the length between hot and cold surface. The ratio of ε/τ is sometimes208

called obstruction factor, representing the resistance to heat conduction in209

comparison to a fully dense material [31]. The heat conductivity k is set to210

a constant arbitrary value. Between the top and bottom side of the bed, the211

temperature difference ∆T is set to 100K. The tortuosity can be calculated212

with the known void fraction ε, the heat flux through the bed Q̇Bed obtained213

from the PRCFD simulations, and the heat flux of the control volume Q̇CV214

with the same outer dimensions (here cross sectional area A and length L)215

[32, 33]:216

τ = ε · Q̇CV

Q̇Bed

(10)

with217

Q̇CV = −A · k · ∆T

L
(11)

For these simulations, only conductive heat transfer without mass and218

momentum transport are considered and conducted on the same computa-219

tional meshes as described above.220
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a) Empty Tube / Control Volume

b) Longer Pathway through Redirection

Figure 1: a) Flow through an empty pipe/control volume. b) Higher tortuosity through
porous structure means longer pathways. c) Heat transport through different surface
temperatures.

2.3. Literature correlations221

2.3.1. Void Fraction of Packed Beds222

In the case of a packed bed of monodisperse spheres, experiments have223

shown that void fraction is approx. 0.4, which is between that of a regular224

cubic arrangement (ε = 1 − π/6 = 0.48) and the densest regular spherical225

packing (ε = 0.26). In contrast, fixed beds with a small D/dp display a226

higher void fraction characterized by more free space and a fluctuating pat-227

tern with respect to D/dp [34, 35, 8]. The presence of ducts within the fixed228

beds contributes to this behavior, with high void fraction values indicating229

open ducts and low void fraction values indicating closed ducts due to parti-230

cle compaction [11]. Furthermore, different random structures can exist for231

the same D/dp, resulting in a void fraction distribution [36]. Additionally,232

the void fraction is influenced by the particle shape, uniformity of size, the233

filling method and particle properties, such as friction coefficients, Young’s234

modulus, etc. [35, 8]. Due to the sensitivity of void fraction values to even235
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minor changes in D/dp, developing a robust correlation for description is236

challenging. In this study, we utilize Dixon’s correlation, which exhibits a237

high degree of agreement with fixed beds at D/dp < 2, owing to its clear238

mathematical representation. Subsequently, it demonstrates a gradual de-239

crease towards a value of ε = 0.4. It can be written for spheres as follows240

[37]:241

D/dp ≤ 1.865 ε = 1− 0.667 · (dp/D)3 · (2 · dp/D − 1)−0.5 (12)

1.865 ≤ D/dp ≤ 2 ε = 0.528 + 2.464 · (dp/D − 0.5) (13)

D/dp ≥ 2 ε = 0.4 + 0.05 · (dp/D) + 0.412 · (dp/D)2 (14)

Dixon also gives a correlation for equilateral cylinders, which reads:242

D/dpv ≤ 1.24 ε = 1− 0.763 · (dpv/D)2 (15)

D/dpv ≥ 1.24 ε = 0.36 + 0.1 · (dpv/D) + 0.7 · (dpv/D)2 (16)

For hollow cylinders, the void fraction of these fixed beds εhc is corrected243

to the basis of a full cylinder εfc by Eq. 17. Correcting the void fraction from244

hollow to full cylinders allows a comparison with Eq. 15 and Eq. 16, since a245

correlation for rings does not exist due to the additional degree of freedom246

of the inner hole.247

(1− εfc) =
(1− εhc)

a · (1− d2i /d
2
o)

(17)

While the interpenetration of hollow cylinders can be neglected for small248

holes, it becomes more important for inner-to-outer diameter ratios of di/do ≥249

0.5. Therefore, the factor a for considering non-penetration and interpene-250

tration can be written as follows [37]:251

di/do ≤ 0.5 a = 1 (18)

di/do ≥ 0.5 a =
1

1− d2i /d
2
o

+ 2 · (di/do − 0.5)2 · (1.145− dpv/D) (19)
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2.3.2. Tortuosity of Packed Beds252

Several different correlations were published for the determination of tor-253

tuosity in porous media, see the comprehensive review in [38]. Some of them254

are suitable for packed beds although the assumtions and limits might not be255

applied for small D/dp-ratios, as shown in Tab. 3. All the correlations relate256

the mean void fraction to the tortuosity, i.e., τ = f (ε). The Bruggeman257

correlation [39] does not apply actually to packings of monodisperse spheres,258

but it is listed here since it is widely used for porous media. Furthermore,259

it can be seen that the correlation of Neale and Nadar [40] is by formula260

the same as that of Akanni [41], and thus should be valid for homogeneous261

random sphere packings as well as for ordered packings. It can be also seen262

that the correlation of Bruggeman [39] and of Millington [42] and also van263

Brakel [43] are only different in the exponent of the void fraction.264

Table 3: Different correlations for calculation of tortuosity in porous media applicable for
packed beds.

Equation Comment Ref.

τ = ε−1/2 not for monodisperse spheres [39]
τ = (3− ε)/2 ordered packings [41, 44]
τ = (3− ε)/2 random homogeneous sphere packing [40]
τ = ε−1/3 homogeneous, monodisperse spheres [42, 43]

2.3.3. Pressure Drop of Packed Beds265

Pressure drop in packed beds is typically described with the Ergun equa-266

tion (Eq. 20), which can be formulated by using the friciton factor fp and267

the modified particle Reynolds number Re∗p (Eq: 21)[14]:268

fp =
∆p · deq · ε3

L · ρ · v20 · (1− ε)
=

A

Re∗p
+B (20)

Re∗p =
v0 · deq · ρ
(1− ε) · µ

(21)

where the factors A and B are the viscous and inertial terms of the Ergun269

equation, which are A = 150 and B = 1.75. For packed beds with confining270

walls and a small D/deq-ratio, Eisfeld and Schnitzlein [15] developed the wall271

correction terms Aw and Bw leading to an advanced formulation of intertial272

and viscous Ergun terms:273
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A = K1 · A2
w (22)

B =
Aw

Bw

(23)

The wall correction Terms Aw and Bw are defined as follows:274

Aw = 1 +
2

3 · (D/deq) · (1− ε)
(24)

Bw = (k1 · (deq/D)2 + k2)
2 (25)

The coefficients K1, k1 and k2 are proposed for different particle shapes,275

as shown in Tab. 4.276

Table 4: Coefficients of the Eisfeld-Schnitzlein equation Eq. (22-25) [15].

Particle shape K1 k1 k2
Spheres 154 1.54 0.87
Cylinders 190 2.00 0.77
All particles 155 1.42 0.83

Finally, Nemec and Levec developed an Ergun-type equation for the pres-277

sure drop prediction in packed beds of hollow cylinders, were the constants278

A and B can be written as follows, using the particle volume V and surface279

area S, see the original literature for more detailed formulation [45].280

A = k1 ·
(

ε3

(1− (1− ε) · (Vfc −m · Vi)/Vp)3

)
·
(
Sfc +m · Si

Vp

deq
6

)
(26)

B = k2 ·
(

ε3

(1− (1− ε) · (Vfc −m · Vi)/Vp)3

)
·
(
Sfc +m · Si

Vp

deq
6

)2

(27)

The constants k1 and k2 were proposed by Nemec and Levec [45] with281

values of 150 and 1.75, identical with the original Ergun equation inertial282

and viscous terms. The m-value describes the fraction of the interior ring283

volume, which is available for fluid flow and was found by Sonntag [46] to284

have a value of m = 0.2. However, this value is based on a small database,285
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since only four different hollow cylinders were used in that study, resulting286

in a scatter between 0.16 ≤ m ≤ 0.24. The different ranges of validity for287

the shown pressure drop correlations are summarized in Tab. 5.288

Table 5: Range of validity for different pressure drop correlations.

Equation Particle shape D/deq Rep Ref.
Ergun Sphere infinite - [14]
Eisfeld-Schnitzlein All particles > 1.624 0.01 to 17635 [15]
Nemec-Levec Hollow cylinder 17.2 Re∗p < 400

49.7 Re∗p < 250 [45]

2.3.4. Residence Time Distribution in Fixed Beds289

As an additional hydrodynamics characterization, the Residence Time290

Distribution (RTD) in packed beds of spheres and hollow cylinders is ana-291

lyzed. Different flow resistances should be reflected in the RTD sum (F ) and292

age distribution curves (E). The RTD F curve can therefore theoretically293

be described with Eq. 29, while Eq. 30 represents the derivative of the sum294

function F and thus describes the age distribution curve E depending on the295

dimensionless residence time θ (Eq. 28) [47]:296

θ =
t

tHy

=
t · V̇
VR

(28)

Where t is the time and thy is the hydrodynamic mean residence time,297

which can be calculated from reactor volume VR and volumetric flow rate V̇ .298

F (θ) =
1

2

(
1− erf

(√
Bo

θ
· 1− θ

2

))
+

1

2

(
1− erf

(√
Bo

θ
· 1 + θ

2

))
· exp(Bo) (29)

E(θ) =
dF

dθ
=

√
Bo · exp

[
−Bo·θ2+2·Bo·θ+Bo

4·θ

]
2 ·

√
π · θ 3

2

(30)

Here, the Bodenstein number Bo is used, which describes the ratio be-299

tween convective and diffusive transport, using the reactor length L and the300

axial dispersion coefficient Dax:301

Bo =
v0 · L
Dax

(31)
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3. Results and Discussion302

3.1. Void Fraction303

3.1.1. Void fraction as function of tube-to-particle diameter ratio304

Fig. 2 a) shows the void fraction ε as function of tube-to-particle diameter305

ratioD/dp for spheres in blue and hollow cylinders in red. The tabulated data306

for the investigation of the void fraction, along with their respective standard307

deviations, can be found in the supplementary material. For spheres, the308

experiments and simulations show agreement with Dixon’s correlation in the309

low tube-to-particle diameter ratio range. In particular, for D/dp ≤ 2 there310

is high agreement due to the mathematical solution where only exactly one311

or two particles can be placed in the reactor diameter. For the range of312

2 < D/dp = 3, it can bee seen that the void fractions of most of the fixed beds313

are close to the correlation, but have still positive and negative deviations.314

For fixed beds with D/dp > 3 the values show a scattering behavior. Some of315

the fixed beds’ void fractions are close to the values of a random close pack316

(ε = 0.36). Even for large ratios D/dp > 10, the asymptotic value of 0.40317

is not reached. As expected, the void fraction of hollow cylinders is higher318

than that of spheres. In addition, the values are widely scattered and no clear319

trend is discernible. This might originate from the fact that D/dpv is used,320

which does not consider the particle dimensions in detail. Therefore in Fig. 2321

c), the hollow cylinder void fraction εhc was corrected to a full cylinder basis322

void fraction εfc with Eq. 17 and compared with the cylinder correlation of323

Dixon [37] (Eq. 15 and 16). In the low D/dpv range, the correlation is again324

in reasonable agreement. Between 2 ≤ D/dpv ≤ 3, the void fraction of the325

particles HC2, HC3, HC4, and HC5 varies very strongly, while in the range of326

5 ≤ D/dpv ≤ 7 the particles HC2, HC3, and HC4 have similar void fraction327

values.328

15



Figure 2: a) Void fraction of slender fixed beds made of spheres (blue) and hollow cylin-
ders (red) depending on the D/dpv. b) Different hollow cylinders used for void fraction
experiments c) Mean void fraction of hollow cylinders εhc from Fig. 2 a)

corrected to void fraction of full cylinders εfc.
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Large changes in bed void fraction can also result from the degrees of329

freedom of hollow cylinders. While a sphere has only one degree of freedom,330

the ring has three (outer diameter do, inner diameter di, and particle height331

h). One influencing factor can be the aspect ratio of the particles, since an332

alignment with an aspect ratio not equal to one leads to different heights of333

a particle layer and thus of the fixed bed. In addition, the orientation affects334

how many particles per layer fit into a fixed bed. While an upright cylinder335

can better conform to the round outer wall, allowing more particles to fit into336

the outermost layer, this is not possible with a horizontal cylinder, see [6].337

While this explanation remains valid for the lower D/dpv range, the influence338

of this wall effect diminishes as D/dpv values increase. The noticeable fluctu-339

ations in behavior and deviations from the correlation within this range can340

be attributed to the inherent particle geometry. The dpv parameter, despite341

its utility, offers a limited representation, as it fails to consider the nuanced342

interplay of the hollow cylinder’s outer and inner diameters, as well as its343

height. These factors collectively exert influence on the bed structure and344

can lead to disparate void fraction values even when dpv values appear simi-345

lar. For different data points with the same D/dpv ratio, two filling methods346

(single particle drop and funnel filling) were used. As noted, single particle347

filling is a method that results in more densely packed beds, as funnel filling348

can form stable particle arches due to the rapid filling. These stable bridges349

protect the underlying area from being filled with particles. Moreover, this350

influence of the filling method appears to play only a minor role at larger351

D/dpv ratios.352

3.1.2. Radial Void Fraction353

Fig. 3 shows the radial void fractions and the transmitted light image354

of selected synthetically generated packed beds, which allows a view from355

the top of the bed to the bottom, using low opacity for the particles [20].356

Thus, regions of high (dark) and low (bright) particle mass are visible. The357

void fraction of the spheres in Fig. 3 a) shows a region of high void fraction358

in the center of the fixed bed. This region can be described as a Central359

Channel, which extends almost continuously over the entire fixed bed, as360

already described in Flaischlen et al. [8]. In contrast, this region is nearly361

closed for the bed with D/dp = 2.7. The void fraction in the center also362

increases, but it is not as high as for D/dp = 2.68. It can also be seen,363

that the void fraction in the fixed bed center decreases due to the particles364

blocking the channel.365
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Figure 3: Radial void fraction and transmitted light image of the fixed bed for a) spheres
and b) hollow cylinders. The numbers in the right pictures indicate the radial position of
minima and maxima of the void fraction profiles.

In Fig.3 b), the radial void fractions of two hollow cylinder beds with366

nearly the same D/dpv are shown. While the overall view of the radial void367

fraction appears to be very similar for both beds, there is a difference toward368

the center (Fig. 3 b). The bed with D/dpv = 2.62 (blue line) reaches a large369

plateau of the void fraction after (R − r)/dpv = 1, meaning one particle370

diameter (dpv). For the bed with D/dpv = 2.50 (red line), there is only a371

small plateau, but not as pronounced as for the other bed. Before reaching372

this plateau, there is an extended sink in the void fraction. This can also be373

seen in the transmitted light image of all particles (Fig. 3 b)). The particles374

in this zone between 0.8 < (R− r)/dpv < 1 leads to a more pronounced open375

channel in the center of the fixed bed. These examples show how an only376

small change of the tube-to-particle diameter ratio can drastically influence377

and finally change the local bed structure.378
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3.2. Tortuosity379

3.2.1. Spheres380

The influence of tortuosity can be examined illustratively with a fixed bed381

with D/dp = 1.51, see the graphical abstract for a visualization. Since the382

reactor to particle diameter ratio is less than two, only one particle can be383

placed in the cross section of the tube. This leads to packed beds that have384

the same void fraction in each case. Nevertheless, the fixed bed structure385

can be different, resulting from a change of the particle position on the cross386

section. An extreme case of this packed bed, where the centroids of the387

particles coincide to two positions, leads to the formation of a channel to the388

left and right of the particles. This is in contrast to a bed, where all particles389

are in a random structure and no channel occurs. To create the model of the390

structured fixed bed, we employed an animation technique integrated into391

Blender’s Rigid Body method. We defined two planes as boundaries and392

used them as walls, manipulating their positions to push the particles into393

place. This process resulted in the creation of the structured configuration394

with the two lateral channels. These channels in the structured bed leads to395

lower flow resistance and higher velocities compared to the disordered bed.396

While the void fractions of the beds remain the same, the pressure drop of397

the two beds is different due to the different flow resistances. Since pressure398

drop correlations only depend on the void fraction, they cannot describe399

these differences. In fact, the structured bed has a lower fixed bed tortuosity400

due to the direct channel, see Tab6.401

Table 6: Tortuosity and pressure drop at Rep = 2300 of two different bed structures with
D/dp = 1.51.

Void Fraction Tortuosity ∆p/L / Pam−1

CFD Ergun
Structured 0.663 1.234 435 525
Random 0.663 1.249 442 525

In Fig. 4 the tortuosity as a function of the D/dpv ratio is shown for402

packed beds of spheres derived from synthetically generated beds and corre-403

lations. The fluctuating course can be described with the fluctuations in the404

void fraction, but also with the structural effects of the fixed beds. It is also405

noticeable that no correlation can reproduce the derived tortuosities from406

the synthetically generated packings. The Bruggemann correlation gives the407
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highest τ values, whereas the Millington correlation gives the lowest values.408

The deviations can be explained with the different assumptions of the corre-409

lations. While the Bruggeman correlation is restricted to non-monodisperse410

particle packings, the Millington equation was originally developed for steady411

diffusive flow through porous solids. The generally expected behavior is that412

the void fraction with increasing D/dpv can drop to a minimum limit value413

(Fig. 2), which is then also directly reflected in the tortuosity, which thus414

strives towards a maximum limiting value (Fig. 4).415

Figure 4: Tortuosity τ of the fixed beds of spheres as a function of D/dpv ratio. Correla-
tions calculated with void fraction ε obtained from simulations.

The reasons for the fluctuating behavior of tortuosity (and void fraction)416

can be explained by the structure of the fixed bed, i.e., the wall or central417

channel and an annular channel between the wall-nearest particles and the418

bulk. To illustrate these effects, transmitted light images are shown for all419

synthetically generated fixed beds from Fig. 4, in which zones of high and420

low particle density can be identified, see Fig. 5. Although these transmitted421

light images were not validated, they provide valuable qualitative insights422

into the three-dimensional packing structure. In these images, one can easily423

follow the formation of the structural effects and thus explain the behavior424
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of tortuosity. For D/dp = 1.51, only one sphere fits into the cross section of425

the reactor. The formation of a regular structure is unlikely here, instead a426

random bed is formed. The center of the reactor is always filled with particles427

(dark gray zone) while the near-wall zones contain a smaller particle mass due428

to the displacement of the particles (light gray zones). These bed structures429

can be called single pellet string.430
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Figure 5: Transmitted Light Image of the synthetic fixed beds with the occurring structural
effects highlighted in red (Central Channel) and green (Annular Gap).

For D/dp = 2, the developing structure in the fixed bed results in an431

almost uniform distribution of particles over the reactor cross section. The432
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pressure drop of this bed can also be reproduced with correlations, see [8],433

so that this bed has no special structure effect. If D/dp increases, this leads434

to an opening in the center of the reactor. This channel (marked red in435

Fig. 5) opens and becomes larger with increasing D/dp. In this region, the436

pressure drop of the fixed beds cannot be calculated with existing pressure437

drop correlations. Moreover, the effect of the channel can be seen in the438

tortuosity in Fig. 4, as it becomes lower starting from the value of D/dp =439

2. At D/dp = 2.7, the closure of the channel occurs. This behavior is440

characterized by a sudden increase of tortuosity. For this fixed bed, the441

pressure drop can again be reproduced by a correlation, as shown in [8], which442

is why it can again be assumed that there are no structural effects. Further443

increase of D/dp > 3 results in a small decrease of the tortuosity (which444

is against the general trend of an increase up to a maximum limit). This445

behavior can be explained by the Annular Gap (in green) that forms around446

spheres located in the center. Interesting to notice is the fixed bed structure447

for D/dp = 3.02, which is highly ordered. In addition to the Annular Gap in448

this very special configuration, the structure is highly ordered, no particle is449

in a random position. This leads to very distinct wall channels, which appear450

as completely white areas in the Transmitted Light Image. The Annular Gap451

first becomes larger (decreasing tortuosity until D/dp = 3.2 and is then452

partially blocked by particles, but not completely closed (slightly increasing453

tortuosity). At D/dp = 4.0 the tortuosity decreases again, because at this454

point the following two effects combine. An Annular Gap is formed around455

the inner particles, as well as a channel in the center of the reactor. In the456

following, the tortuosity increases slightly again, since the channel and the457

Annular Gap are blocked by particles. Nevertheless, due to the structural458

effects, the tortuosity increases only slightly to the level already reached at459

D/dp = 3.0. In addition, a bed with D/dp = 9.3 (Fig. 5 e)) is shown, where460

regular Annular Gaps can be identified. They can be found in the wall near461

area, with an decreasing structure to the center of the bed. In the bed center,462

the structure becomes random, so that Annular Gaps are no longer found.463

This results in the typical oscillating pattern of the radial void fraction with464

distance from the wall, described e.g. by the equation of De Klerk [48]. The465

overall appearance of the Transmitted Light Image is also a very uniform466

gray scale, indicating that the structure of the Annular Gap is not very467

pronounced and thus plays a minor role in the flow properties of the bed.468

In this range, the pressure drop can again be predicted with an appropriate469

correlation. Investigations on larger D/dpv ratios were not performed, but470
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it can be assumed that from this point on the local structure plays a minor471

role.472

In agreement with the results of Dixon [10], the fixed beds can be classified473

into categories depending on the ratio of D/dp. In the Single Pellet String474

class, no local structure could be observed, see Fig. 5 a). While the centered475

channel occurs in the range 2 = D/dp ≤ 3, this category was referred by476

Dixon to as the Highly Structured Range class. Because of the visible effect,477

where the particles arrange on the outer wall until the channel is closed by478

a centered particle (see Fig. 5 b)) we would classify this as Central Channel.479

In the third class, the particles are only ”weakly structured” Dixon [10]. An480

Annular Gap around the centered particle occur, see Fig. 5 c), which can be481

referred to as the Annular Gap. While for D/dp ≥ 4.0 the fixed bed tends482

to become unstructured (cf. Dixon 2021 [10]), local effects are still visible in483

the Transmitted Light Image (Fig. 5 d)). This class combines the effects of484

the last two classes and could be named Central Channel + Annular Gap.485
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Figure 6: Tortuosity τ as a function of void fraction ε for packed beds of spheres.

In Fig. 6, tortuosity is considered as a function of void fraction showing the486

values obtained from the synthetically generated beds and the correlations487
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from Tab. 3. The results of the synthetically generated beds can be divided488

into two categories: beds with Central Channel and/or Annular Gaps (red)489

and random bed structures (green in Fig. 6). The random packed beds are490

D/dp = [1.51; 2.0; 2.7; 9.3], and if only these are considered, a clear trend can491

be seen and described (R2 = 0.99) with the following formula:492

τ = 1.086 · ε−1/3 (32)

The form of the obtained correlation is identical to the Millington equa-493

tion τ = ε(−1/3) [42]. The difference here is only the shift due to the newly494

introduced prefactor. Similarly, the tortuosity of the fixed beds with channel495

and/or gaps can be described by Eq. (33), although a larger scattering of496

values can be observed here (R2 = 0.81).497

τ = 1.03 · ε−1/3 (33)

This equation is valid for the investigated random fixed beds with:498

• Central Channel : 2 < D/dp < 2.7499

• Annular Gap: 3 ≤ D/dp < 4500

• Central Channel + Annular Gap: 4 ≤ D/dp ≤ 4.3501

In contrast to Eq. (32), however, Eq. (33) is valid only up to a value of502

ε = 0.55. This validity results from the minimum D/dp ratio. In Fig. 2 it503

can be seen that fixed beds exceeding this void fraction ε are exclusively in504

the range D/dp < 2, in which in reality random structures occur.505

3.2.2. Hollow Cylinders506

Subsequently, the tortuosity of the hollow cylinder fixed beds are com-507

pared. The tortuosity was calculated only for the hollow cylinder fixed beds,508

which were studied experimentally in terms of pressure drop, see. Tab. 7.509

Table 7: Tortuosity of packed beds of hollow cylinder.

D/dpv τ
2.50 1.305
2.62 1.299
3.32 1.449
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While between D/dpv = 2.50 and D/dpv = 3.32 an increasing trend of510

tortuosity can be seen, it remains approximately the same for D/dpv = 2.62.511

This indicates a local structure effect occurring in this fixed bed configu-512

ration. Therefore, the pressure drop of the packed beds will be compared,513

since it has already been shown that local structural effects have a measurable514

influence on it.515

3.3. Pressure Drop516

The local structure has an influence on the flow properties. This can be517

shown with the pressure drop as a representative value. In the following,518

the pressure drop of different shaped particles is investigated in terms of the519

local structure effects.520

3.3.1. Spheres521

It was already shown in Fig. 5 that the local structure can be divided522

into different categories. In the next step, the pressure drop is represented523

as the dimensionless friction factor fp versus the modified particle Reynolds524

number Rep
∗ (Eq. 20). In Fig. 7 the values are compared with the pressure525

drop correlation of Ergun (black), which is using the factors A = 150 and526

B = 1.75 and an area of ±20% (grey). While the random fixed beds (D/dp =527

[1.51; 2.0; 2.7; 9.3]) are within this range, the deviation becomes larger for the528

beds with a Central Channel or Annular Gaps. Because of the clearly visible529

trend of the different effects, the Ergun coefficients are adjusted for them.530

In Fig. 7 the Ergun equation is shown with modified inertial and viscous531

resistances A and B.532
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Figure 7: Friciton factor over Re∗p in fixed beds of spheres without and with local structure.

It is clear visible that the Ergun equation overestimates the pressure533

drop, and also that the different local structure categories have a different534

influence on the pressure drop behavior. The Single Particle String with535

D/dp = 1.51 shows agreement with the Ergun Equation in the range of536

higher particle Reynolds numbers (Re∗p > 1500) while in the lower range, the537

friction factor is overestimated. This can also be seen in the fitted viscous538

(A) and inertial (B) terms (Tab. 8), representing the linear and quadratic539

depending of pressure drop ∆p on superficial velocity v0. While the linear540

Term A is way higher than the original Ergun value, the quadratic term is541

only 15% smaller, leading to a reasonable agreement for Re∗p > 1500. The542

Central Channel lowers the pressure drop with the highest values, but also543

with a high scattering around the fitted Ergun parameters (R2 = 0.73).544

Reason for this behavior is the different flow resistance, resulting from the545

channel width. While the Central Channel begins to open for D/dp = 2.2, it546

reaches the maximum in this work shown width at D/dp = 2.5. At this ratio,547

the channel is completely open over the entire fixed bed. At D/dp = 2.68,548

the channel is also open, but starts to become partially blocked, leading549

to an increase in the pressure drop. In contrast, it can be seen that the550

Annular Gap has the lowest effect on pressure drop, for different D/dp ratios.551

Nevertheless, the Annular Gap also leads to a deviation of more than 20%552
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compared to the original Ergun equation. Here, the Ergun parameters can be553

fitted with a coefficient of restitution of R2 = 0.97, showing that the different554

Annular Gap widths have almost the same effect on the pressure drop. The555

combination of the two effects (Annular Gap + Central Channel) leads for556

D/dp = 4 to a pressure drop between the two individual effects resulting557

from the small Central Channel which could be identified as the major effect558

on pressure drop. An increase of D/dp now leads to an agreement with the559

original Ergun parameters, resulting from the partially blocking of Central560

Channel and Annular Gap.561

Table 8: Modified porous inertial (A) and viscous (B) resistance factors.

Structure Effect D/dp Re∗p A B R2

No infinite - 150 1.75 -
Single Particle String 1.51 > 250 889 1.52 0.99
Annular Gap 3 ≤ D/dp < 4 ≥ 200 315 1.14 0.97
Central Channel 2 ≤ D/dp < 2.7 ≥ 200 252 0.87 0.73

3.3.2. Hollow Cylinders562

Classical pressure drop correlations, such as the Ergun [14] or Eisfeld-563

Schnitzlein [15] equations, can underestimate the pressure drop compared to564

measured results because of the high void fraction resulting from the hol-565

low cylinder inner hole volume. However, not all of the interior of the hollow566

cylinder is available for flow, resulting in a smaller actual cross-sectional area.567

While the correlations are fitted for a large number of different particles, it568

is possible that the hollow cylinders may be given an orientation that allows569

higher flow through the internal volumes. Therefore, specialized correlations570

have been developed for predicting the pressure drop in beds of hollow cylin-571

der. One of these is the Nemec-Levec equation (Eq. (26-27)), in which the572

cross-sectional area is reduced by them-value that describes the flow through573

the ring inner volume. This can be seen in the cut scenes through the beds,574

shown in Fig. 8, where the velocity inside the inner volume is very low.575

27



a)

c)

D/dpv = 2.50

D/dpv = 3.32

Minor Channeling

Figure 8: Pressure drop as a function of Re∗p in fixed beds of hollow cylinders for different
D/dpv. Velocity scenes through the bed and comparison of pressure drop correlations with
the CFD simulations.

The first bed with D/dpv = 2.50 can be reproduced very well with CFD576

simulations. Also the standard pressure drop correlations of Ergun (Eq. (20))577

and Eisfeld-Schnitzlein (Eq. (22 - 25)) show agreement with the experimen-578

tal results, especially in the low Re∗p range. The specialized correlation of579

Nemec-Levec (Eq. (26-27)) also shows agreement for low Re∗p, but deviations580

occur for flow exceeding Re∗p = 1500. It should be mentioned that the values581

used for development of the Nemec-Levec equation are in a lower Re∗p range582

(see Tab. 5). In the PRCFD, it can be seen that due to the small D/dpv583

ratio of this bed, some smaller channels form between the particles and the584
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wall. Compared to the Central Channel which can form in fixed beds of585

spheres, here, no channel is formed along the entire length of the bed. The586

second bed studied has only slightly smaller particles with D/dpv = 2.62.587

While the particles are getting smaller, an increase in pressure drop is ex-588

pected. Instead, the experimental values are in the same range as for the589

bed before. Nevertheless, the structure changes a lot, larger channels are590

now formed, resulting from stacked particles and a reduction of flow resis-591

tance. This leads to a strong overprediction of the pressure drop by the592

correlations, while the PRCFD simulations again agree with the experimen-593

tal results. Also, the Nemec-Levec equation shows the highest deviation,594

while Ergun and Eisfeld-Schnitzlein equations predict similar but higher val-595

ues. It turns out that the behavior of tortuosity found in Tab. 7, indicating596

a structural effect, is reflected by the pressure drop, since it cannot be well597

reproduced by the typical correlations. The third bed consists of hollow598

cylinders forming a D/dpv ratio of 3.32. Compared to the second bed, the599

stacking of particles is not as pronounced. Additionally, at this dpv ratio,600

the wall channel is not as pronounced as for dpv = 2.50. Thus, no channel601

formation is observed, and the flow velocity in radial and axial directions602

remains homogeneously distributed. The PRCFD results for this bed are603

slightly higher than observed in the experiments but are also within an ac-604

ceptable range. Explanation for this behavior can be found in the alignment605

of the particles, which also can be slightly different between different exper-606

iments as well as between the PRCFD simulations. While the Ergun and607

Eisfeld-Schnitzlein equations again agree with the data, the Nemec-Levec608

equation tends to overestimations. We also utilized data fitting techniques609

to fit the Nemec-Levec equation in an effort to capture the intricate behavior610

of rings. Nevertheless, the outcomes revealed notable dispersion in the de-611

rived factors. This dispersion underscores that the derived factors are only612

suitable for their respective geometries, highlighting the lack of universally613

applicable correlations. Details are presented in the Supporting Information.614

Table 9 summarizes the average percentage and absolute deviations between615

the pressure drop of the experiments and CFD as well as correlations for the616

different hollow cylinder particles fixed beds. It should be noted that the617

deviations of the CFD simulations, approx. 20%, originates mainly from the618

deviations in the smaller Rep range. However, it should be noted that the619

error of the pressure gauges in this range is also larger. Nevertheless, it can620

be seen that the CFD results show a smaller deviation than the correlations.621
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Table 9: Mean absolute and relative deviations of pressure drop from experimental data.
D/dpv CFD Ergun Eisfeld-Schnitzlein Nemec-Levec

mbarm−1 % mbarm−1 % mbarm−1 % mbarm−1 %
2.50 0.12 18.36 0.36 32.36 0.66 29.14 0.93 34.77
2.62 0.28 21.46 2.41 49.4 2.91 56.18 5.04 89.19
3.32 2.94 25.77 0.44 26.52 0.56 17.06 5.12 44.43

3.4. Velocity Components622

The results have shown that the use of correlations does not provide a623

reliable prediction of the pressure drop for all fixed bed structures. Due to624

structure effects, overestimation of pressure drop, and thus a different flow625

behavior may occur. Since in fixed bed of spheres the reason for the failure of626

the correlation was relatively easy to identify qualitatively (forming of strong627

structural effects see Fig. 5), it becomes more difficult for more complicated628

particle shapes, such as hollow cylinders, where few stacked particles lead to629

lower flow resistance (see Fig. 8). In the following, beds with nearly the same630

D/dpv ratio but different local structures are compared in terms of velocity631

components.632

The profiles for the axial, radial, and tangential velocity components as633

a function of the radial coordinate (R− r)/dpv from the PRCFD simulations634

are shown in Fig. 9. For the bed of spheres with D/dp = 2.68, the channel635

is clearly visible as the axial velocity increases toward the center of the fixed636

bed (Fig.9 a). At the same time, for the fixed bed of spheres withD/dp = 2.7,637

the axial velocity remains low in the center, while it is higher at the reactor638

wall. It can also be seen that the mean value of the axial velocity is almost639

the same for both beds. Fig.9 b) and c) show the radial and tangential640

velocity components, respectively, for the beds of spheres. The higher these641

components, the larger lateral mixing. While the general velocity profile642

appears to be very similar, the radial velocity for the fixed bed without a643

Central Channel (D/dp = 2.7) is significantly higher. In summary, the two644

beds do not show much difference in the average axial velocity (horizontal645

line), but are very different in tangential and radial velocities (approx. 25%).646

These much higher velocities in the non-axial direction result in longer flow647

paths through the bed, intensified lateral mixing, and thus a higher pressure648

drop than in the bed with a central channel.649
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Figure 9: Normalized axial (top), radial (middle) and tangential (bottom) velocities in
radial distance from the wall for spheres with Central Channel (D/dp = 2.68) and without
channel (D/dp = 2.7) effect (a) - c)) and hollow cylinders (d) - f)) (D/dpv = 2.50 and
D/dpv = 2.62)
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Fig.9 d) shows the axial velocity components for two beds of hollow cylin-650

ders. The mean velocity value of the bed with D/dpv = 2.62 bed is slightly651

higher, resulting from a plateau with higher velocity from (R − r)/dpv > 1.652

This is due the more pronounced free space, as already seen in Fig. 3 b). This653

higher velocity shows a lower flow resistance in the axial direction of the bed.654

The radial velocity (Fig.9 e)) for both beds is similar. The difference in axial655

velocity results from the lower tangential velocity that the D/dpv = 2.62 bed656

has in comparison to the D/dpv = 2.50 bed (Fig.9 f)). The comparison of657

the radial velocity, and thus the radial mixing performance of the fixed bed,658

between the spheres in Fig. 9 b) and hollow cylinders in Fig. 9 e) shows that659

the mean value for spheres is still higher when the Central Channel is closed.660

This indicates a higher radial mixing for fixed beds of spheres, if no local661

structure effects occur.662

3.5. Residence Time Distribution663

3.5.1. Fixed Beds of Spheres664

While the packed bed of spheres with D/dp = 2.68 forms a Central Chan-665

nel, this channel is closed with a small change of D/dp to 2.7. The resulting666

pressure drop can be predicted by the Eisfeld-Schnitzlein equation for the667

fixed bed without a channel, while it is overestimated for the other bed. The668

residence time sum curve (F curve) and the exit age distribution (E curve)669

are plotted in Fig. 10 a) and b), respectively, against the dimensionless resi-670

dence time θ.671

Figure 10: a) Residence time sum curve (F = f(θ) curve) and the exit age distribution
(E = f(θ) curve) for fixed beds of spheres with D/dp = 2.68 and D/dp = 2.7 with
consideration of convection only.
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It can be seen that the fluid in the fixed bed with the Central Chan-672

nel (blue solid line) leaves the reactor earlier than without a channel (red673

solid line). While for D/dp = 2.68 already 60% leave the reactor at the674

hydrodynamic residence time θ = 1, it is more symmetrical for the bed with675

D/dp = 2.7. Furthermore, it can be recognized that the reactor without a676

Central Channel can be described by a Bodenstein number of Bo = 51.5 (red677

dotted line), while the fitted Bo for the fixed bed with a Central Channel is678

significantly lower (Bo = 27.1) (blue dotted line) and does not well describe679

the actual F curve. This is a result of the early curve behavior, which indi-680

cates stagnant zones in the fixed bed. This can be attributed to the fact that681

if the real vessel has no stagnant zones, the observed mean residence time682

tObs has to be equal to the hydrodynamic mean residence time tHy [49]. The683

active reactor volume VActive can be quantified by comparing tHy (Eq. (34))684

with the tObs (Eq. (35)) determined by the E and F curves.685

tHy =
VR

V̇
(34)

tObs =
VActive

V̇
(35)

The hydrodynamic mean residence time tHy can be calculated using the686

volumetric flow rate V̇ and the reactor volume VR available for the flow. On687

the other hand, the active reactor volume VActive can be calculated using the688

observed mean residence time tObs with the help of Eq (36).689

VActive = tObs · V̇ = tObs ·
VR

tHy

(36)

With this connection, it follows that the percentage of the stagnant region690

can be determined by a comparison of the dimensionless residence times.691

V Active

V R

=
θObs

θHy

(37)

The comparison shows, that for the D/dp = 2.68 fixed bed, a volume of692

4.85% is stagnant fluid. While it was possible to calculate the volume of693

stagnant fluid for the fixed bed configuration with D/dp = 2.68 at this point,694

as the mean residence times θHy and θObs differed, this was not possible for695

the other investigated fixed beds. In these cases, the observed mean residence696

times closely matched the hydrodynamic ones, indicating that no significant697
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stagnant fluid volumes occur.698

699

Fig. 11 shows the comparison between the beds of D/dp = 2 and D/dp =700

3.02. Both fixed beds can be approximated with a corresponding Bo num-701

ber. Again, there is a strong difference in RTD behavior between the two702

beds. While the fixed bed with D/dp = 2.0 shows a small Bo = 32.2 num-703

ber and thus a larger deviation from plug flow behavior, the fixed bed with704

D/dp = 3.02 shows an RTD curve that can be assumed as plug flow, since705

Bo > 100. However, the fixed bed with D/dp = 2.0 does not show stag-706

nant zones because the mean residence time θ and the mean hydrodynamic707

residence time θHy coincide.708

Figure 11: Residence time distribution sum (a)) and age distribution curve (b)) for fixed
beds of spheres with D/dp = 2 and D/dp = 3.02 with consideration of convection only.

The reason for the plug flow behavior of the D/dp = 3.02 fixed bed, can709

be found in Fig. 12, where the seeds (streamlines of the flow simulation) for710

three different radial sections are shown at different axial coordinates. It711

can be observed that the seeds starting at an axial coordinate of z = 0 =712

L/dp = 0 already begin to mix after one particle diameter (L/dp = 1). The713

grey streamlines are displaced from the middle radial section towards the714

outer and central regions. After five particle diameters (L/dp = 5), red and715

green seeds are well mixed, which increases again after ten particle diameters716

(L/dp = 10).717
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a) b) c) d)L/dp = 0 L/dp = 1 L/dp = 5 L/dp = 10

Figure 12: Seeds for visualization of the mixing properties of the fixed bed at a) axial
coordinate z = 0, b) after one particle diameter, c) after 5 particle diameters, and d) after
10 particle diameters.

The following figure shows the comparison between a fixed bed with718

D/dp = 3.2 (red line), which has a partially blocked Annular Gap, and a719

fixed bed with D/dp = 4.0 (blue line), in which the two combined effects720

Channel + Annular Gap are present. It can be observed that the fixed bed721

with an Annular Gap can be can be described with a fitted Bodenstein num-722

ber, similar to the fixed bed with D/dp = 3.02.723

The Bodenstein number with a values of Bo = 78.0 is lower than for a724

unblocked Annular Gap, but still indicates, that the reactor has an behavior725

close to plug flow.726

Figure 13: Residence time sum curve (F curve) and the exit age distribution (E curve) for
fixed beds of spheres with D/dp = 3.2 and D/dp = 4.0 with consideration of convection
only.

For the fixed bed with both structural effects, the fitted Bodenstein num-727

ber is also high with a value of Bo = 76.1 indicating also a plug flow-like728
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behavior. Nevertheless, it can be seen, that the curve cannot fully represent729

the simulation results. This behavior is in accordance to the observations in730

Fig. 10, where also the Central Channel could not be reproduced. As the731

Central Channel effect is less pronounced in the D/dp = 4.0 fixed bed, it732

shows a higher accordance to the equation of Ogata and Banks [47].733

3.5.2. Fixed Beds of Hollow Cylinders734

Regarding the fixed beds composed of ring particles, it can be observed735

that although a Bodenstein number could be fitted for both D/dpv values, it736

only partially corresponds to the simulated results. In both cases, the height737

and exact position of the maxima of the E-curve are not accurately matched.738

It is worth noting that both fixed beds exhibit a fairly similar Bodenstein739

number of 51.9 and 45.6. Nevertheless, the residence time behavior of the740

D/dpv = 2.68 bed shows an earlier maximum, resulting in an early curve741

behavior that can account for the observed pressure drop differences between742

correlation and experiment presented in Fig. 8.743

Figure 14: Residence time sum curve (F curve) and the exit age distribution (E curve) for
fixed beds of rings with D/dpv = 2.5 and D/dpv = 2.62 with consideration of convection
only.

4. Conclusion744

The void fraction of packed beds, whether consisting of spherical particles745

or hollow cylinders, is difficult to predict due to the same scattering effects746

that can occur in both types of beds. Even small changes in the D/dpv ratio747

can lead to significant changes in the structure and therefore in the overall748
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void fraction. The structure effects of fixed beds consisting of monosized749

spheres can be classified into four categories: (i) Single Particle String, (ii)750

Central Channel, (iii) Annular Gap, and (iv) Central Channel + Annular751

Gap. These effects play a major role in the convective transport in fixed752

beds and thus highly affect the local and hence overall reactor behavior. The753

tortuosity of a fixed bed is introduced as another factor that can be helpful754

in describing the structure and the corresponding flow conditions. Therefore,755

pre-factors in the tortuosity formulation τ = a · ε−1/3 have been proposed for756

slender packed beds with random structure and with Central Channel and757

Annular Gaps. However, when structure effects play a major role, pressure758

drop and Residence Time Distribution cannot be predicted reliably by the759

use of typical correlations. A significant discovery in this study is the linkage760

between the effects of the underlying structural elements and new factors in761

the Ergun equation. This development leads to a more accurate correlation762

compared to the original factors. The Central Channel has the greatest in-763

fluence on pressure drop, which decreases with the opening of the channel764

until it is partially blocked, after which it immediately increases again. This765

makes the fixed bed random again, and the pressure drop can also be pre-766

dicted correctly by original correlations. The Annular Gap has a smaller767

but more constant influence on pressure drop, while the Central Channel +768

Annular Gap has an influence between the two single effects.769

The RTD shows significant differences between beds. The Central Chan-770

nel has the lowest pressure drop but also the lowest value of the correspond-771

ing Bodenstein number, indicating non-ideal behavior in terms of lateral772

mixing. Furthermore, the residence time distribution analysis revealed that773

the central channel contributes to the occurrence of stagnant volumes. Con-774

sequently, approximately 4.85% of the fluid volume experiences stagnation,775

which, in conjunction with the central channel, leads to an extreme fronting776

of the residence time. The Annular Gap is associated with the highest Bo-777

denstein number and a smaller pressure drop than randomized beds, with778

the highest Bodenstein number being idealized as plug flow behavior and779

found for D/dp = 3.02. The fixed beds with an Annular Gap seems to be a780

reactor configuration that combines desirable effects, as it provides plug flow781

behavior and a reduced pressure drop. Furthermore, as already indicated in782

our previous works, in the range of D/dp = 3.02, the fixed bed forms a struc-783

ture with a repeating pattern. This is reflected in the narrow distribution of784

void fraction with ε̄ = 0.412 and a low standard deviation σ = 0.0014. This785

indicates that the behavior of a fixed bed in the range of D/dp = 3 can be786
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well predicted, as the same structure forms with high regularity.787

For fixed beds of hollow cylinders, it has been observed that even a small788

change in the D/dpv ratio can lead to large deviations of the correlations789

used to predict pressure drop. In contrast to fixed beds composed of mono-790

disperse spheres, the underlying effects in hollow cylinder beds have proven791

to be less straightforward to identify. Instead of a continuous channel, partial792

small channel pathways are formed through stacking of the hollow cylinders793

(clusters of stacked pellets), which reduce flow resistance. Furthermore, the794

analysis of velocity fields has revealed that the investigated rings do not offer795

intensified radial mixing compared to beds made of spheres. In the residence796

time distribution, it was also observed that despite their different pressure797

drop characteristics, which could be described by correlations in one case798

(D/dpv = 2.5) and not in the other (D/dp = 2.68), both fixed beds exhibited799

similar behavior and thus similar Bodenstein numbers. The fitted Bodenstein800

number for these beds was in the same range (Bo = 51.9 and Bo = 45.6)801

as that of the randomly structured spherical fixed bed with D/dp = 2.7802

(Bo = 51.9).803

In conclusion, this study has demonstrated the occurrence of different804

structures in fixed beds and their influence on pressure drop, tortuosity, ve-805

locity field, and residence time behavior. Categorizing these effects across806

the D/dp range allows for predictions of their occurrence and their associ-807

ated impacts, while the modified factors for tortuosity and pressure drop808

correlations enable predictive modeling.809

5. Acknowledgments810

This publication is based upon work supported and financed by Clausthal811

University of Technology, project Catalytic and microbial methanation as812

basis for sustainable energy storage (CliMb). The authors would like to thank813

Jule Kersebaum for her great support in carrying out the experimental work814

for this publication.815

38



Symbols used816

Latin Letters817

a form factor
A viscous term of the Ergun equation (Blake-Kozeny-Carman constant)
A m2 cross sectional area of reactor tube
Aw wall correction term of Eisfeld-Schnitzlein equation
B inertial term of the Ergun equation (Burke-Plummer constant)
Bw wall correction term of Eisfeld-Schnitzlein equation
Bo Bodenstein number
Cm kgm−2 s−1 weight flow rate
d m diameter
D m reactor diameter
Dax m2 s−1 axial dispersion coefficient
D s−1 deformation tensor
E RTD density function
fp friction factor
F RTD sum function
h m height
I unit tensor
k Wm−1 K−1 heat conductivity
L m fixed bed length
m internal volume flow rate
N particle count
p Pa pressure

Q̇ W heat flux
r m radial coordinate
R m reactor radius
Re∗p modified particle Reynolds number
S m2 surface
t s time
t̄ s mean residence time
T K temperature
T Pa stress tensor
v ms−1 velocity
v ms−1 velocity vector
V m3 volume

V̇ m3 s−1 volume flow rate

818
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Greek Letters819

∆ difference
ε mean void fraction
θ dimensionless residence time
θ̄ dimensionless mean residence time
µ kgm−1 s−1 dynamic viscosity
ρ kgm−3 fluid density
τ tortuosity
Φ passive scalar component

820

Sub- and superscripts821

0 superficial
active refers to the active reactor volume through which flow occurs
ax axial
Bed fixed bed
CV control volume
eq equivalent
free refers to the free Volume
full refers to the full Volume
fc full cylinder
hc hollow cylinder
Hy hydrodynamic
i inner
o outer

Obs observed
p particle

particles refers to the cumulative volume of all particles
pv volume equivalent
R reactor
rad radial
Rel relative
tan tangential

822

Abbreviations823

CFD computational fluid dynamics
PRCFD particle-resolved computational fluid dynamics
RANS Reynolds averaged Navier Stokes
RBA rigid body approach
RTD residence time distribution
SIMPLE semi-implicit method for pressure linked equations
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