

Techniken des Maschinenlernens zur effizienten Prozessoptimierung bei veränderlichen Bauteilgeometrien am Beispiel der Textilumformung

Machine learning algorithms for efficient process optimisation of variable geometries at the example of fabric forming

22. März 2022

Vortrag zum SAMPE-Innovationspreis "Dissertation" 27. Nationales SAMPE Symposium, München

Clemens Zimmerling
KIT – Institut für Fahrzeugsystemtechnik - Leichtbau

Motivation

Überblick

Leichtbaulösungen

Erzielbarer Leichtbaugrad

Auslegungsaufwand

Simulationstechnik als Auslegungswerkzeug

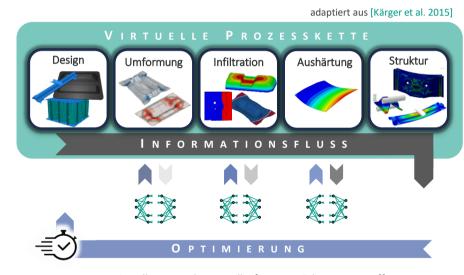
- Frühe Bewertung der Herstellbarkeit
- Struktursimulation mit Prozesseffekten

Reduktion teurer Versuche

Rechenaufwände (iterative Optimierung!)

Ziel: Prozessoptimierungen beschleunigen

 Integration von Vorwissen aus ähnlichen Bauteilen durch Techniken des Maschinenlernens (ML)



Virtuelle Prozesskette endlosfaserverstärkter Kunststoffe am Beispiel des Resin-Transfer-Moulding

Motivation

Überblick

Leichtbaulösungen

Erzielbarer Leichtbaugrad

Auslegungsaufwand

Simulationstechnik als Auslegungswerkzeug

- Frühe Bewertung der Herstellbarkeit
- Struktursimulation mit Prozesseffekten

Reduktion teurer Versuche

Rechenaufwände (iterative Optimierung!)

Ziel: Prozessoptimierungen beschleunigen

- Integration von Vorwissen aus ähnlichen Bauteilen durch Techniken des Maschinenlernens (ML)
- Beispielprozess: Umformung technischer Textilien

Virtuelle Prozesskette endlosfaserverstärkter Kunststoffe am Beispiel des Resin-Transfer-Moulding

Agenda

Ausgangssituation

Simulation φ

Parameter p

Qualität q

Optimierer

Virtuelle Prozessoptimierung

Prozesssimulation als Funktion

Prozessantwort (,Qualität')

Maschinenlernen zur effizienten Prozessoptimierung bei veränderliche Bauteilgeometrien

Clemens Zimmerling | 27. Nationales SAMPE-Symposium, München

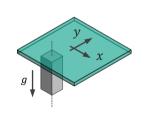
- $q_{\rm opt} = q(\boldsymbol{p}_{\rm opt}) \stackrel{!}{\to} \min$ Ziel: Parameteroptimum p_{ont}
- Klassische Lösung: Optimierungsalgorithmen

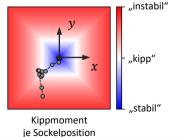
Herausforderung

Komplexe Zielfunktion, mehrere Parameter → zahlreiche Iterationen → Rechenzeit steigt

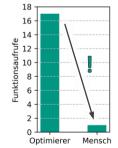
Effizienzmaßnahme

- Integration von "Vorwissen" in die Optimierung
- Gedankenexperiment





p



Karlsruher Institut für Technologie

Surrogate-gestützte Optimierung

Vorwissen

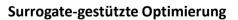
Schnelles Näherungsmodell (,Surrogate')

$$\mu_{\text{srg}}$$
: $P \mapsto Q$

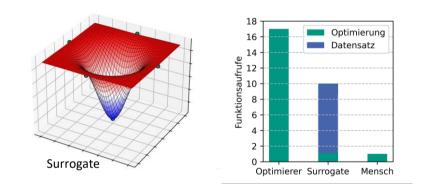
mit $\mu_{\rm srg} \approx \varphi$

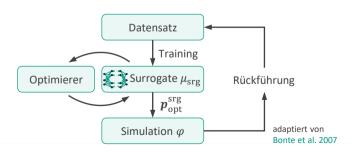
Statistisches Modell

ID	p_1	p_2			ID	q_1	q_2	
1	0.1	2.3		₹	1	0.1	2.3	
2	4.2	0.8		*	2	4.2	0.8	
				←				
n	9.5	2.8			n	9.5	2.8	
Input P					Output Q			



- Surrogate leitet die Suche des Optimierers
- Identifikation vielversprechender Kombinationen
- Nachrechnen und Rückführung in Datensatz
 - → sukzessive Surrogate-Verfeinerung



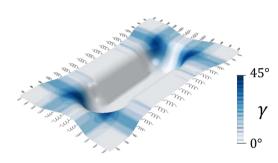


Anwendungsbeispiel

Textilumformung mit Spannrahmen [Zimmerling et al. 2021]

- FF-Umformsimulation (Gewebemodell [Poppe et al. 2018, 2019])
- Optimierung der Materialzuführung (60 Greifer)
- Ziel: Minimierung Scherwinkel γ

Visualisierung Scherwinkel γ

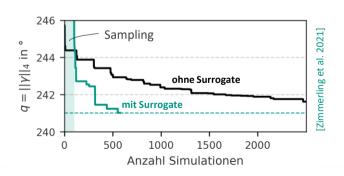


Plot der Scherwinkel γ nach der Umformung

Vergleich Optimierung mit und ohne Surrogate

- Surrogate schneller als direkte Optimierung
- Weniger Simulationsaufrufe

22. März 2023



Forschungsbedarf

Surrogate-Modelle ...

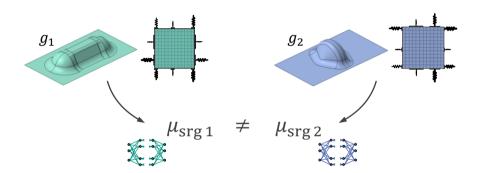
... unterstützen die Konvergenz in vielen Fällen, ...

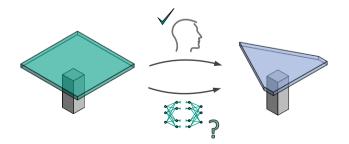
...aber sind sehr aufgabenspezifisch

- → Bauteilvarianten nur sehr begrenzt abbildbar
- → je Bauteil neues Sampling und Training

Beobachtung und Idee

- ML-Techniken können komplexe Dynamiken lernen
 - → Eignung für geometrieübergreifendes Surrogate?





Forschungshypothesen

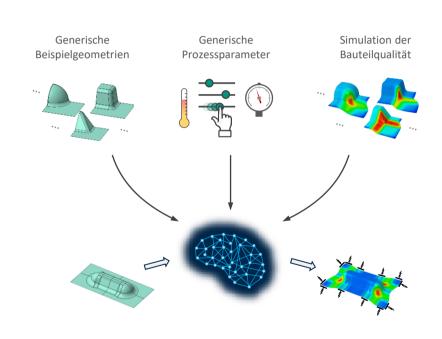
Hypothese 1

Es ist möglich, mit ML-Verfahren und Simulationstechnik Wissen aus generischen Prozessbeispielen zu extrahieren und auf neue Geometrien anzuwenden

Hypothese 2

Einmal trainiert, beschleunigt dieses ML-Modell die Optimierung ähnlich wie ein klassisches, geometrie-spezifisches Surrogate

Anwendungsbeispiel
 Materialzuführung bei der Umformung technischer Textilien (Gewebe)



Agenda

Karlsruher Institut für Technologi

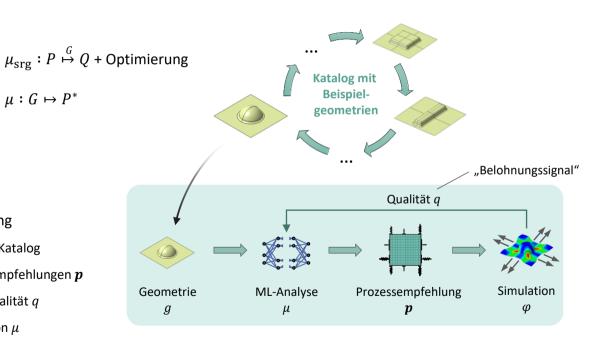
Überblick

Ersatz der klassischen Surrogates $\mu_{
m srg}: P \stackrel{
m u}{\mapsto} Q + {
m durch}$ durch eine allgemeinere Funktion $\mu: G \mapsto P^*$

Reinforcement Learning [Sutton and Barto, 2018]

Trial-Error-Training mit Simulationsumgebung

- 1. Ziehen einer Geometrie g aus einem Katalog
- 2. μ analysiert g und gibt eine Prozessempfehlungen ${m p}$
- 3. Prozesssimulation $\varphi(p)$ bestimmt Qualität q
- 4. Rückführung von q und Anpassung von μ

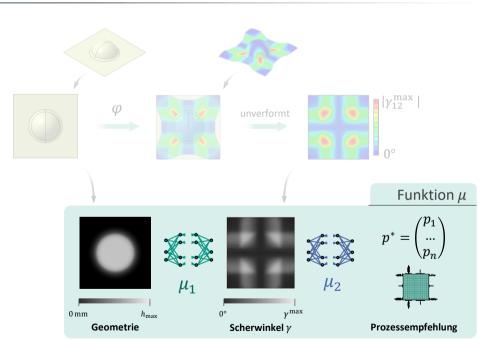


Karlsruher Institut für Technologie

Geometriecodierung

Geometrieinformation integrieren

- Örtlicher Zusammenhang zwischen
 Geometrie und Materialdehnung [Zimmerling et al. 2019]
 - Gut darstellbar in Grauwertbildern
 - Einsatz von ML-Techniken der Bildverarbeitung (Neuronale Faltungsnetze)
- **Zweistufige Funktion** μ [Zimmerling et al. 2020]
 - 1. μ_1 : Abschätzen des Dehnungsfelds γ
 - 2. μ_2 : Interpretation des Dehnungsfelds, Ableiten günstiger Prozessparameter

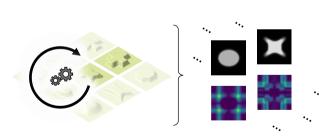


[Zimmerling et al. 2020]

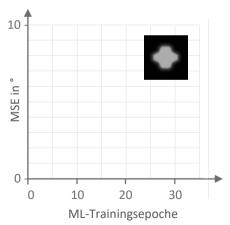
Trainingsverlauf

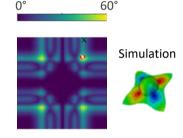
Training von μ_1

- Datensatz mit Drapiersimulationen
- Training: Iterative Anpassung der Kernel- und Netzparameter
- Minimierung der Vorhersageabweichung (MSE)



Datensatz mit Prozessbeispielen



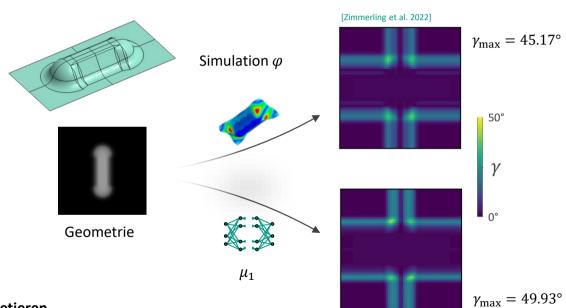


Darstellung aus [Trippe, 2019]

Übertragbarkeit nach Training

Test von μ_1 (Beispiel)

- Double-Dome Geometrie
- Keine Teilmenge der Trainingsdaten
- Validierung der ML-Schätzung
 - Sinnvolles Dehnungsfeld
 - $\Delta(\gamma)_{\rm max} = 4.8^{\circ} \ (\approx 10.4 \%)$
- Genauigkeit vom Datensatz abhängig
 - Anzahl Drapiersimulationen
 - Geometrievielfalt (!)
 - **Bildbasierte Ansatz geeignet** veränderliche Geometrien zu interpretieren



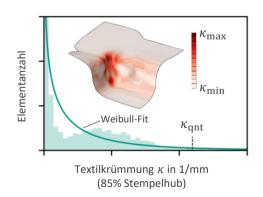
Agenda

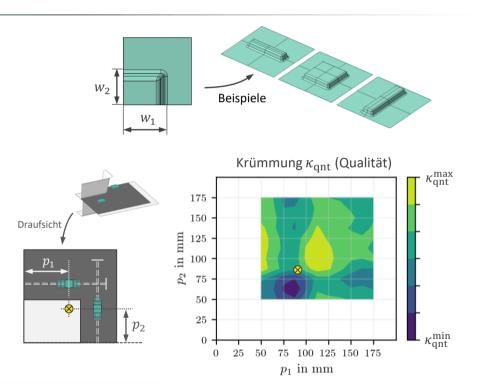
Karlsruher Institut für Technologie

Anwendungsbeispiel

Niederhalterunterstützte Textilumformung [Zimmerling et al. 2022b]

- Geometriekatalog: Quadergeometrien
- Positionierbare Niederhalter am Umfang
- Ziel: Textil möglichst glatt in die Form ziehen
 - → Textilkrümmungen messen Qualität

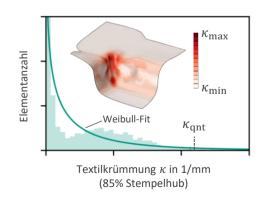


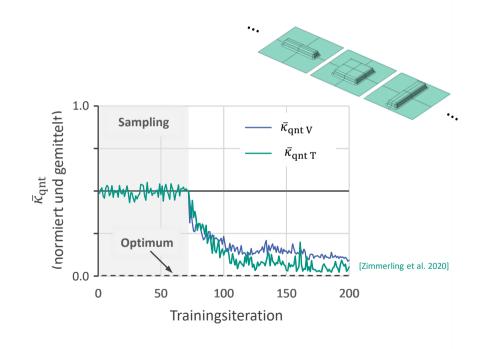


Ergebnisse

Reinforcement Learning [Sutton/Barto 2018]

- Samplingphase mit Zufallsparametern
- Minimierung der Textilkrümmungen κ für...
 - 14 Trainingsgeometrien
 - 5 ,unbekannte' Validierungsgeometrien





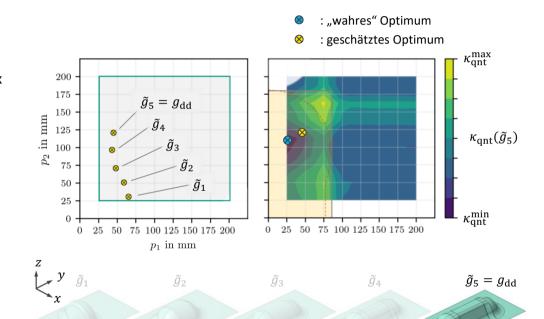
Ergebnisse

Nach ML-Training

- Erprobung an neuen Geometrievarianten
 - Doppelt-symmetrisch und weitgehend konvex
 - Außerhalb der Quader-Geometrien
- ML-Empfehlungen folgen Geometrievariation
- Brauchbare Prozessempfehlung (ca. 10% Abweichung)

Hypothese 1

Es ist möglich, mit ML-Verfahren und Simulationstechnik Prozesswissen aus generischen Beispielen zu extrahieren und auf neue Geometrien anzuwenden



[Zimmerling et al. 2022b]

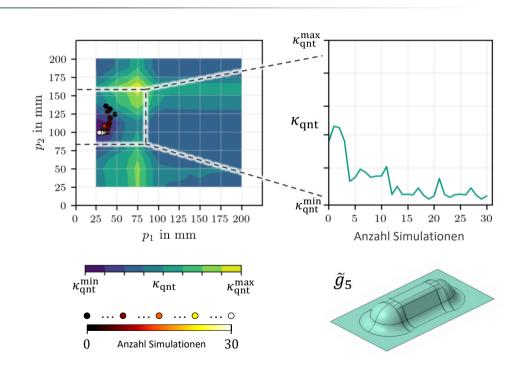
Ergebnisse

Beobachtung

 Prozessempfehlung brauchbar, aber noch nicht optimal

Daher

- Fortsetzung des Trainings auf Zielgeometrie (Double-Dome)
 - Konvergenz in die Nähe des Optimums
 - Schrittweise Reduktion der Textilkrümmungen
 - → erfolgreiche Optimierung



Ergebnisse

Vergleich der drei Verfahren

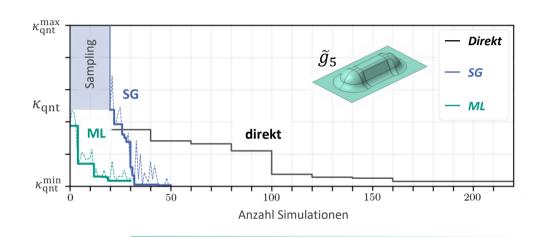
- Direkt (ohne Surrogate)
- SG (Surrogate nach SdT)
- ML (Surrogate mit Geometrieinformation)

Beobachtung

- SG und ML schneller als direkt
 - → Integration von Vorwissen
- ML erscheint schneller als SG
 - → Einsparung des bauteilspezifischen Samplings

ML-Algorithmus vortrainiert

- Erheblicher Aufwand
- Entkopplung von Vortraining und Anwendung



Hypothese 2

Einmal (vor-)trainiert, kann so ein ML-Modell die Optimierung beschleunigen, ähnlich wie ein klassisches Surrogate

Agenda

Zusammenfassung

Effiziente Prozessoptimierung

Ausgangssituation

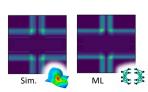
 Surrogate-Modelle unterstützen Optimierungsrechnungen, erweisen sich aber als unhandlich bei variablen Geometrien

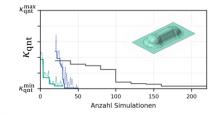
Methodik

- Zweistufige, ML-basierte Optimierungsmethodik für variable Geometrien
- Validierung auf ,neuen' Geometrien und Vergleich mit klassischen Optimierern

Ergebnisse

- Prozessdynamik aus generischen Beispielen erlern- und übertragbar
- Prozessempfehlungen konvergieren zum Optimum ähnlich zu einem klassischem Surrogate



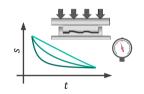


Ausblick

Quo vadis ML-Prozessoptimierung?

Anwendungsfall

- Komplexere Szenarien
 - Komplexere Geometriecharakteristiken
 - Weitere Prozessparameter oder zeitliche Auflösung
- Weitere Prozesse



[nabertherm.com]

Weiteres Vorwissen

- Integration physikalischer Gesetze im Training (PINNs) [Raissi et al. 2019]
 - → Physikalisch konsistentes Surrogate für Optimierung [würth 2022]

$$\sum_{l=1}^{3} \frac{\partial \sigma_{lk}}{\partial x_l} + f_k = \rho \frac{\partial^2 u_k}{\partial t^2}$$

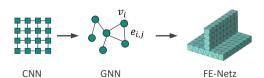
$$\frac{\partial \rho}{\partial t} + \nabla(\rho u) = 0$$

$$\frac{\partial T}{\partial t} - a\Delta T = h_{\text{inh}}$$

Komplexere ML-Ansätze

Graph Neural Networks f

ür weitere Generalisierung



Quellen

Alphabetisch geordnet

Albrecht et al. 2019	F. Albrecht, C. Zimmerling, C. Poppe, L. Kärger, F. Henning: Development of a modular draping test bench for analysis of infiltrated woven fabrics in wet compression molding. Key Engineering Materials, 809, 2019
Bonte et al. 2007	M.H.A. Bonte, A.H. van den Boogaard, J. Huétink: A Metamodel Based Optimisation Algorithm for Metal Forming Processes, Advanced Methods in Material Forming, 2007
Guo et al. 2016	X. Guo,W. Li and F. Iorio: Convolutional neural networks for steady flow approximation. <i>Proceedings of the 22nd ACM</i> , 2016
ISO TR 581	ISO Technical Report 581. Weldability of metallic materials - General principles, 2005.
Kärger et al. 2015	L. Kärger, A. Bernath, F. Fritz, S. Galkin, D. magagnato, A. Oeckerath, A. Schön, F. Henning: Development and validation of a CAE chain for unidirectional fibre reinforced composite components, <i>Composite Structures</i> , 132, 2015
Pfrommer et al. 2018	J. Pfrommer, C. Zimmerling, J. Liu, F. Henning, L. Kärger, J. Beyerer: Optimisation of manufacturing process parameters using eep neural networks as surrogate models, <i>Procedia CIRP</i> , 72, 2018
Poppe et al. 2018	C. Poppe, D. Dörr, F. Henning, L. Kärger: Experimental and numerical investigation of the shear behaviour of infiltrated woven fabrics, Composites Part A, 114, 2018.
Poppe et al. 2019	C. Poppe, T. Rosenkranz, D. Dörr, L. Kärger: Comparative experimental and numerical analysis of bending behaviour of dry and low viscous infiltrated woven fabrics, <i>Composite Part A</i> , 124, 2019.
Raissi et al. 2019	M. Raissi, P. Perdikaris and G. E. Karniadakis: PINNs: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. <i>Journal of Comput. Physics</i> , 378, 2019.

Quellen

Sutton and Barto 2018	R.S. Sutton and A. Barto: Reinforcement learning - An introduction. <i>MIT Press</i> , Cambridge/USA and London/United Kingdom, 2 edition, 2018
Trippe 2019	D. Trippe: Untersuchung der Eignung tiefer neuronaler Netze zur zeiteffizienten Bewertung der Drapierbarkeit endlosfaserverstärkter Bauteile. Masterarbeit (Betreuer C. Zimmerling), Karlsruher Institut für Technologie - Institute für Fahrzeugsystemtechnik (KIT-FAST), Karlsruhe, 2019.
Würth 2022	T. Würth: Solving parametric PDEs with physics-informed neural networks – An example from composite manufacturing. Masterarbeit (Betreuer C. Krauß und C. Zimmerling), Karlsruher Institut für Technologie - Institut für Fahrzeugsystemtechnik (KIT-FAST), Karlsruhe, 2019.
Zimmerling et al. 2019	C. Zimmerling, D. Trippe, B. Fengler, L. Kärger: An approach for rapid prediction of textile draping results for variable composite component geometries using deep neural networks. AIP Conference Proceedings, 2113: Art. 020007, ESAFORM 2019, Vittoria-Gasteiz/Spain, 2019
Zimmerling et al. 2020	C. Zimmerling, C. Poppe, L. Kärger: Estimating optimum process parameters in textile draping of variable part geometries - A reinforcement learning approach. Procedia manufacturing, 47, ESAFORM 2020, Cottbus/Germany, 2020
Zimmerling et al. 2021	C. Zimmerling, P. Schindler, J. Seuffert, L. Kärger: Deep neural networks as surrogate models for time-efficient manufacturing process optimisation. PoPuPS of ULiège Library, DOI: 10.25518/esaform21.3882, ESAFORM 2021, Liège/Belgium, 2021
Zimmerling et al. 2022	C. Zimmerling, B. Fengler, L. Kärger: Formability Assessment of Variable Geometries using Machine Learning – Analysis of the Influence of the Database. <i>Key Engineering Materials</i> , 926, ESAFORM 2022, Braga/Portugal, 2022
Zimmerling et al. 2022b	C. Zimmerling, C. Poppe, O. Stein, L. Kärger: Optimisation of manufacturing process parameters for variable component geometries using reinforcement learning, <i>Materials and Design</i> , 214, 2022

Vielen Dank

für die Förderung und Unterstützung.

