
Correctness-by-Construction for
Correct and Secure Software Systems

Von der

Carl-Friedrich-Gauß-Fakultät

der Technischen Universität Carolo-Wilhelmina zu Braunschweig

zur Erlangung des Grades eines

Doktoringenieurs (Dr.-Ing.)

genehmigte Dissertation

(kumulative Arbeit)

von

Tobias Runge

geboren am 22. Dezember 1993

in Gronau (Leine)

Eingereicht am: 21.04.2023
Disputation am: 14.04.2023
1. Referent: Prof. Dr. Martin Johns
2. Referentin: Prof. Dr. Ina Schaefer
3. Referent: Prof. Dr. Reiner Hähnle

2023

Abstract
Ensuring the safety and security of software systems is more important today than ever before, as

critical domains (such as automotive, aviation, or healthcare systems) become increasingly software-

intensive. Typically, such critical software is exhaustively tested, but testing alone cannot guaran-

tee correctness. Therefore, formal approaches are required to ensure safety and security of the de-

veloped software. For functional correctness, post-hoc verification is the state-of-the-art. By post-

hoc verification, we mean that a program is implemented, specified with a pre-/postcondition con-

tract, and then verified. However, this approach has the downside that it does not provide guide-

lines for developers how to write correct code. If a program developed without guidelines cannot

be verified, it is often difficult to find the root causes. It may be a faulty implementation or an un-

suitable specification of the program. As a result, it is costly to debug the program and to verify

it again. In terms of security, it is important to ensure confidentiality and integrity of processed

data. Here, static and dynamic taint analysis approaches are prevalent, where data is labeled with

a security level to analyze whether there is a prohibited flow from a secure source to a public sink

as defined by a security policy. This post-hoc analysis has the same disadvantage as post-hoc ver-

ification, an incorrect program must be debugged and then reanalyzed to ensure that the vulner-

ability is fixed. The general drawback of post-hoc analysis and verification techniques is that they

reveal problems in the code, but do not assist in correcting them.

Correctness-by-Construction (CbC) is an alternative program development approach in which a

program is directly constructed to be correct. Starting with a specified, but abstract program, a set

of refinement rules is applied to refine the program into a concrete implementation. Each applied

refinement rule guarantees that the program under development satisfies the initial specification.

Thus, the resulting program is correct by construction. It is argued that with the CbC approach,

defects are discovered at an early stage of development and can be resolved more easily through

a structured program development approach. Despite these benefits, CbC has not yet become an

established development approach for safety- and security-critical software. We identified three

main reasons/challenges: (1) lack of tool support, (2) rigid program development due to the fine-

grained refinement rules that allow only one program statement to be added at a time, (3) and no

CbC approach to ensure non-functional properties, such as information flow security.

In this thesis, we provide remedy to the aforementioned challenges by establishing and support-

ing a correct-by-construction program development approach for functionally correct and secure

programs. In particular, wemake the following four contributions in this thesis. As a first contribu-

tion, we implement CorC, tool support for CbC. We determine the requirements to enable CbC for

correct program development and develop tool support accordingly. CorC ensures that the correct-

ness of the program under development is ensured in each construction step. In the second contri-

bution, we conduct user studies to determine the comprehensibility and usability of CorC. In the

user studies, we are able to analyze how developers proceed to solve programming tasks, what mis-

takes they make, and how they like using the tool. We compare these results to state-of-the-art pro-

gram development with post-hoc verification. As third contribution, we address the rigid program

development approach of classic CbC by considering new approaches that allow for more flexible

program construction. We introduce new refinement rules that condense the application of other

refinement rules. We also propose a new trait-based CbC development approach that is based on

program composition instead of refinement rules. Since CbC only considers functional correct-

ness up to our work, we extend CbC to also ensure secure information flow in our fourth contri-

bution. We develop refinement rules that ensure program conformance with information flow se-

curity policies. At each refinement step, the information flow is analyzed to allow only secure pro-

gram statements. The refinement rules are integrated into CorC to provide tool support for the

constructive development of secure software, and we demonstrate the feasibility of CorC by cor-

rectly constructing several case studies. In summary, our work enables the development of func-

tionally correct and secure programs using correctness-by-construction. This foundation can be

used to determine whether CbC is a viable alternative to post-hoc verification or post-hoc analysis.

Zusammenfassung
Die Gewährleistung der Sicherheit (funktionale Sicherheit und Datensicherheit) von Software-

systemen ist heute wichtiger denn je, da kritische Bereiche (wie in der Automobilindustrie, der

Luftfahrt oder dem Gesundheitswesen) immer softwareintensiver werden. In der Regel wird sol-

che kritische Software umfassend getestet, aber Tests allein können die Korrektheit nicht ga-

rantieren. Daher sind formale Ansätze erforderlich, um die Sicherheit der entwickelten Software

zu gewährleisten. Für funktionale Korrektheit ist die Post-hoc-Verifikation der Stand der Tech-

nik. Unter Post-hoc-Verifikation verstehen wir, dass ein Programm implementiert, mit einem

Vor-/Nachbedingungsvertrag spezifiziert und dann verifiziert wird. Dieser Ansatz hat jedoch den

Nachteil, dass er den Entwicklern keinen Leitfaden für das Schreiben von korrektem Code bietet.

Wenn ein ohne Leitfaden entwickeltes Programm nicht verifiziert werden kann, ist es oft schwie-

rig, die Ursachen dafür zu finden. Es kann sich um eine fehlerhafte Implementierung oder ei-

ne ungeeignete Spezifikation des Programms handeln. Dies hat zur Folge, dass es kostspielig ist,

das Programm zu debuggen und erneut zu verifizieren. Im Hinblick auf die Datensicherheit ist

es wichtig, die Vertraulichkeit und Integrität der verarbeiteten Daten zu gewährleisten. Hier sind

statische und dynamische Taint-Analysen üblich, bei denen die Daten mit einer Sicherheitsstufe

versehen werden, um zu analysieren, ob es einen Fluss von einer sicheren Quelle zu einer öffent-

lichen Senke gibt, der durch eine Sicherheitsrichtlinie verboten wurde. Diese Post-hoc-Analyse

hat denselben Nachteil wie die Post-hoc-Verifizierung: Ein fehlerhaftes Programmmuss korrigiert

und dann neu analysiert werden, um sicherzustellen, dass die Schwachstelle behoben ist. Der all-

gemeine Nachteil von Post-hoc-Analyse- und Verifizierungstechniken besteht darin, dass sie zwar

Probleme im Code aufdecken, aber nicht bei deren Behebung helfen.

Correctness-by-Construction (CbC) ist ein alternativer Ansatz zur Programmentwicklung, bei

dem ein Programm direkt so konstruiert wird, dass es korrekt ist. Ausgehend von einem spezifi-

zierten, aber abstrakten Programm wird eine Reihe von Verfeinerungsregeln angewendet, um das

Programm in eine konkrete Implementierung zu verfeinern. Jede angewandte Verfeinerungsregel

garantiert, dass das zu entwickelnde Programm die ursprüngliche Spezifikation erfüllt. Somit ist

das resultierende Programm konstruktionsbedingt korrekt. Es wird argumentiert, dass mit dem

CbC-Ansatz Fehler in einem frühen Stadium der Entwicklung entdeckt werden und durch einen

strukturierten Programmentwicklungsansatz leichter behoben werden können. Trotz dieser Vor-

teile hat sich CbCnoch nicht als Entwicklungsansatz für sicherheitskritische Software durchgesetzt.

Wir haben drei Hauptgründe beziehungsweise Herausforderungen identifiziert: (1) fehlendeWerk-

zeugunterstützung, (2) starre Programmentwicklung aufgrund der feinkörnigen Verfeinerungsre-

geln, die jeweils nur eine Programmanweisung hinzufügen (3) und fehlen eines CbC-Ansatzes zur

Sicherstellung nicht-funktionaler Eigenschaften, wie z.B. der Informationsflusssicherheit.

In dieser Arbeit werden die zuvor genannten Herausforderungen adressiert, indem wir einen

Correct-by-Construction-Programmentwicklungsansatz für funktional korrekte und datensichere

Programme etablieren und unterstützen. Insbesondere werden in dieser Arbeit die folgenden vier

Beiträge geleistet. Als ersten Beitrag implementieren wir CorC, eine Werkzeugunterstützung für

CbC. Wir bestimmen die Anforderungen, um eine korrekte Programmentwicklung mit CbC zu er-

möglichen, und entwickeln eine entsprechende Werkzeugunterstützung. CorC stellt sicher, dass

die Korrektheit des zu entwickelnden Programms in jedem Konstruktionsschritt gewährleistet ist.

Im zweiten Beitrag führen wir Benutzerstudien durch, um die Verständlichkeit und Benutzbarkeit

von CorC zu ermitteln. In den Nutzerstudien können wir analysieren, wie Entwickler bei der Lö-

sung von Programmieraufgaben vorgehen, welche Fehler sie machen und wie gerne sie das Werk-

zeug nutzen. Diese Ergebnisse werden mit der Programmentwicklung mit Post-hoc-Verifikation

verglichen. Als dritten Beitrag adressieren wir den starren Programmentwicklungsansatz des klas-

sischen CbC, indem wir neue Ansätze berücksichtigen, die eine flexiblere Programmkonstrukti-

on ermöglichen. Wir führen neue Verfeinerungsregeln ein, die die Anwendung anderer Verfeine-

rungsregeln bündeln. Auerdem schlagen wir einen neuen Trait-basierten CbC-Entwicklungsansatz

vor, der auf Programmkomposition anstelle von Verfeinerungsregeln basiert. Da CbC bis zu un-

serer Arbeit nur funktionale Korrektheit berücksichtigt hat, erweitern wir CbC in unserem vier-

ten Beitrag, um auch einen sicheren Informationsfluss zu gewährleisten. Wir entwickeln Verfeine-

rungsregeln, die die Konformität des Programms mit den Informationsflusssicherheitsrichtlinien

gewährleisten. Bei jedem Verfeinerungsschritt wird der Informationsfluss analysiert, um nur si-

chere Programmanweisungen zuzulassen. Die Verfeinerungsregeln werden in CorC integriert, um

Werkzeugunterstützung für die konstruktive Entwicklung sicherer Software zu bieten, und wir de-

monstrieren die Praktikabilität von CorC, indem wir mehrere Fallstudien korrekt konstruieren.

Insgesamt ermöglicht unsere Arbeit die Entwicklung von funktional korrekten und datensicheren

Programmen mit Hilfe von Correctness-by-Construction. Auf dieser Grundlage kann festgestellt

werden, ob CbC eine wirkliche Alternative zur Post-hoc-Verifikation oder Post-hoc-Analyse ist.

Danksagung
Während meiner Promotion haben mich viele Menschen begleitet und unterstützt. Mit die-

ser Danksagung möchte ich mich bei all diesen Menschen für ihre Unterstützung, Betreuung

und die vielen guten Stunden bedanken.

Zuallererst möchte ich meiner Betreuerin, Ina Schaefer, dafür danken, dass sie mir die Möglich-

keit gegeben hat, in einem exzellenten Forschungs- und Lernumfeld zu promovieren, und dass sie

mir sowohl in akademischer als auch in persönlicher Hinsicht eine echte Mentorin war. Begin-

nend mit dem Seminar am Institut (und natürlich der Projektarbeit in Stellenbosch) wurde mein

Interesse an der Forschung geweckt. Ich danke auch meinem früheren Kollegen Thomas Thüm,

dermich in den ersten Jahren am Institut betreut hat. Seine Unterstützung und Tipps in dieser Zeit

helfen mir bis heute und haben den Weg zur Promotion geebnet. Ein großer Dank geht an Loek

Cleophas und Bruce Watson, die mich immer zur Arbeit mit Correctness-by-Construction unter-

stützt haben. Ich danke außerdem Alex Potanin und Marco Servetto für die gelungene und lehr-

reiche Zusammenarbeit in den letzten Jahren meiner Promotion. Ich danke meinen Gutachtern,

Prof. Reiner Hähnle und Prof. Martin Johns, dafür, dass sie sich die Zeit genommen haben, mei-

ne Dissertation zu begutachten und mir wertvolles Feedback zu geben.

Ein großer Dank geht an alle meine Kollegen vom Institut für Softwaretechnik und Fahrzeug-

informatik der TU Braunschweig und der Forschungsgruppe für Test, Validierung und Analyse

Software-intensiver Systeme am Karlsruher Institut für Technologie. Wir hatten eine schöne und

besondere Zeit mit Kickern, Weihnachtsfeiern, Betriebsausflügen, Braunkohlwanderungen und

den Mittagspausen, aber auch produktive Treffen im Formal Methods Club mit Tabea Bordis und

Alexander Kittelmann. Mit euch war es immer eine Freude, wissenschaftlich zu arbeiten oder die

wirklich spannende Zeit zu genießen. Einen besonderen Platz haben die zahlreichen Dienstreisen

mit Kollegen in Porto, Göteborg, Berlin, Amsterdam, …. All diese Trips bleiben unvergesslich in

Erinnerung. Außerdem danke ich allen Kollegen aus Stellenbosch, die mich während meiner Zeit

dort freundlich und hilfsbereit aufgenommen haben.

Schließlich danke ich meiner Familie für ihre enorme Unterstützung. Meine Mutter Marti-

na und mein Bruder Tjard sind immer für mich da. Außerdem danke ich allen Freunden, die

meine gute Laune oben gehalten haben. Ja, ihr alle seid gemeint: aus der Heimat, vom Abi, aus

der Pumpe und die Gilde Drinks per Second. Ich kann euch hier nicht alle namentlich erwäh-

nen, aber ihr wisst, dass ihr mir sehr viel bedeutet.

Ob ihr mich nun wissenschaftlich oder menschlich unterstützt habt oder in allen Lebenslagen

da wart, ohne euch alle wäre diese Arbeit niemals zustande gekommen.

Publications
The publications that are part of this cumulative thesis are listed below.

[1] Runge, T., I. Schaefer, L. Cleophas, T. Thüm, D. Kourie, and B. W. Watson (2019a). “Tool Sup-
port for Correctness-by-Construction”. In: International Conference on Fundamental Approaches
to Software Engineering. Vol. 11424. Lecture Notes in Computer Science. Springer, pp. 25–42.

doi: 10.1007/978-3-030-16722-6_2.

[2] Runge, T., T. Thüm, L. Cleophas, I. Schaefer, and B. W. Watson (2019b). “Comparing

Correctness-by-Construction with Post-Hoc Verification - A Qualitative User Study”. In:

Formal Methods. FM 2019 International Workshops. Refine. Vol. 12233. Lecture Notes in Com-

puter Science. Springer, pp. 388–405. doi: 10.1007/978-3-030-54997-8_25.

[3] Runge, T., T. Bordis, T. Thüm, and I. Schaefer (2021a). “TeachingCorrectness-by-Construction
and Post-hoc Verification–The Online Experience”. In: Formal Methods Teaching Workshop.
Vol. 13122. Lecture Notes in Computer Science. Springer, pp. 101–116. doi: 10.1007/978-

3-030-91550-6_8.

[4] Runge, T., A. Potanin, T. Thüm, and I. Schaefer (2022a). “Traits: Correctness-by-Construction
for Free”. In: International Conference on Formal Techniques for Distributed Objects, Components,
and Systems. Vol. 13273. Lecture Notes in Computer Science. Springer, pp. 131–150. doi: 10.
1007/978-3-031-08679-3_9.

[5] Runge, T., T. Bordis, A. Potanin, T. Thüm, and I. Schaefer (2023). “Flexible Correct-by-

Construction Programming”. Logical Methods in Computer Science.

[6] Runge, T., M. Servetto, A. Potanin, and I. Schaefer (2022b). “Immutability and Encapsulation

for Sound OO Information Flow Control”. ACM Transactions on Programming Languages and
Systems (TOPLAS). doi: 10.1145/3573270.

[7] Runge, T., A. Knüppel, T. Thüm, and I. Schaefer (2020). “Lattice-Based Information Flow

Control-by-Construction for Security-by-Design”. In: FormaliSE@ICSE 2020: 8th Interna-
tional Conference on Formal Methods in Software Engineering. ACM, pp. 44–54. doi: 10.1145/

3372020.3391565.

[8] Runge, T., A. Kittelmann, M. Servetto, A. Potanin, and I. Schaefer (2022c). “Information Flow

Control-by-Construction for an Object-Oriented Language”. In: International Conference on
Software Engineering and Formal Methods. Vol. 13550. Lecture Notes in Computer Science.

Springer, pp. 209–226. doi: 10.1007/978-3-031-17108-6_13.

https://doi.org/10.1007/978-3-030-16722-6_2
https://doi.org/10.1007/978-3-030-54997-8_25
https://doi.org/10.1007/978-3-030-91550-6_8
https://doi.org/10.1007/978-3-030-91550-6_8
https://doi.org/10.1007/978-3-031-08679-3_9
https://doi.org/10.1007/978-3-031-08679-3_9
https://doi.org/10.1145/3573270
https://doi.org/10.1145/3372020.3391565
https://doi.org/10.1145/3372020.3391565
https://doi.org/10.1007/978-3-031-17108-6_13

Further peer-reviewed publications that are not part of this cumulative thesis.

[9] Schaefer, I., T. Runge, A. Knüppel, L. Cleophas, D. Kourie, and B. W. Watson (2018). “Towards
Confidentiality-by-Construction”. In: International Symposium on Leveraging Applications of For-
mal Methods. Vol. 11244. Lecture Notes in Computer Science. Springer, pp. 502–515. doi: 10.
1007/978-3-030-03418-4_30.

[10] Runge, T., I. Schaefer, A. Knüppel, L. Cleophas, D. Kourie, and B. W. Watson (2019c). “Tool

Support for Confidentiality-by-Construction”. ACM SIGAda Ada Letters 38.2, pp. 64–68. doi:
10.1145/3375408.3375413.

[11] Knüppel, A., T. Runge, and I. Schaefer (2020a). “Scaling Correctness-by-Construction”. In:

International Symposium on Leveraging Applications of Formal Methods. Ed. by T. Margaria and

B. Steffen. Vol. 12476. Lecture Notes in Computer Science. Springer, pp. 187–207. doi: 10.

1007/978-3-030-61362-4_10.

[12] Bordis, T., L. Cleophas, A. Kittelmann, T. Runge, I. Schaefer, and B. W. Watson (2022a). “Re-
CorC-ing KeY: Correct-by-Construction Software Development Based on KeY”. In: The Logic
of Software. A Tasting Menu of Formal Methods. Vol. 13360. Lecture Notes in Computer Science.
Springer. doi: 10.1007/978-3-031-08166-8_5.

[13] Bordis, T., M. Kodetzki, T. Runge, and I. Schaefer (2022b). “VarCorC: Developing Object-

Oriented Software Product Lines Using Correctness-by-Construction”. In: Software Engineer-
ing and Formal Methods. SEFM 2022 Collocated Workshops F-IDE. Vol. 13765. Lecture Notes in
Computer Science. Springer, pp. 156–163. doi: 10.1007/978-3-031-26236-4_13.

[14] Bordis, T., T. Runge, and I. Schaefer (2020a). “Correctness-by-Construction for Feature-

Oriented Software Product Lines”. In: Proceedings of the 19th ACM SIGPLAN International Con-
ference on Generative Programming: Concepts and Experiences. ACM, pp. 22–34. doi: 10.1145/

3425898.3426959.

[15] Bordis, T.,T. Runge, A. Knüppel, T. Thüm, and I. Schaefer (2020b). “Variational Correctness-
by-Construction”. In: Proceedings of the International Working Conference on Variability Modelling
of Software-Intensive Systems (VAMOS). ACM, 7:1–7:9. doi: 10.1145/3377024.3377038.

[16] Bordis, T., T. Runge, D. Schultz, and I. Schaefer (2022c). “Family-Based and Product-Based
Development of Correct-by-Construction Software Product Lines”. Journal of Computer Lan-
guages, p. 101119. doi: 10.1016/j.cola.2022.101119.

[17] Bordis, T., T. Runge, A. Kittelmann, and I. Schaefer (2022d). “Correctness-by-Construction:
An Overview of the CorC Ecosystem”. ACM SIGAda Ada Letters.

[18] Knüppel, A., I. Jatzkowski, M. Nolte, T. Thüm,T. Runge, and I. Schaefer (2020b). “Skill-Based
Verification of Cyber-Physical Systems”. In: International Conference on Fundamental Approaches
to Software Engineering. Ed. by H. Wehrheim and J. Cabot. Vol. 12076. Lecture Notes in Com-

puter Science. Springer, pp. 203–223. doi: 10.1007/978-3-030-45234-6_10.

[19] Kittelmann, A., T. Runge, T. Bordis, and I. Schaefer (2022). “Runtime Verification of Correct-
by-Construction DrivingManeuvers”. In: International Symposium on Leveraging Applications of

https://doi.org/10.1007/978-3-030-03418-4_30
https://doi.org/10.1007/978-3-030-03418-4_30
https://doi.org/10.1145/3375408.3375413
https://doi.org/10.1007/978-3-030-61362-4_10
https://doi.org/10.1007/978-3-030-61362-4_10
https://doi.org/10.1007/978-3-031-08166-8_5
https://doi.org/10.1007/978-3-031-26236-4_13
https://doi.org/10.1145/3425898.3426959
https://doi.org/10.1145/3425898.3426959
https://doi.org/10.1145/3377024.3377038
https://doi.org/10.1016/j.cola.2022.101119
https://doi.org/10.1007/978-3-030-45234-6_10

Formal Methods. Vol. 13701. Lecture Notes in Computer Science. Springer, pp. 242–263. doi:

10.1007/978-3-031-19849-6_15.

[20] Kuiter, E., A. Knüppel, T. Bordis, T. Runge, and I. Schaefer (2022). “Verification Strategies

for Feature-Oriented Software Product Lines”. In: Proceedings of the International Workshop
on Variability Modeling in Software-intensive Systems (VaMoS). ACM, 12:1–12:9. doi: 10.1145/

3510466.3511272.

[21] Pett, T., S. Krieter,T. Runge, T. Thüm,M. Lochau, and I. Schaefer (2021). “Stability of Product-

Line Samplingin Continuous Integration”. In: VaMoS’21: 15th International Working Confer-
ence on Variability Modelling of Software-Intensive Systems. ACM, 18:1–18:9. doi: 10 . 1145 /

3442391.3442410.

[22] Pett, T., T. Thüm, T. Runge, S. Krieter, M. Lochau, and I. Schaefer (2019). “Product Sampling

for Product Lines: The Scalability Challenge”. In: Proceedings of the International Systems and
Software Product Line Conference (SPLC). ACM. doi: 10.1145/3336294.3336322.

[23] Runge, T., I. Schaefer, L. Cleophas, and B. W. Watson (2017). “Many-MADFAct: Concurrently

Constructing MADFAs”. In: Proceedings of the Prague Stringology Conference, pp. 126–142.

[24] Varshosaz, M., M. Al-Hajjaji, T. Thüm, T. Runge, M. R. Mousavi, and I. Schaefer (2018). “A

Classification of Product Sampling for Software Product Lines”. In: Proceedings of the Inter-
national Systems and Software Product Line Conference (SPLC). ACM, pp. 1–13. doi: 10.1145/

3233027.3233035.

[25] Wille, D., T. Runge, C. Seidl, and S. Schulze (2017). “Extractive Software Product Line En-

gineering Using Model-based Delta Module Generation”. In: Proceedings of the International
Workshop on Variability Modeling in Software-intensive Systems (VaMoS). ACM, pp. 36–43. doi:

10.1145/3023956.3023957.

[26] Becker, M., R. Meyer,T. Runge, I. Schaefer, S. van derWall, and S. Wolff (2022). “Model-Based

Fault Classification for Automotive Software”. arXiv preprint arXiv:2208.14290. doi: 10.1007/
978-3-031-21037-2_6.

[27] Knüppel, A., I. Jatzkowski, M. Nolte, T. Runge, T. Thüm, and I. Schaefer (2021). “Skill-

Based Verification of Cyber-Physical Systems”. In: Software Engineering 2021, Fachtagung des
GI-Fachbereichs Softwaretechnik, 22.-26. Februar 2021, Braunschweig/Virtuell. Ed. by A. Koziolek,
I. Schaefer, and C. Seidl. Vol. P-310. LNI. Gesellschaft für Informatik e.V., pp. 67–68. doi:

10.18420/SE2021_22.

[28] Runge, T., I. Schaefer, L. Cleophas, T. Thüm, D. G. Kourie, and B. W. Watson (2021b). “Tool
Support for Correctness-by-Construction”. In: Software Engineering 2021, Fachtagung des GI-
Fachbereichs Softwaretechnik, 22.-26. Februar 2021, Braunschweig/Virtuell. Ed. by A. Koziolek, I.
Schaefer, and C. Seidl. Vol. P-310. LNI. Gesellschaft für Informatik e.V., pp. 93–94. doi: 10.

18420/SE2021_34.

https://doi.org/10.1007/978-3-031-19849-6_15
https://doi.org/10.1145/3510466.3511272
https://doi.org/10.1145/3510466.3511272
https://doi.org/10.1145/3442391.3442410
https://doi.org/10.1145/3442391.3442410
https://doi.org/10.1145/3336294.3336322
https://doi.org/10.1145/3233027.3233035
https://doi.org/10.1145/3233027.3233035
https://doi.org/10.1145/3023956.3023957
https://doi.org/10.1007/978-3-031-21037-2_6
https://doi.org/10.1007/978-3-031-21037-2_6
https://doi.org/10.18420/SE2021_22
https://doi.org/10.18420/SE2021_34
https://doi.org/10.18420/SE2021_34

[29] Schaefer, I., T. Runge, L. Cleophas, and B. W. Watson (2021). “Tutorial: The Correctness-by-
Construction Approach to ProgrammingUsing CorC”. In: IEEE Secure Development Conference,
SecDev 2021. IEEE, pp. 1–2. doi: 10.1109/SecDev51306.2021.00012.

https://doi.org/10.1109/SecDev51306.2021.00012

Contents
List of Figures iii

List of Tables v

List of Code Listings vii

1. Introduction 1
1.1. Challenges for Correct-by-Construction Program Development 2

1.2. Research Questions . 5

1.3. Contributions . 6

1.4. Reader’s Guide . 9

2. Background 11
2.1. Contracts and Contract-based Verification . 11

2.1.1. Method Contracts . 11

2.1.2. Program Verification . 13

2.2. Correctness-by-Construction . 14

2.3. Information Flow Control . 18

3. Contributions 21
3.1. CorC Tool Support for Functional Correct-by-Construction Program Development . 21

3.2. A Usability Evaluation of the CbC Approach as Implemented in CorC 29

3.3. Alternative Correct-by-Construction Program Development Approaches 35

3.4. AUniformCorrect-by-ConstructionProgramDevelopment Approach for Functional

Correctness and Security . 44

4. Conclusion 53
4.1. Discussion of Research Questions . 53

4.2. Discussion of the Main Research Question . 55

4.3. Ongoing and Future Work . 56

Bibliography 59

A. Papers of the Thesis 71
A.1. Tool Support for Correctness-by-Construction . 72

A.2. Comparing Correctness-by-Construction with Post-Hoc Verification — A Qualita-

tive User Study . 91

A.3. Teaching Correctness-by-Construction and Post-hoc Verification— The Online Ex-

perience . 110

A.4. Traits: Correctness-by-Construction for Free . 127

ii Contents

A.5. Flexible Correct-by-Construction Programming . 148

A.6. Immutability and Encapsulation for Sound OO Information Flow Control 185

A.7. Lattice-Based Information Flow Control-by-Construction for Security-by-Design . . 222

A.8. Information Flow Control-by-Construction for an Object-Oriented Language 234

List of Figures
2.1. Refinement steps for the linear search algorithm . 17

2.2. Security type system [Volpano et al. 1996] . 20

3.1. Linear search algorithm in the graphical IDE . 23

List of Tables
3.2. Defects in code and specification of the final programs of participants [Runge et al. 2021] 31

3.4. Comparison of classic CbC with CbC-Block and TraitCbC [Runge et al. 2023] 42

List of Code Listings
2.1. An implementation of a linear search algorithm specified with JML 12

2.2. Examples of of well-typed and ill-typed statements . 19

3.1. Initial program of maxElement . 37

3.2. Refinement of block B1 . 38

3.3. Initial trait for maxElement . 39

3.4. Implementation of maxElement with auxiliary methods 40

3.5. Class declarations . 46

3.6. Examples with immutable objects . 47

3.7. Examples with mutable and encapsulated objects . 47

1. Introduction
The amount of software in safety-critical and security-critical systems increases, and there-

fore, it gets more difficult to ensure functional correctness and security of these software sys-

tems. In areas, such as the automotive industry, aviation, or healthcare systems, incorrect soft-

ware can cost not only money, but also human lives. The correctness of software in the men-

tioned areas is usually checked with testing, but tests do not provide high safety guarantees. A

formal approach is necessary to guarantee correctness, as is already required in aviation for high

design assurance levels [RTCA DO-178C 2011]. In this thesis, we focus on deductive verification

of specified programs to guarantee functional correctness.

In this context, post-hoc verification is state-of-the-art, where a program is verified after it is fully

implemented [Ahrendt et al. 2016]. The predominant approach for correctly designing software is

Design-by-Contract, which is used to ensure the correctness of the software at method level [Meyer

1992; Meyer 1988]. With design-by-contract, methods are specified by pre-/postcondition contracts.

A method is correct if the method fulfills its contract (i.e., if the program is in a state that fulfills

the precondition, the method terminates, and then the program is in a state that fulfills the post-

condition). To construct software, developers
1
may start with a formal specification of the problem,

but they are not given guidelines on how to construct the program (e.g., specific construction rules

to create the method). The resulting implementation is then verified against the starting specifica-

tion. For example, post-hoc verification tools such as KeY [Ahrendt et al. 2016] or languages with

integrated verification tools such as Dafny [Leino 2010] (semi-)automatically verify software with re-

spect to its formal specification. Once the software, which was developed without any guidelines,

cannot be verified, it is difficult to identify the source of the defects. In particular, non-conformance

between specification and implementation can be due to three reasons: an incorrect method im-

plementation, an incorrect or unsuitable formal specification, or the verification tool was unable

to find a proof automatically (i.e., due to exceeded resource limits or general undecidability). How-

ever, finding the exact parts (or even statements) of the program that can be attributed to the non-

conformance is oftentimes impossible. Furthermore, the developer’s expertise certainly plays a key

role in inspecting the root causes for a failed verification [Knüppel et al. 2018]. For example, be-

ginners often have difficulty verifying any meaningful algorithm beyond toy examples. The more

complex a method is, the more challenging it is to verify its correctness.

An alternative approach to design-by-contract is the direct construction of correct programs, such
as in the incremental refinement- and rule-based correctness-by-construction (CbC) approach [Di-

jkstra 1976; Kourie and Watson 2012; Morgan 1994; Gries 1987; Wirth 1971]. With CbC, a specified

program is incrementally refined to concrete code using a set of refinement rules that preserve the

correctness of the program with respect to the specification. The correctness of the whole program

is guaranteed through side conditions that are defined in the refinement rules. In each refinement

step, an abstract statement (i.e., a hole in the program) is refined to a more concrete implemen-

1
In this thesis, we are using the termdeveloper for someonewho specifies, implements, and verifies software. In practice,

this could be three different roles.

2

tation that can still contain some nested abstract statements. The construction ends when no ab-

stract statement is left. The main idea of this specification-first, refinement-based approach is that

developers are forced to think about their implementation more thoroughly rather than having a

trial-and-error verification approach. With the structured reasoning discipline that is enforced by

the refinement rules in CbC, defects are more likely to be discovered at an early stage and can be

tracked through the program. Thus, it is argued that program quality is increased and verification

effort is reduced [Kourie and Watson 2012; Watson et al. 2016].

Beside functional correctness, useful software has to fulfill further non-functional require-

ments [ISO/IEC 25010 2011], such as timing behavior, resource consumption, and capacity con-

sumption. In this thesis, we focus on security properties because it is a major challenge to protect

user data and ensure the integrity of systems against attackers. To express confidentiality and in-

tegrity of information, we consider information flow policies. An information flow policy speci-

fies the allowed and prohibited flow of information between different security levels. Static and

dynamic analysis techniques [Sabelfeld and Myers 2003; Russo and Sabelfeld 2010] or Hoare-style

program logics [Darvas et al. 2005; Amtoft et al. 2006; Beckert et al. 2013] are used to ensure infor-

mation flow policies. With dynamic [Enck et al. 2014; Hedin et al. 2014] or static [Arzt et al. 2014;

Huang et al. 2014; Graf et al. 2013] taint analysis, the flow of data sources to sinks in a program can

be analyzed after the program is fully developed. If there is a flow from a private source to a pub-

lic sink, the information flow policy is violated, and an information leak is detected. To close this

leak, the program must be debugged, and then checked again whether the information flow leak is

now fixed. The difficulty is that the analysis techniques indicate the leak, but do not help to fix the

problem. Type systems [Sabelfeld and Myers 2003] are useful to ensure correct information flows

more directly during the construction of programs. With type systems, variables are labeled with

security levels, and leaks are detected if the type system cannot type-check the program. But even

developers, who use a security type system, can face serious problems during programming if they

do not design the security properties from the beginning. Starting with a security specification

and having an incremental guideline how to construct a program helps to determine the allowed

flows in each construction step and simplifies the debugging of security violations.

The post-hoc verification approach for ensuring functional correctness [Ahrendt et al. 2016; Leino

2010] and the techniques for ensuring secure information flow [Sabelfeld andMyers 2003; Graf et al.

2013; Amtoft et al. 2006] are state-of-the-art. As mentioned, these approaches can lead to tedious

verification and debugging efforts if the software contains defects. In this thesis, we investigate to

what extent it is possible to construct correct and secure programs with CbC.

1.1. Challenges for Correct-by-Construction Program
Development

Since CbC has not yet caught on as an alternative program development approach, we investigate

the challenges to enable and support a CbC approach for functionally correct and secure programs.

These challenges that have to be addressed are presented in the following.

For CbC [Dijkstra 1976; Gries 1987], there exist some approaches and tools to support devel-

opers during program construction, such as ArcAngel [Oliveira et al. 2003], SOCOS [Back 2009;

1.1. Challenges for Correct-by-Construction Program Development 3

Back et al. 2007], or Dafny [Leino 2010; Ettinger 2021]. The language ArcAngel implemented with

ProofPower [Zeyda et al. 2009] supports Morgan’s refinement calculus [Morgan 1994]. The calculus

offers a wide variety of refinement rules to construct programs. These refinement rules are bun-

dled in tactics, which when applied, incrementally transform the starting specification to a concrete

implementation satisfying this specification. Each applied tactic discharges proof obligations that

must be proven for the refinement to be correct. SOCOS [Back 2009; Back et al. 2007] uses a graph-

ical interface where programs are constructed as UML-style state chart. Starting with an invariant

specification, a program is incrementally refined to fulfill the invariant. SOCOS is used to teach

refinement-based programming [Back 2009]. In user studies, Back [2009] determined that good

tool support is necessary for refinement-based program development because otherwise the appli-

cation of refinements is overwhelming for developers. Furthermore, Back [2009] detected that find-

ing invariants is the biggest issue during program construction. Developers use most of the time

to refine an incomplete or partially incorrect invariant to a correct solution [Back 2009]. Quite dif-

ferently, Dafny [Leino 2010] is a verification-aware programming language which integrates spec-

ification writing into the programming workflow. A verifier constantly proves whether the source

code satisfies the specification to show errors or to confirm correctness. With Dafny, developers

are free to implement correct software without using a specific process, or they can use small-step

refinement processes as described by Ettinger [2021]. However, for these small-step refinement

processes no specialized tool support is available.

None of these CbC approaches has become accepted as an alternative to post-hoc verification.
2
We

argue that one reason is the applicability of the CbC approach for developers. We assume, the previ-

ous mentioned approaches are too complex to use, or specialized tool support is not available as in

the case of Dafny. Developers must have a real benefit over post-hoc approaches (e.g, simplicity of

the approach, or reduced specification and verification effort during program development) to en-

gage in a correct-by-construction program development approach. CbC introduced by Kourie and

Watson [2012] is centered around comprehensibility and usability for developers. They reduced the

set of refinement rules to a small, but useful set without loosing expressiveness, so that developers

do not have to deal with refinement rules that only formal method experts are interested in [Kourie

andWatson 2012]. Therefore, this CbC approach has the potential to be applicable and comprehen-

sible if adequate tool support is developed, and the approach is still expressive enough to imple-

ment sufficiently complex case studies. Since there is no tool support yet, an open challenge is to

implement tool support, so that, in a next step, it can be investigated whether CbC by Kourie and

Watson [2012] is suitable for correct program development as an alternative to post-hoc verification.

Challenge 1: Tool Support for Functional Correctness-by-Construction

The correct-by-construction program development approach by Kourie andWatson [2012] is

the best candidate to be usable for software developers without amajor background in formal

methods, but tool support is missing. To facilitate the advantages of CbC in general and to

enable the evaluation of CbC by Kourie and Watson [2012] against post-hoc verification in

particular, the challenge is to provide tool support and evaluate its suitability.

2
We will just write post-hoc verification in this thesis, but we mean the whole process of specifying and constructing

programs, and verifying them afterwards.

4

The CbC refinement rules by Kourie and Watson [2012] give a strict guideline how to construct

programs. The drawback is that the flexibility of creating a program is limited to the existing set

of refinement rules and the rigid, rule-based construction approach. It is not possible to devi-

ate from this rule-based program construction approach. Furthermore, the refinement rules given

by Kourie and Watson [2012] are relatively fine-grained by introducing only one language con-

struct (e.g., branching or assignment statement) at a time. This leads to a lot of overhead in the

construction of programs. For example, it is tedious to introduce consecutive assignment state-

ments, even if these statements are obviously correct according to the specification. As a result,

the concepts of CbC seems tedious and demand high effort and necessary knowledge from the

developer to construct programs [Back 2009; Runge et al. 2021]. We therefore formulate the sec-

ond challenge addressed in this thesis as follows.

Challenge 2: Restricted Flexibility of Rule-based Correctness-by-Construction

One drawback of rule-based CbC that limits its usability and flexibility are the fine-grained

refinement rules. The CbC approach requires new or alternative concepts to relax rigid pro-

gram development, but which still guarantee correctness at each development step.

The third challenge focuses on information flow security to guarantee confidentiality and in-

tegrity of data. We decided to ensure this non-functional property because information flow secu-

rity is a fundamental requirement of applications to prohibit unauthorized reading and manipula-

tion of data. If functional correctness and secure information flow of a program are considered as

two independent properties and ensured one after the other during program development, prob-

lems can occur. For example, the functional correctness of a program is already verified with one

tool. If an information flow analysis with another tool detects a security issue, the developer must

debug the program to ensure secure information flow, but then the program must be reverified

because the changes could affect functional correctness. Thus, an extensive process of debugging,

verifying functional correctness, and analyzing information flow is required until the program is

functionally correct and secure. This problem can be mitigated by ensuring both properties simul-

taneously during program development. If only one process and tool is used, context switches are

not necessary which can be error prone. Furthermore, when functional correctness and security

are guaranteed by construction in each development step, the need for additional post-hoc verifi-

cation or information flow analysis is reduced or even superfluous. We already presented that CbC

has advantages for the development of functionally correct programs [Watson et al. 2016]. The char-

acteristics of an incremental and guided program construction approach can also facilitate the de-

velopment of secure programs. However, there is no CbC approach to incrementally develop pro-

grams that are functionally correct and secure.

Challenge 3: Correctness-by-Construction for Information Flow Security

It is tedious and error-prone to develop programs that are functionally correct and ensure

secure information flow using various processes and tools. A CbC approach for information

flow security is needed for the purpose of a uniform correct-by-construction program devel-

opment approach for correct and secure programs.

1.2. Research Questions 5

1.2. Research Questions
On the basis of the identified challenges, we formulate the main research question that we want to

answer in this thesis:

Main Research Question

How can we enable and support a correct-by-construction program development approach

for functionally correct and secure software?

We divide this main research question into four more specific sub-research questions to focus on

relevant aspects of the overall research goal to support correct-by-construction program develop-

ment.

Research Question RQ1 – Tool Support for Functional Correctness-by-Construction. How can we sup-
port a correct-by-construction program development approach for functionally correct software? In Chal-
lenge 1, we identified that correctness-by-construction, as proposed by Kourie and Watson [2012],
has the potential to be usable by software developers without a major background in formal meth-

ods, but no tool is yet provided. Within this research question, we aim to investigate the necessary

criteria for translating the theoretical concepts of CbC into appropriate tool support. In particu-

lar, we want to determine the concrete requirements to support the defined concepts of CbC, and

we want to find out how to implement adequate tool support based on these requirements. Since

it is important to be usable in practice, our tool, to be called CorC, should be capable to support

the refinement-based construction of sufficiently complex case studies. Addressing this research

question is the basis for all further research questions.

Research Question RQ2 – Usability of Tool-Supported Correctness-by-Construction. How usable is the
correct-by-construction program development approach with CorC?With this research question, we want

to investigate how to assess the comprehensibility and usability of CbC as implemented in CorC.

A usability evaluation can confirm the claimed benefits of a structured development approach in

practice, as well as potentials to improve CorC. Since post-hoc program verification is state-of-the-

art, we want to evaluate how CorC compares to tool-supported post-hoc verification. We investigate

how to conduct qualitative user studies where we can analyze how participants interact with CbC

and post-hoc verification tools to implement correct programs.

Research Question RQ3 – Alternatives to Rule-based Correctness-by-Construction. What alter-
native correct-by-construction program development approaches exist, and how do they compare to rule-
based correctness-by-construction? In Challenge 2, we explained that rule-based CbC has a draw-

back due to the inflexible refinement rules. We argue that more flexible program development

approaches with relaxed guidelines are beneficial to effectively construct correct programs, and

we aim to evaluate this hypothesis qualitatively. In particular, we want to find alternative CbC

approaches within this research question and compare them with the correct-by-construction

program development approach by Kourie and Watson [2012] to assess the benefits of more

flexible program development approaches.

6

Research Question RQ4 – Correctness-by-Construction for Information Flow Security. How can we
support the development of programs with correctness-by-construction that are functionally correct and satisfy
information flow security? We argue that CbC is not only limited to functional properties, but can be

generalized to non-functional properties as well — including its advantages. With the fourth re-

search question, we investigate to what extent it is possible to establish a CbC program development

approach for functionally correct programs that also satisfy security properties. Considering Chal-
lenge 3, we investigate how to incorporate information flow analysis into a refinement-based CbC

approach. To fully support a uniform correct-by-construction program development approach, we

investigate how to integrate CbC for the information flow properties into the CorC tool.

1.3. Contributions
In this thesis, we enable and support a correct-by-construction program development approach for

functionally correct and secure programs. We made the following contributions to answer the re-

search questions.

Contribution 1: CorC Tool Support for Functional Correct-by-Construction Program Development.
In this contribution, we propose tool support for correctness-by-construction by Kourie and Wat-

son [2012], called CorC [Runge et al. 2019a]. CorC supports the incremental refinement-based ap-

proach of CbC that guarantees the functional correctness of programs in each refinement step. We

offer a textual and a graphical editor with their own characteristics that are described in this work.

The graphical view visualizes the refinement steps explicitly. This is helpful to track problems dur-

ing program construction. The textual view is designed to provide a familiar development envi-

ronment for writing code enhanced with refinement keywords. For each applied refinement rule,

CorC directly checks that the side conditions for applicability are satisfied. The side conditions

are translated to proof obligations that are discharged by the program verifier KeY. We implement

case studies to evaluate the feasibility of CorC. We also compare the verification effort of CorC in

comparison to post-hoc verification, where a specified method is directly verified with KeY. CorC

was presented at the International Conference on Fundamental Approaches to Software Engineer-

ing in 2019. The full paper is attached in Section A.1.

T. Runge, I. Schaefer, L. Cleophas, T. Thüm, D. Kourie, and B. W. Watson [2019a]. “Tool Sup-

port for Correctness-by-Construction”. In: International Conference on Fundamental Approaches
to Software Engineering. Vol. 11424. Lecture Notes in Computer Science. Springer, pp. 25–42.

doi: 10.1007/978-3-030-16722-6_2

Contribution 2: A Usability Evaluation of the CbC Approach as Implemented in CorC. In this con-

tribution, we evaluate the usability of CbC implemented in CorC by conducting two user stud-

ies [Runge et al. 2019b; Runge et al. 2021]. We compare correct-by-construction program develop-

ment with post-hoc verification to get insights whether CbC is comprehensible and usable for soft-

ware developers. The participants of the user studies have to implement algorithms with both ap-

proaches. We analyze their resulting implementations and intermediate snapshots of their imple-

https://doi.org/10.1007/978-3-030-16722-6_2

1.3. Contributions 7

mentations in terms of defects. By examining the intermediate snapshots, we can analyze the ap-

plied programming procedure of the participants. We get insights, how they implement the al-

gorithms, how they write auxiliary specification (e.g., loop invariants), and when they try to verify

the correctness of the implementation. Furthermore, we collect feedback of the participants with

a user experience questionnaire and a structured interview. In the user experience questionnaire,

the participants are asked to rate the used tools by selecting appropriate adjectives that describe

the tool. In the interview, we ask the participants open questions about their preferred develop-

ment procedure. The first user study was presented at the Refinement Workshop in 2019, and the

second user study was presented at the Formal Methods Teaching Workshop in 2021. The full pa-

pers are attached in Section A.2 and Section A.3.

T. Runge, T. Thüm, L. Cleophas, I. Schaefer, and B. W. Watson [2019b]. “Comparing

Correctness-by-Construction with Post-Hoc Verification - A Qualitative User Study”. In: For-
mal Methods. FM 2019 International Workshops. Refine. Vol. 12233. Lecture Notes in Computer
Science. Springer, pp. 388–405. doi: 10.1007/978-3-030-54997-8_25

T. Runge, T. Bordis, T. Thüm, and I. Schaefer [2021]. “Teaching Correctness-by-Construction

and Post-hoc Verification–The Online Experience”. In: Formal Methods Teaching Workshop.
Vol. 13122. Lecture Notes in Computer Science. Springer, pp. 101–116. doi: 10.1007/978-

3-030-91550-6_8

Contribution 3: Alternative Correct-by-Construction Program Development Approaches. In this con-

tribution, we present alternative correctness-by-construction approaches which we compare with

rule-based correctness-by-construction as proposed by Kourie and Watson [2012] (classic CbC). In

particular, we propose CbC-Block and TraitCbC with the goal of addressing the inflexibility of

classic CbC to incrementally construct correct programs. We qualitatively discuss the characteris-

tics of the three CbC approaches (classic CbC, CbC-Block, and TraitCbC).

CbC-Block, the first CbC development approach we present, aims to relax the strict guideline

of classic CbC. CbC-Block introduces refinement rules that condense the application of several

refinement rules to improve flexibility. A specified statement can be refined to any block of code

that fulfills the specification. Thus, these new refinement rules increase the ways in which programs

can be developed. The idea of these refinement rules is similar to a method call, but a block can

have side effects on any local variables in the program under construction. We implement CbC-

Block as an extension of CorC and evaluate the usability.

TraitCbC, the second alternative development approach, relies on traits as a flexible and reusable

language construct. TraitCbC is composition-based. Thismeans, small units of code (methods) are

constructed in isolation with any approach and verified (e.g., post-hoc verification, CbC by Kourie

and Watson [2012], …). Afterwards, these methods are composed to larger programs correct by con-

struction. The composition-based CbC program development approach ensures that the compo-

sition of correct units produces a correct result. The advantage of TraitCbC is that the compo-

sition does not need refinement rules. We present the foundations of TraitCbC, and implement

TraitCbC on the basis of Java with KeY as verification tool.

https://doi.org/10.1007/978-3-030-54997-8_25
https://doi.org/10.1007/978-3-030-91550-6_8
https://doi.org/10.1007/978-3-030-91550-6_8

8

TraitCbC was presented at the International Conference on Formal Techniques for Distributed

Objects, Components, and Systems. Our work was awarded the best paper award. As an extended

publication, we introduced CbC-Block in the special issue of the Journal on Logical Methods in

Computer Science. The full papers are attached in Section A.4 and Section A.5.

T. Runge, A. Potanin, T. Thüm, and I. Schaefer [2022b]. “Traits: Correctness-by-Construction

for Free”. In: International Conference on Formal Techniques for Distributed Objects, Components,
and Systems. Vol. 13273. Lecture Notes in Computer Science. Springer, pp. 131–150. doi: 10.
1007/978-3-031-08679-3_9

T. Runge, T. Bordis, A. Potanin, T. Thüm, and I. Schaefer [2023]. “Flexible Correct-by-

Construction Programming”. Logical Methods in Computer Science

Contribution 4: A Uniform Correct-by-Construction Program Development Approach for Functional
Correctness and Security. In this contribution, we introduce correctness-by-construction for

information flow security. First, we create a new information flow security type system for an

object-oriented language, called SIFO [Runge et al. 2022c]. This type system checks whether de-

veloped programs fulfill the defined information flow policy. To ensure correctness of the type

system, we prove that private data never influences public data. This noninterference prop-

erty is a central criterion for secure information flow. An attacker should never deduce private

data by observing data with lower security levels. The type system is implemented and evalu-

ated with several case studies to demonstrate feasibility of the approach. We also evaluate ex-

pressiveness of the type system in comparison to other information flow analysis tools by im-

plementing and checking methods of a benchmark.

To establish a uniform correct-by-construction program development approach, we transform

the typing rules of SIFO into refinement rules [Runge et al. 2022a]. In a previous work, we es-

tablished refinement rules for a secure imperative language [Runge et al. 2020]. The refinement

rules ensure that each introduced language construct fulfills the defined information flow pol-

icy [Runge et al. 2022a]. Therefore, we can guarantee that the program is secure in each refine-

ment step. We prove soundness of the transformation by showing that each constructed program

is also typable in SIFO. By integrating the refinement rules for security in CorC, we support CbC

for functional correctness and information flow security. The feasibility of CorC is evaluated with

the same case studies that are used to evaluate SIFO.

SIFO was presented in the Journal ACM Transactions on Programming Languages and Sys-

tems (TOPLAS). CbC for secure information flow in an imperative language was presented

at the International Conference of Formal Methods in Software Engineering. The CbC ap-

proach for an object-oriented language that is based on SIFO was presented at the Interna-

tional Conference on Software Engineering and Formal Methods. The full paper are attached

in Section A.6, Section A.7, and Section A.8.

https://doi.org/10.1007/978-3-031-08679-3_9
https://doi.org/10.1007/978-3-031-08679-3_9

1.4. Reader’s Guide 9

T. Runge, M. Servetto, A. Potanin, and I. Schaefer [2022c]. “Immutability and Encapsulation

for Sound OO Information Flow Control”. ACM Transactions on Programming Languages and
Systems (TOPLAS). doi: 10.1145/3573270

T. Runge, A. Knüppel, T. Thüm, and I. Schaefer [2020]. “Lattice-Based Information Flow

Control-by-Construction for Security-by-Design”. In: FormaliSE@ICSE 2020: 8th Interna-
tional Conference on Formal Methods in Software Engineering. ACM, pp. 44–54. doi: 10.1145/

3372020.3391565

T. Runge, A. Kittelmann, M. Servetto, A. Potanin, and I. Schaefer [2022a]. “Information Flow

Control-by-Construction for an Object-Oriented Language”. In: International Conference on
Software Engineering and Formal Methods. Vol. 13550. Lecture Notes in Computer Science.

Springer, pp. 209–226. doi: 10.1007/978-3-031-17108-6_13

1.4. Reader’s Guide
The thesis is divided into four chapters. In Chapter 2, we provide foundations of software verifica-

tion and rule-based correctness-by-construction as background for all following chapters.

In Chapter 3, the main contributions are presented. The contributions of the thesis are grouped

into four parts and answer the four research questions RQ1 – RQ4.
In Section 3.1, we present CorC that has a textual and a graphical editor to construct programs

with CbC. We also evaluate the feasibility of CorC by implementing several case studies.

In Section 3.2, we evaluate the usability of CorC by conducting two user studies. We compare

correct-by-construction software development with post-hoc verification to get insights whether

CbC is comprehensible and usable for software developers.

In Section 3.3, we propose alternative correctness-by-construction approaches, called TraitCbC

and CbC-Block. We then compare these alternative CbC approaches with classic CbC regard-

ing their flexibility to construct programs.

In Section 3.4, we introduce SIFO, a type system for information flow security. We transform

the typing rules into refinement rules to get a constructive CbC approach. The approach is imple-

mented in CorC and evaluated by constructing several case studies to show feasibility.

In Chapter 4, we conclude the thesis and give an outlook to future work. We discuss direc-

tions in which further research can be conducted.

https://doi.org/10.1145/3573270
https://doi.org/10.1145/3372020.3391565
https://doi.org/10.1145/3372020.3391565
https://doi.org/10.1007/978-3-031-17108-6_13

2. Background
In this chapter, we introduce the relevant background necessary to understand the main contri-

butions of this thesis. The core of this thesis is to construct functionally correct and secure pro-

grams. Therefore, the aim of this chapter is to briefly explain the thematic building blocks of this

context. In Section 2.1, we explain how programs on the level of methods can be specified to verify

their functional correctness afterwards. In Section 2.2, we introduce correctness-by-construction

(CbC). CbC is an incremental program construction process that guarantees the correctness of the

program under development in each refinement step. Finally, in Section 2.3, we present the con-

cept to specify and to analyze information flow properties in programs.

2.1. Contracts and Contract-based Verification
To prevent defects in code, the functional behavior of methods is specified with contracts, and a pro-
gram verifier is used to prove that the method satisfies this contract. Contracts are introduced in

Section 2.1.1. In Section 2.1.2, program verification to prove the correctness of specified methods is

explained.

2.1.1. Method Contracts

To analyze the correctness of software, Hoare [1969] introduced Hoare logic, which is a formal rea-
soning system to specify and verify functional correctness of programs. The functional behavior of

a program is defined with a Hoare triple {P}S{Q} with the following interpretation: when a pro-

gram is in a state that satisfies the logical condition P (i.e., the precondition), then the execution

of program S terminates, and the program is in a state that satisfies logical condition Q (i.e., the

postcondition). The pre-/postcondition pair P and Q of a Hoare triple are logical formulas in first-

order logic that specify the state of the program before and after the program is executed. This for-

mal documentation of the program behavior can be analyzed. Specifications are used as input for

test case generation or translated to assertions for runtime checks. Our focus is formal verifica-

tion whether a program satisfies its specification. Formal verification addresses one shortcoming

of software testing. While a test can only define the expected outcome for a concrete input, verifi-

cation considers all inputs and all possible program states by formal reasoning.

The pre-/postcondition pair is also called contract [Hoare 1969; Liskov and Guttag 1986; Meyer

1992] of program S. Design-by-contract [Meyer 1992] is a software development paradigm that uses

contracts to correctly implement object-oriented software. Design-by-contract was first intro-

duced in connection with the programming language Eiffel. A method is specified with a pre-

/postcondition contract and loop invariants. Additionally, class invariants guarantee that the speci-

fied state of a class is met before and after each method execution. Contracts are used to communi-

cate between a caller of a method and the called method, the callee. The caller must ensure that the

precondition of the callee is fulfilled. The callee then provides a result that fulfills the postcondition.

12

There exist numerous specification languages both inherent to a programming language and as

an external add-on. For example, there exist Spec# [Barnett et al. 2004; Barnett et al. 2011] for C#

programs, and the Java Modeling Language (JML) [Leavens et al. 2006] for Java programs. In this

thesis, we focus on Java programs, therefore, we introduce JML with an example in the following.

We focus on the JML constructs that are relevant for this thesis.

1 class Search {

2 /*@ public normal_behavior

3 @ requires a!=null && a.length >0;

4 @ ensures \result >=0 ==> a[\ result]==x;

5 @*/

6 public static int linearSearch(int[] a, int x) {

7 int i = a.length -1;

8 /*@ loop_invariant i>=-1 && i<a.length

9 @ && !(\ exists int k; k>i && k<a.length; a[k]==x);

10 @ decreases i+1;

11 @*/

12 while (i>=0 && a[i] != x) {

13 i = i - 1;

14 }

15 return i;

16 }

17 }

Listing 2.1.: An implementation of a linear search algorithm specified with JML

In JML, classes and methods are specified in a Java-like syntax. In Listing 2.1, a specified method

linearSearch is shown. The method has as arguments an array of integers a and an integer x.

The method computes and returns the index of the last element that has the same value as pa-

rameter x, or −1 if there is no such element in array a. The specification of the method is a com-
ment directly above the method. Each JML line starts with the @ symbol to distinguish standard

comments from JML. The first JML keyword public indicates the visibility of the specification

similar to the visibility of methods in Java. The behavior of the method can be normal_behavior

or exceptional_behavior. With normal_behavior, the method returns normally (i.e., without

throwing an exception) if the precondition is fulfilled. With exceptional_behavior, the thrown

exception for each precondition must be specified. In this thesis, we do not examine exceptional

behavior, so we focus on normal executions. The keyword requires specifies the precondition of

the method. In the example, the array a is required to contain at least one element. The keyword

ensures introduces the postcondition. If the result of the method is bigger than zero, then this is

the index of element with the same value as variable x. The case that the element is not found, is

not specified explicitly. With \result, JML refers to the return value of the method. From lines 8

to 10, a loop invariant specifies the behavior of a Java for- or while-loop. The loop invariant must

be valid before and after each loop iteration. The first part of the loop invariant specifies that the

variable i is between −1 and the length of the array. We need as lower bound −1, because if the
variable x is not found, variable i is set to −1. The second part of the loop invariant specifies the
already searched part of the array. All elements with an index between i and the length of the ar-

2.1. Contracts and Contract-based Verification 13

ray are not equal to x. To express this invariant, existential quantification is used. JML also sup-

ports universal quantification. With the keyword decreases a variant is specified. The variant is

a variable that decreases monotonically with each iteration, but it is bounded from below. Thus,

the termination of the loop can be guaranteed.

2.1.2. Program Verification

In the previous section, we introduced method contracts to specify the functional behavior of

method. In this section, we explain how satisfaction of contract and implementation can be for-

mally verified. We introduce the prominent technique of program verification [Schumann 2001;

Ahrendt et al. 2016]. Besides this, model-checking and program analysis (e.g., dataflow analyses and

abstract interpretation) are other verification techniques [Clarke et al. 2018].

Program verification is a deductive software verification technique. A proof certifies the correct-

ness of a given program with respect to its specification. A formal specification and a program are

translated to logical formulas, and a theorem prover applies inference rules to prove the validity

of the formulas [Chang and Lee 2014; Schumann 2001]. Theorem proving can be interactive with

tools, such as Coq [Coq n.d.], Agda [Agda n.d.], Lean [Moura et al. 2015], and Isabelle/HOL [Nip-

kow et al. 2002]. Here, inference rules in a defined tactic language are applied to the proof problem

until the validity is shown. There also exist automatic theorem provers, such as Vampire [Kovács

and Voronkov 2013] and SPASS [Weidenbach et al. 2009]. These tools synthesize complete proofs

automatically by executing proof-search techniques. Of course, automatic theorem proving is lim-

ited by heuristics and does not guarantee to find a proof.

In this thesis, we focus on the automatic verification of formally specified programs. Pro-

gramming languages with integrated specification language and program verifier are for ex-

ample SPARK [Amtoft et al. 2008] and Dafny [Leino 2010]. An automatic program verifier for

Java/JML is OpenJML [Cok 2011]. KeY [Ahrendt et al. 2016] is an interactive program verifier

for Java/JML, but it offers a good automation.

Program Verification with KeY. The program verification tool KeY verifies Java programs speci-

fied with JML [Ahrendt et al. 2016]. The logic used by KeY to reason about programs is Java dy-

namic logic (JavaDL). JavaDL is an instance of dynamic logic [Harel et al. 2000] for Java. Dynamic

logic [Harel et al. 2000] is an extension of first-order logic with programs. To prove the correct-

ness of a program S specified with a precondition P and a postcondition Q, the proof problem is

written in dynamic logic P → 〈S〉Q. The program modality 〈S〉 refer to the final state of pro-
gram S and can be placed in front of any formula. The formula 〈S〉Q defines that the execution

of program S terminates in a state in which Q holds. For partial correctness, the program modal-

ity [S] is defined that does not demand termination.

The first step of KeY to verify a method specified with JML is the translation from Java/JML to

JavaDL. All preconditions starting with requires are composed to one precondition in JavaDL.

The same applies for the postcondition. Implicit assumptions in JML must be stated explic-

itly (e.g., whether parameters or fields cannot be null). Additionally, the Java heap is mod-

eled with read and write operations. In total, the JavaDL formula is: P → {heapAtPre :=
heap}〈self .m(args)〉(Q & frame). The precondition P and postcondition Q are the JavaDL condi-

14

tions translated from JML. The variable heap models the heap. By assigning heapAtPre := heap, the
state of the heap before execution is saved. The frame is a condition that states which variables can be
altered in the program. In this simplified formula, we exclude exceptions in the program execution.

KeY uses a proof calculus, the sequent calculus [Gentzen 1935], to prove the validity of the dynamic
logic formula. It is based on sequents of the form ψ1, . . . , ψn ` φ1, . . . , φn with dynamic logic for-

mulas ψi and φi. With proof rules, the formula can be altered to show its validity. A proof rule de-

fines a conclusion that can be drawn from premises. A concatenation of proof rules results in a proof
tree, where the root (bottom) of the inferences is the formula to prove. This formula is valid exactly

if all leaves (premises) of the tree are valid. To reason about the program in a dynamic logic for-

mula, symbolic execution is used. Symbolic execution executes the program in natural forward di-

rection by rewriting the program stepwise into updates of the program state [Ahrendt et al. 2016].

2.2. Correctness-by-Construction
Correctness-by-Construction (CbC) [Morgan 1994; Dijkstra 1972; Kourie and Watson 2012; Wirth 1971;

Gries 1987] is a technique to incrementally construct functionally correct programs from a pre-

/postcondition specification. Starting with an abstract statement, the program is constructed by re-

fining the abstract statement stepwise into concrete program statements with so called refinement

rules. Each refinement rule is proven to preserve the correctness of the program under side con-

dition for their applicability. The process stops when a completely refined program is obtained

(i.e., abstract statements no longer exist). The specification is given as a Hoare triple {P}S{Q}.
The statement S is abstract in the beginning and concretized by applying the refinement rules to

a complete program fulfilling the pre-/postcondition specification P and Q. A refinement replaces
a Hoare triple {P}S{Q} with a Hoare triple {P′}S′{Q′}, where the specification and the program
can be altered, but the refined Hoare triple still satisfies the starting specification. Thus, each re-

finement step is correct-by-construction, and leads to a correct implementation in the end.

In [Kourie and Watson 2012], the concrete program statements are written in the guarded

command language [Dijkstra 1975]. The guarded command language is a Turing complete pro-

gramming language with the following statements:

Skip A skip statement does not alter the program state.

Abort An abort statement is an undefined instruction that can do anything (e.g., it can loop forever).

Assignment The assignment statement (x := E) assigns some expression E to a variable x. The vari-

able and the expression must have the same type.

Composition With composition statement (S1; S2) two statements are composed.

Selection The selection statement (if G1 → S1 elseif . . . Gn → Sn fi) is a list of guarded statements
of which one is chosen to execute. At least one of the guards must be evaluated to true, oth-

erwise the selection executes abort. If more than one guard is true, a statement whose guard
is true is nondeterministically selected.

2.2. Correctness-by-Construction 15

Repetition The repetition statement (do G → S od)1 executes a statement as long as the loop guard
is evaluated to true. Therefore, the statements can be executed zero or arbitrary many times.

Refinement Rules

Formally, we want to find a concrete implementation C that satisfies the Hoare triple specifica-

tion, written as Sat(C, {P}S{Q}) [Kourie and Watson 2012]. The predicate Sat states that pro-
gram C satisfies the Hoare triple {P}S{Q}. Refining a Hoare triple {P}S{Q} to a Hoare triple
{P′}S′{Q′} is written as {P}S{Q} v {P′}S′{Q′} with the symbol v for the refinement. The re-

finement is correct if and only if ∀C : Sat(C, {P′}S′{Q′}) → Sat(C, {P}S{Q}). A refinement

{P′}S′{Q′} is correct if and only if every concrete program C that satisfies the refined Hoare

triple must also satisfy the Hoare triple {P}S{Q}. In Definition 2.1, we present the eight refine-

ment rules of CbC by Kourie and Watson [2012].

Definition 2.1: Refinement Rules for the Correctness-by-Construction Approach

Let P be the precondition, Q be the postcondition, and S be an abstract statement. Then, the
Hoare triple {P}S{Q} is refinable to

Skip: {P}skip{Q} iff P implies Q

Assignment: {P}x := E{Q} iff P implies Q[x := E]

Composition: {P}S1; S2{Q} iff intermediate condition M exists such that {P}S1{M}
and {M}S2{Q} hold

Selection: {P}if G1 → S1 elseif . . . Gn → Sn fi{Q} iff P implies G1 ∨ · · · ∨ Gn and

∀i ∈ {1 . . . n} : {P ∧ Gi}Si{Q} holds

Repetition: {P}do [I, V] G → S od{Q} iff P implies I and I ∧ ¬G implies Q and {I ∧
G}S{I} holds and {I ∧ G ∧ V = V0}S{I ∧ 0 ≤ V < V0} holds

Weaken precondition: {P′}S{Q} iff P implies P′

Strengthen postcondition: {P}S{Q′} iff Q′ implies Q

Method Call: {P}m(a1, . . . , an) → b{Q} iff method {P′}m(p1, . . . , pn) → r{Q′} exists

and P implies P′[pi \ ai] and Q′[old(pi) \ old(ai), r \ b] implies Q

[Runge et al. 2019a; Kourie and Watson 2012]

Skip Rule. The first rule Skip replaces an abstract statement S with a skip statement that does not

alter the program state. This refinement is correct if the precondition P implies the postcondition

Q. That means, the program is already in a state that fulfills the postcondition.

1
In Dijkstra’s work, multiple clauses are allowed, as in the selection statement. We reduced it to only one clause for the

sake of comprehensibility, without losing expressiveness.

16

Assignment Rule. The Assignment refinement rule introduces an assignment of an expression E to

a variable x. This refinement is correct if the precondition implies the postcondition in which the

variable x is replaced by the expression E [Kourie and Watson 2012].

Composition Rule. The Composition refinement rule is used to split the program in two parts with

an intermediate condition M. The intermediate condition M should be fulfilled after execut-

ing a statement S1, then statement S2 is executed to obtain postcondition Q. Both Hoare triples

{P}S1{M} and {M}S2{Q} can be further refined by applying refinement rules.

Selection Rule. The Selection refinement rule introduces a conditional statement, where a state-
ment Si is executed if the guard Gi is evaluated to true. For the rule to be applicable, the precondi-

tion Pmust imply the disjunction of all guards Gi. This is necessary such that at least one statement

Si can be executed and the program does not get stuck. The refined Hoare triples {P ∧ Gi}Si{Q}
contain the guards as part of their preconditions.

Repetition Rule. The Repetition refinement rule introduces a loop statement. The statement S is

executed as long as the guard G is evaluates to true. To guarantee the correctness of the loop, we

specify a loop invariant I, a condition that is true at the start and end of each iteration of the loop,
and a loop variant V, an integer expression that decrease monotonically in each iteration. The side
condition of the refinement rules has four parts: (1) the precondition P must imply the invariant

I so that the invariant is fulfilled before the first loop iteration; (2) the conjoined invariant and the
negated guard G must imply the postcondition Q. With this implication, it is ensured that the

postcondition is fulfilled after the last loop iteration; (3) the loop body must preserve the invariant;

(4) the variant must decrease monotonically, but it is bounded from below by 0; The expression V0

points to the value of the variant before a loop iteration to compare it with the value afterwards.

With these conditions, the correctness and termination of the loop is ensured.

Weaken Precondition Rule. The precondition of a Hoare triple is weakened with the Weaken pre-
condition rule. This rule is applicable if P implies P′

. Every program C that satisfies the postcondi-

tion from the weaker precondition P′
also fulfills the starting Hoare triple.

Strengthen Precondition Rule. The postcondition of a Hoare triple is strengthened with the

Strengthen postcondition rule. This rule is applicable if Q′
implies Q. Every program C that satisfies

the stronger postcondition Q′
also satisfies the weaker postcondition Q.

Method Call Rule. The Method Call refinement rule introduces a method call. A method

m(p1, . . . , pn) → r must exist with method name m, formal parameters p1, . . . , pn, return value r,
precondition P′

, and postcondition Q′
. We assume that the parameters are passed with call-by-

value to exclude side effects [Bordis et al. 2020b]. When the method is called, actual values a1, . . . , an

are passed to the method and a return value b is computed. For the method call to be correct,

the precondition P must imply the precondition P′
of the method but the formal parameters pi

are replaced with the actual parameters ai. This implication ensures that the precondition of the

method is satisfied. Similar, we ensure that the method’s postcondition satisfies the postcondition

2.2. Correctness-by-Construction 17

{P} S {Q}

{P} S1 {I} ∧ {I} S2 {Q}

{P} i = a.length− 1 {I} {I} do [I, V] G → loopSt od {Q}

{I ∧ G} i = i− 1 {I}

1 composition for S

2 assignment for S1

3 repetition for S2

4 assignment for loopSt

Figure 2.1.: Refinement steps for the linear search algorithm

of the refined Hoare triple. The postcondition Q′
must imply the postcondition Q. In Q′

, we refer

to the parameters before executing the method with old(pi) because the values of the parameters

can change in the body of the method. As for the precondition, the formal parameters are replaced

with the actual parameters. The same applies for the formal and actual return value. To be correct,

the return value must not be used in the precondition because it is not yet computed. The param-

eters pi must not be used in the postcondition because their scope is limited to the method’s body.

Example 2.1. In Figure 2.1, we give an example of a program developed with CbC. The linear search algorithm
of Listing 2.1 is constructed. We use the same pre-/postcondition specification for the algorithm as before. The
precondition states that the array has at least one element (P := a! = null & a.length >= 0). In the
postcondition, we return the index i where the (last) element x was found (Q := i >= 0− > a[i] = x), or
a negative integer if the element is not found.
The linear search algorithm traverses the array from the end to the start and checks for each index whether

the current element is equal to the searched variable x. If an element with the same value is found, the in-
dex is returned. If variable x is not found, −1 will be returned. We use the same invariant as above. To
shorten the invariant in the CbC program, the predicate appears is used: appears(a, x, l, h) asserts that in
the array a, the variable x occurs between the indices l (included) and h (excluded). In the invariant (I :=
!appears(a, x, i+ 1, a.length) & i >= −1 & i < a.length) the predicate is negated to determine the
already searched part of the array where the variable x does not occur.
To construct the algorithm, we apply refinement rules. For the rules to be applicable, side conditions are

checked (see for each rule the conditions after the iff in Definition 2.1). Hoare triples that contain an abstract
statement (e.g., the two Hoare triples after applying the composition refinement rule) can be further refined and
are checked as soon as the abstract statement is concretized. A Hoare triple with a concrete statement is a leaf
of the refinement chain. These are assignment, skip, or method call statements.
The first refinement 1 uses the composition rule to split the program into two statements with an interme-

diate condition that is the invariant I. The first statement will be refined to initialize the loop variable i and
the second statement will be refined to the loop. We start at the end of array, by refining the first statement
to i = a.length− 1 with the assignment rule 2 . The assignment refinement fulfills its side condition be-
cause the intermediate condition is satisfied (!appears(a, x, a.length, a.length)). The appears predicate
dissolves to an existential quantification with an empty set that always evaluates to false, but this predicate is
negated in the postcondition.

18

The second statement is refined with the repetition rule 3 . The invariant is the same as the inter-
mediate condition, therefore we know that the invariant is fulfilled before the first loop iteration. The
loop is executed as long as the variable x is not found and the start of the array is not reached (G :=
i >= 0 & a[i]! = x). That the repetition rule is correctly applied, not only the invariant must be ful-
filled in the beginning, but also the negated guard and the invariant must imply the postcondition
(!(i >= 0 & a[i]! = x) & I)− > (i >= 0− > a[i] = x). With known transformations, it can be
shown that the negated guard and the postcondition are equal, therefore the implication is true.
In the last step 4 , the loop body is refined with the assignment rule to i = i− 1. We check that the invariant

is preserved in each iteration. Assumed that the loop guard and the invariant hold, the invariant is fulfilled
after executing the assignment. We also guarantee that the loop terminates because the variant (V :=i+ 1)
is decreased in each iteration and bounded from below (i.e., the variant is never smaller than zero). As no
abstract statement is left in the CbC program, the incremental program construction stops and the resulting
implementation of the linear search algorithm is guaranteed to be correct-by-construction. In comparison to
post-hoc verification, we have additional specification overhead by giving the intermediate condition (both
approaches still need the loop invariant), but the stepwise construction supports finding defects, since correctness
guarantees are given for each applied refinement.

2.3. Information Flow Control
Information flow control [Sabelfeld and Myers 2003] is used to establish confidentiality and in-

tegrity of program data. The standard way to ensure confidentiality and integrity is to analyze the

flow of information from sources to sinks in the software. Confidentiality means that an informa-

tion flow of private data to insecure destinations must be prevented. Similarly, integrity ensures

that secure systems are not influenced by untrusted sources [Biba 1977; Sabelfeld and Myers 2003].

This allowed and prohibited flow of information is specified in an information flow policy. An in-

formation flow policy specifies the allowed and prohibited flow of information between variables

labeled with a security level. For example, an information flow from public to secret variables is

allowed, but the other direction is prohibited. Security levels are often referred to as low for pub-

lic and high for secret. Information can flow directly by assigning a value to a variable, or informa-
tion can flow indirectly. For example, by observing a taken conditional branch, an attacker may be
able to draw conclusions about the value of the guard.

Bell and La Padula [1976], and Denning [1976] introduced lattices of security levels to state in-

formation flow policies. A Lattice is defined in Definition 2.2, it arranges the security levels and

shows the allowed flow through directed edges.

Example 2.2. We give some examples of secure and insecure program statements in Listing 2.2. We assume
the information flow policy from above with low and high security levels and an allowed flow from low to
high. The assignment in Line 2 is secure. A low expression can be assigned to a high variable. In contrast,
the assignment in Line 3 is not secure because a variable of security level low can only store expressions of the
same security level or lower. The next three examples in lines 5, 8, and 11 show indirect information flows. To
prevent leaks through indirect information flows, assignments in the branches of the conditional-statements
must have at least the security level of the expression in the guard. Therefore, the conditional statement in Line
5 is secure. A low guard is used and this does not restrict the assignments in the branches. Both assignments to

2.3. Information Flow Control 19

Definition 2.2: Bounded Upper Semi-Lattice (for Information Flow Policies)

A bounded upper semi-lattice is a structure 〈L,≤, lub,>,⊥〉 where the security levels L are

partially ordered with≤, lub is the least upper bound operator, and top and⊥ are the top and

bottom security level of the lattice. The≤ operator is reflexive, antisymmetric, and transitive,

but as it is a partial order, not all elements must be comparable. An upper bound operator

defines for a set of elements X ⊆ L that an upper bound y ∈ L exists if ∀x ∈ X : x ≤ y. The
least upper bound (lub) is a security level u ∈ L for that holds: for a set of elements X ⊆ L if

u ≤ y for all upper bounds y of the set X. To be an upper semi-lattice, a unique least upper
bound for every subset X ⊆ L must exist. The lattice is bounded by the top element > and

the bottom element ⊥. This means ∀l ∈ L : ⊥ ≤ l ≤ >.

1 public void exampleMethod(low int l, high int h) {

2 h = l; //ok, flow from low to high

3 l = h; //wrong , direct flow from high to low

4

5 if (l>0) {l = 1;} else {h = 2;}

6 //ok, high can be used in the branches

7

8 if (h>0) {l = 1;} else {h = 2;}

9 //wrong , indirect flow from high to low

10

11 if (h>0) {h = 1;} else {h = 2;}

12 //ok, only high is used

13 }

Listing 2.2.: Examples of of well-typed and ill-typed statements

low or high variables are secure. In Line 8, a high guard restricts the branches to assign to high variables. This
line is insecure because an assignment to a low variable l exists. By reading the value of l, it can be deduced
whether variable h is greater than zero. Line 11 is secure because there are only assignments to high variables.

Type System for Secure Information Flow. In this thesis, we focus on type systems as a language-

based technique [Sabelfeld andMyers 2003] to reason about information flow security. A type system

labels every variable and expression with a security type, and typing rules check that assignments

of security types do not violate the security policy. In Figure 2.2, we show an excerpt of the security

type system of Volpano et al. [1996] that can type-check a simple imperative language. The language

contains statement c and expressions e. Statements are typed with τ cmd, expressions are typed with
τ, and variables are expressions that are typed with τ var, where τ is a security level of the lattice.

Both expressions and statements are phrases p. The security types τ, τ cmd, and τ var are phrase
types ρ. The security type on expressions is used to analyze direct information flow, and the security

type on statements is used to analyze indirect information flow. The first typing rule types a variable

x with τ var. The security types are arranged in a lattice structure with the operator ≤ to compare

20

` x : τ var (1)
τ ≤ τ′

` τ ⊆ τ′ (2)
` p : ρ ` ρ ⊆ ρ′

` p : ρ′
(3)

` τ ⊆ τ′

` τ′ cmd ⊆ τ cmd
(4)

` x : τ var ` e′ : τ

` x := e′ : τ cmd
(5)

` c : τ cmd ` c′ : τ cmd

` c; c′ : τ cmd
(6)

` e : τ ` c : τ cmd

` while e do c : τ cmd
(7)

` e : τ ` c : τ cmd ` c′ : τ cmd

` if e then c else c′ : τ cmd
(8)

Figure 2.2.: Security type system [Volpano et al. 1996]

security types. This order is extended to a subtype relation with rules 2–4. The Rule 5 determines a

secure assignment of an expression e′ to a variable x. The security typesmust comply, but subtyping
can be used to assign, for example, a low expression to a high variable. Rule 6 concatenates two
statements with the same security type. Rules 7 and 8 type loop and conditional statements. Here,

the security type of the guard e and the statements c and c′ must comply.

Example 2.3. The statements that comply with the security policy of the example method in Listing 2.2 are
typable with this type system. In Line 2, subtyping is used to coerce the type of the expression to high, so that it
can be assigned to the variable with the high type. An assignment of a higher expression to a lower variable is
not typable in Line 3. A statement c has a type τ cmd. This type ensures that an assignment in statement c is
made to a variable with the security type τ var. The conditional statement in Line 5 has a low guard. Therefore,
the assignments in the branches have to be of type low. Both assignments in the branches are typable because
the branches can be coerced to a low security type since the subtype relation for statements is contravariant. In
lines 8 and 11, a high guard restricts the statement to have a high type. Therefore, Line 11 is typable as only
high assignments are used, but Line 8 is not typable. In Line 8, the low statement in the then branch of the
conditional-statement violates Rule 8 to have the same high type as the guard.

3. Contributions
In this thesis, we enable and support a correct-by-construction software development process for

functionally correct and secure programs. The contributions of the thesis are grouped into four

parts and answer the four research questions RQ1 – RQ4. The first contribution implementing

tool support for CbC addresses RQ1. The second contribution compares CbC with post-hoc veri-

fication in two user studies to address RQ2. The third contribution compares CbC by Kourie and

Watson [2012] with related CbC approaches and addresses RQ3. The related CbC approaches are

introduced and discussed in terms of their language constructs for more flexible program con-

struction in comparison to CbC. The fourth contribution introduces CbC for information flow se-

curity and addresses RQ4. Refinement rules are developed that guarantee compliance with de-

fined information flow policies. The approach is implemented in CorC to support a uniform CbC

approach for functional correctness and security.

3.1. CorC Tool Support for Functional Correct-by-
Construction Program Development

With our first contribution, we address the research question RQ1: How can we support a correct-by-
construction program development approach for functionally correct software? Correctness-by-construction
by Kourie and Watson [2012] is considered a viable approach for developers, but tool support is

missing. Therefore, we present how our open-source development environment, named CorC,
1

supports correctness-by-construction by Kourie and Watson [2012] and guarantees the correctness

of programs under development. Our work was presented at the International Conference on Fun-

damental Approaches to Software Engineering in 2019 (see Section A.1).

T. Runge, I. Schaefer, L. Cleophas, T. Thüm, D. Kourie, and B. W. Watson [2019a]. “Tool Sup-

port for Correctness-by-Construction”. In: International Conference on Fundamental Approaches
to Software Engineering. Vol. 11424. Lecture Notes in Computer Science. Springer, pp. 25–42.

doi: 10.1007/978-3-030-16722-6_2

Requirements for CbC Tool Support

According to our vision, our goal is to establish CbC as program development approach and pro-

vide an alternative to post-hoc verification. This means that adequate tool support should natu-

rally exhibit a high quality in usability, and the approach itself must be presented to developers

in a way that maximizes comprehension. We also need a scalable approach so that case studies of

reasonable size can be created. Correctness-by-construction by Kourie and Watson [2012] promises

1https://github.com/KIT-TVA/CorC

https://doi.org/10.1007/978-3-030-16722-6_2
https://github.com/KIT-TVA/CorC

22

these properties, but no tool support exists yet. Therefore, we derived requirements from the de-

sired CbC development process in consultation with Kourie and Watson to implement an appro-

priate tool. The listed requirements are specific for correctness-by-construction. For clarity, we

structure the requirements into three categories. First, we present requirements to refine pro-

grams (R0, R1), second, requirements for correctness checks (P0–P3), and third, requirements for

the IDE, GUI, editing capabilities, and scalability (G0–G3).

To create programs following the CbC approach, the tool has to support all CbC refinement rules

of Kourie and Watson [2012] (R0). The user is guided by these rules to programs which are cor-

rect by construction. We argue that the programs should be written in an established language

such that developers are willing to use the tool. An established language also supports compre-

hensibility for the developers. Additionally, a concept of abstract statements is necessary which

are refinable to concrete implementations. Abstract statements are the main concept to indicate

parts of the program that can be further refined. To specify the program, pre- and postcondi-

tions and invariants have to be written in a specification language (R1) which should be check-

able by machines. The specification language must support first-order logic as needed for the

CbC methodology by Kourie and Watson [2012].

The CbC methodology guarantees the correctness of developed programs. Therefore, the tool

should verify each refinement step to support this property. The side conditions of each refinement

rulemust be proved by a program verifier in order to show partial correctness (P0). Total correctness

is proved by showing that every repetition statement terminates (P1). Here, it must be proved that

the loop variant decreases in each loop iteration. The proof results have to be stored and linked

with the editor to track the status of the verification for the developer (P2). If something changes in

the program, the affected refinement steps have to be reproved. Verifications still to be performed

should be displayed to the developer so that the developer can investigate these proof obligations.

Detailed feedback is required for good usability of the tool.

The IDE can offer a graphical (G0) and a textual (G1) editor to support different kinds of develop-

ment styles. In the graphical view, a tree structure can visualize the refinement steps where Hoare

triples are nodes and refinement steps are edges. The program is refined top-down from a start-

ing Hoare triple with an abstract statement to Hoare triples in the leafs with concrete statements.

The graphical view is especially interesting for teaching this alternative programming style as re-

finement steps and the verification status are explicitly shown. The textual editor should be a plain

textual editor to write CbC programs enriched with annotations for specifications. This editor is

intended for users who want a “familiar coding feeling”. The textual editor is useful to develop pro-

grams with known features of textual IDEs, such as syntax highlighting, auto-completion, or copy

and paste. To not limit users to one view, we need automatic switching between both views (G2).

The user should be able to write the program in one view and generate the other view automati-

cally. Additionally, the IDE should support the development of meaningful programs (G3). The de-

velopment of programs with CbC must be integrated into a holistic program development process

such that the tool is usable to develop case studies. An integration of the tool into an IDE is neces-

sary, so the developer gets an overview of all projects, can open, close, and save different programs,

starts verification attempts, and gets comprehensible error messages.

3.1. CorC Tool Support for Functional Correct-by-Construction Program Development

23

2

3

1

5

4

Figure 3.1.: Linear search algorithm in the graphical IDE

CorC Tool Support

CorC is an open-source IDE that implements the refinement-based program development ap-

proach given by Kourie and Watson [2012]. Programs in CorC are written in Java. We chose Java

because object-oriented programming is widely used and Java is a known representative of this

category. By choosing Java we can build on the well-established specification language JML [Leav-

ens et al. 1998] and verification tools for Java/JML, such as KeY [Ahrendt et al. 2016].

The program development in CorC starts with a Hoare triple specification. Then, refinement

rules are applied to construct a concrete implementation in Java. CorC supports the refinement

rules of Kourie and Watson [2012] presented in Section 2.2. Each applied refinement is guaranteed

to be correct by proving side conditions of the refinement rules. The side conditions are trans-

lated to proof obligations that are discharged by the program verifier KeY. KeY automatically re-

turns the result whether the applied refinement can be proved correct. By integrating KeY in CorC,

we build on an established program verifier for Java code that is extensively tested, which increases

trust in the verification results. Although we rely on KeY to discharge our proof obligations, the

correctness-by-construction approach is not tailored to a specific programming or specification

language or a specific verification tool in general.

24

Example 3.1. To explain program development in CorC, we represent the linear search algorithm of Figure 2.1
in the graphical editor in Figure 3.1. The graphical editor is intended to learn and understand CbC by visual-
izing the Hoare triple specifications, the refinements in a tree structure, and the verification status. Each node,
visualized as a light-blue box, is a statement, and each applied refinement rule is an edge between the nodes. A
statement is one of the program statements presented in Section 2.2, such as assignment (i.e., the leaf nodes) or
composition. We refer to the circled numbers in the figure. 1 The starting statement of the refinement tree repre-
sents a Hoare triple that is specified with a pre-/postcondition. The developer writes the conditions in JavaDL by
clicking on the text fields. Using JavaDL is a design decision to save a translation step for the verification with
KeY. JavaDL and JML are similar with the same expressiveness. The differences are described by Ahrendt et al.
[2016]. The abstract statement in the middle of that Hoare triple has a placeholder name which can be changed
manually by the developer. This abstract statement is then refined stepwise. 2 Refinements are applied via
drag-and-drop from the palette on the right side. The palette on the right has a graphical representation for
each program statement. By connecting an abstract statement with an added statement from the palette, the
corresponding refinement rule to introduce that program statement is applied. For example, 3 the composition
statement was added to the diagram and then connected with the abstract statement of the startingHoare triple.
The pre-/postcondition in the composition statement is inherited from the parent Hoare triple as defined in the
refinement rule. We explicitly show the inherited conditions in the child node to improve readability so that the
developer directly sees the relevant pre- and postcondition in each node. In the case of the composition rule, the
developer must introduce an intermediate condition for the rule to be fully applied. Afterwards, two assignment
statements and a repetition statement are introduced during program construction. In assignment statements,
the developer writes the explicit assignments in Java syntax. For the repetition statement, guard, loop invari-
ant, and loop variant are specified. 4 The parameters and local variables of the method are shown on the top
right node. Parameters are extracted from the method signature of the method. Local variables are added by
the developer. 5 The global conditions (e.g., object invariants) are also written by the developer. These condi-
tions are valid throughout the program (e.g., the size of the array). They are added to each pre-/postcondition
of a Hoare triple. This reduces writing effort to not repeat the same condition in each Hoare triple.

The green border around each node indicates that all refinement steps are proved correctly. We

have to prove for each applied refinement rule the side condition (see for each refinement rule

the conditions after the iff in Definition 2.1). This condition is translated into a proof obliga-

tion in JavaDL. Since we verify rather small problems (e.g., with just a single assignment), KeY is

usually able to close the proof automatically if the JavaDL formula is valid. In CorC, the proof

of the refinement steps is started on request of the developer. As each refinement step can be

proved independently of the others (as long as the specification remains the same), the developer

is free to prove the refinement steps in any order. If the CorC program is altered, CorC auto-

matically tracks which refinement steps have to be reproved such that the program is always guar-

anteed to be correct. When a refinement step is not provable, the affected node is highlighted

with a red border. With this visualization, the developer directly sees the problematic refinement

steps. The developer can alter conditions, assignments statements, or change complete refine-

ment steps, and restart the verification process.

3.1. CorC Tool Support for Functional Correct-by-Construction Program Development

25

Implementation of CorC
The CorC tool is based on Eclipse to benefit from the standard IDE features, such as a project ex-

plorer, context menus, and a console. The language of CorC is implemented with an EMF
2
meta-

model. The metamodel defines the concrete statements with their attributes (pre-/postconditions,

abstract statements, verification status, …) and the possibility to refine abstract statements. The edi-

tor of CorC is split into a graphical and a textual editor. Both editors are implemented based on the

same metamodel to allow the interchange of programs written in one of the editors. The graphical

editor is implemented with Graphiti.
3
Graphiti is a framework for graphical editors to define the

shape and layout of graphical nodes that represent statements, as well as the functions for adding,

updating, and deleting the nodes. The textual editor is implemented with Xtext.
4
Xtext is a frame-

work that create a parser and a full-featured Eclipse text editor from a textual domain-specific lan-

guage (DSL). We designed a DSL based on our metamodel. When a developer writes a CorC pro-

gram in the textual editor, the program is parsed and translated to an instance of the metamodel to

check its correctness. In both editors, proof obligation for each applied refinement rule are gener-

ated as proof-files readable by KeY. Afterwards, the verification is performed with KeY, and results

are automatically returned to CorC to present and save the proof status.

Validation of CorC
We implemented case studies to evaluate whether CorC fulfills the stated requirements and to

measure the verification effort in comparison to post-hoc verification. Eight algorithms from the

book by Kourie and Watson [2012] are implemented. In a further evaluation [Bordis et al. 2022a],

40 methods from the case studies BankAccount [Thüm et al. 2012], Email [R. J. Hall 2005], and

Elevator [Plath and Ryan 2001] are implemented.

Qualitative Evaluation. By implementing case studies, we were able to evaluate that CorC is suit-

able to develop programs according to CbC. With CorC, we could develop programs and guaran-

tee their correctness (R0, R1). All refinement rules of [Kourie and Watson 2012] are implemented in

CorC.We can specify the CorCmethods with pre-/postconditions, intermediate conditions, invari-

ants, and variants. With Java, we support an established language. The specification languages JML

and JavaDL support first-order logic as needed for CbC. In CorC, we implemented a graphical edi-

tor for the overview of all refinements in a tree structure (G0). An advantage of this editor is that all

pre-/postconditions, invariants, and variants are shown explicitly next to the statement. The writ-

ing effort is reduced because conditions are propagated through the method automatically. Only

newly introduced invariants, intermediate conditions, or assignments have to be written manually

by the developer. The tree structure gives an overview of applied refinement steps to track possible

defects in the method under construction. To not miss a proof, the border color of each node indi-

cates the current proof status. We can also track which parts have to be proved again if the method

is changed (P2). We also implemented a textual editor to create methods following the CbC ap-

proach (G1). An advantage of the editor is that auto-completion supports the developers in writing

2https://www.eclipse.org/modeling/emf/
3https://eclipse.org/graphiti/
4https://eclipse.org/Xtext/

https://www.eclipse.org/modeling/emf/
https://eclipse.org/graphiti/
https://eclipse.org/Xtext/

26

the method. As all proof obligations are generated automatically, no correctness proof is missed.

If one proof cannot be closed, the specific part in the method is highlighted and can be reviewed

manually (P2). The automatic switch between both views (G2) is also implemented. CorC is inte-

grated into the Eclipse IDE. Therefore, necessary functionality to manage CorC projects, such as

the project explorer and the console are available and integrated in CorC. The verification of meth-

ods is done by generation proof obligations which are discharged by KeY. We ensure partial cor-

rectness by proving every side condition of the refinement steps (P0), this also includes total cor-

rectness because this is a side condition of the repetition rule (P1). With KeY as backend, we are able

to verify similar methods in CorC that can be verified post-hoc with KeY. As KeY is able to verify

sufficiently complex case studies [Gouw et al. 2015], we assume that CorC should be able to handle

the same case studies (G3). To summarize, our tool support satisfies all requirements of Section 3.1,

therefore we can answer that CorC is an adequate tool support for CbC.

Verification Effort. We also implemented the case studies to evaluate CbC and CorC in compari-

son to post-hoc verification in terms of verification effort (verification time and verification steps).

In a first evaluation, we measured the verification effort by constructing and verifying eight algo-

rithms from the book by Kourie and Watson [2012] in CorC. We also implemented the algorithms

in Java and verified them post-hoc with KeY. In this evaluation, we measured that the verifica-

tion time is reduced significantly which indicates a reduced proof complexity. In a second eval-

uation with 40 methods from the three case studies BankAccount [Thüm et al. 2012], Email [R. J.

Hall 2005], and Elevator [Plath and Ryan 2001], no trend for the verification effort can be identi-

fied [Bordis et al. 2022a]. We measured a similar verification effort for both approaches. Neverthe-

less, an important point is that we verified six more methods with CorC in that second evalua-

tion. We verified only 34 method with post-hoc verification. The additional specification in CorC

and the fine-grained proofs have a positive impact on the provability of methods, but the verifi-

cation effort for verifiable methods is not significantly affected. For future work, more case stud-

ies are needed to further investigate the verification effort.

Related Work

We discuss related work for specifying and verifying software. We also discuss related correctness-

by-construction program development approaches. Here, we compare CorC with other CbC tools.

Contracts and Program Verification. In CorC, we use JML, JavaDL and Java to specify and construct

programs. We integrated KeY [Ahrendt et al. 2016] for the verification tasks. KeY is designed for

deductive program verification of Java/JML programs. A related tool is OpenJML [Cok 2011] that

also verifies Java programs specified with JML.

First, the object-oriented programming language Eiffel supports design-by-contract [Meyer 1988;

Meyer 1992] by offering contracts in the language. In Eiffel, classes are specified with invariants, and

methods are specified with pre-/postconditions contracts. To verify methods, the program verifier

AutoProof [Khazeev et al. 2016; Tschannen et al. 2015] is integrated. AutoProof translates the speci-

fied method to a logic formula, and an SMT-solver is called to prove the validity of this formula. In

the backend, AutoProof uses Boogie [Barnett et al. 2005]. The language Spec# is an extension of C#

3.1. CorC Tool Support for Functional Correct-by-Construction Program Development

27

that introduces contracts and invariants [Barnett et al. 2004; Barnett et al. 2011]. Spec# programs are

verified by translating the proof obligations to formulas verifiable with Boogie [Barnett et al. 2005].

For the C language, the program verifier VCC [Cohen et al. 2009] and Frama-C [Cuoq et al. 2012]

verify specified C code. For this, VCC reuses the Spec# tool chain. The VeriFast [Jacobs et al. 2010]

program verifier verifies C and Java programs specified with contracts. The contracts are written in

separation logic instead of first-order logic as used in CorC. VerCors [Amighi et al. 2014] also veri-

fies C and Java programs. This tool is focused on concurrent and distributed software. Besides Eif-

fel, Dafny [Leino 2010] is another language with integrated specifications and verification. Dafny is

a functional language that supports the compilation to languages, such as C#, Java, Go, and Python.

Whiley [Pearce and Groves 2013] is another programming and specification language with associ-

ated verifier. For a subset of Ada, the languages SPARK [Barnes 2003] supports specification and

verification of Ada programs. The specification is written in the Ada aspect-syntax.
The focus of the presented languages is the specification of program behavior, and the focus of

the presented program verifiers is the verification that specified programs satisfy their specifica-

tion. In our contribution of developing the CorC tool support for CbC, we include the process

to construct programs that are guaranteed to be correct in every development step, instead of just

verifying the correctness post-hoc. For the verification of our proof obligations in CorC (i.e., the

verification whether side conditions are satisfied), we decided to build on KeY, but the CbC ap-

proach is not limited to a specific language or verification tool. Therefore, the mentioned related

languages and tools can be used to implement CbC.

Refinement-based Correctness-by-Construction. Correctness-by-construction is designed for the

incremental construction of specified programs with correctness guarantees for each development

step. Pioneers in this field are Dijkstra [1972], Wirth [1971], Gerhart [1975], and Hoare [1969]. For

CorC, we implemented correctness-by-construction by Kourie and Watson [2012] that is based on

Dijkstra [1976] and Gries [1987]. For Gries’ program development method, Heisel [1992] proposed

tool support that builds correctness proofs of the program under development. This tool is tailored

to the guarded command language in contrast to CorC where programs are constructed in Java.

Other related CbC methodologies are Morgan’s refinement calculus [Morgan 1994] and invariant-

based programming [Back and Wright 2012; Back 2009].

Morgan’s refinement calculus and correctness-by-construction by Kourie and Watson [2012]

have the same theoretical foundation, but Morgan’s refinement calculus is more elaborated with

numerous refinement rules, where many of these rules are only formally interesting. Kourie

and Watson [2012] propose a reduced set of refinements rules, so that comprehensibility is im-

proved without loosing expressiveness. The language ArcAngel [Oliveira et al. 2003] with the pro-

gram verifier ProofPower [Zeyda et al. 2009] implements Morgan’s refinement calculus. A tactic

language is introduced, where a tactic applies a sequence of refinement rules to construct cor-

rect programs. The applied tactic discharges proof obligations that are verified with ProofPower.

Invariant-based programming [Back and Wright 2012; Back 2009] focuses on invariants instead

of pre-/postcondition contracts as starting point. The approach is implemented in the tool SO-

COS [Back 2009; Back et al. 2007]. As CorC, SOCOS has a graphical user interface to construct

programs. SOCOS uses a form of a UML-style state chart where new states and transitions are in-

troduced in a refinement step. The tools verifies that the refinement step complies with the stated

28

invariants. The finished program is guaranteed to be correct and can be translated to executable

code. The applied refinement steps in CorC are structured in a hierarchical tree. This tree rep-

resents the structure of the code (comparable with an abstract syntax tree). Therefore, developers

construct with CorC at an abstraction level closer to source code.

Further refinement-based CbC approaches are Event-B [Abrial 2010; Abrial et al. 2010] for

automata-based systems and Circus [Oliveira et al. 2009; Oliveira et al. 2008] for state-rich reactive

systems. These approaches have an abstraction level on models (i.e., automata or state machines).

These models are refined stepwise to concrete and executable implementations. Each refinement

step results in a more concrete model that guarantees conformations with the initial model. The

tool Rodin [Abrial et al. 2010] implements Event-B, and CRefine [Oliveira et al. 2008] implements

Circus. For both approaches, the main difference to CorC is the different abstraction level. In

CorC, specified source code is constructed instead of automata-based systems.

The C-by-C approach of A. Hall and Chapman [2002] uses formal modeling processes to guide

the development during all stages (architectural design, detailed design, code) and to analyze the

results. This should eliminate defects in early stages of the development. With CorC, we provide

support at the method implementation level and not a process for all design stages.

Program and Specification Synthesis Program synthesis is a technique for automatically generat-

ing programs based on user specifications. Pioneers in this field are Manna and Waldinger [1980].

A state-of-the-art of program synthesis approaches is given by Gulwani et al. [2017]. For the Fortran

language, Stickel et al. [1994] deductively synthesize programs from user-given graphical specifica-

tions. Procedures given in libraries are composed to full implementations. Gulwani et al. [2010]

also synthesize programs by assembling basic components from a specified library. The approach

of Polikarpova et al. [2016] synthesizes recursive programs from specifications using type informa-

tion. Inversely, synthesis of function summaries [Hoare 1971; Chen et al. 2015; Sery et al. 2012] gen-

erates pre-/postcondition specifications from programs. This synthesis of function summaries is

used for modular verification to reduce verification time. With CbC and CorC, developers con-

struct programs in conformance with a pre-/postcondition specification. Thus, CbC is a program

development approach where developers construct both, the desired program and its specification.

Program synthesis generates only one of possibly many programs that fulfills the given specifica-

tion, and synthesis of a function summary generates one of possibly many specifications for a pro-

gram. In general, synthesis is limited in scalability due to the enormous search space of program-

s/specifications and the ambiguity of user intent.

Conclusion

The goal of this work is to develop tool support for correctness-by-construction to answer Research
Question RQ1 – Tool Support for Functional Correctness-by-Construction. We presented CorC that en-

ables CbC as proposed by Kourie and Watson [2012]. CorC supports all refinement rules of Kourie

and Watson [2012] and guarantees the correctness of the program in each refinement step. We sup-

port the development of programs in a graphical and a textual editor to cover different needs of

developers. In general, we fulfill the stated requirements to support correctness-by-construction.

Therefore, we addressed Challenge 1 with this contribution. We also evaluated CorC by measur-

3.2. A Usability Evaluation of the CbC Approach as Implemented in CorC 29

ing the verification effort in comparison to post-hoc verification. For small algorithms, we mea-

sured reduced verification time, but we could not confirm this in further cases studies [Bordis et al.

2022a]. In these case studies, we measured a similar verification time for both approaches. With ex-

isting tool support, we can evaluate with user studies how software developers use CbC. The user

studies are presented in the next section. CorC is also the foundation for the further work in this

thesis; the comparison with other correctness-by-construction approaches in Section 3.3, and the

integration of information flow security into the CbC approach in Section 3.4.

3.2. A Usability Evaluation of the CbC Approach as
Implemented in CorC

To evaluate comprehensibility and usability of CbC through CorC, user studies are necessary. With

the results of these user studies, we want to answer the second research question RQ2: How us-
able is the correct-by-construction program development approach with CorC? Hence, we want to evalu-
ate whether CbC can have a positive impact on the development of correct programs (e.g., develop-

ers could state that defects are more easily detected with CbC). In this section, we present two user

studies in which we evaluate how participants interact with CorC to construct correct programs in

comparison to how participants implement programs in Java and verify their correctness post-hoc

with KeY. By analyzing how the participants construct the programs and interact with the tools, we

get insights in their programming procedure. We collect qualitative results by conducting a struc-

tured interview and a standardized user experience questionnaire.
5
The first user study was pre-

sented at the Refinement Workshop in 2019 (see Section A.2).

T. Runge, T. Thüm, L. Cleophas, I. Schaefer, and B. W. Watson [2019b]. “Comparing

Correctness-by-Construction with Post-Hoc Verification - A Qualitative User Study”. In: For-
mal Methods. FM 2019 International Workshops. Refine. Vol. 12233. Lecture Notes in Computer
Science. Springer, pp. 388–405. doi: 10.1007/978-3-030-54997-8_25

The second user study was presented at the Formal Methods Teaching Workshop in 2021 (see

Section A.3). We conducted the second user study to confirm our findings.

T. Runge, T. Bordis, T. Thüm, and I. Schaefer [2021]. “Teaching Correctness-by-Construction

and Post-hoc Verification–The Online Experience”. In: Formal Methods Teaching Workshop.
Vol. 13122. Lecture Notes in Computer Science. Springer, pp. 101–116. doi: 10.1007/978-

3-030-91550-6_8

User Study Design

The design of the user studies is based on best practices given by Wohlin et al. [2012] with re-

spect to quantitatively and qualitatively comparing two tools that are used for the same tasks.

5https://www.ueq-online.org/

https://doi.org/10.1007/978-3-030-54997-8_25
https://doi.org/10.1007/978-3-030-91550-6_8
https://doi.org/10.1007/978-3-030-91550-6_8
https://www.ueq-online.org/

30

We consider the following three research questions to evaluate the approaches CbC and post-

hoc verification (PhV) with the tools CorC and KeY.

Q1: What kind of errors do participants make with CbC and PhV?

Q2: What is the process of participants to create programs with CbC or PhV?

Q3: Which of the two approaches is preferred by users and why?

To be able to conduct the user studies, we need participants who understand the concepts

of CbC with CorC, as well as post-hoc verification with KeY. Overall, three things are nec-

essary to solve the tasks in the user study:

Participants can specify methods with loop invariants and other auxiliary specification.

Participants can verify methods with KeY. We will use KeY as automatic program verifier in

the user studies. They do not have to know how to interact with KeY to prove programs, but

they should understand what the reasons could be that a proof is not closed automatically by

examining the open proof goals.

Participants can construct programs with CorC.

The students of the Software Quality 2 course at TU Braunschweig, a primary course in formal meth-

ods, are good candidates for the user studies. In the course, the students learn to specify and ver-

ify methods with KeY. They also learn correctness-by-construction and the CorC tool. Therefore,

students who attend the whole Software Quality 2 course are prepared for the user study. In the first
user study, we had 10 participants, and 13 participants in the second user study.

Participants of our user study have to implement two algorithms, one with CbC and one with

PhV. We had a time slot of 90 minutes for each user study. Therefore, the algorithms should have

a suitable size to be implementable in that time slot. The first algorithm is maximum element that
finds the maximum element in a given array of integers. The second algorithm is modulo that
calculates the remainder of a dividend a and a divisor b. We prohibit the use of division andmodulo
operators in this task so that the participants have to use a loop to implement a modulo algorithm.
Both algorithms have a similar size and cyclomatic complexity. The participants are arranged in two

groups with the Latin square design. One group uses CbC for the first task, and PhV afterwards. The

other group does the same tasks but uses the tools in reverse order. The tools are switched to address

the possibility of learning effects resulting from the order of tool employment. For PhV, participants

first fully implement the methods given the specification, and then use KeY subsequently to verify

their correctness. In contrast, for CbC, participants use the graphical editor of CorC to construct

themethods step-wise using the aforementioned refinement rules. To have the same starting point,

we provide a pre-/postcondition specification for each algorithm.

To answer the research questions, we analyze defects in code and specification of the imple-

mented program. Here, we are interested in the specific errors the participants make and if they are

similar for both approaches. The programming procedure is analyzed by examining all intermedi-

ate snapshots of the participants. A snapshot is created every time a participant tries to verify the

program. To get qualitative results regarding the comprehensibility and usability of the approaches,

we take a user experience questionnaire (UEQ). The UEQ [Laugwitz et al. 2008] is a standardized

3.2. A Usability Evaluation of the CbC Approach as Implemented in CorC 31

PhV 1st CbC 1st PhV 2nd CbC 2nd

#Defects Code Spec. Code Spec. Code Spec. Code Spec.

No Defects 8 2 4 3 9 1 2 1

Minor Defects 1 7 3 4 4 10 4 5

Major Defects 1 0 1 0 0 0 0 0

Incomplete 0 1 2 3 0 2 7 7

Table 3.2.: Defects in code and specification of the final programs of participants [Runge et al. 2021]

questionnaire to compare two tools in terms of their usability. Six usability properties of a tool are

measured: attractiveness, perspicuity, efficiency, dependability, stimulation, and novelty. To mea-

sure these aspects, a participant is asked to rate the tools with 26 items. Each item is a set of opposing

adjectives describing the tool. The rating of the adjectives is a 7-point Likert-scale. We also ask open

questions in a structured interview to get further insights how the participants liked the approaches.

Results and Discussion
With the analysis of the developed programs and the answers of the questionnaire and the inter-

view, we answer the research questions as follows [Runge et al. 2019b; Runge et al. 2021]. The gen-

eralizability of the results is limited due to the small number of participants.

Q1. What kind of errors do participants make with CbC and PhV? The first research question can

be answered by analyzing the defects in the code and auxiliary specification (e.g., loop invari-

ants) of participants. If the program cannot be corrected without changing five lines of code, we

classify a program to have major defects. If fewer lines contain defects, we classify it to have mi-

nor defects. For defects in the auxiliary specification (i.e., loop invariant for both approaches

and intermediate conditions for CbC), the same classification applies. Incomplete code or spec-

ification is classified separately. Table 3.2 shows the defects that participants have in their fi-

nal programs in the first and second user study.

With PhV, programs were mostly implemented correctly by the respective participants. As the

algorithms are small and not complex, we expected mostly correct results. In the first user study,

one result has minor defects with PhV and one result has major defects with PhV in the code. In

the second user study, we have four results with minor defects in the code. A typical defect is a loop

guard that uses a wrong logical comparison operator (e.g., greater-than instead of greater-than-

or-equal). The participants also initialized variables with incorrect values. Regarding the specifi-

cation, nearly every result has minor defects, seven in the first user study, and ten in the second

user study. A typical defect is a missing check that variables stay in a needed boundary. Some par-

ticipants also missed specifying the loop variant.

With CbC in the first user study, we have three results with minor defects and one result with

major defects in the code. In the second user study, four results haveminor defects in the code. With

CbC, the same defects as with PhV occur (i.e., wrong guards or wrong initialization of variables).

32

Only with CbC, we have incomplete coding results. The explanation given by the participants is

that they have not the necessary knowledge to construct programs with CbC because they missed

lectures or exercises. Regarding the specification with CbC, we have four minor defects in the first

user study, and five minor defects in the second user study. We also have incomplete specification

results. If the code was incomplete, the specification is likewise incomplete. With CbC, a typical

defect is that the loop invariant does not hold initially or in the end.

The coding results are in favor of PhV in comparison to CbC. We argue that the familiar envi-

ronment of writing Java code in a textual editor leads to fewer errors than using CorC’s graphical

editor. Since we have more defects in the specification than in the code, writing correct specifica-

tions is more challenging for participants. Overall, we got worse results in the second study com-

pared to the first user study as more incomplete results exist in the second user study. The rea-

son is that more participants in the second user study missed lectures or exercises of the Software

Quality course, and were therefore less prepared. Comparing the defects, the participants made

similar errors with both approaches. For example, they introduced incorrect loop guards or ini-

tialized variables incorrectly. They also had the most problems with finding a sufficient loop in-

variant. This is in agreement with the results of Back [2009] that most of the time is spent to al-

ter the loop invariant. With PhV, some participants forgot to specify a loop variant. This does not

happen with CbC because of the dedicated field in the graphical editor for the loop variant. Oth-

erwise, we did not identify real difference between CbC and PhV.

To answer the first research question, we observed the introduction of similar defects with both

approaches. There are fewer defects with PhV than with CbC, but in our experience this is due

to the familiarly of participants with writing code in textual editors. Furthermore, the partici-

pants do not have much expertise yet in constructing programs with CorC. We assume that the

defect rate decreases with a longer training period.

Q2. What is the process of participants to create programs with CbC or PhV? By analyzing all snapshots
of intermediate programs in both user studies, we got insights in the programming process with

CbC and PhV, respectively. With PhV, (1) the program was developed, (2) auxiliary specifications

were added, and (3) the program was verified. Participants hadmostly correct code in the first place,

but the specification had defects. Interesting observations are that participants changed both the

code and the specification if they could not verify the program. We saw that participants changed

correct code several times when they could not verify the program, and surprisingly, the code re-

mained correct. The participants did not notice that only the auxiliary specifications, such as loop

invariants, were insufficient. The tool support was not sufficient, so that participants can pin-

point the defects in code or specification. The process to construct the programs was not mono-

tonic after the first verification attempt. By monotonic, we mean that there is a clear process of

specifying, constructing, and then verifying the program. The participants had rather a trial-and-

error process to debug and verify the program.

With CbC, the participants interleaved writing code and specification, or they started with the

specification. They even checked incomplete programs to get correctness guarantees for their ap-

plied refinements. However, even with CbC, participants changed a correct and verified part of the

program if they could not prove correctness of the complete program. We cannot determine ex-

actly what the participants needed to pinpoint the defects. The problem could be inadequate tool

3.2. A Usability Evaluation of the CbC Approach as Implemented in CorC 33

support, inexperience with the tools, or inexperience with verification in general. With CbC, the

participants had more verification attempts, but they changed the code less. We noticed that a suf-

ficient specification helped to debug the program. For example, the participants found defects in

the code after they introduced a correct loop invariant.

To answer the second research question, we found a non-monotonic trial-and-error process to

construct programs with both approaches. The participants could not systematically fix bugs in

the user studies. Nonetheless, the participants started the expected refinement process with CbC,

but only up to the point where they could not solve a problem. We expect that further expertise

with the tool leads to a more structured construction process.

Q3. Which of the two approaches is preferred by users and why? The third research question can be

answered by analyzing the answers of the structured interview and the UEQ. The answers for the

UEQ were summarized regarding the six measurements: attractiveness, perspicuity, efficiency, de-

pendability, stimulation, and novelty. Overall, the average answers of the participants are in favor

of CorC. Wemeasured a significant difference with the T-test for stimulation and novelty. For per-

spicuity, both tools have a negative mean value. KeY also has a negative value for novelty.

We clustered the answers of the open questions to analyze whether the participants had simi-

lar experiences. Some participants preferred post-hoc verification with KeY because of the famil-

iar environment and syntax. CbC with CorC has the advantage of the detailed feedback per state-

ment as each statement is proved separately. The participants mentioned that the detailed feedback

helps to locate problems in code or specification. In both user studies, the participants preferred

CorC over KeY. More participants would use CbC to construct correct programs and fixing defects.

Considering that the participants made more errors with CorC, the participants seem to factor in

that they prefer correctness-by-construction over post-hoc verification. Surprisingly, no participant

complained about the additional specification effort of writing intermediate conditions in CorC,

but they mentioned the changed and limited programming style due to the refinement rules.

To answer the third research question, the participants prefer CbC and CorC over PhV and

KeY due to the fine-grained feedback by checking individual statements. Some participants still

prefer PhV because of the familiar environment.

Related Work

Tool support for verification has already been evaluated in the literature, but PhV was not compared

to CbC yet. We compare our user studies with related work that evaluated the use of verification

tools. We also discuss related work on teaching formal methods because this is the foundation to

have trained participants for user studies on CbC and program verification.

User Studies with Verification Tools. Related work for evaluating PhV or CbC are manifold, but be-

fore this work and to the best of our knowledge, there is no user study comparing both approaches

qualitatively. Petiot et al. [2016] analyzed how developers interact with verification tools. They in-

vestigated how developers can be supported if they encounter open proof goals. One improvement

is to categorize the occurred errors and calculate counter examples for each category. The calcula-

tion of counter examples is complementary to the CbCmethodology. A defective Hoare triple could

34

be used as basis for counter examples to improve the user feedback. Johnson et al. [2013] inter-

viewed developers about their use of static analysis tools. The most important point mentioned is

that developers need good error reporting. Hentschel et al. [2016b] evaluated how formal methods

supports code reviews. Their symbolic execution debugger (SED) [Hentschel 2016; Hentschel et al.

2016a] helped to locate defects in already existing programs. The interaction of developers with the

program verifier KeY during the verification of programs is also analyzed [Beckert et al. 2014a; Beck-

ert et al. 2014b]. The authors identified that developers need much effort to understand the current

proof state so that they can interact with the tool properly. In comparison to the related works, we

focus on the usability of the tools during program constructions in our user studies. The develop-

ers used CorC and KeY as automatic program verification tools. Therefore, we excluded the inter-

action with program verifiers in our user studies. We analyzed the programming procedure of the

developers and how they assess the tools to detect defects in the code or specification.

Back [2009] evaluated the CbC tool SOCOS. They state that correctness-by-construction needs

well-developed tools to support users during the refinement process. The majority of the time, de-

velopers refine the invariant to a correct solution. The correct invariant is found by iterative refine-

ment of a partial (and possibly wrong) invariant. In our user studies, we have observed the same

behavior that loop invariants are altered several times. With correct and sufficient loop invariants,

participants usually created a correct and verified program.

Teaching Formal Methods. Teaching formal methods has been researched in related work [Cataño

2019; Creuse et al. 2019; Divasón and Romero 2019; Liu et al. 2009], where the authors discuss teach-

ing experiences and evaluate how students learn with different teaching strategies and the support

of tools. Liu et al. [2009] discovered that a mix of pen-and-paper and tool-supported exercises are

beneficial for students to learn thematerial. By writing on paper, the students consolidate what they

have learned. With tools, larger assignments can be completed because the students are supported

in their tasks. Students also increase their productivity with the tools. Being able to solve prob-

lems in tools and receive positive feedback when they verify a program also increases student inter-

est. Creuse et al. [2019] state that teaching by example is valuable to get started with formal meth-

ods. Practical examples facilitate the entry to formal methods. Cataño [2019] detect that students

need immediate and understandable feedback during their specification or verification process.

Students want to understand whether problems in the process occur. We differ from this related

work [Cataño 2019; Creuse et al. 2019; Divasón and Romero 2019; Liu et al. 2009] because we do not

focus on teaching. It is a mandatory prerequisite for our user studies that students know the tools.

Therefore, we teach PhV with KeY and CbC with CorC in the Software Quality 2 course. The course

is guided by best practices from related work. CorC (with its graphical interface) is well suited for

teaching CbC, since program development and verification feedback are presented in detail.

Conclusion

The goal of the user studies [Runge et al. 2019b; Runge et al. 2021] is to evaluate the usability

of CbC through CorC to answer Research Question RQ2 – Usability of Tool-Supported Correctness-by-
Construction. In the user studies, the participants wrote mostly correct code with PhV. We have more
defects with CbC. In case of writing auxiliary specification, we have about the same number of cor-

3.3. Alternative Correct-by-Construction Program Development Approaches 35

rect results for both approaches. From these results, we conclude that the participants need more

time to gain expertise with CbC and CorC to reduce the defect rate in the code. They are famil-

iar with textual editors to write small algorithms, but are not used to CorC’s graphical editor. The

exact errors made are similar for both approaches; the participants wrote guards with wrong log-

ical comparison operator or too weak loop invariants. In the interviews, the participants stated

that they prefer the structured programming approach of CbC, and they appreciated the detailed

feedback of CbC and CorC. The verification of the individual steps helps to identify the source of

the error. The familiar coding environment was the main factor in favor of post-hoc verification.

Therefore, we consider that CbC can be an alternative to PhV. As some participants made more er-

rors with CbC and also criticized the limited flexibility of the CbC programming approach, this

led us to Challenge 2 and our third research question.

3.3. Alternative Correct-by-Construction Program
Development Approaches

As Challenge 2, we identified that correctness-by-construction as proposed by Kourie and Watson
[2012] has a rigid program construction process. In our user studies, we received feedback from the

participants that the construction rules restrict developers in their programming tasks. Therefore,

we want to investigate alternative correct-by-construction program development approaches that

address the limited flexibility of correctness-by-construction by Kourie and Watson [2012].

In this section, we develop two alternative correctness-by-construction approaches and com-

pare correctness-by-construction by Kourie and Watson [2012] with these approaches. We want to

answer the research question RQ3: What alternative correct-by-construction program development ap-
proaches exist, and how do they compare to rule-based correctness-by-construction? CbC-Block, the first

CbC development approach aims to relax the strict guideline of CbC. CbC-Block introduces new

refinement rules that condense any number of refinement rule applications into one construc-

tion step. TraitCbC, the second CbC development approach is composition-based and relies on

traits [Ducasse et al. 2006] to construct correct and reusable programs. In TraitCbC, small units

of code (i.e., methods in traits) are constructed and verified. Then, these units are composed to

larger programs in a correct-by-construction manner. Therefore, TraitCbC does not need refine-

ment rules to construct programs. In this section, CbC by Kourie and Watson [2012] is referred as

classic CbC to be precise which correct-by-construction program development approach is meant.

TraitCbC was presented at the International Conference on Formal Techniques for Distributed

Objects, Components, and Systems (see Section A.4). Our work was awarded the Best Paper Award.

T. Runge, A. Potanin, T. Thüm, and I. Schaefer [2022b]. “Traits: Correctness-by-Construction

for Free”. In: International Conference on Formal Techniques for Distributed Objects, Components,
and Systems. Vol. 13273. Lecture Notes in Computer Science. Springer, pp. 131–150. doi: 10.
1007/978-3-031-08679-3_9

As an extended publication, we introduced CbC-Block in the special issue of the Journal on Log-

ical Methods in Computer Science (see Section A.5).

https://doi.org/10.1007/978-3-031-08679-3_9
https://doi.org/10.1007/978-3-031-08679-3_9

36

T. Runge, T. Bordis, A. Potanin, T. Thüm, and I. Schaefer [2023]. “Flexible Correct-by-

Construction Programming”. Logical Methods in Computer Science

CbC-Block

CbC-Block extends CbC by adding two refinement rules that allow to introduce a block of pro-

gram statements instead of just one as given by the classic CbC refinement rules. These new rules

allow a simpler way to construct a program as the application of several classic CbC refinement

rules can be condensed by introducing one block of code. Therefore, the flexibility to construct

programs is improved. The rigid program development approach of classic CbC is loosened while

retaining the benefits of a structured program construction approach (e.g., a guideline to construct

programs, and correctness guarantees for each refinement step).

The first rule (block-introduction) introduces a block statement by refining one abstract state-

ment. The block statement is similar to an abstract statement, but it is explicitly specified with a

pre-/postcondition contract (i.e., a block contract [Ahrendt et al. 2016]). To guarantee that this re-

finement retains the correctness of the program under development, we have to check three parts.

First, the precondition of the refined abstract statement must imply the precondition of the block.

We have to ensure that the pre-state of the block is satisfied to be able to execute the block. Sec-

ond, the postcondition of the blockmust imply the postcondition of the refined abstract statement.

Third, the block must satisfy its own contract. As the block is still abstract, it must be refined first

to prove this third proof obligation. Definition 3.1 shows the block-introduction rule formally.

Definition 3.1: Block-Introduction

Let {P}S{Q} be aHoare Triple with precondition P, abstract statement S, and postcondition
Q. Then, Hoare triple {P}S{Q} is refinable to {P′} Block B {Q′}
iff P implies P′

and Q′ implies Q and {P′} Block B {Q′} holds, where P′
and Q′

are pre- and

postcondition of Block B.

The block statement can be refined in two ways. First, any already existing CbC refinement

rule can be applied, and the correctness is guaranteed as if an abstract statement is refined with

one of the refinement rules. Second, the block can be refined with the new block-instantiation

rule to any sequence of concrete program statements. The introduced block of code can have any

size from simple code to a complete method implementation. Thus, the application of the block-

instantiation rule can condense the application of several CbC refinement rules. The side con-

ditions of the block-instantiation rule guarantee that the introduced sequence of program state-

ments fulfills the pre-/postcondition contract of the block. To prove fulfillment of the contract,

program verification is used. Similar to a method call, we prove that the dynamic logic formula

P → < statement; ... > Q is fulfilled. The formula denotes that, if the precondition is assumed,

and the code is executed, the code terminates, and the program is in a state that satisfies the post-

condition. Definition 3.2 shows the block-instantiation rule formally.

3.3. Alternative Correct-by-Construction Program Development Approaches 37

Definition 3.2: Block-Instantiation

Let {P}S{Q} be a Hoare Triple with precondition P, block statement Block B, and postcon-
dition Q. Then, Hoare triple {P} Block B {Q} is refinable to {P} < statement; ... > {Q}
iff P → < statement; ... > Q, where < statement; ... > is any sequence of concrete pro-

gram statements possibly containing further blocks.

Classic CbC already has amethod call rule that can be used to refine an abstract statement to a call

of any auxiliary code. With the block refinement rule, we can introduce any code without the over-

head of creating newmethods. Themain advantage of a block is that local variables of the surround-

ing context can be altered. With CbC, we always specify the complete program state in any condition

(e.g., pre-/postcondition) to exclude the possibility of unwanted side effects in the block that could be

missed. Amethod call cannot alter local variables of the calling context. The block-instantiation rule

also enforces that the code sequence is verified against the pre-/postcondition specification, then

its contract can be assumed for the verification of the surrounding context. For a called method, it

is just assumed that the method fulfills its contract. This has to be proved separately.

Example 3.2. To give an example, we implement a maxElement algorithm. The algorithm finds the largest
element in a list of integers. The list offers a get-method to access an element of the list at a specific position.
A contains-method checks that the result is a member of the list. In Listing 3.1, we show a starting point
of the program where some code is already developed using CbC refinement rules. The program is specified
with a pre-/postcondition contract. The precondition states that the list contains at least one element. The
postcondition states that the largest element in the list is returned. The program starts with declaring two local
variables in lines 6 and 7. The variable i stores the current largest element, and variable j is used to iterate
through the list. In lines 11–15, a block is introduced with the block-introduction rule. The block is specified
with a pre-/postcondition contract. The precondition states the initial values of the local variables, and the
postcondition states that i the largest element. As the block is also surrounded with intermediate conditions in
lines 9 and 17 (these were already introduced with other CbC rules), we can check if the side conditions of the
block-introduction rule are fulfilled. We have to show that the condition before the block implies the precondition
of the block, and that the postcondition of the block implies the condition after the block. Both implications are
valid in the example.

1/*@ requires list.size() > 0;

2 @ ensures list.contains (\ result) && (\ forall int q;

3 @ q >= 0 && q < list.size(); \result >= list.get(q));

4 @*/

5 public int maxElement(List list) {

6 int i = list.get(0);

7 int j = 1;

8

9 //@ Intm: list.size() > 0 && i == list.get (0) && j == 1;

10

11 /*@ requires list.size() > 0 && i == list.get(0) && j == 1;

12 @ ensures list.contains(i) && (\ forall int q;

13 @ q >= 0 && q < list.size(); i >= list.get(q));

14 @*/

38

15 { \Block B1; }

16

17 //@ Intm: list.contains(i) && (\ forall int q;

18 //@ q >= 0 && q < list.size(); i >= list.get(q));

19

20 return i;

21 }

Listing 3.1.: Initial program of maxElement

In Listing 3.2, the block B1 is concretized with the block-instantiation rule. The instantiated block must
fulfill its contract. The implementation of the block in lines 8–17 introduces a loop to iterate through the list
and to update the variable i if a larger element is found. The loop is also specified with a loop invariant and
variant. The invariant states that between the indices 0 and j the current largest element is stored in i. We
have to show that the instantiation satisfies the block contract. Therefore, we prove that if the precondition is
satisfied and after executing the block, the postcondition must be fulfilled. This can be proved with established
program verifier. When this obligation is proved, the program is fully refined and verified. This instantiation
condenses the application of several CbC refinement rules, the repetition rule to create the loop, a composition
rule, a selection rule to check for a larger element, and two assignment rules. Therefore, the block rules provide
a flexible way to complete the program without relying on many classic CbC refinement rules.

1Block B1;

2

3/*@ requires list.size() > 0;

4 @ ensures list.contains(i) && (\ forall int q;

5 @ q >= 0 && q < list.size(); i >= list.get(q));

6 @*/

7 {

8 //@ loop_invariant list.contains(i)

9 //@ && j > 0 && j <= list.size() &&

10 //@ (\ forall int q; q >= 0 && q < j; i >= list.get(q));

11 //@ decreases list.size() - j;

12 while (j < list.size()) {

13 if (list.get(j) > i) {

14 i = list.get(j);

15 }

16 j = j + 1;

17 }

18 }

Listing 3.2.: Refinement of block B1

CbC-Block is implemented by extending CorC to support the refinement rules of CbC-Block.

For the verification of an introduced block (Definition 3.1), we use KeY to prove the side condi-

tions that the pre-/postcondition are suitable. For the verification of the block-instantiation (Def-

inition 3.2), we implemented a generator that transforms a block to a method in order to use KeY

3.3. Alternative Correct-by-Construction Program Development Approaches 39

for method verification. Thus, we can reuse an existing feature of KeY. CorC’s usability was sub-

stantiated with two user studies in Section 3.2. We conducted an additional user study for the CbC-

Block extension [Runge et al. 2023]. We compared CbC-Block with classic CbC by (dis)allowing

the use of the block rules. The structure is otherwise the same as the previous user studies. In the

additional user study for CbC-Block, the participants appreciated the grouping of statements to

one block of code, and the freedom to not be bound to the classic CbC refinement rules. All par-

ticipants considered the introduction of the block rules useful.

TraitCbC
TraitCbC is based on traits [Ducasse et al. 2006] that constitute a flexible language construct for
modular code reuse. A trait is independent of any class hierarchy and consists of concrete or abstract
methods. Traits can be composed to larger traits or classes containing all methods of all composed

traits. During composition, the compatibility of methods is checked. This means, the specification

of a concrete method has to satisfy the specification of an abstract method with the same signature

(see Liskov substitution principle [Liskov and Wing 1994]).

TraitCbC uses traits and trait composition to enable an incremental program development ap-

proach. The development approach is as follows: All abstract or concrete methods that are intro-

duced in TraitCbC are specified with a pre-/postcondition contract. A developer implements a first

trait with a concrete method m1. This method m1 contains holes. A hole is an abstract method (e.g.,
an abstract method m2) that is called in method m1. The abstract method m2 is also part of the first

trait. With this information, we can verify that method m1 fulfills its contract under the assumption

thatmethod m2 fulfills its contract. In the next step, the abstract method m2 is implemented in a sec-

ond trait, where the implementation of method m2 can contain further abstract methods. After the

correctness of method m2 is also proved, the two traits are composed. We check that the contract of

the concrete method m2 in the second trait fulfills the contract of the abstract method m2 in the first

trait. This incremental TraitCbC approach stops when all abstract methods are implemented, and

all traits are composed. TraitCbC is based on post-hoc verification [Ahrendt et al. 2016]. There-

fore, the same programs can be verified with TraitCbC as with post-hoc verification, but in addi-

tion, TraitCbC introduces an explicit program construction approach. It utilizes the flexibility of

traits, which is beneficial for scenarios as incremental development [Damiani et al. 2014] and the

development of software product lines [Clements and Northrop 2002; Bettini et al. 2010].

Example 3.3. We implement the maxElement algorithm in a slightly different way than before to better fit
the TraitCbC approach. In TraitCbC, programs are organized in reusable traits with concrete and abstract
methods. Therefore, we strive for methods that are verified once, but called several times in the program. The
first implementation step is shown in Listing 3.3. In trait MaxETrait1, an abstract method maxElement is
specified with a pre-/postcondition contract. The precondition excludes empty lists, and the postcondition states
that the result is the largest element in the list.

1trait MaxETrait1 {

2/*@ requires list.size() > 0;

3 @ ensures list.contains (\ result) &

4 @ (\ forall int n: list.contains(n) ==> \result >= n);

5 @*/

40

6 abstract int maxElement(List list);

7}

Listing 3.3.: Initial trait for maxElement

As second step, we implement the method in trait MaxETrait2 shown in Listing 3.4. The implementation of
maxElement is as follows. If there is only one element in the list, we found the maximum. If the first element
is larger than the other elements in the tail of the list, we return this first element. Otherwise, the maximum is
searched in the tail of the list. The method implementation calls two abstract methods. The abstract method
accessHead accesses the first element of the list. The abstract method maxTail finds the maximum element
in the tail of the list, so it recursively searches for the largest element.

1trait MaxETrait2 {

2/*@ requires list.size() > 0;

3 @ ensures list.contains (\ result) &

4 @ (\ forall int n: list.contains(n) ==> \result >= n);

5 @*/

6 int maxElement(List list) {

7 if (list.size() == 1) {return accessHead(list);}

8 else if (accessHead(list) >= maxTail(list))

9 {return accessHead(list);}

10 else {return maxTail(list);}

11 }

12

13/*@ requires list.size() > 0;

14 @ ensures \result == list.element ();

15 @*/

16 abstract int accessHead(List list);

17

18/*@ requires list.size() > 1;

19 @ ensures list.tail().contains (\ result) &

20 @ (\ forall int n: list.tail().contains(n) ==> \result >= n)

;

21 @*/

22 abstract int maxTail(List list);

23}

Listing 3.4.: Implementation of maxElement with auxiliary methods

In this trait, we can verify the correct implementation of the method maxElement under the assumptions
that both abstract methods will be correctly implemented in subsequent construction steps. In TraitCbC,
we verify the correctness of maxElement directly, and then proceed to compose both traits MaxETrait1 and
MaxETrait2. When composing the traits, we prove that the specification of the concrete method maxElement
fulfills the specification of the abstract method. In concrete, we prove that:
MaxETrait1.maxElement(..).pre ==> MaxETrait2.maxElement(..).pre as well as:
MaxETrait2.maxElement(..).post ==> MaxETrait1.maxElement(..).post.
By composing two correct traits, we know that the resulting trait is correct by construction. In this example, the

3.3. Alternative Correct-by-Construction Program Development Approaches 41

specifications are the same, so proving the composition is trivial, but this is not generally the case. The next steps
would be to implement the remaining abstract methods and compose the traits to finalize the implementation.

TraitCbC requires two properties to guarantee the correctness of programs under development.

First, we are using program verification to prove the correctness of concrete methods. Each con-

crete method in a trait is directly verified with the information that is present in its trait. There-

fore, all called methods of a concrete method must be part of the trait (either abstract or concrete).

Second, for trait composition, we use verifiers to check the compatibility of methods: a concrete

methodmust have a weaker precondition and a stronger postcondition to satisfy the contract of the

abstract method with the same signature. Definition 3.3 shows the method-composition rule for-

mally. When composing twomethods, we have four cases. (1) If a concretemethod is composed with

an abstract method, the precondition of the abstract method has to imply the precondition of the

concrete method, and the postcondition of the concrete method has to imply the postcondition of

the abstract method (see Liskov substitution principle [Liskov and Wing 1994]). (2) The second case

is symmetric to the first case. (3) If two abstract methods are composed, the contract of one method

has to imply the contract of the other method. This is needed so that a concrete method can satisfy

the contracts of both abstract methods. (4) The fourth case swaps the implication direction of the

contracts of the two abstract methods. The composition of two concrete methods is correctly left

undefined. The user has to solve this case manually by choosing one implementation.

Definition 3.3: Method Composition

Let M1 and M2 be two methods. A method has the signature method C m(C1 x1 . . . Cn xn) e;
with a namem, a return typeC, a list of parametersCi xi, and a body e. An abstractmethod has
a similar signature method C m(C1 x1 . . . Cn xn); without the body e. A method is specified

with a contract S, where the pre- and postcondition are accessed with the functions Pre(S)
and Post(S). MH is the method header without the body.

Then M1 + M2 = M is the composition of these methods with resulting method M.

• S method C m(C1 x1 . . . Cn xn) e; + S′ method C m(C1 _ . . . Cn _);
= S method C m(C1 x1 . . . Cn xn) e;

if Pre(S′) implies Pre(S) and Post(S) implies Post(S′)

• MH1; + MH2 e; = MH2 e; + MH1;
• S method C m(C1 x1 . . . Cn xn); + S′ method C m(C1 _ . . . Cn _);

= S method C m(C1 x1 . . . Cn xn);
if Pre(S′) implies Pre(S) and Post(S) implies Post(S′)

• S method C m(C1 x1 . . . Cn xn); + S′ method C m(C1 _ . . . Cn _);
= S′ method C m(C1 x1 . . . Cn xn);

if (Pre(S) implies Pre(S′) and Post(S′) implies Post(S))
and not (Pre(S′) implies Pre(S) and Post(S) impliesPost(S′))

In our work [Runge et al. 2022b; Runge et al. 2023], we established the syntax, type system, re-

duction rules, and trait flattening semantics for TraitCbC. We formalized a program development

approach using pre-/postcondition contracts and method calls instead of refinement rules and ab-

stract statements as in classic CbC. We proved soundness of the trait composition process and that

TraitCbC enables an incremental construction approach. An informal version of the theorem that

42

Classic CbC CbC-Block TraitCbC

Language Con-

structs

Adds refinement rules to a pro-

gramming language. Needs

specification language.

Adds refinement rules to a pro-

gramming language. Has new

refinement rules to introduce

a specified block of statements.

Needs specification language.

Programming language with

traits. Needs specification lan-

guage.

Tool support Needs specialized tool support. Needs specialized tool support.

Implemented as extension of

CorC.

Relies on post-hoc verification

tools.

Development/

Verification

Specific refinement rules guar-

antee the correctness of each re-

finement step.

Specific refinement rules guar-

antee the correctness of each

refinement step. Refinements

can be condensed with the block

rules.

Flexible construction by compo-

sition of traits. Each method

is specified so that each con-

structed method can directly be

verified.

Table 3.4.: Comparison of classic CbC with CbC-Block and TraitCbC [Runge et al. 2023]

the TraitCbC approach constructs correct programs is presented in Theorem 3.1. Starting with a

set of verified traits, the composition of these traits is a verified program. The formal theorem is

established and proved in the paper [Runge et al. 2023].

Theorem 3.1: Sound CbC Process

Starting with a set of verified traits t0 . . . tn, we can write C = t0 + · · ·+ tn as our TraitCbC

approach; where t0 + t1 is the application of the first construction step (trait composition),

and t0 + t1 + t2 is the application of the second construction step, etc.

Then we get a verified program C correct by construction.

The implementation of TraitCbC is based on Java and JML. In this setting, a trait is an in-

terface with default implementations. We provide an editor to state which traits should be

composed for the incremental construction of complete programs. The editor also starts the

verification process. For the verification of methods and method composition, existing pro-

gram verifier can be used. Our implementation of TraitCbC uses KeY [Ahrendt et al. 2016] for

Java/JML program verification. TraitCbC was evaluated with a feasibility study [Runge et al.

2022b], where we showed that case studies can be implemented at varying levels of granular-

ity, from small (auxiliary) methods to complex ones.

The CbC Program Development Approaches in Comparison
We compare CbC by Kourie and Watson [2012] (classic CbC) with CbC-Block and TraitCbC re-

garding the language constructs to write programs, tool support, the program development ap-

proach, and verification process to discuss the advantages and drawbacks of the approaches. The

comparison is summarized in Table 3.4 [Runge et al. 2023].

Language Constructs. All approaches are based on a programming and specification language to

write and specify programs. The refinement rules of classic CbC and CbC-Block are external to

a programming language. By external, we mean that refinement rules are not part of the pro-

gramming language; they are a program transformation concept to refine an abstract statement

to a concrete implementation. For TraitCbC, traits must be present in the language to allow

3.3. Alternative Correct-by-Construction Program Development Approaches 43

the composition-based construction approach (e.g., Java has interfaces with default implementa-

tions that are a good approximation of traits). The advantage of TraitCbC is that no external re-

finement rules are necessary to develop programs.

Tool Support. For classic CbC, the CorC tool was developed (see Section 3.1). CorC was extended

in this contribution to also support the refinement rules of CbC-Block [Runge et al. 2023]. The

feasibility of CorC was evaluated with several case studies that could be implemented in CorC.

We measured a similar verification effort as post-hoc verification, but with the advantage that more

programs could be verified with CorC [Bordis et al. 2022a]. The usability of CorC and the ex-

tended version for CbC-Block are shown with user studies [Runge et al. 2019b; Runge et al. 2021;

Runge et al. 2023]. The participants appreciated the general fine-grained construction that helps to

detect errors, but also the possiblity to condense refinement steps with the block rules. TraitCbC

is implemented with an editor to state the trait composition and start the verification process with

KeY. We showed the feasibility by implementing case studies in varying levels of granularity.

Therefore, all approaches are tool-supported, and it is feasible to construct programs with

any of the approaches. For TraitCbC, a specialized editor is beneficial, but general program

verification tools are sufficient. Classic CbC and CbC-Block need specialized tools to sup-

port the rule-based refinement approach.

Program Development and Verification. Classic CbC has a strict guideline to construct programs

with refinement rules. CbC-Block relaxes this guideline by introducing blocks of code with the

new refinement rules. The CbC-Block refinement rules can saves the application of several other

refinement rules. In both approaches, checking the side conditions of the applied refinement

rule guarantees the correctness of the program under construction. TraitCbC also relaxes the

rigid guideline as methods of any size can be developed in the traits. Nonetheless, TraitCbC en-

sures that the implemented methods are directly verified regarding their specification. Afterwards,

the traits and their methods are composed to correct software. TraitCbC endorses to construct

code in fine-grained steps that are more amenable for verification than single complex methods.

These methods are also easily reusable in other contexts because they are implemented in traits

that can be composed with other traits as needed.

All three approaches, provide an incremental program construction approach that ensures the

correctness of the program in each step. CbC-Block offers more freedom compared to classic CbC.

TraitCbC also provides a flexible way to develop programs, even without relying on refinement

rules.

Related Work

We discussed related work on correctness-by-construction and program verification before. Since

CbC-Block is an extension of CbC by Kourie and Watson [2012], the same differentiation as be-

fore applies. CbC-Block utilizes block contracts [Ahrendt et al. 2016] that specify the behav-

ior of a Java block similar to a method [Meyer 1992; Leino 1995]. To establish a CbC refine-

ment process, we introduced a refinement rule that refines an abstract statement to a specified

block, and a refinement rule that instantiates a block.

The main difference between related CbC approaches and TraitCbC is that TraitCbC is

composition-based, where atomic units of code are correctly composed to complete programs. No

44

refinement rules are necessary to construct programs. In the following, we discuss related work

on the concept of traits in programming and how it relates to formal verification.

For clean design and reuse, traits are introduced in many languages, for example, in Smalltalk

[Ducasse et al. 2006], Java [Bono et al. 2014] by utilizing default methods in interfaces, and other Java-

like languages [Bettini et al. 2013; Liquori and Spiwack 2008; Smith and Drossopoulou 2005]. Other

languages also use the term trait, but traits in Scala are mixins [Flatt et al. 1998], and traits in Rust

are type classes [Sozeau and Oury 2008]. Traits in Smalltalk [Ducasse et al. 2006] are stateful. They

have private fields to reduce the amount of required get-methods to access state. In comparison

to Smalltalk, traits in our language are stateless. We rely on abstract state operations to represent

state. A class is instantiable if its only abstract methods are valid get-methods. The get-methods

and other methods can also be renamed [Bettini et al. 2013; Reppy and Turon 2006], allowing flexi-

ble reuse. To verify traits, Damiani et al. [2014] established a post-hoc verification approach for the

trait language TraitRecordJ [Bettini et al. 2013]. Damiani et al. [2014] proposed a modular and in-

cremental verification process for contract-based specified methods in traits. None of the related

work formulated a CbC refinement process to create correct programs based on traits.

Conclusion

The goal of this contribution is to address the rigid program construction of classic CbC

(Challenge 2). We proposed two related CbC approaches, CbC-Block and TraitCbC, that have

a relaxed guideline to construct correct programs by construction. CbC-Block is a rule-based

CbC approach with refinement rules that allows a more flexible program construction than clas-

sic CbC. The block refinement rules allow to condense the application of any number of clas-

sic CbC refinement rules. CbC-Block is implemented in CorC and evaluated with a user study.

The participants of the user study appreciated the increased flexibility enabled by the block rules.

TraitCbC is a new approach that uses composition to construct programs. TraitCbC is there-

fore an alternative CbC approach with a program development process that does not need refine-

ment rules. Rather, small program parts (auxiliary methods) are developed and composed with

regard to their specification. TraitCbC is implemented with an editor for trait composition and

a standard post-hoc program verifier. We showed feasibility of this composition-based program

development approach by implementing several case studies. We addressed Research Question RQ3
– Alternatives to Rule-based Correctness-by-Construction with the comparison and discussion of clas-

sic CbC, CbC-Block, and TraitCbC regarding their characteristics.

3.4. A Uniform Correct-by-Construction Program
Development Approach for Functional Correctness and
Security

In this section, we investigate how to construct functionally correct and secure programs. It is

beneficial if both properties are ensured at the same time, however, they are normally checked one

after the other. This can cause problems, for example, if the functional correctness of a program

is already verified, but an information flow analysis detects a problem that needs a change in the

3.4. A Uniform Correct-by-Construction Program Development Approach for

Functional Correctness and Security 45

program, we have to reverify the changed program because the changes could affect the functional

correctness. By ensuring both properties in a uniform CbC process, this problem can be mitigated.

The structured CbC approach is already advantageous for functional correctness [Watson et al.

2016]. With our third contribution [Runge et al. 2020; Runge et al. 2022c; Runge et al. 2022a], we

want to exploit the structured development and reasoning process of CbC for secure programs.

Thus, we want to answer the fourth research question RQ4: How can we support the development of
programs with correctness-by-construction that are functionally correct and satisfy information flow secu-
rity? To answer this question, we first create SIFO, a new information flow security type system

for an object-oriented language [Runge et al. 2022c]. This type system type-checks whether devel-

oped programs fulfill the defined information flow policy. In general, the type system ensures that

an attacker is never able to deduce private data by observing public data. We decided to use SIFO

as basis for our uniform CbC process because SIFO utilizes immutability and uniqueness prop-

erties of objects for the detection of information leaks. By knowing that specific objects are only

accessible through a unique reference or that objects are immutable, we can make precise state-

ments about potential information flow to not conservatively reject secure programs. Already exist-

ing type systems for Java-like languages [Sabelfeld and Myers 2003; Myers 1999; Banerjee and Nau-

mann 2002] do not have this kind of mutation or alias analysis and therefore pessimistically re-

ject secure programs. SIFO was presented as article in the Journal ACM Transactions on Program-

ming Languages and Systems (TOPLAS) (see Section A.6).

T. Runge, M. Servetto, A. Potanin, and I. Schaefer [2022c]. “Immutability and Encapsulation

for Sound OO Information Flow Control”. ACM Transactions on Programming Languages and
Systems (TOPLAS). doi: 10.1145/3573270

In a second step, we transform the typing rules into refinement rules to establish a correct-by-

construction program development approach for information flow security. By integrating the re-

finement rules in the tool CorC, we support CbC for functional correctness and information flow

security. A previous version of CbC for secure information flow for an imperative language was pre-

sented at the International Conference of FormalMethods in Software Engineering (see Section A.7).

T. Runge, A. Knüppel, T. Thüm, and I. Schaefer [2020]. “Lattice-Based Information Flow

Control-by-Construction for Security-by-Design”. In: FormaliSE@ICSE 2020: 8th Interna-
tional Conference on Formal Methods in Software Engineering. ACM, pp. 44–54. doi: 10.1145/

3372020.3391565

The uniform CbC approach for an object-oriented language that is based on SIFO was then pre-

sented at the International Conference on Software Engineering and Formal Methods (see Sec-

tion A.8).

T. Runge, A. Kittelmann, M. Servetto, A. Potanin, and I. Schaefer [2022a]. “Information Flow

Control-by-Construction for an Object-Oriented Language”. In: International Conference on
Software Engineering and Formal Methods. Vol. 13550. Lecture Notes in Computer Science.

Springer, pp. 209–226. doi: 10.1007/978-3-031-17108-6_13

https://doi.org/10.1145/3573270
https://doi.org/10.1145/3372020.3391565
https://doi.org/10.1145/3372020.3391565
https://doi.org/10.1007/978-3-031-17108-6_13

46

SIFO
SIFO is an object-oriented and expression-based language that is similar to Featherweight

Java [Igarashi et al. 2001]. In SIFO, each reference and expression is associated with a type T. The
type T is composed of a security level s, a type modifier mdf , and a class name C. As already de-
scribed in the background, the security levels are arranged in a lattice (see Definition 2.2). We al-

low the information flow from lower to higher security levels with promotion typing rules. The

promotion rules allow in secure cases that an expression with a lower security level is treated as

an expression with a higher security level. The opposite flow of information is prohibited, ex-

cept the developer uses a declassify-expression. Here, an expression with a higher security level

is treated as an expression with a lower security level.

The type modifier mdf can be imm, mut, capsule, and read [Giannini et al. 2019]. An imm refer-

ence points to an immutable object. An immutable object cannot be updated after creation, but it

can be aliased. A mut reference points to a mutable object. A mutable object can be updated and

aliased. A capsule reference points to a mutable object, but that object and the mutable objects in
its reachable object graph can only be accessed from this reference. This capsule reference can be
used only once to assign the object to any other reference, then the property of the unique refer-

ence is lost. A read reference points to a mutable or immutable object, but that object cannot be
mutated or aliased from the read reference. There is no immutability guarantee that the object is
not accessible by other references. With these modifiers, we can make precise statements about

the information flow in a program. We utilize immutability or uniqueness properties of the ob-

jects to estimate if, for example, a public object can be updated with private information, or an un-

wanted public alias to a private object can exit.

Example 3.4. To give concrete examples for the reasoning with SIFO, we present the implementation of a
class Card with fields low imm int number and high mut Balance blc in Listing 3.5.

1 class Card{low imm int number; high mut Balance blc;}

2 class Balance{low imm int blc;}

Listing 3.5.: Class declarations

In Listing 3.6, we show allowed and prohibited assignments with immutable objects, as information flow
reasoning is the easiest with these immutable objects. When accessing a field of an object, the security level of the
returned value is calculated by the least upper bound of the accessed field security level and the receiver security
level. Therefore, the value of the field blc of Card object c is high and can be assigned to a high reference in
Line 4. In Line 5, the assignment of a high value to a low reference is not allowed because this assignment leaks
confidential information when an attacker reads the low b reference. In Line 6, the low immutable expressions
is assigned to the field c.blc.blc. The field c.blc.blc is typed by imm. Immutability of a field guarantees
that the assigned object cannot be mutated. The Balance object c.blc is mutable, therefore, a new value can
be assigned to the field c.blc.blc as long as the assigned value is immutable as declared by the field. The field
c.blc.blc has a high security level because the chained expression contains the high field blc of class Card.
Therefore, a promotion of the expression c.number to high is needed to be securely assignable to the field. The
promotion is secure because the expression is immutable and cannot be mutated to introduce new confidential
information. In Line 7, the opposite update of a low field with a high int is prohibited because this is a direct
flow from a higher to a lower security level which violates the security policy.

3.4. A Uniform Correct-by-Construction Program Development Approach for

Functional Correctness and Security 47

3 low mut Card c = new low Card();//an existing Card reference

4 high mut Balance blc = c.blc;// correct access of high blc

5 low imm int b = c.blc.blc;// wrong high assigned to low

6 c.blc.blc = c.number;// correct update with promoted imm int

7 c.number = highInt;//wrong , high int assigned to low c.number

Listing 3.6.: Examples with immutable objects

In Listing 3.7, we show secure and insecure updates with mutable objects. We enforce a strict separation of
mutable objects with different security levels. With that separation, we prohibit that an update of an object
through a higher reference is read by lower references afterwards. In Line 8, a new Balance object is initialized
as low. This new Balance object itself is not confidential, but we want to make it confidential by assigning
it to c.blc in Line 9. The field blc of class Card is high. Therefore, this assignment is prohibited. If Line 9
would be accepted, we could access c.blc.blc to update the balance integer with a private value. That change
is readable by the still existing newBlc reference, and this is a leak of the introduced private information. In
Line 10 and 11, an assignment without aliasing is shown using the capsule type modifier. The referenced low
capsBlc object is promoted to a high security level and assigned in Line 11. This assignment is secure because
the capsule reference is no longer accessible after its first use. Thus, it is not possible to read private information
via the capsBlc reference.

8 low mut Balance newBlc = new low Balance (0);//ok

9 c.blc = newBlc;//wrong , mutable secret shared as low and high

10 low capsule Balance capsBlc = new low Balance (0);//ok

11 c.blc = capsBlc;//ok, no alias introduced

Listing 3.7.: Examples with mutable and encapsulated objects

In our work [Runge et al. 2022c], we formalized SIFO by presenting, syntax, typing rules, and re-

duction rules. To ensure correctness of the type system, we prove noninterference: private data should
never influence public data. With this property, we ensure that an attacker can never deduce private

information by observing data with lower security levels. We implemented the type system and eval-

uated feasibility by constructing several case studies. We constructed five case studies where we dis-

covered that we can write many classes without any security annotation, but still be able to use them

in secure contexts with our promotion rules. We also evaluated with a benchmark [Hamann et al.

2018] precision and recall of typing sample programs with SIFO in comparison to other informa-

tion flow analysis tools. Our comparison showed a similar precision as related information flow

analysis tool. Only JOANA [Graf et al. 2013] and Co-Inflow [Xiang and Chong 2021] with additional

annotations in the source code were more precise. In the benchmark, many samples are contrived

to have an information flow that is difficult to analyze. SIFO is too strict for some of these samples

and rejects them, but we argue that developers would not write real code this way with our type sys-

tem. Moreover, these samples can be easily rewritten to be accepted by SIFO.

Information Flow Security by Construction
Our overall goal is to develop programs that are functionally correct and secure. We intend to take

advantage of CbC to incrementally construct programs that are guaranteed to ensure functional

48

correctness and information flow security. In the previous part, we introduced the SIFO type system

that guarantees for information flow security in checked programs. On that basis, we establish

refinement rules and propose IFbCOO,
6
a program development approach for information flow

security. IFbCOO in combination with the classic CbC refinement rules then enables a uniform

correct-by-construction approach for both functional and security properties.

With IFbCOO programs are constructed stepwise to comply with a given information flow pol-

icy (i.e., a lattice of security levels given by the developer). We start a method implementation with

a provided functional and security specification in form of an IFbCOO tuple {P; Q; Γ; T; eA}. The
functional specification is written as precondition P and postcondition Q. The IFbCOO tuple also

has a typing context Γ ::= x1 : T1 . . . xn : Tn that is extracted from the methods arguments with re-

turn type T. The starting abstract expression eA is typed by the composed type [P; Q; Γ; T]. With

this type, we have all information to refine the abstract expression. We have to satisfy the func-

tional pre- and postcondition specification P and Q which is guaranteed through the classic CbC

refinement rules. We also have to find a refined expression that has the type T, and uses only

variables from the context Γ. That the refined expression is secure is guaranteed with the new

refinement rules for information flow security.

As an example, we present the field assignment rule in Definition 3.4. In this rule, we omit the

functional specification. An abstract expression eA, can be refined to a field assignment eA0. f :=
eA1, if the security side conditions hold. These side conditions state that the expression eA0 must

be mut to allow a manipulation of the object. The assigned expression eA1 must have the same

security level as the combined security level (least upper bound of the security levels) of expression

eA0 and field f . The field f must be declared in the class C0 with the type s mdf C.

Definition 3.4: Field Assignment

An abstract expression eA is refinable to a field assignment eA0. f := eA1 if eA : [Γ; T] and
eA0 : [Γ; s0 mut C0] and eA1 : [Γ; s1 mdf C] and s mdf C f ∈ f ields(C0) and s1 = lub(s0, s).

Example 3.5. To give an example, we refine the abstract expression eA that is typed:

[c.blc.blc = 0 & y = 1; c.blc.blc = 1; Γ; high imm int]

with Γ := c : low mut Card, y : low imm int. We use the class Card of Listing 3.5. We can refine the
abstract expression to a field assignment: c.blc.blc = y; The classic CbC assignment rule ensures that the
postcondition Q is satisfied (i.e., the field has the correct value of 1). The IFbCOO refinement rule guarantees
that the variable y can be assigned to the field without violating the information flow policy. The low imm
variable y is promoted to high, and then assigned to the field c.blc.blc with the same security level. If instead
the variable y is typed as mut, the promotion to a high security level is insecure, and IFbCOO prohibits the
assignment.

In our work [Runge et al. 2022a], we formalized IFbCOO by introducing 13 refinement rules and

proved soundness by showing that constructed programs with IFbCOO are well-typed in SIFO.

We also implemented IFbCOO in CorC. To provide the necessary information, we have to anno-

tate fields and methods in classes, and local variables in methods with security levels and type

6
IFbCOO is an acronym for Information Flow Control-by-Construction for an Object-Oriented language

3.4. A Uniform Correct-by-Construction Program Development Approach for

Functional Correctness and Security 49

modifiers. We are using the annotation types of Java to include this information without further

issues. By implementing the refinement rules for security in CorC, we support CbC for func-

tional correctness and information flow security. The feasibility of CorC is evaluated with the

same case studies that are used to evaluate SIFO. The case studies were successfully implemented

in CorC. During the construction of the case studies, we noticed that the constructive approach

has the advantage of providing feedback at each refinement step when security policies are vio-

lated. A violation is directly observed and can be resolved. With post-hoc analysis tools, feedback

is only available after writing complete methods.

Related Work

We discuss related work to enforce secure information flow in programs. Besides secu-

rity type systems, static and dynamic analysis are used. We also discuss Hoare-style pro-

gram logic for information flow reasoning.

Taint Analysis. Static [Arzt et al. 2014; Huang et al. 2014; Graf et al. 2013; Mohr et al. 2015] and

dynamic [Enck et al. 2014; Hedin et al. 2014; Roy et al. 2009; Austin and Flanagan 2009] taint

analysis detects insecure information flows from tainted sources to secure sinks. These ap-

proaches analyze the direct flow of information through the assignments of values to variables

and fields. JSFlow [Hedin et al. 2014], JOANA [Graf et al. 2013], and JoDroid [Mohr et al. 2015]

also cover implicit information flows through conditional statements, loop statements, or dy-

namic dispatch. In our work with SIFO and IFbCOO, we detect both direct and implicit infor-

mation flows, but we additionally proved soundness of SIFO and IFbCOO. The related taint

analyses do not provide a soundness property.

Coarse-grained dynamic information flow approaches [Xiang and Chong 2021; Nadkarni et al.

2016; Jia et al. 2013] track information at the granularity of lexically or dynamically scoped sections

of code. These approaches label an entire section of code with only one label, in comparison to

fine-grained approaches that label every value individually. Thus, coarse-grained approaches can

reduce the writing effort for developers because they do not have to annotate the complete program.

For dynamic information flow control approaches, Vassena et al. [Vassena et al. 2019] showed that

fine-grained and coarse-grained approaches are similar in terms of precision. For example, by

using techniques such as the opaque labeled values introduced by Xiang and Chong [2021], the

information flow analysis results of coarse-grained approaches are accurate. SIFO and IFbCOO

are fine-grained approaches with also reduced writing effort through well-chosen standards and

promotion rules. The promotion rules allow us to use classes without security annotations (i.e., the

default security level is assumed) in contexts where higher security levels are required.

Type Systems. Type systems to control the information flow are widely studied [Sabelfeld andMy-

ers 2003; Simonet 2003; Ferraiuolo et al. 2017; Zhang et al. 2015]. Typically, type systems are classi-

fied into flow-sensitive [Hunt and Sands 2006; Li and Zhang 2017] or flow-insensitive [Myers 1999;

Volpano et al. 1996] systems. A flow-insensitive type system gets the same result for a program in-

dependent of the sequence of statements (e.g., low = high; low = 0; and low = 0; low = high; are
both discarded because of the insecure assignment of low = high;). A flow-sensitive type system

50

would type the first version as secure, as the confidential data is overwritten by the second state-

ment. SIFO is flow insensitive, but as shown by Hunt and Sands [2006], any program that is typable

by a flow-sensitive type system can be transformed to be typable by a flow-insensitive type system.

With SIFO, we focused on secure type systems for object-oriented languages [Sabelfeld andMyers

2003; Banerjee and Naumann 2002; Sun et al. 2004; Myers 1999; Strecker 2003; Barthe and Serpette

1999; Barthe et al. 2007]. The most important work to compare with is Jif [Myers 1999]. Jif treats

aliases of objects differently to SIFO. Jif does not use any kinds of regions or alias analysis to reason

about bounded side effects. Therefore, Jif pessimistically discards programs introducing aliases

because possible leaks through the usage of aliased objects cannot be estimated. With SIFO, we

only restrict the introduction of insecure aliases. Whenwe reason about immutable or encapsulated

objects, we can be sure that no information leak is possible. A more detailed comparison to Jif is

available in [Runge et al. 2022c]. There, we discuss how the additional features of Jif, that are not

available in the core of SIFO, can be emulated in our implementation.

Logics for Information Flow. Hoare-style program logics are used to reason about secure informa-

tion flow. To analyze sequential and parallel programs, Andrews and Reitman [1980] encode infor-

mation flow in Hoare-style formulas and proof validity of these formulas. Amtoft et al. [2006] and

Amtoft and Banerjee [2004] also use Hoare-style program logic in combination with abstract inter-

pretation to analyze the information flow. Their work is the foundation for specifying and analyz-

ing information flow in SPARK Ada [Amtoft et al. 2008]. Barthe et al. [2004] and Darvas et al. [2005]

analyze the information flow of programs by formalizing information flow properties in a program-

ming logic using self-composition of programs and checking the formalized properties with stan-

dard program verification tools. Similarly, Beckert et al. [2013] analyze the information flow of Java

programs using self-composition and the program verification tool KeY. Küsters et al. [2015] present

a hybrid approach by combining JOANA [Graf et al. 2013] and verification with KeY [Ahrendt et al.

2016] to analyze the information flow. By combining self-composition of programs with a type sys-

tem, Terauchi and Aiken [2005] proposed an approach that benefits from both. With SIFO, we are

relying on a type system to ensure correct information flow, and with IFbCOO, we established re-

finement rules based on the type system. SIFO and IFbCOO are both used to construct secure pro-

grams. Hoare-style program logics for secure information flow are post-hoc analysis techniques.

Conclusion

The goal of this contribution [Runge et al. 2020; Runge et al. 2022c; Runge et al. 2022a] is to establish

a CbC approach for functionally correct and secure programs. We achieved this in two steps. First,

we developed SIFO that supports information flow control for an object-oriented language. A type

system checks that the program satisfies a provided information flow policy. We proved soundness

of SIFO, implemented SIFO, and showed in a feasibility study the advantages of using immutabil-

ity analysis for the detection of information flow leaks. We also measured similar precision and

recall on the sample programs with SIFO in comparison to information flow analysis tools. Sec-

ond, we established refinement rules on the basis of SIFO to incrementally construct secure pro-

grams. We also proved soundness of IFbCOO by showing that constructed programs are typable

in SIFO. IFbCOO is implemented in CorC and also evaluated with a feasibility study where we se-

3.4. A Uniform Correct-by-Construction Program Development Approach for

Functional Correctness and Security 51

curely implemented four case studies. With this contribution we addressed Challenge 3, and we
can positively answer Research Question RQ4 – Correctness-by-Construction for Information Flow Security
that it is possible to establish a uniform correct-by-construction program development approach.

IFbCOO refinement rules in combination with classic CbC refinement rules guaranteed informa-

tion flow security and functional correctness in each refinement step.

4. Conclusion
We conclude this thesis with a summary and a discussion of our contributions. We also present

the most interesting directions for future work.

4.1. Discussion of Research Questions
In this thesis, we provided the concept and the implementation of the CorC tool support, which en-

ables correct-by-construction program development for functionally correct and secure programs.

In the following paragraphs, we summarize our contributions grouped by our four research ques-

tions, and from which we derive an answer to our main research question.

Research Question RQ1 – Tool Support for Functional Correctness-by-Con-
struction

Our first research question How can we support a correct-by-construction program development approach
for functionally correct software? is addressed with our first contribution [Runge et al. 2019a] (see Sec-
tion A.1). We focused on supporting correctness-by-construction as proposed by Kourie and Wat-

son [2012]. We investigated several other CbC approaches [Dijkstra 1976; Gries 1987; Morgan 1994;

Back 2009], but concluded that CbC as proposed by Kourie and Watson [2012] is suited best for our

purpose because of their focus on comprehensibility and applicability, which are important prop-

erties for developers to be willing to use this approach. Since there was no tool support for this

CbC approach, we stated requirements to support CbC and developed the open source tool CorC

according to these requirements. CorC consists of a graphical and a textual editor to develop pro-

grams using CbC. The correctness of developed programs is ensured by translating the side con-

ditions of applied refinement rules to proof obligations for the program verifier KeY. KeY then

discharges these proof obligations automatically.

With our implementation of CorC, we answer the first research question. In the evaluation, we

discussed that CorCmeets the stated requirements to support correctness-by-construction. We also

demonstrated that sufficiently complex case studies can be successfully constructed using CorC.

In fact, we discovered six samples in the case studies that could only be verified through CorC’s

fine-step construction approach and not automatically with traditional post-hoc verification. This

highlights a major benefit of using correctness-by-construction implemented in CorC. Therefore,

we can conclude that CorC is a suitable tool for correct-by-construction program development.

Research Question RQ2 – Usability of Tool-Supported Correctness-by-Con-
struction

Our second research question How usable is the correct-by-construction program development ap-
proach with CorC? is addressed with our second contribution [Runge et al. 2019b; Runge et al.

54

2021] (see Section A.2 and Section A.3). We conducted two user studies to evaluate CorC’s us-

ability, which is a key criterion for CorC to become an established development tool. In these

user studies, we assessed the differences in program development using (1) CorC and (2) state-

of-the-art post-hoc verification (PhV) with KeY.

In both user studies, we observed that the participantsmakemore errors with CbC than with PhV,

but we have a similar number of correctly specified and proven programs with both approaches. In

terms of actual defects, we found similar types with both approaches. For example, an inappropri-

ate invariant or a slightly incorrect guard prevented the verification of a loop statement. Through

the analysis of the intermediate development results, we discovered a trial-and-error approach to

construct and verify programs with PhV when the participant could not immediately detect the rea-

son why a program was not provable. Surprisingly, the participants also changed correct code when

they could not verify the program. With CbC, the participants started with a structured refinement

process (e.g., they specified the program first, or they specified and refined the program simultane-

ously), but they abandoned the structured process as soon as they got stuck. Even though the par-

ticipants made more errors with CorC, they answered the user experience questionnaire in favor of

CorC with a significant difference for the measurements stimulation and novelty of the tool. In the

open questions of the interview, the participants highlighted that they like the structured reasoning

of CbC, and the fine-grained feedback through the separate proofs of each applied refinement rule.

Without feedback, locating of defects was frustrating or impossible for the participants. They also

stated that the structured CbC process helps to think about the specification and corner cases of the

program before writing the code. In favor of PhV, mostly the familiar environment was mentioned.

With the results of the user studies, we answer the second research question. The participants

rated that CorC is more suitable for finding defects than PhV with KeY. They also emphasized the

better feedback of CorC due to the structured construction with refinement rules and their di-

rect proof of correctness. Therefore, we conclude that CorC is usable to develop programs accord-

ing to CbC. Based on the feedback from participants, we also expect that users will make fewer er-

rors as they become more familiar with CorC.

Research Question RQ3 – Alternatives to Rule-based Correctness-by-Con-
struction

Our third research question What alternative correct-by-construction program development approaches
exist, and how do they compare to rule-based correctness-by-construction? is addressed with our third

contribution [Runge et al. 2022b; Runge et al. 2023] (see Section A.4 and Section A.5). The clas-

sic CbC approach by Kourie and Watson [2012] has a limited flexibility in program develop-

ment. In this contribution, we proposed two alternative CbC approaches, namely CbC-Block

and TraitCbC, that address this rigid program development. CbC-Block adds two new refine-

ment rules which allow more flexible program development. Instead of just adding one state-

ment, a block (i.e., a sequence of statements) can be added to the program. CbC-Block is im-

plemented as extension of CorC and evaluated with a user study. In the user study, the partic-

ipants appreciated the increased flexibility with the block refinement rules and stated that they

would use this extension for program development. TraitCbC is an alternative CbC approach that

uses composition of methods in traits to offer an incremental development approach. The ad-

4.2. Discussion of the Main Research Question 55

vantage of TraitCbC is that it does not need refinement rules to ensure correctness. TraitCbC

is evaluated to be feasible by constructing several case studies.

By discussing the characteristics of CbC-Block and TraitCbC in comparison to classic CbC, we

answer the third research question. All approaches are tool supported and guarantee the correct-

ness of a program under development in each construction step. Both, CbC-Block and TraitCbC,

allowmore flexible program construction. CbC-Block adds new refinement rules for this purpose,

but TraitCbC does not require any refinement rules and relies only on correct method composi-

tion. Therefore, we proposed alternative CbC program development approaches with the same ad-

vantages as classic CbC, but without the disadvantage of rigid program development.

Research Question RQ4 – Correctness-by-Construction for Information Flow
Security

Our fourth research question How can we support the development of programs with correctness-by-
construction that are functionally correct and satisfy information flow security? is addressed with our

fourth contribution [Runge et al. 2022c; Runge et al. 2020; Runge et al. 2022a] (see Section A.6, Sec-

tion A.7, and Section A.8). In this contribution, we developed CbC for information flow security to

establish our goal of a uniform correct-by-construction program development approach for func-

tional correctness and information flow security.

As part of our contribution, we developed SIFO, a new type system for information flow se-

curity. We established typing and reduction rules, and we proved soundness of SIFO. A pro-

gram typable in SIFO ensures noninterference. We noticed that large parts of a program can be

written without any security annotation, but still be used in secure context through well-chosen

standards and security promotion rules. We developed CbC-style refinement rules based on

SIFO and established IFbCOO for secure program construction. In total, we proposed 13 refine-

ment rules that allow to construct object-oriented programs enriched with type modifiers. We

proved soundness of the development approach by showing that a constructed program is ty-

pable in SIFO. IFbCOO is implemented in CorC.

With the proposed IFbCOO approach, we answer the fourth research question. By having clas-

sic CbC refinement rules and refinement rules for information flow security integrated in CorC,

we provided a uniform development approach to guarantee both properties; functional correct-

ness and information flow security. We also showed that it is feasible to develop secure programs

by construction by implementing case studies in CorC. Therefore, we proposed a new applica-

ble CbC approach for a non-functional property. For future work, we investigate how other non-

functional properties can be ensured with CbC.

4.2. Discussion of the Main Research Question
The goal of this thesis is to address our main research question: How can we enable and support a
correct-by-construction program development approach for functionally correct and secure software? In our

contributions, we introduced CorC, tool support for correctness-by-construction as proposed by

Kourie and Watson [2012]. This tool enables the construction of functionally correct programs

56

through the correctness guarantees of the provided refinements rules. We enriched the flexibil-

ity of program development with new refinement rules to introduce blocks of statements instead

of just single statements. Security is ensured by the proposed IFbCOO refinement rules, which

prevent explicit or implicit information leaks in the program. CorC is evaluated by implement-

ing several cases where we measured a similar verification effort as with post-hoc verification,

but we were able to verify more samples with CbC than with post-hoc verification. We evalu-

ated the usability of CorC with two user studies. Participants stated a preference for CbC over

post-hoc verification to detect and correct defects. They also emphasized that they like to con-

struct programs using the structured reasoning of CbC, rather than hacking programs into cor-

rectness with post-hoc verification. However, higher defect rates with CorC indicate that the par-

ticipants need more experience with the new tool.

In summary, we established and supported a correct-by-construction program development ap-

proach for functionally correct and secure programs. Furthermore, we evaluated its feasibility and

confirmed the usability of the tool by conducting two user studies. Consequently, we can positively

answer our main research question with the implementation and evaluation of CorC. However,

further evaluation is needed to determine whether CbC is an alternative to state-of-the-art program

construction with post-hoc verification and post-hoc information flow analysis. In our user stud-

ies, we found qualitative usability results in favor of CbC, but these results need to be confirmed in

larger and longer (industrial) studies. If people continue to use post-hoc verification and post-hoc

analysis, we encourage to use it in concert with CbC to take advantage of both approaches. Depend-

ing on the nature of the problem and prior knowledge of the developers, software can be devel-

oped and verified wit one or a combination of the approaches. If necessary (e.g., specified by a stan-

dard [RTCA DO-178C 2011]), a program constructed in CorC can be easily verified post-hoc, since

the program is fully specified and should be amenable to automatic post-hoc verification [Wat-

son et al. 2016], especially since CorC is based on a PhV tool.

4.3. Ongoing and Future Work
The presented correct-by-construction program development approach offers many opportunities

for future work. We present the most interesting directions in the following.

Extensions of CorC

With CorC, we established the foundation for tool supported correctness-by-construction. This

implementation inspired us to expand the scope of correct-by-construction program development

into additional domains. With VarCorC [Bordis et al. 2020a; Bordis et al. 2022b], the correct con-

struction of software product lines is supported. Instead of developing monolithic systems, Var-

CorC ensures the correctness of feature-oriented software [Pohl et al. 2005; Batory 2004]. With

ArchiCorC [Knüppel et al. 2020], we scale CbC to the development of correct component-based

architectures [Sametinger 1997; Szyperski et al. 2002]. ArchiCorC supports the creation of a cor-

rect repository of components, where the implementations are accessed through explicit interfaces

for standardized integration into personal projects. WebCorC [Runge et al. 2021] is implemented

as web-frontend for CorC to increase the reach and influence of our work on CbC. This tool is also

4.3. Ongoing and Future Work 57

used to conduct user studies remotely. The parallel efforts to extend CorC are an integral part of the

ongoing work to scale CbC to software product lines with VarCorC and component-based archi-

tectures with ArchiCorC, and to provide an easy access and demonstration of CbC withWebCorC.

Case Studies for the Evaluation of CbC
So far, we evaluated CorC on small to mid-sized case studies to focus on feasibility of our con-

cepts and the usability of the tool itself. To asses the applicability of CorC for realisticly-sized

software systems, larger-scale case studies are needed. This means, the scalability of the ap-

proach for larger methods, and also the ability whether CbC can be integrated into software

engineering processes with development teams could be evaluated with these large-scale case

studies. Moreover, the specification, programming, and verification effort could be more accu-

rately evaluated with more case studies. For example, it could be measured how long developers

need to specify and develop correct programs with CbC. An interesting investigation would be

whether a positive effect compared to standard development with post-hoc verification could be

observed. We already measured the verification effort in our work, but more case studies could

reveal significant differences between the approaches.

User Studies with Experts
We could gain new insights into the benefits and drawbacks of CbC and CorC by conducting fur-

ther user studies with experts in post-hoc verification and CbC. When experts use the tools, we

assume that they avoid simple errors that we noticed in our previous studies (e.g., a missing ini-

tialization of a variable). The user studies could include larger algorithms over longer periods

of time, so that not only simple tasks are solved with CorC. With larger tasks and experts, we

might gain further insight into the usability of CorC. With these results, we could determine

whether CbC as implemented in CorC is a viable approach to develop correct and secure pro-

grams, or whether CorC needs to be improved. With CorC, we created the basis to evaluate CbC,

but there are not many CorC experts for user studies yet. Developers must be trained by lectures

or other events, such as tutorials [Schaefer et al. 2021].

Tool Improvements
The CorC tool supports the construction of correct Java programs, but we identified potential to

improve the usability of CorC in several ways. Currently, a developer has to provide the speci-

fication and apply each refinement rule manually. The integration of program or specification

synthesis tools [Gulwani et al. 2017; Chen et al. 2015] can support the developer to find correct

programs and specifications. For example, simple leaf nodes (i.e., assignment statements) could

be generated automatically. A loop invariant could also be generated. These generated parts

should only be treated as suggestions for developers since CbC is about correct program con-

struction and not about correct program generation.

CorC could be extended to support other languages, such as C# or Dafny. As a result, it would

be possible to develop programs correct by construction in other languages as well. To achieve

that, the editor has to support the syntax of the programming language and its corresponding

58

specification language. To check for functional correctness, the side conditions of the refinement

rule have to be translated to proof obligations checkable by a program verifier for the new lan-

guage. The current format of the generated proof obligations is tailored to KeY and should be

adopted. For information flow security, the new language has to support the language features and

type modifiers of SIFO. For our implementation in CorC, we annotate Java methods, fields, and

variables with security labels and type modifiers.

X-by-Construction
With IFbCOO, we demonstrated that secure programs can be constructed with a correct-by-

construction program development approach. However, we did not consider further non-

functional properties, such as timing behavior or resource consumption yet. For example,

CbC would be a promising approach for real-time applications if a program constructed

with CbC is guaranteed to be faster than a (worst-case) execution time. With the term X-by-

construction [Beek et al. 2018] (e.g., timing-by-constrution), we summarize CbC approaches for any

non-functional property. To establish an X-by-construction approach, it must be explored what

is necessary to develop refinement rules for a specific property. The following questions should

be answered to establish a guideline for the creation of X-by-construction approaches. Is it al-

ways feasible to transform typing rules into CbC-style refinement rules or only for a certain kind

of type system? Can any post-hoc analysis technique be translated to a constructive refinement

system? Do we sometimes have to develop refinement rules from scratch? In which form must

information about non-functional properties be available (e.g., Hoare-style logic)? If a guideline

for implementing X-by-construction is created based on these questions, developers can take ad-

vantage of CbC to ensure various non-functional properties.

Bibliography
Abrial, J.-R. (2010).Modeling in Event-B - System and Software Engineering. Cambridge University Press.

Abrial, J.-R., M. Butler, S. Hallerstede, T. S. Hoang, F. Mehta, and L. Voisin (2010). “Rodin: An Open

Toolset for Modelling and Reasoning in Event-B”. International Journal on Software Tools for Tech-
nology Transfer 12.6, pp. 447–466.

Agda (n.d.). Agda Development Team. The Agda wiki, 2007-2021. http://wiki.portal.chalmers.
se/agda/pmwiki.php. Accessed: 2021-06-18.

Ahrendt, W., B. Beckert, R. Bubel, R. Hähnle, P. H. Schmitt, andM. Ulbrich (2016).Deductive Software
Verification – The KeY Book: From Theory to Practice. Vol. 10001. Springer.

Amighi, A., S. Blom, S. Darabi, M. Huisman, W. Mostowski, and M. Zaharieva-Stojanovski (2014).

“Verification of Concurrent Systems with VerCors”. In: International School on Formal Methods for
the Design of Computer, Communication and Software Systems. Vol. 8483. Lecture Notes in Computer
Science. Springer, pp. 172–216.

Amtoft, T., S. Bandhakavi, and A. Banerjee (2006). “A Logic for Information Flow in Object-Oriented

Programs”. In: Proceedings of the ACM on Programming Languages, pp. 91–102.

Amtoft, T. and A. Banerjee (2004). “Information Flow Analysis in Logical Form”. In: International
Static Analysis Symposium. Vol. 3148. Lecture Notes in Computer Science. Springer, pp. 100–115.

Amtoft, T., J. Hatcliff, E. Rodrguez, Robby, J. Hoag, and D. A. Greve (2008). “Specification and Check-

ing of Software Contracts for Conditional Information Flow”. In: International Symposium on For-
mal Methods. Springer, pp. 229–245.

Andrews, G. R. and R. P. Reitman (1980). “An Axiomatic Approach to Information Flow in Programs”.

ACM Transactions on Programming Languages and Systems (TOPLAS) 2.1, pp. 56–76.

Arzt, S., S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. L. Traon, D. Octeau, and P. D.McDaniel

(2014). “FlowDroid: Precise Context, Flow, Field, Object-Sensitive and Lifecycle-Aware Taint Anal-

ysis for Android Apps”. In: Proceedings of the 35th ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation. Vol. 49. 6. ACM, pp. 259–269.

Austin, T. H. and C. Flanagan (2009). “Efficient Purely-Dynamic Information Flow Analysis”. In:

Proceedings of the ACM SIGPLAN Fourth Workshop on Programming Languages and Analysis for Security.
ACM, pp. 113–124.

Back, R.-J. (2009). “Invariant Based Programming: Basic Approach and Teaching Experiences”. For-
mal Aspects of Computing 21.3, pp. 227–244.

http://wiki.portal.chalmers.se/agda/pmwiki.php
http://wiki.portal.chalmers.se/agda/pmwiki.php

60 Bibliography

Back, R.-J., J. Eriksson, and M. Myreen (2007). “Testing and Verifying Invariant Based Programs in

the SOCOS Environment”. In: International Conference on Tests and Proofs (TAP). Vol. 4454. Lecture
Notes in Computer Science. Springer, pp. 61–78.

Back, R.-J. and J. Wright (2012). Refinement Calculus: A Systematic Introduction. Springer Science &
Business Media.

Banerjee, A. and D. A. Naumann (2002). “Secure Information Flow and Pointer Confinement in a

Java-like Language”. In: Proceedings of the 15th IEEE workshop on Computer Security Foundations. Vol. 2,
p. 253.

Barnes, J. G. P. (2003).High Integrity Software: The Spark Approach to Safety and Security. Pearson Educa-
tion.

Barnett, M., B.-Y. E. Chang, R. DeLine, B. Jacobs, and K. R. M. Leino (2005). “Boogie: A Modular

Reusable Verifier for Object-Oriented Programs”. In: International Symposium on Formal Methods
for Components and Objects. Vol. 4111. Lecture Notes in Computer Science. Springer, pp. 364–387.

Barnett, M., M. Fähndrich, K. R. M. Leino, P. Müller, W. Schulte, and H. Venter (June 2011). “Speci-

fication and Verification: The Spec# Experience”. Communication of the ACM 54.6, pp. 81–91.

Barnett, M., K. R. M. Leino, andW. Schulte (2004). “The Spec# Programming System: An Overview”.

In: International Workshop on Construction and Analysis of Safe, Secure, and Interoperable Smart Devices.
Springer, pp. 49–69.

Barthe, G., P. R. D’Argenio, and T. Rezk (2004). “Secure Information Flow by Self-Composition”. In:

Computer Security Foundations Symposium (CSF). IEEE, pp. 100–114.

Barthe, G., D. Pichardie, andT. Rezk (2007). “A Certified Lightweight Non-Interference Java Bytecode

Verifier”. In: European Symposium on Programming. Vol. 4421. Lecture Notes in Computer Science.
Springer, pp. 125–140.

Barthe, G. and B. P. Serpette (1999). “Partial Evaluation and Non-Interference for Object Calculi”. In:

International Symposium on Functional and Logic Programming. Lecture Notes in Computer Science.
Springer, pp. 53–67.

Batory, D. (2004). “Feature-Oriented Programming and the AHEAD Tool Suite”. In: Proceedings of the
26th International Conference on Software Engineering. IEEE Computer Society, pp. 702–703.

Beckert, B., D. Bruns, V. Klebanov, C. Scheben, P. H. Schmitt, and M. Ulbrich (2013). “Information

Flow in Object-Oriented Software”. In: International Symposium on Logic-Based Program Synthesis
and Transformation. Lecture Notes in Computer Science. Springer, pp. 19–37.

Beckert, B., S. Grebing, and F. Böhl (2014a). “A Usability Evaluation of Interactive Theorem Provers

Using Focus Groups”. In: International Conference on Software Engineering and Formal Methods.
Vol. 8938. Lecture Notes in Computer Science. Springer, pp. 3–19.

Bibliography 61

Beckert, B., S. Grebing, and F. Böhl (2014b). “How to Put Usability into Focus: Using Focus Groups to

Evaluate theUsability of Interactive TheoremProvers”. Electronic Proceedings in Theoretical Computer
Science 167, pp. 4–13.

Beek, M. H. ter, L. Cleophas, I. Schaefer, and B. W. Watson (2018). “X-by-Construction”. In: Interna-
tional Symposium on Leveraging Applications of Formal Methods. Cham: Springer International Pub-
lishing, pp. 359–364.

Bell, D. E. and L. J. La Padula (1976). Secure Computer System: Unified Exposition andMultics Interpretation.
Tech. rep. MITRE Corp Bedford MA.

Bettini, L., F. Damiani, and I. Schaefer (2010). “Implementing Software Product Lines Using Traits”.

In: Proceedings of the 2010 ACM Symposium on Applied Computing, pp. 2096–2102.

Bettini, L., F. Damiani, I. Schaefer, and F. Strocco (2013). “TRAITRECORDJ: A Programming Lan-

guage with Traits and Records”. Science of Computer Programming 78.5, pp. 521–541.

Biba, K. J. (1977). Integrity Considerations for Secure Computer Systems. Tech. rep. MITRE Corp Bedford

MA.

Bono, V., E. Mensa, andM. Naddeo (2014). “Trait-Oriented Programming in Java 8”. In: Proceedings of
the 2014 International Conference on Principles and Practices of Programming on the Java platform: Virtual
machines, Languages, and Tools, pp. 181–186.

Bordis, T., L. Cleophas, A. Kittelmann, T. Runge, I. Schaefer, and B. W. Watson (2022a). “Re-CorC-

ing KeY: Correct-by-Construction Software Development Based on KeY”. In: The Logic of Software.
A Tasting Menu of Formal Methods. Vol. 13360. Lecture Notes in Computer Science. Springer. doi:
10.1007/978-3-031-08166-8_5.

Bordis, T., T. Runge, A. Knüppel, T. Thüm, and I. Schaefer (2020a). “Variational Correctness-by-

Construction”. In: Proceedings of the International Working Conference on Variability Modelling of
Software-Intensive Systems (VAMOS). ACM, 7:1–7:9. doi: 10.1145/3377024.3377038.

Bordis, T., T. Runge, and I. Schaefer (2020b). “Correctness-by-Construction for Feature-Oriented

Software Product Lines”. In: Proceedings of the 19th ACM SIGPLAN International Conference on Gener-
ative Programming: Concepts and Experiences. ACM, pp. 22–34. doi: 10.1145/3425898.3426959.

Bordis, T., T. Runge, D. Schultz, and I. Schaefer (2022b). “Family-Based and Product-Based Develop-

ment of Correct-by-Construction Software Product Lines”. Journal of Computer Languages, p. 101119.
doi: 10.1016/j.cola.2022.101119.

Cataño, N. (2019). “Teaching FormalMethods: Lessons Learnt fromUsing Event-B”. In: FormalMeth-
ods Teaching. Vol. 11758. Lecture Notes in Computer Science. Springer, pp. 212–227.

Chang, C.-L. and R. C.-T. Lee (2014). Symbolic Logic and Mechanical Theorem Proving. Academic press.

Chen, H.-Y., C. David, D. Kroening, P. Schrammel, and B. Wachter (2015). “Synthesising Interproce-

dural Bit-Precise Termination Proofs (T)”. In: International Conference on Automated Software Engi-
neering (ASE). IEEE, pp. 53–64.

https://doi.org/10.1007/978-3-031-08166-8_5
https://doi.org/10.1145/3377024.3377038
https://doi.org/10.1145/3425898.3426959
https://doi.org/10.1016/j.cola.2022.101119

62 Bibliography

Clarke, E. M., T. A. Henzinger, H. Veith, and R. Bloem (2018). Handbook of Model Checking. Vol. 10.
Springer.

Clements, P. and L. Northrop (2002). Software Product Lines: Practices and Patterns. Addison-Wesley.

Cohen, E., M. Dahlweid, M. Hillebrand, D. Leinenbach, M. Moskal, T. Santen, W. Schulte, and S.

Tobies (2009). “VCC: A Practical System for Verifying Concurrent C”. In: International Conference
on Theorem Proving in Higher Order Logics. Vol. 5674. Lecture Notes in Computer Science. Springer,
pp. 23–42.

Cok, D. R. (2011). “OpenJML: JML for Java 7 by Extending OpenJDK”. In: NASA Formal Methods Sym-
posium. Vol. 6617. Lecture Notes in Computer Science. Springer, pp. 472–479.

Coq (n.d.). Coq Development Team. The Coq Proof Assistant, 1989-2021. http://coq.inria.fr.
Accessed: 2021-06-18.

Creuse, L., C. Dross, C. Garion, J. Hugues, and J. Huguet (2019). “Teaching Deductive Verifica-

tion Through Frama-C and SPARK for Non Computer Scientists”. In: Formal Methods Teaching.
Vol. 11758. Lecture Notes in Computer Science. Springer, pp. 23–36.

Cuoq, P., F. Kirchner, N. Kosmatov, V. Prevosto, J. Signoles, and B. Yakobowski (2012). “Frama-C”.

In: International Conference on Software Engineering and Formal Methods. Vol. 7504. Lecture Notes in
Computer Science. Springer, pp. 233–247.

Damiani, F., J. Dovland, E. B. Johnsen, and I. Schaefer (2014). “Verifying Traits: An Incremental Proof

System for Fine-Grained Reuse”. Formal Aspects of Computing 26.4, pp. 761–793.

Darvas, Á., R. Hähnle, and D. Sands (2005). “A Theorem Proving Approach to Analysis of Secure

Information Flow”. In: International Conference on Security in Pervasive Computing. Vol. Lecture Notes
in Computer Science. 3450. Springer, pp. 193–209.

Denning, D. E. (1976). “A Lattice Model of Secure Information Flow”. Communication of the ACM 19.5,

pp. 236–243.

Dijkstra, E. W. (1975). “Guarded Commands, Nondeterminacy and Formal Derivation of Programs”.

Communications of the ACM 18.8, pp. 453–457.

Dijkstra, E. W. (1976). A Discipline of Programming. Prentice Hall.

Dijkstra, E. W. (1972). “Notes on Structured Programming”. In: Structured Programming. Academic
Press Inc., pp. 1–82.

Divasón, J. and A. Romero (2019). “Using Krakatoa for Teaching Formal Verification of Java Pro-

grams”. In: Formal Methods Teaching. Vol. 11758. Lecture Notes in Computer Science. Springer,

pp. 37–51.

Ducasse, S., O. Nierstrasz, N. Schärli, R. Wuyts, and A. P. Black (2006). “Traits: AMechanism for Fine-

Grained Reuse”. ACM Transactions on Programming Languages and Systems (TOPLAS) 28.2, pp. 331–
388.

http://coq.inria.fr

Bibliography 63

Enck, W., P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel, and A. N. Sheth

(June 2014). “TaintDroid: An Information-Flow Tracking System for Realtime Privacy Monitoring

on Smartphones”. ACM Transactions on Computer Systems (TOCS) 32.2.

Ettinger, R. (2021). “Lessons of Formal Program Design in Dafny”. In: Formal Methods Teaching.
Vol. 13122. Lecture Notes in Computer Science. Springer, pp. 84–100.

Ferraiuolo, A., W. Hua, A. C. Myers, and G. E. Suh (2017). “Secure Information Flow Verification with

Mutable Dependent Types”. In: Design Automation Conference (DAC). IEEE, pp. 1–6.

Flatt, M., S. Krishnamurthi, and M. Felleisen (1998). “Classes and Mixins”. In: Proceedings of the 25th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pp. 171–183.

Gentzen, G. (1935). “Untersuchungen über das logische Schliessen. II”.Mathematische Zeitschrift 39.1,
pp. 405–431.

Gerhart, S. L. (1975). “Correctness-Preserving Program Transformations”. In: Proc. of the Symposium
on Principles of Programming Languages (POPL), pp. 54–66.

Giannini, P., M. Servetto, E. Zucca, and J. Cone (2019). “Flexible Recovery of Uniqueness and Im-

mutability”. Theoretical Computer Science 764, pp. 145–172.

Gouw, S. d., J. Rot, F. S. d. Boer, R. Bubel, and R. Hähnle (2015). “OpenJDKs Java.utils.Collection.sort()

is Broken: The Good, The Bad and The Worst Case”. In: International Conference on Computer Aided
Verification. Vol. 9206. Lecture Notes in Computer Science. Springer, pp. 273–289.

Graf, J., M. Hecker, and M. Mohr (2013). “Using JOANA for Information Flow Control in Java Pro-

grams - A Practical Guide”. In: Proceedings of the 6th Working Conference on Programming Languages
(ATPS’13). Lecture Notes in Informatics (LNI) 215. Springer, pp. 123–138.

Gries, D. (1987). The Science of Programming. Springer.

Gulwani, S., S. Jha, A. Tiwari, and R. Venkatesan (2010). Component Based Synthesis Applied to Bitvector
Programs. Tech. rep. Citeseer.

Gulwani, S., O. Polozov, R. Singh, et al. (2017). “Program Synthesis”. Foundations and Trends in Pro-
gramming Languages 4.1-2, pp. 1–119.

Hall, A. and R. Chapman (2002). “Correctness by Construction: Developing a Commercial Secure

System”. IEEE Software 19.1, pp. 18–25.

Hall, R. J. (2005). “Fundamental Nonmodularity in Electronic Mail”. Automated Software Engineering
12.1, pp. 41–79.

Hamann, T., M. Herda, H. Mantel, M. Mohr, D. Schneider, and M. Tasch (2018). “A Uniform

Information-Flow Security Benchmark Suite for Source Code and Bytecode”. In: Nordic Confer-
ence on Secure IT Systems. Springer, pp. 437–453.

Harel, D., D. Kozen, and J. Tiuryn (2000). “Dynamic Logic”. In: Foundations of Computing. MIT Press.

64 Bibliography

Hedin, D., A. Birgisson, L. Bello, and A. Sabelfeld (2014). “JSFlow: Tracking Information Flow in

JavaScript and Its APIs”. In: Proceedings of the 29th Annual ACM Symposium on Applied Computing.

Heisel, M. (1992). “Formalizing and Implementing Gries’ Program Development Method in Dy-

namic Logic”. Science of Computer Programming 18.1, pp. 107–137.

Hentschel, M. (2016). “Integrating Symbolic Execution, Debugging and Verification”. PhD thesis.

Technische Universität Darmstadt.

Hentschel, M., R. Hähnle, and R. Bubel (2016a). “An Empirical Evaluation of Two User Interfaces

of an Interactive Program Verifier”. In: Proceedings of the 31st IEEE/ACM International Conference on
Automated Software Engineering, pp. 403–413.

Hentschel, M., R. Hähnle, and R. Bubel (2016b). “Can Formal Methods Improve the Efficiency of

Code Reviews?” In: International Conference on Integrated Formal Methods. Vol. 9681. Lecture Notes
in Computer Science. Springer, pp. 3–19.

Hoare, C. A. R. (1969). “An axiomatic basis for computer programming”. Communications of the ACM
12.10, pp. 576–580. doi: https://doi.org/10.1145/363235.363259.

Hoare, C. A. R. (1971). “Procedures and Parameters: An Axiomatic Approach”. In: Symposium on Se-
mantics of Algorithmic Languages. Springer, pp. 102–116.

Huang, W., Y. Dong, and A. Milanova (2014). “Type-based Taint Analysis for Java Web Applications”.

In: International Conference on Fundamental Approaches to Software Engineering. Vol. 8411. Lecture
Notes in Computer Science. Springer, pp. 140–154.

Hunt, S. and D. Sands (Jan. 2006). “On Flow-Sensitive Security Types”. SIGPLAN Not. 41.1, pp. 79–90.

Igarashi, A., B. C. Pierce, and P.Wadler (2001). “Featherweight Java: AMinimal Core Calculus for Java

and GJ”. ACM Transactions on Programming Languages and Systems (TOPLAS) 23.3, pp. 396–450.

ISO/IEC 25010 (2011). Software Considerations in Airborne Systems and Equipment Certification.

Jacobs, B., J. Smans, and F. Piessens (2010). “A Quick Tour of the VeriFast ProgramVerifier”. In: Asian
Symposium on Programming Languages And Systems. Vol. 6461. Lecture Notes in Computer Science.
Springer, pp. 304–311.

Jia, L., J. Aljuraidan, E. Fragkaki, L. Bauer, M. Stroucken, K. Fukushima, S. Kiyomoto, and Y. Miyake

(2013). “Run-time Enforcement of Information-Flow Properties on Android”. In: European Sympo-
sium on Research in Computer Security. Springer, pp. 775–792.

Johnson, B., Y. Song, E. Murphy-Hill, and R. Bowdidge (2013). “Why Don’t Software Developers Use

Static Analysis Tools to Find Bugs?” In: International Conference on Software Engineering (ICSE). IEEE
Press, pp. 672–681.

Khazeev, M., V. Rivera, M. Mazzara, and L. Johard (2016). “Initial Steps Towards Assessing the Us-

ability of a Verification Tool”. In: International Conference in Software Engineering for Defence Applica-
tions. Vol. 717. Advances in Intelligent Systems and Computing. Springer, pp. 31–40.

https://doi.org/https://doi.org/10.1145/363235.363259

Bibliography 65

Knüppel, A., T. Runge, and I. Schaefer (2020). “Scaling Correctness-by-Construction”. In: Interna-
tional Symposium on Leveraging Applications of Formal Methods. Ed. by T. Margaria and B. Steffen.

Vol. 12476. Lecture Notes in Computer Science. Springer, pp. 187–207. doi: 10.1007/978-3-

030-61362-4_10.

Knüppel, A., T. Thüm, C. Pardylla, and I. Schaefer (2018). “Experience Report on Formally Verifying

Parts of OpenJDK’s API with KeY”. In: Proceedings of the International Workshop on Formal Integrated
Development Environment (F-IDE). Ed. by P. Masci, R. Monahan, and V. Prevosto. Vol. 284. EPTCS,

pp. 53–70. doi: 10.4204/EPTCS.284.5.

Kourie, D. G. and B. W. Watson (2012). The Correctness-by-Construction Approach to Programming.
Springer Science & Business Media.

Kovács, L. and A. Voronkov (2013). “First-Order Theorem Proving and Vampire”. In: Proc. of the Intl.
Conference on Computer Aided Verification (CAV). Springer, pp. 1–35.

Küsters, R., T. Truderung, B. Beckert, D. Bruns, M. Kirsten, andM.Mohr (2015). “A Hybrid Approach

for Proving Noninterference of Java Programs”. In: 2015 IEEE 28th Computer Security Foundations
Symposium. IEEE, pp. 305–319.

Laugwitz, B., T. Held, and M. Schrepp (Nov. 2008). “Construction and Evaluation of a User Experi-

ence Questionnaire”. In: Symposium of the Austrian HCI and Usability Engineering Group. Vol. 5298.
Lecture Notes in Computer Science, pp. 63–76.

Leavens, G. T., A. L. Baker, and C. Ruby (1998). “JML: a Java Modeling Language”. In: Formal Under-
pinnings of Java Workshop (at OOPSLA98). Citeseer, pp. 404–420.

Leavens, G. T., A. L. Baker, and C. Ruby (2006). “Preliminary Design of JML: A Behavioral Inter-

face Specification Language for Java”. ACM SIGSOFT Software Engineering Notes 31.3, pp. 1–38. doi:
https://doi.org/10.1145/1127878.1127884.

Leino, K. R. M. (1995). Toward Reliable Modular Programs. California Institute of Technology.

Leino, K. R. M. (2010). “Dafny: An Automatic Program Verifier for Functional Correctness”. In: In-
ternational Conference on Logic for Programming Artificial Intelligence and Reasoning. Vol. 6355. Lecture
Notes in Computer Science. Springer, pp. 348–370.

Li, P. and D. Zhang (2017). “Towards a Flow-and Path-Sensitive Information Flow Analysis”. In: Com-
puter Security Foundations Symposium (CSF). IEEE, pp. 53–67.

Liquori, L. and A. Spiwack (2008). “FeatherTrait: A Modest Extension of Featherweight Java”. ACM
Transactions on Programming Languages and Systems (TOPLAS) 30.2, pp. 1–32.

Liskov, B. H. and J. Guttag (1986). Abstraction and Specification in Program Development. Vol. 180. MIT

press Cambridge.

Liskov, B. H. and J. M. Wing (1994). “A Behavioral Notion of Subtyping”. ACM Transactions on Pro-
gramming Languages and Systems (TOPLAS) 16.6, pp. 1811–1841.

https://doi.org/10.1007/978-3-030-61362-4_10
https://doi.org/10.1007/978-3-030-61362-4_10
https://doi.org/10.4204/EPTCS.284.5
https://doi.org/https://doi.org/10.1145/1127878.1127884

66 Bibliography

Liu, S., K. Takahashi, T. Hayashi, and T. Nakayama (2009). “Teaching FormalMethods in the Context

of Software Engineering”. ACM SIGCSE Bulletin 41.2, pp. 17–23.

Manna, Z. and R.Waldinger (1980). “A Deductive Approach to Program Synthesis”. ACMTransactions
on Programming Languages and Systems (TOPLAS) 2.1, pp. 90–121.

Meyer, B. (1988). “Eiffel: A Language and Environment for Software Engineering”. Journal of Systems
and Software 8.3, pp. 199–246.

Meyer, B. (1992). “Applying “Design by Contract””. Computer 25.10, pp. 40–51.

Mohr, M., J. Graf, and M. Hecker (2015). “JoDroid: Adding Android Support to a Static Information

Flow Control Tool”. In: Software Engineering (Workshops). Citeseer, pp. 140–145.

Morgan, C. (1994). Programming from Specifications. 2nd. Prentice Hall.

Moura, L. de, S. Kong, J. Avigad, F. VanDoorn, and J. von Raumer (2015). “The Lean Theorem Prover”.

In: Proc. of the Intl. Conference on Automated Deduction (CADE). Springer, pp. 378–388.

Myers, A. C. (1999). “JFlow: Practical Mostly-Static Information Flow Control”. In: Proceedings of the
26th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. San Antonio, Texas,
USA: ACM, pp. 228–241.

Nadkarni, A., B. Andow, W. Enck, and S. Jha (2016). “Practical DIFC Enforcement on Android”. In:

25th USENIX Security Symposium (USENIX Security 16), pp. 1119–1136.

Nipkow, T., L. C. Paulson, andM.Wenzel (2002). Isabelle/HOL: A Proof Assistant for Higher-Order Logic.
Vol. 2283. Lecture Notes in Computer Science. Springer Science & Business Media.

Oliveira, M. V. M., A. Cavalcanti, and J. Woodcock (2003). “ArcAngel: A Tactic Language for Refine-

ment”. Formal Aspects of Computing 15.1, pp. 28–47.

Oliveira, M. V. M., A. Cavalcanti, and J. Woodcock (2009). “A UTP Semantics for Circus”. Formal
Aspects of Computing 21.1, pp. 3–32.

Oliveira, M. V.M., A. C. Gurgel, and C. G. Castro (2008). “CRefine: Support for the Circus Refinement

Calculus”. In: 2008 Sixth IEEE International Conference on Software Engineering and Formal Methods.
IEEE, pp. 281–290.

Pearce, D. J. and L. Groves (2013). “Whiley: A Platform for Research in Software Verification”. In: In-
ternational Conference on Software Language Engineering. Vol. 8225. Lecture Notes in Computer Sci-
ence. Springer, pp. 238–248.

Petiot, G., N. Kosmatov, B. Botella, A. Giorgetti, and J. Julliand (2016). “Your Proof Fails? Testing

Helps to Find the Reason”. In: International Conference on Tests and Proofs. Vol. 9762. Lecture Notes
in Computer Science. Springer, pp. 130–150.

Plath, M. and M. Ryan (2001). “Feature Integration Using a Feature Construct”. Science of Computer
Programming 41.1, pp. 53–84.

Bibliography 67

Pohl, K., G. Böckle, and F. J. v. d. Linden (2005). Software Product Line Engineering: Foundations, Principles
and Techniques. Secaucus, NJ, USA: Springer-Verlag New York, Inc.

Polikarpova, N., I. Kuraj, and A. Solar-Lezama (2016). “Program Synthesis from Polymorphic Refine-

ment Types”. ACM SIGPLAN Notices 51.6, pp. 522–538.

Reppy, J. and A. Turon (2006). “A Foundation for Trait-based Metaprogramming”. In: International
Workshop on Foundations and Developments of Object-Oriented Languages.

Roy, I., D. E. Porter, M. D. Bond, K. S. McKinley, and E. Witchel (2009). “Laminar: Practical Fine-

Grained Decentralized Information Flow Control”. In: Proceedings of the 30th ACM SIGPLAN Con-
ference on Programming Language Design and Implementation, pp. 63–74.

RTCA DO-178C (2011). Software Considerations in Airborne Systems and Equipment Certification.

Runge, T., T. Bordis, A. Potanin, T. Thüm, and I. Schaefer (2023). “Flexible Correct-by-Construction

Programming”. Logical Methods in Computer Science.

Runge, T., T. Bordis, T. Thüm, and I. Schaefer (2021). “Teaching Correctness-by-Construction and

Post-hoc Verification–The Online Experience”. In: Formal Methods Teaching Workshop. Vol. 13122.
Lecture Notes in Computer Science. Springer, pp. 101–116. doi: 10.1007/978-3-030-91550-

6_8.

Runge, T., A. Kittelmann,M. Servetto, A. Potanin, and I. Schaefer (2022a). “Information FlowControl-

by-Construction for an Object-Oriented Language”. In: International Conference on Software Engi-
neering and Formal Methods. Vol. 13550. Lecture Notes in Computer Science. Springer, pp. 209–226.
doi: 10.1007/978-3-031-17108-6_13.

Runge, T., A. Knüppel, T. Thüm, and I. Schaefer (2020). “Lattice-Based Information Flow Control-

by-Construction for Security-by-Design”. In: FormaliSE@ICSE 2020: 8th International Conference on
Formal Methods in Software Engineering. ACM, pp. 44–54. doi: 10.1145/3372020.3391565.

Runge, T., A. Potanin, T. Thüm, and I. Schaefer (2022b). “Traits: Correctness-by-Construction for

Free”. In: International Conference on Formal Techniques for Distributed Objects, Components, and Sys-
tems. Vol. 13273. Lecture Notes in Computer Science. Springer, pp. 131–150. doi: 10.1007/978-
3-031-08679-3_9.

Runge, T., I. Schaefer, L. Cleophas, T. Thüm, D. Kourie, and B. W. Watson (2019a). “Tool Support

for Correctness-by-Construction”. In: International Conference on Fundamental Approaches to Software
Engineering. Vol. 11424. Lecture Notes in Computer Science. Springer, pp. 25–42. doi: 10.1007/
978-3-030-16722-6_2.

Runge, T., M. Servetto, A. Potanin, and I. Schaefer (2022c). “Immutability and Encapsulation for

Sound OO Information Flow Control”. ACM Transactions on Programming Languages and Systems
(TOPLAS). doi: 10.1145/3573270.

Runge, T., T. Thüm, L. Cleophas, I. Schaefer, and B.W.Watson (2019b). “Comparing Correctness-by-

Construction with Post-Hoc Verification - A Qualitative User Study”. In: Formal Methods. FM 2019

https://doi.org/10.1007/978-3-030-91550-6_8
https://doi.org/10.1007/978-3-030-91550-6_8
https://doi.org/10.1007/978-3-031-17108-6_13
https://doi.org/10.1145/3372020.3391565
https://doi.org/10.1007/978-3-031-08679-3_9
https://doi.org/10.1007/978-3-031-08679-3_9
https://doi.org/10.1007/978-3-030-16722-6_2
https://doi.org/10.1007/978-3-030-16722-6_2
https://doi.org/10.1145/3573270

68 Bibliography

International Workshops. Refine. Vol. 12233. Lecture Notes in Computer Science. Springer, pp. 388–
405. doi: 10.1007/978-3-030-54997-8_25.

Russo, A. and A. Sabelfeld (2010). “Dynamic vs. Static Flow-Sensitive Security Analysis”. In: Computer
Security Foundations Symposium (CSF). IEEE, pp. 186–199.

Sabelfeld, A. and A. C. Myers (2003). “Language-Based Information-Flow Security”. IEEE Journal on
Selected Areas in Communications 21.1, pp. 5–19.

Sametinger, J. (1997). Software Engineering with Reusable Components. Springer Science & BusinessMe-

dia.

Schaefer, I., T. Runge, L. Cleophas, and B. W. Watson (2021). “Tutorial: The Correctness-by-

Construction Approach to Programming Using CorC”. In: IEEE Secure Development Conference,
SecDev 2021. IEEE, pp. 1–2. doi: 10.1109/SecDev51306.2021.00012.

Schumann, J. M. (2001). Automated Theorem Proving in Software Engineering. Springer Science & Busi-

ness Media.

Sery, O., G. Fedyukovich, and N. Sharygina (2012). “Interpolation-Based Function Summaries in

Bounded Model Checking”. In: Hardware and Software: Verification and Testing. Vol. 7261. Lecture
Notes in Computer Science. Springer, pp. 160–175.

Simonet, V. (2003). “Flow Caml in a Nutshell”. In: Proceedings of the first APPSEM-II Workshop, pp. 152–
165.

Smith, C. and S. Drossopoulou (2005). “Chai: Traits for Java-Like Languages”. In: European Conference
on Object-Oriented Programming. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 453–478.

Sozeau, M. and N. Oury (2008). “First-Class Type Classes”. In: International Conference on Theorem
Proving in Higher Order Logics. Vol. 5170. Lecture Notes in Computer Science. Springer, pp. 278–293.

Stickel, M., R. Waldinger, M. Lowry, T. Pressburger, and I. Underwood (1994). “Deductive Compo-

sition of Astronomical Software from Subroutine Libraries”. In: International Conference on Auto-
mated Deduction. Vol. 814. Lecture Notes in Computer Science. Springer, pp. 341–355.

Strecker, M. (2003). “Formal Analysis of an Information Flow Type System for MicroJava”. Technische
Universität München, Tech. Rep.

Sun, Q., A. Banerjee, and D. A. Naumann (2004). “Modular and Constraint-Based Information Flow

Inference for an Object-Oriented Language”. In: International Static Analysis Symposium. Vol. 3148.
Lecture Notes in Computer Science. Springer, pp. 84–99.

Szyperski, C., D. Gruntz, and S. Murer (2002). Component Software: Beyond Object-Oriented Program-
ming. Pearson Education.

Terauchi, T. and A. Aiken (2005). “Secure Information Flow as a Safety Problem”. In: International
Static Analysis Symposium. Vol. 3672. Lecture Notes in Computer Science. Springer, pp. 352–367.

https://doi.org/10.1007/978-3-030-54997-8_25
https://doi.org/10.1109/SecDev51306.2021.00012

Bibliography 69

Thüm, T., I. Schaefer, S. Apel, and M. Hentschel (2012). “Family-Based Deductive Verification of

Software Product Lines”. In:Proceedings of the 11th International Conference onGenerative Programming
and Component Engineering. GPCE ’12. Dresden, Germany: Association for Computing Machinery,

pp. 11–20.

Tschannen, J., C. A. Furia, M. Nordio, and N. Polikarpova (2015). “AutoProof: Auto-Active Functional

Verification of Object-Oriented Programs”. In: International Conference on Tools and Algorithms for
the Construction and Analysis of Systems. Vol. 9035. Lecture Notes in Computer Science. Springer,

pp. 566–580.

Vassena, M., A. Russo, D. Garg, V. Rajani, and D. Stefan (2019). “From Fine-to Coarse-Grained Dy-

namic Information Flow Control and Back”. Proceedings of the ACM on Programming Languages
3.Proceedings of the ACM on Programming Languages, pp. 1–31.

Volpano, D. M., C. E. Irvine, and G. Smith (1996). “A Sound Type System for Secure Flow Analysis”.

JCS 4.2/3, pp. 167–188.

Watson, B. W., D. G. Kourie, I. Schaefer, and L. Cleophas (2016). “Correctness-by-Construction and

Post-hoc Verification: A Marriage of Convenience?” In: International Symposium on Leveraging Ap-
plications of Formal Methods. Vol. 9952. Lecture Notes in Computer Science. Springer, pp. 730–748.

Weidenbach, C., D. Dimova, A. Fietzke, R. Kumar, M. Suda, and P. Wischnewski (2009). “SPASS Ver-

sion 3.5”. In: Proc. of the Intl. Conference on Automated Deduction (CADE). Springer, pp. 140–145.

Wirth, N. (1971). “Program Development by Stepwise Refinement”. Communications of the ACM 14.4,

pp. 221–227. doi: 10.1145/362575.362577.

Wohlin, C., P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A. Wesslén (2012). Experimentation
in Software Engineering. Springer Science & Business Media.

Xiang, J. and S. Chong (2021). “Co-Inflow: Coarse-grained Information Flow Control for Java-like

Languages”. In: 2021 IEEE Symposium on Security and Privacy (SP). IEEE, pp. 18–35.

Zeyda, F.,M. V.M.Oliveira, and A. Cavalcanti (2009). “Supporting ArcAngel in ProofPower”. Electronic
Notes in Theoretical Computer Science 259, pp. 225–243.

Zhang, D., Y. Wang, G. E. Suh, and A. C. Myers (2015). “A Hardware Design Language for Timing-

Sensitive Information-Flow Security”. Acm Sigplan Notices 50.4, pp. 503–516.

https://doi.org/10.1145/362575.362577

A. Papers of the Thesis
The publications that are part of this cumulative thesis are included in the following order.

1. T. Runge, I. Schaefer, L. Cleophas, T. Thüm, D. Kourie, and B. W. Watson [2019a]. “Tool Sup-

port for Correctness-by-Construction”. In: International Conference on Fundamental Approaches
to Software Engineering. Vol. 11424. Lecture Notes in Computer Science. Springer, pp. 25–42.

doi: 10.1007/978-3-030-16722-6_2

2. T. Runge, T. Thüm, L. Cleophas, I. Schaefer, and B. W. Watson [2019b]. “Comparing

Correctness-by-Construction with Post-Hoc Verification - A Qualitative User Study”. In: For-
mal Methods. FM 2019 International Workshops. Refine. Vol. 12233. Lecture Notes in Computer

Science. Springer, pp. 388–405. doi: 10.1007/978-3-030-54997-8_25

3. T. Runge, T. Bordis, T. Thüm, and I. Schaefer [2021]. “Teaching Correctness-by-Construction

and Post-hoc Verification–The Online Experience”. In: Formal Methods Teaching Workshop.
Vol. 13122. Lecture Notes in Computer Science. Springer, pp. 101–116. doi: 10.1007/978-

3-030-91550-6_8

4. T. Runge, A. Potanin, T. Thüm, and I. Schaefer [2022b]. “Traits: Correctness-by-Construction

for Free”. In: International Conference on Formal Techniques for Distributed Objects, Components,
and Systems. Vol. 13273. Lecture Notes in Computer Science. Springer, pp. 131–150. doi: 10.
1007/978-3-031-08679-3_9

5. T. Runge, T. Bordis, A. Potanin, T. Thüm, and I. Schaefer [2023]. “Flexible Correct-by-

Construction Programming”. Logical Methods in Computer Science

6. T. Runge, M. Servetto, A. Potanin, and I. Schaefer [2022c]. “Immutability and Encapsulation

for Sound OO Information Flow Control”. ACM Transactions on Programming Languages and
Systems (TOPLAS). doi: 10.1145/3573270

7. T. Runge, A. Knüppel, T. Thüm, and I. Schaefer [2020]. “Lattice-Based Information Flow

Control-by-Construction for Security-by-Design”. In: FormaliSE@ICSE 2020: 8th Interna-
tional Conference on Formal Methods in Software Engineering. ACM, pp. 44–54. doi: 10.1145/

3372020.3391565

8. T. Runge, A. Kittelmann, M. Servetto, A. Potanin, and I. Schaefer [2022a]. “Information Flow

Control-by-Construction for an Object-Oriented Language”. In: International Conference on
Software Engineering and Formal Methods. Vol. 13550. Lecture Notes in Computer Science.

Springer, pp. 209–226. doi: 10.1007/978-3-031-17108-6_13

https://doi.org/10.1007/978-3-030-16722-6_2
https://doi.org/10.1007/978-3-030-54997-8_25
https://doi.org/10.1007/978-3-030-91550-6_8
https://doi.org/10.1007/978-3-030-91550-6_8
https://doi.org/10.1007/978-3-031-08679-3_9
https://doi.org/10.1007/978-3-031-08679-3_9
https://doi.org/10.1145/3573270
https://doi.org/10.1145/3372020.3391565
https://doi.org/10.1145/3372020.3391565
https://doi.org/10.1007/978-3-031-17108-6_13

72

A.1. Tool Support for Correctness-by-Construction

Tool Support
for Correctness-by-Construction

Tobias Runge1(B), Ina Schaefer1, Loek Cleophas2,3, Thomas Thüm1,
Derrick Kourie3,4, and Bruce W. Watson3,4

1 Software Engineering, TU Braunschweig, Braunschweig, Germany
{tobias.runge,i.schaefer,t.thuem}@tu-bs.de

2 Software Engineering Technology, TU Eindhoven, Eindhoven, The Netherlands
3 Information Science, Stellenbosch University, Stellenbosch, South Africa

{loek,derrick,bruce}@fastar.org
4 Centre for Artificial Intelligence Research, CSIR, Pretoria, South Africa

Abstract. Correctness-by-Construction (CbC) is an approach to incre-
mentally create formally correct programs guided by pre- and postcon-
dition specifications. A program is created using refinement rules that
guarantee the resulting implementation is correct with respect to the
specification. Although CbC is supposed to lead to code with a low defect
rate, it is not prevalent, especially because appropriate tool support is
missing. To promote CbC, we provide tool support for CbC-based pro-
gram development. We present CorC, a graphical and textual IDE to
create programs in a simple while-language following the CbC approach.
Starting with a specification, our open source tool supports CbC devel-
opers in refining a program by a sequence of refinement steps and in
verifying the correctness of these refinement steps using the theorem
prover KeY. We evaluated the tool with a set of standard examples on
CbC where we reveal errors in the provided specification. The evalua-
tion shows that our tool reduces the verification time in comparison to
post-hoc verification.

1 Introduction

Correctness-by-Construction (CbC) [12,13,19,23] is a methodology to construct
formally correct programs guided by a specification. CbC can improve program
development because every part of the program is designed to meet the corre-
sponding specification. With the CbC approach, source code is incrementally
constructed with a low defect rate [19] mainly based on three reasons. First,
introducing defects is hard because of the structured reasoning discipline that is
enforced by the refinement rules. Second, if defects occur, they can be tracked
through the refinement structure of specifications. Third, the trust in the pro-
gram is increased because the program is developed following a formal pro-
cess [14].

Despite these benefits, CbC is still not prevalent and not applied for large-
scale program development. We argue that one reason for this is missing tool
c© The Author(s) 2019
R. Hähnle and W. van der Aalst (Eds.): FASE 2019, LNCS 11424, pp. 25–42, 2019.
https://doi.org/10.1007/978-3-030-16722-6_2

26 T. Runge et al.

support for a CbC-style development process. Another issue is that the pro-
grammer mindset is often tailored to the prevalent post-hoc verification app-
roach. CbC has been shown to be beneficial even in domains where post-hoc
verification is required [29]. In post-hoc verification, a method is verified against
pre- and postconditions. In the CbC approach, we refine the method stepwise,
and we can check the method partially after each step since every statement
is surrounded by a pair of pre- and postconditions. The verification of refine-
ment steps and Hoare triples reduces the proof complexity since the proof task
is split into smaller problems. The specifications and code developed using the
CbC approach can be used to bootstrap the post-hoc verification process and
allow for an easier post-hoc verification as the method constructed using CbC
generally is of a structure that is more amenable to verification [29].

In this paper, we present CorC,1 a tool designed to develop programs follow-
ing the CbC approach. We deliberately built our tool on the well-known post-hoc
verifier KeY [4] to profit from the KeY ecosystem and future extensions of the
verifier. We also add CbC as another application area to KeY, which opens the
possibility for KeY users to adopt the CbC approach. This could spread the
constructive CbC approach to areas where post-hoc verification is prevalent.

Our tool CorC offers a hybrid textual-graphical editor to develop programs
using CbC. The textual editor resembles a normal programming editor, but
is enriched with support for pre- and postcondition specifications. The graphi-
cal editor visualizes the code, its specification, and the program refinements in
a tree-like structure. The developers can switch back and forth between both
views. In order to support the correct application of the refinement rules, the
tool is integrated with KeY [4] such that proof obligations can be immediately
discharged during program development. In a preliminary evaluation, we found
benefits of CorC compared to paper-and-pencil-based application of CbC and
compared to post-hoc verification.

2 Foundations of Correctness-by-Construction

Classically, CbC [19] starts with the specification of a program as a Hoare triple
comprising a precondition, an abstract statement, and a postcondition. Such a
triple, say T , should be read as a total correctness assertion: if T is in a state
where the precondition holds and its abstract statement is executed, then the
execution will terminate and the postcondition will hold. T will be true for a
certain set of concrete program instantiations of the abstract program and false
for other instantiations. A refinement of T is a triple, say T ′, which is true for a
subset of concrete programs that render T to be true.

In our work, pre-/post-condition specifications for programs are written in
first-order logic (FOL). A formula in FOL consists of atomic formulas which are
logically connected. An atomic formula is a predicate which evaluates to true or

1 https://github.com/TUBS-ISF/CorC, CorC is an acronym for Correctness-by-
Construction.

Tool Support for Correctness-by-Construction 27

Fig. 1. Refinement rules in CbC [19]

false. Programs in this work are written in the CorC language, which is inspired
by the Guarded Command Language (GCL) [11] and presented below.

For the concrete instantiation of conditions and assignments, our tool uses a
host language. We decided for Java, but other languages are also possible.

To create programs using CbC, we use refinement rules. A Hoare triple is
refined by applying rules, which introduce CorC language statements, so that
a concrete program is created. The concrete program obtained by refinement
is guaranteed to be correct by construction, provided that the correctness-
preserving refinement steps have been accurately applied. In Fig. 1, we present
the statements and refinement rules used in CbC and our tool.

Skip. A skip or empty statement is a statement that does not alter the state of
the program (i.e., it does nothing) [11,19]. This means a Hoare triple with a skip
statement evaluates to true if the precondition implies the postcondition.

Assignment. An assignment statement assigns an expression of type T to a vari-
able, also of type T. In the tool, we use a Java-like assignment (x = y). To refine
a Hoare triple {P} S {Q} with an assignment statement, the assignment rule is
used. This rule replaces the abstract statement S by an assignment {P} x = E {Q}
iff P implies Q[x := E].

Composition. A composition statement is a statement which splits one abstract
statement into two. A Hoare triple {P} S {Q} is split to {P} S1 {M} and {M} S2 {Q}
in which S is refined to S1 and S2. M is an intermediate condition which evaluates
to true after S1 and before S2 is executed [11].

Selection. Selection in our CorC language works as a switch statement. It refines
a Hoare triple {P} S {Q} to {P} if G1 → S1 elseif . . . Gn → Sn fi {Q}. The guards
Gi are evaluated, and the sub-statement Si of the first satisfied guard is executed.

28 T. Runge et al.

We use a switch-like statement so that every sub-statement has an associated
guard for further reasoning. The selection refinement rule can only be used if
the precondition P implies the disjunction of all guards so that at least one
sub-statement could be executed.

Repetition. The repetition statement {P} do [I, V] G → S od {Q} works like a
while loop in other languages. If the loop guard G evaluates to true, the associ-
ated loop statement S is executed. The repetition statement is specified with an
invariant I and a variant V. To refine a Hoare triple {P} S {Q} with a repetition
statement, (1) the precondition P has to imply the invariant I of the repetition
statement, (2) the conjunction of invariant and the negation of the loop guard
G have to imply the postcondition Q, and (3) the loop body has to preserve the
invariant by showing that {I ∧ G} S {I} holds. To verify termination, we have to
show that the variant V monotonically decreases in each loop iteration and has
0 as a lower bound.

Weaken precondition. The precondition of a Hoare triple can be weakened if
necessary. The weaken precondition rule replaces the precondition P with a new
one P′ only if P implies P′ [12].

Strengthen postcondition. To strengthen a postcondition, the strengthen post-
condition rule can be used. A postcondition Q is replaced by a new one Q′ only
if Q′ implies Q [12].

Subroutine. A subroutine can be used to split a program into smaller parts. We
use a simple subroutine call where we prohibit side effects and parameters. A
triple {P} S {Q} can be refined to a subroutine {P′} Sub {Q′}, if the precondition
P′ of the subroutine is equal to the precondition P of the refined statement and the
postcondition Q′ of the subroutine is equal to the postcondition Q of the refined
statement. The subroutine can be constructed as a separate CbC program to
verify that it satisfies the specification. The Hoare triple {P′} Sub {Q′} is the
starting point to construct a program using CbC.

3 Correctness-by-Construction by Example

To introduce the programming style of CbC, we demonstrate the construction
of a linear search algorithm using CbC [19]. The linear search problem is defined
as follows: We have an integer array a of some length, and an integer variable
x. We try to find an element in the array a which has the same value as the
variable x, and we return the index i where the (last) element x was found, or
−1 if the element is not in the array.

To construct the algorithm, we start with concretizing the pre- and postcon-
dition of the algorithm. Before the algorithm is executed, we know that we have
an integer array. Therefore, we specify a�=null ∧ a.length≥0 as precondition P.
The postcondition forces that if the index i is greater than or equal to zero, the
element is found on the returned index i (Q := (i≥0 =⇒ a[i]=x)).

Tool Support for Correctness-by-Construction 29

Fig. 2. Refinement steps for the linear search algorithm

Our algorithm traverses the array in reverse order and checks for each index
whether the value is equal to x. In this case, the index is returned. To create
this algorithm, we construct an invariant I for the loop:

I := ¬appears(a, x, i + 1, a.length) ∧ i≥−1 ∧ i<a.length

The invariant is used to split the array into two parts. A part from i + 1 to
a.length where x is not contained, and a part from zero to i which is not
checked yet. In every iteration, the next index of the array is checked. The
predicate appears(a, x, l, h) asserts that x occurs in array a inside the range
from l (included) to h (excluded). The predicate can be translated to FOL as
∃i : (i≥l ∧ i<h ∧ a[i]=x).

We can use the CbC refinement rules to implement linear search. The refine-
ment steps for the example are shown in Fig. 2 and numbered from 1© to 4©.
To create a loop in the program, we need to initialize a loop counter variable to
establish the invariant. Therefore, we split the program by introducing a compo-
sition statement (1© in Fig. 2). The invariant I is used as intermediate condition
(i.e., M := I), because it has to be true after the initialization, and before the
first loop step. The statement st1 is refined to an assignment statement 2©. We
initialize i with a.length − 1 to start at the end of the array. This assignment
satisfies the intermediate condition I where i is replaced by a.length − 1. The
range of appears is empty, and therefore the predicate evaluates to true. To
refine the second statement (st2), we use the repetition refinement rule 3©. As
long as x is not found, we iterate through the array. As guard of the repeti-
tion, we use (i≥0 ∧ a[i]�=x). The invariant of the repetition is the invariant I
introduced above. The variant V is i + 1. To verify that this refinement is valid,
we have to verify that the precondition of the repetition statement implies the
invariant, and that the invariant and the negated guard imply the postcondition
of the repetition (cf. Rule 5). Both are valid because the precondition is equal
to the invariant and the postcondition of the repetition statement (in this case
it is Q) is equal to the negated guard. The last step is to refine the abstract loop
statement (loopSt) 4©. We use an assignment to decrease i and get the final

30 T. Runge et al.

program. We can verify that the invariant holds after each loop iteration. The
program terminates because the variant decreases in every step and it is always
greater than or equal to zero.

4 Tool Support in CorC

CorC extends KeY’s application area by enabling CbC to spread the constructive
engineering to areas where post-hoc verification is prevalent. KeY programmers
can use both approaches to construct formally correct programs. By using CorC,
they develop specification and code that can bootstrap the post-hoc verification.
The CorC tool2 is realized as an Eclipse plug-in in Java. We use the Eclipse
Modeling Framework (EMF)3 to specify a CbC meta model. This meta model
is used by two editor views, a textual and a graphical editor. The Hoare triple
verification is implemented by the deductive program verification tool KeY [4].
In the following list, we summarize the features of CorC.

– Programs are written as Hoare triple specifications, including pre-/postcondi-
tion specifications and abstract statements or assignment/skip statements in
concrete triples.

– CorC has eight rules to construct programs: skip, assignment, composition,
selection, repetition, weakening precondition, strengthening postcondition,
and subroutine (cf. Sect. 2).

– Pre-/postconditions and invariant specification are automatically propagated
through the program.

– CorC comprises a graphical and a textual editor that can be used
interchangeably.

– Up to now, CorC supports integers, chars, strings, arrays, and subroutine
calls without side effects, I/O, and library calls.

– Hoare triples are typically verified by KeY automatically. If the proof cannot
be closed automatically, the user can interact with KeY.

– Helper methods written in Java 1.5 can be used in a specification.
– CorC comprises content assist and an automatic generation of intermediate

conditions.

4.1 Graphical Editor

The graphical editor represents CbC-based program refinement by a tree struc-
ture. A node represents the Hoare triple of a specific CorC language statement.
Figure 3 presents the linear search algorithm of Sect. 3 in the graphical editor.
The structure of the tree is the same as in Fig. 2. The additional nodes on the
right specify used program variables including their type and global invariant

2 https://github.com/TUBS-ISF/CorC.
3 https://eclipse.org/emf/.

Tool Support for Correctness-by-Construction 31

Fig. 3. Linear search example in the graphical editor

conditions. The global invariant conditions are added to every pre- and post-
condition of Hoare triples to simplify the construction of the program. In the
example, we specify the array a and the range of variable i to support the
verification, as KeY requires this range to be explicit for verification.

The root node of the tree shows the abstract Hoare triple for the overall
program with a symbolic name for the abstract statement. In every node, the
pre- and postcondition are specified on the left and right of the node under the
corresponding header. A composition statement node, the second statement of
the tree, contains the pre- and postcondition and additionally defines an inter-
mediate condition. The intermediate condition is the middle term in the bottom
line. Both abstract sub-statements of the composition have a symbolic name and
can be further refined by adding a connection to another node (i.e., creating a
parent-child relation). The repetition node contains fields to specify the invari-
ant, the guard and the variant of the repetition. These fields are in the middle
row. The pre- and postcondition are associated to the inner loop statement. An
assignment node (cf. both leaf nodes of the figure) contains the precondition,
the assignment, and the postcondition. The representations of the nodes for the
refinements not illustrated in this example are similar.

32 T. Runge et al.

Refinement steps are represented by edges. The pre- and postconditions are
propagated from parents to their children on drawing the parent/child relation.
We explicitly show the propagated conditions in a node to improve readability.
The propagated conditions from the parent are unmodifiable because refinement
rules determine explicitly how conditions are propagated. An exception are the
rules to weaken the precondition or strengthen the postcondition. Here, the
conditions can be overridden. At the repetition statement, we only depict the
pre-/postconditions of the inner loop statement to reduce the size of this node.
The pre-/postconditions of the parent node (in our example the composition
statement) are not shown explicitly, but they are propagated internally to verify
that the repetition refinement rule is satisfied. To visualize the verification status,
the nodes have a green border if proven, a red one otherwise.

By showing the Hoare triples explicitly, problems in the program can be local-
ized. If some leaf node cannot be proven, the user has to check the assignment
and the corresponding pre-/postcondition. If an error occurred, the conditions
on the refinement path up to pre-/postcondition of the starting Hoare triple can
be altered. Other paths do not need to be checked. To prove the program correct,
we have to prove that the refinement is correct. Aside from the side conditions
of refinement rules (cf. iff conditions in refinement rules), only the leaf nodes of
the refinement tree which contain basic Hoare triples with skip or assignment
statements need to be verified by a prover, while all composite statements are
correct by construction of their conditions.

To support the user in developing intermediate conditions for composition
statements, our tool can compute the weakest precondition from a postcondition
and a concrete assignment by using the KeY theorem prover. So, the user can
create a specific assignment statement and generate the intermediate conditions
afterwards. We also support modularization, to cover cases where algorithms
become too large. Sub-algorithms can be created using CbC in other CorC pro-
grams. We introduce a simple subroutine rule which can be used as a leaf node
in the editor. The subroutine has a name and it is connected to a second diagram
with the same name as the subroutine. This subroutine call is similar to a classic
method call. It can be used to decompose larger CbC developments to multiple
smaller programs.

4.2 Textual Editor

The textual editor is an editor for the CorC programming language described
above. The user writes code by using keywords for the specific statements and
enriches the code with conditions, such as invariants or intermediate conditions,
and assignments in our CorC syntax. The syntax of the composed statements
in the textual editor is shown in Fig. 4. In the GlobalConditions declaration,
we enumerate the needed global conditions separated with a comma. The used
variables are enumerated after the JavaVariables keyword.

The linear search example program presented in Sect. 3 is shown in the syntax
of CorC in Listing 1. The program starts with keyword Formula. The pre- and
postcondition of the abstract Hoare triple are written after the pre: and post:

Tool Support for Correctness-by-Construction 33

Fig. 4. Syntax of statements in textual editor

1 Formula "linearSearch"

2 pre: {"true"}

3 {

4 {

5 i=a.length -1;

6 }

7 intm: ["! appears(a, x, i+1, a.length)"]

8 {

9 while ("i>=0 & a[i]!=x")

10 inv: ["! appears(a, x, i+1, a.length)"]

11 var: ["i+1"] do

12 {

13 i=i-1;

14 } od

15 }

16 }

17 post: {"i>=0 -> a[i]=x"}

18
19 GlobalConditions

20 conditions {"a!=null", "a.length >=0",

21 "i>=-1", "i<a.length "}

22
23 JavaVariables

24 variables {"int[] a", "int x", "int i"}

Listing 1. Linear search example in the textual editor

keywords. The abstract statement of the Hoare triple is refined to a composition
statement in lines 3–16. The statements are surrounded by curly brackets to
establish the refinement structure. We have the first statement in lines 4–6, the
intermediate condition in line 7 and the second statement in lines 8–15. The
first statement is refined to an assignment (Line 5). The refinement is done
by introducing an assignment in Java syntax (i = a.length − 1;). The second
statement is refined to a repetition statement (cf. the syntax of a repetition
statement in Fig. 4). We specify the guard, the invariant, and the variant. Finally,
the single statement of the loop body is refined to an assignment in Line 13.

As in the graphical editor, pre-/postconditions are propagated top-down from
a parent to a child statement. For example, the intermediate condition of a

34 T. Runge et al.

1 \javaSource "src";

2 \include "helper.key";

3 \programVariables {int x;}

4 \problem {

5 (x = 0) -> \<{x=x+1;}\> (x = 1)

6 }

Listing 2. KeY problem file

composition statement which is the postcondition of the first sub-statement and
the precondition of the second, appears only once in the editor (e.g., Line 7). To
support the user, we implemented syntax highlighting and a content assist. When
starting to write a statement, a user may employ auto-completion where the
statements are inserted following the syntax in Fig. 4. The user can specify the
conditions, then the next statement can be refined. The editor also automatically
checks the syntax and highlights syntax errors. Information markers are used to
indicate statements which are not proven yet. For example, the Hoare triple of
the assignment statement (i = a.length − 1) in Listing 1 has to be verified, and
CorC marks the statement according to the proof completion results.

4.3 Verification of CorC Programs

To prove the refined program is correct, we have to prove side conditions of refine-
ments correct (e.g., prove that an assignment satiesfies the pre-/postcondition
specification). This reduces the proof complexity because the challenge to prove
a complete program is decomposed into smaller verification tasks. The interme-
diate Hoare triples are verified indirectly through the soundness of the refine-
ment rules and the propagation of the specifications from parent nodes to child
nodes [19]. Side conditions occur in all refinements (cf. iff conditions in refinement
rules). These side conditions, such as the termination of repetition statements
or that at least one guard in a selection has to evaluate to true, are proven in
separate KeY files.

For the proof of concrete Hoare triples, we use the deductive program verifier
KeY [4]. Hoare triples are transformed to KeY’s dynamic logic syntax. The syn-
tax of KeY problem files is shown in Listing 2. Using the keyword javaSource,
we specify the path to Java helper methods which are called in the specifi-
cations. These methods have to be verified independently with KeY. A KeY
helper file, where the users can define their own FOL predicates for the specifi-
cation, is included with the keyword include. For example, in CorC a predicate
appears(a, x, l, h) (cf. the linear search example) can be used which is specified
in the helper file as a FOL formula. The variables used in the program are listed
after the keyword programVariables. After problem, we define the Hoare triple
to be proven, which is translated to dynamic logic as used by KeY. KeY problem
files are verified by KeY. As we are only verifying simple Hoare triples with skip

Tool Support for Correctness-by-Construction 35

or assignment statements, KeY is usually able to close the proofs automatically
if the Hoare triple is valid.

To verify total correctness of the program, we have to prove that all repe-
tition statements terminate. The termination of repetition statements is shown
by proving that the variants in the program monotonically decrease and are
bounded. Without loss of generality, we assume this bound to equal 0, as this
is what KeY requires. This is done by specifying the problem in the KeY
file in the following way: (invariant & guard) -> {var0:=var} \<{std}\>
(invariant & var<var0 & var>=0). The code of the loop body is specified at
std to verify that after one iteration of the loop body the variant var is smaller
than before but greater than or equal to zero.

To verify Hoare triples in the graphical editor, we implemented a menu entry.
The user can right-click on a statement and start the automatic proof. If the
proof is not closed, the user can interact with the opened KeY interface. To
prove Hoare triples in the textual editor, we automatically generate all needed
problem files for KeY whenever the user saves the editor file. The proof of the
files is started using a menu button. The user gets feedback which triples are
not proven by means of markers in the editor.

4.4 Implementation as Eclipse Plugin

We extended the Eclipse modeling framework with plugins to implement the two
editors. We have created a meta model of the CbC language to represent the
required constructs (i.e., statements with specification). The statements can be
nested to create the CbC refinement hierarchy. The graphical and the textual
editor are projections on the same meta model. The graphical editor is imple-
mented using the framework Graphiti.4 It provides functionality to create nodes
and to associate them to domain elements, such as statements and specifications.
The nodes can be added from a palette at the side of the editor, so no incor-
rect statement with its associated specification can be created. We implemented
editing functionality to change the text in the node; the background model is
changed simultaneously. Graphiti also provides the possibility to update nodes
(e.g., to propagate pre- and postconditions), if we connect those nodes by refine-
ment edges. The refinement is checked for compliance with the CbC rules.

The textual editor is implemented using XText.5 We created a grammar
covering every statement and the associated specification. If the user writes a
program, the text is parsed and translated to an instance of the meta model. If a
program is created in one editor, a model (an instance of our meta model) of the
program is created in the background. We can easily transform one view into the
other. The transformation is a generation step and not a live synchronization
between both views, but it is carried out invisibly for the user when changing
the views.

4 https://eclipse.org/graphiti/.
5 https://eclipse.org/Xtext/.

36 T. Runge et al.

Table 1. Evaluation of the example programs

Algo-
rithm

#Nodes
in GE

#Lines
in TE

#Lines
with
JML

#Verified
CorC
triples

CbC
Total
Proof-
Nodes

CbC
Total
Proof-
Time

PhV
Total
Proof-
Nodes

PhV
Total
Proof-
Time

Linear
Search

5 12 10 5/5 285 0.4 s 589 1.2 s

Max.
Element

9 21 15 9/9 1023 1.2 s 993 1.8 s

Pattern
Matching

14 23 20 13/13 21131 54.9 s 201619 1479.3 s

Exponen-
tiation

7 21 17 7/7 6588 15.2 s 7303 20.4 s

Log.
Approx.

5 16 12 5/5 13756 42.7 s 18835 68.5 s

Dutch
Flag

8 26 24 8/8 4107 5.7 s 4993 13.4 s

Factorial 5 15 13 4/4 1554 3.6 s 1598 4.4 s

(GE) Grahical Editor, (TE) Textual Editor, (PhV) Post-hoc Verification

In implementing CorC, we considered the exchangeability of the host lan-
guage. The specifications and assignments are saved as strings in the meta
model. They are checked by a parser to comply with Java. This parser could
be exchanged to support a different language. The verification is done by gener-
ating KeY files which are then evaluated by KeY. Here, we have to exchange the
generation of the files if another theorem prover should be integrated. The infor-
mation of the meta model may have to be adopted to fit the needs of the other
prover. We also have to implement a programmatic call to the other prover.

5 Evaluation

The tool support offers new chances to evaluate CbC versus post-hoc verification.
We quantitatively compare the development and verification of programs with
CorC and with post-hoc verification. This is to check the hypothesis that the
verification of algorithms is faster with CorC than with post-hoc verification. We
created the first eight algorithms from the book by Kourie and Watson [19] in our
graphical editor. For comparison purposes, we also wrote each example as a plain
Java program with JML specifications in order to directly verify it with KeY.
The specifications are the same as in CorC. We measured the verification time
and the proof nodes that KeY needed to close the proofs for both approaches.
The results of the evaluation are presented in Table 1 (verification time rounded).

Tool Support for Correctness-by-Construction 37

176.08% 53.48%

2595.59%

34.48%
60.49%

136.53%
22.38%

1

10

100

1000

10000

100000

1000000

10000000

Ve
rifi

ca
on

 in
 m

s (
lo

ga
rit

hm
ic

 sc
al

e)

Correctness by Construc on Post-hoc Verifica on

Fig. 5. Proof time of CbC and post-hoc verification in logarithmic scale

The algorithms have 5 to 14 nodes in the graphical editor and 12 to 26 lines
of code in the textual editor. The Java version with a JML specification always
has fewer lines (between 8% and 29% smaller). The additional specifications,
such as the intermediate conditions of composition statements, and the global
invariant conditions and variables cause more lines of code in the CbC program.

The verification of the eight algorithms worked nearly without problems.
We verified 7 out of 8 examples within CorC. In the cases without problems,
every Hoare triple and the termination of the loops could be proven. We had to
prove fewer Hoare triples than nodes in the editor, as not every node has to be
proven separately. Composition nodes are proven indirectly through the refine-
ment structure. For exponentiation, logarithm, and factorial, we had to imple-
ment recursive helper methods which are used in the specification. Therefore,
the programs impose upper bounds for integers to shorten the proof. The binary
search algorithm could not be verified automatically in KeY using post-hoc ver-
ification or CorC. In each step, when the element is not found, the algorithm
halves the array. KeY could not prove that the searched element is in the new
boundaries because verification problems with arithmetic division are hard to
prove for KeY automatically.

In the case of measured proof nodes, maximum element needs slightly fewer
nodes proved with post-hoc verification than with CbC. In the other cases, the
proofs for the algorithms constructed with CbC are 3% to 854% smaller. The
largest difference was measured for the pattern matching algorithm. The proof
is reduced to a ninth of the nodes.

The verification time is visualized in Fig. 5. The time is measured in millisec-
onds and scaled logarithmically. The proofs for the CbC approach are always
faster showing lower proof complexity. For maximum element, exponentiation,

38 T. Runge et al.

logarithm and factorial, the post-hoc verification time requires between 22%
and 60% more time. The difference increases for Dutch flag and linear search to
137% and 176%, respectively. Algorithm pattern matching has the biggest differ-
ence. Here, the CbC approach needs nearly a minute, but the post-hoc approach
needs over 24 min. To verify our hypothesis, we apply the non-parametric paired
Wilcoxon-Test [30] with a significance level of 5%. We can reject the null hypoth-
esis that CbC verification and post-hoc verification have no significant difference
in verification time (p-value = 0.007813). This rejection of the null hypothesis
in an empirical evidence for our hypothesis that verification is faster with CorC
than with post-hoc verification.

With our tool support, we were able to compare the CbC approach with post-
hoc verification. For our examples, we evaluated that the verification effort is
reduced significantly which indicates a reduced proof complexity. It is worthwhile
to further investigate the CbC approach, also to profit from synergistic effects
in combination with post-hoc verification. As we built CorC on top of KeY, the
post-hoc verification of programs constructed with CorC is feasible.

An advantage of CorC is the overview on all Hoare triples during develop-
ment. In this way, we found some specifications where descriptions in the book
by Kourie and Watson [19] were not precise enough to verify the problem in
KeY. For example, in the pattern matching algorithm, we had to verify two
nested loops. At one point, we had to verify that the invariant of the inner loop
implies the invariant of the outer loop. This was not possible, so we extended the
invariant of the inner loop to be the conjunction of both invariants. In the book
of Kourie and Watson [19], this conjunction of both invariants was not explicitly
used.

6 Related Work

We compare CorC to other programming languages and tools using specification
or refinements. The programming language Eiffel is an object-oriented program-
ming language with a focus on design-by-contract [21,22]. Classes and methods
are annotated with pre-/postconditions and invariants. Programs written in Eif-
fel can be verified using AutoProof [18,28]. The verification tool translates the
program with assertions to a logic formula. An SMT-solver proves the correct-
ness and returns the result. Spec# is a similar tool for specifying C# programs
with pre-/postcondition contracts. These programs can be verified using Boogie.
The code and specification is translated to an intermediate language (BoogiePL)
and verified [5,6]. VCC [8] is a tool to annotate and verify C code. For this pur-
pose, it reuses the Spec# tool chain. VeriFast [16] is another tool to verify C
and Java programs with the help of contracts. The contracts are written in sep-
aration logic (a variant of Hoare logic). As in Eiffel, the focus of Spec#, VCC,
and VeriFast is on post-hoc verification and debugging failed proof attempts.

The Event-B framework [2] is a related CbC approach. Automata-based
systems including a specification are refined to a concrete implementation.

Tool Support for Correctness-by-Construction 39

Atelier B [1] implements the B method by providing an automatic and inter-
active prover. Rodin [3] is another tool implementing the Event-B method. The
main difference to CorC is that CorC works on code and specifications rather
than on automata-based systems.

ArcAngel [25] is a tool supporting Morgan’s refinement calculus. Rules are
applied to an initial specification to produce a correct implementation. The tool
implements a tactic language for refinements to apply a sequence of rules. In
comparison to our tool, ArcAngel does not offer a graphical editor to visualize
the refinement steps. Another difference is that ArcAngel creates a list of proof
obligations which have to be proven separately. CRefine [26] is a related tool for
the Circus refinement calculus, a calculus for state-rich reactive systems. Like
our tool, CRefine provides a GUI for the refinement process. The difference is
that we specify and implement source code, but they use a state-based language.
ArcAngelC [10] is an extension to CRefine which adds refinement tactics.

The tools iContract [20] and OpenJML [9] apply design-by-contract. They
use a special comment tag to insert conditions into Java code. These conditions
are translated to assertions and checked at runtime which is a difference to our
tool because no formal verification is done. DBC-Python is a similar approach
for the Python language which also checks assertions at runtime [27].

To verify the CbC program, we need a theorem prover for Hoare triples,
such as KeY [4]. There are other theorem provers which could be used (e.g.,
Coq [7] or Isabelle/HOL [24]). The Tecton Proof System [17] is a related tool
to structure and interactively prove Hoare logic specification. The proofs are
represented graphically as a set of linked trees. These interactive provers do not
fit our needs because we want to automate the verification process. KeY provides
a symbolic execution debugger (SED) that represents all execution paths with
specifications of the code to the verification [15]. This visualization is similar to
our tree representation of the graphical editor. The SED can be used to debug
a program if an error occur during the post-hoc verification process.

7 Conclusion and Future Work

We implemented CorC to support the Correctness-by-Construction process of
program development. We created a textual and a graphical editor that can be
used interchangeably to enable different styles of CbC-based program develop-
ment. The program and its specification are written in one of the editors and
can be verified using KeY. This reduces the proof complexity with respect to
post-hoc verification. We extended the KeY ecosystem with CorC. CorC opens
the possibility to utilize CbC in areas where post-hoc verification is used as pro-
grammers could benefit from synergistic effects of both approaches. With tool
support, CbC can be studied in experiments to determine the value of using
CbC in industry.

40 T. Runge et al.

For future work, we want to extend the tool support, and we want to evaluate
empirically the benefits and drawbacks of CorC. To extend the expressiveness,
we implement a rule for methods to use method calls in CorC. These methods
have to be verified independently by CorC/KeY. We could investigate whether
the method call rules of KeY can be used for our CbC approach. Another future
work is the inference of conditions to reduce the manual effort. Postconditions
can be generated automatically for known statements by using the strongest
postcondition calculus. Invariants could be generated by incorporating external
tools. As mentioned earlier, other host languages and other theorem provers can
be integrated in our IDE.

The second work package for future work comprise the evaluation with a
user study. We could compare the effort of creating and verifying algorithms
with post-hoc verification and with our tool support. The feedback can be used
to improve the usability of the tool.

References

1. Abrial, J.R.: The B-Book: Assigning Programs to Meanings. Cambridge University
Press, Cambridge (2005)

2. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press, Cambridge (2010)

3. Abrial, J.R., Butler, M., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin, L.: Rodin:
an open toolset for modelling and reasoning in Event-B. Int. J. Softw. Tools Tech-
nol. Transfer 12(6), 447–466 (2010)

4. Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R., Schmitt, P.H., Ulbrich, M.:
Deductive Software Verification - The KeY Book: From Theory to Practice, vol.
10001. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-319-49812-6

5. Barnett, M., Fähndrich, M., Leino, K.R.M., Müller, P., Schulte, W., Venter, H.:
Specification and verification: the Spec# experience. Commun. ACM 54(6), 81–91
(2011)

6. Barnett, M., Leino, K.R.M., Schulte, W.: The Spec# programming system: an
overview. In: Barthe, G., Burdy, L., Huisman, M., Lanet, J.-L., Muntean, T. (eds.)
CASSIS 2004. LNCS, vol. 3362, pp. 49–69. Springer, Heidelberg (2005). https://
doi.org/10.1007/978-3-540-30569-9 3

7. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development:
Coq’Art: The Calculus of Inductive Constructions. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-662-07964-5

8. Cohen, E., et al.: VCC: a practical system for verifying concurrent C. In: Berghofer,
S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp.
23–42. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03359-9 2

9. Cok, D.R.: OpenJML: JML for Java 7 by extending OpenJDK. In: Bobaru, M.,
Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617, pp.
472–479. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20398-
5 35

Tool Support for Correctness-by-Construction 41

10. Conserva Filho, M., Oliveira, M.V.M.: Implementing tactics of refinement in CRe-
fine. In: Eleftherakis, G., Hinchey, M., Holcombe, M. (eds.) SEFM 2012. LNCS,
vol. 7504, pp. 342–351. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-33826-7 24

11. Dijkstra, E.W.: Guarded commands, nondeterminacy and formal derivation of pro-
grams. Commun. ACM 18(8), 453–457 (1975)

12. Dijkstra, E.W.: A Discipline of Programming. Prentice Hall, Upper Saddle River
(1976)

13. Gries, D.: The Science of Programming. Springer, Heidelberg (1987). https://doi.
org/10.1007/978-1-4612-5983-1

14. Hall, A., Chapman, R.: Correctness by construction: developing a commercial
secure system. IEEE Softw. 19(1), 18–25 (2002)

15. Hentschel, M.: Integrating symbolic execution, debugging and verification. Ph.D.
thesis, Technische Universität Darmstadt (2016)

16. Jacobs, B., Smans, J., Piessens, F.: A quick tour of the verifast program verifier. In:
Ueda, K. (ed.) APLAS 2010. LNCS, vol. 6461, pp. 304–311. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-17164-2 21

17. Kapur, D., Nie, X., Musser, D.R.: An overview of the Tecton proof system. Theoret.
Comput. Sci. 133(2), 307–339 (1994)

18. Khazeev, M., Rivera, V., Mazzara, M., Johard, L.: Initial steps towards assessing
the usability of a verification tool. In: Ciancarini, P., Litvinov, S., Messina, A.,
Sillitti, A., Succi, G. (eds.) SEDA 2016. AISC, vol. 717, pp. 31–40. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-70578-1 4

19. Kourie, D.G., Watson, B.W.: The Correctness-by-Construction Approach to
Programming. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-
27919-5

20. Kramer, R.: iContract - the Java design by contract tool. In: Proceedings, Technol-
ogy of Object-Oriented Languages. TOOLS 26 (Cat. No. 98EX176), pp. 295–307.
IEEE, August 1998

21. Meyer, B.: Eiffel: a language and environment for software engineering. J. Syst.
Softw. 8(3), 199–246 (1988)

22. Meyer, B.: Applying “design by contract”. Computer 25(10), 40–51 (1992)
23. Morgan, C.: Programming from Specifications, 2nd edn. Prentice Hall, Upper Sad-

dle River (1994)
24. Nipkow, T., Paulson, L.C., Wenzel, M. (eds.): Isabelle/HOL. LNCS, vol. 2283.

Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45949-9
25. Oliveira, M.V.M., Cavalcanti, A., Woodcock, J.: ArcAngel: a tactic language for

refinement. Formal Aspects Comput. 15(1), 28–47 (2003)
26. Oliveira, M.V.M., Gurgel, A.C., Castro, C.G.: CRefine: support for the circus

refinement calculus. In: 2008 Sixth IEEE International Conference on Software
Engineering and Formal Methods, pp. 281–290. IEEE, November 2008

27. Plosch, R.: Tool support for design by contract. In: Proceedings, Technology of
Object-Oriented Languages. TOOLS 26 (Cat. No. 98EX176), pp. 282–294. IEEE,
August 1998

28. Tschannen, J., Furia, C.A., Nordio, M., Polikarpova, N.: AutoProof: auto-active
functional verification of object-oriented programs. In: Baier, C., Tinelli, C. (eds.)
TACAS 2015. LNCS, vol. 9035, pp. 566–580. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-46681-0 53

42 T. Runge et al.

29. Watson, B.W., Kourie, D.G., Schaefer, I., Cleophas, L.: Correctness-by-
construction and post-hoc verification: a marriage of convenience? In: Margaria,
T., Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9952, pp. 730–748. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-47166-2 52

30. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Exper-
imentation in Software Engineering. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-29044-2

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

A.2. Comparing Correctness-by-Construction with Post-Hoc Verification — A

Qualitative User Study 91

A.2. Comparing Correctness-by-Construction with Post-Hoc
Verification — A Qualitative User Study

Comparing Correctness-by-Construction
with Post-Hoc Verification—A

Qualitative User Study

Tobias Runge1(B), Thomas Thüm2(B), Loek Cleophas3,4(B), Ina Schaefer1(B),
and Bruce W. Watson4,5(B)

1 TU Braunschweig, Braunschweig, Germany
{tobias.runge,i.schaefer}@tu-bs.de

2 University of Ulm, Ulm, Germany
thomas.thuem@uni-ulm.de

3 TU Eindhoven, Eindhoven, The Netherlands
loek@fastar.org

4 Stellenbosch University, Stellenbosch, South Africa
bruce@fastar.org

5 Centre for Artificial Intelligence Research, Stellenbosch, South Africa

Abstract. Correctness-by-construction (CbC) is a refinement-based
methodology to incrementally create formally correct programs. Pro-
grams are constructed using refinement rules which guarantee that the
resulting implementation is correct with respect to a pre-/postcondition
specification. In contrast, with post-hoc verification (PhV) a specification
and a program are created, and afterwards verified that the program sat-
isfies the specification. In the literature, both methods are discussed with
specific advantages and disadvantages. By letting participants construct
and verify programs using CbC and PhV in a controlled experiment, we
analyzed the claims in the literature. We evaluated defects in intermedi-
ate code snapshots and discovered a trial-and-error construction process
to alter code and specification. The participants appreciated the good
feedback of CbC and state that CbC is better than PhV in helping
to find defects. Nevertheless, some defects in the constructed programs
with CbC indicate that the participants need more time to adapt the
CbC process.

1 Introduction

Correctness-by-construction (CbC) [17,19,25,30] as proposed by Dijsktra is a
method for the construction of formally correct programs. The programmer refines
an abstract statement with pre-/postcondition specification to a concrete imple-
mentation, guided by the specification and refinement rules. It is claimed that pro-
grammers construct programs with low defect rates with CbC [20]. There are three
reasons for this that need to be evaluated. First, the structured reasoning disci-
pline which is enforced by the refinement rules reduces the possibility to introduce

c© Springer Nature Switzerland AG 2020
E. Sekerinski et al. (Eds.): FM 2019 Workshops, LNCS 12233, pp. 388–405, 2020.
https://doi.org/10.1007/978-3-030-54997-8_25

Comparing Correctness-by-Construction with Post-Hoc Verification 389

defects. Second, defects in the code can be traced to their source through the refine-
ment structure. Third, programmers and users gain trust in the program because
a formal methodology was used to create the program [25]. We implemented the
correctness-by-construction approach in a graphical IDE called CorC,1 which sup-
port users during the construction and verification of programs.

With deductive post-hoc verification (PhV), we refer to techniques as used
in the KeY community [4], which verify a program after its creation. A verifier
checks whether the program satisfies its pre-/postcondition specification. PhV
does not provide a strict guideline on how to construct the program; the pro-
grammer can freely implement the program. This can decrease the time taken to
create a first (potentially faulty) version of a program, but can increase the pro-
gram verification time because it is more likely that defects occur in the code [36].
In order to evaluate this claim, we consider the post-hoc verifier KeY [4] as an
instance. KeY can verify Java programs annotated with pre-/postcondition spec-
ifications in the Java Modeling Language (JML).

As the title suggests, we compare correctness-by-construction with post-hoc
verification. In a qualitative user study, participants use CorC and KeY to imple-
ment and verify an algorithm with each tool. By analyzing 347 intermediate code
snapshots, we get better insights in the process used by participants to construct
and verify algorithms. With a user experience questionnaire, we compare which
advantages and disadvantages of the verification techniques and the tools have
been experienced. Our contributions in this paper are the following.

– We give an overview of advantages and disadvantages of CbC and PhV.
– We designed and performed a user study to compare both approaches. We

analyze the defects in code and specification of each intermediate snapshot
for both tools.

– We discuss our insights and compare CbC with PhV based on our user study.

2 Verification Techniques

In our user study, we evaluate the techniques PhV and CbC. Therefore, we first
present and compare the foundations of both techniques. We also survey claims
about their advantages and disadvantages as discussed in the research literature.

2.1 Post-hoc Verification

With post-hoc verification, we refer to a method which is used to verify whether
a program satisfies a given specification. A programmer develops a program and
a pre-/postcondition specification. Besides the pre-/postcondition specification,
loop invariants can be defined to specify the behavior of loops in the code. The
correctness of the program can be verified by using a deductive verification tool,
such as KeY [4]. It translates the program and the specification to a dynamic
logic formula (i.e., proof obligations). The program is executed symbolically, and
1 see https://github.com/TUBS-ISF/CorC and [34] for explanation of the editor.

390 T. Runge et al.

the formula is updated according to the new symbolic state. After the program is
completely executed, it no longer appears in the formula, and the remaining first-
order proof goal can be evaluated by theorem proving. The verification can be
performed (semi-)automatically or interactively. We use automatic verification
in this paper in order to be able to focus the user study on the construction
of programs and specification. Most users in industry do not have a theoretical
background to verify programs interactively.

2.2 Correctness-by-Construction

Correctness-by-construction in the classical Dijkstra-style [17,25] is a program-
ming method which starts with a Hoare triple specification. This Hoare triple
contains a precondition, an abstract statement (i.e., a statement that is a place-
holder for concrete code), and a postcondition. The triple asserts total correct-
ness. If the program is in a state where the precondition holds, its execution will
terminate in a state where the postcondition holds. An abstract statement in a
Hoare triple can be refined to a concrete program using refinement rules. The
rules introduce new statements, such as loops or assignments. By refining the
program, the pre-/postcondition specification is propagated through the con-
structed program, so that the refined statements are also surrounded by a pre-
and a postcondition, forming more Hoare triples [17,25]. These refinement rules
introduce proof obligations which have to be discharged to establish the correct
application of the refinements rules. E.g., it has to be verified that by executing
an assignment the corresponding postcondition is implied, or that a loop invari-
ant holds after each iteration. The correctness of these proof obligations can be
checked using verification tools [1,34]. We implemented tool support for the con-
struction of programs following CbC [34]. The graphical editor CorC visualizes
program refinements in a tree-like structure.

2.3 Contrasting Correctness-by-Construction and Post-hoc
Verification

CbC and PhV are two different methods to create verified software. Neverthe-
less, they share commonalities. Both start with a pre-/postcondition specification
and result in a program that satisfies this specification. The procedure to con-
struct the program, however, is different. With CbC, the program is constructed
stepwise by applying checkable refinement rules. With PhV, the program is con-
structed without a strict guideline (i.e., the programmer can freely develop the
program and intermediate steps are not proven). Afterwards, the final program
can be verified.

It is claimed that CbC can lead to well-structured code that can be verified
more easily [25,36]. The additional time needed to construct the code is said
to be amortized with a significantly reduced time to prove the code. When
applying CbC, every refined statement leads to a provable side condition, where
a theorem prover can check whether this condition is satisfied. If the check fails,
the programmer can alter the refined statement to establish the proof. This is

Comparing Correctness-by-Construction with Post-Hoc Verification 391

a potential advantage compared to PhV because problems in the verification
process can be pinned to small parts of the program. In contrast, with PhV
additional expertise or sophisticated tool support is necessary to infer the defect
from open goals in the proof [33].

Programmers who use the CbC approach are bound to the stepwise refine-
ment using rules. Therefore, after each refinement the program with all condi-
tions can be reviewed by the programmers. They can continuously check the
surrounding specification of every statement. This can raise awareness of defects
in the program, resulting in fewer defects in comparison to PhV programming.
The number of required iterations to get to a correct program with CbC may also
be reduced because defects are detected early, even before a prover is used [36].

An open question is whether the experience of developers is crucial for the
development of correct code. Using PhV, programmers can implement algo-
rithms as they normally do and verify whether the program is correct after-
wards. Using CbC, the programmer needs an understanding of the refinement
rules to construct programs. Whether this barrier noticeably increases the time
of the construction process, or whether the CbC method does not have a negative
influence needs to be evaluated.

These claims are established in the literature but need to be evaluated in a
user study. We analyze defects in intermediate and final programs and interpret
the answers of a questionnaire to provide evidence for the claims.

3 Design of a User Study

To qualitatively evaluate CbC and PhV, we performed a user study with the two
tools, CorC and KeY. We decided explicitly for a controlled experiment to mon-
itor all participants in parallel during the tasks and to collect all programming
results. We selected CorC because it is a new tool that supports the CbC method
in a graphical user interface and which has been taught to the participants. KeY,
which is a major tool for the automatic verification of Java programs, is used
to get good comparability as CorC uses KeY as back-end for the verification.
Therefore, we have a comparable expressiveness with both tools.

We provide the participants a pre-/postcondition specification for an algo-
rithm, and they developed code to satisfy this specification. The algorithms can
be implemented in under ten lines of code. We decided explicitly for this size,
so the whole experiment could be done in 90 min because it is complicated to
motivate people to do longer experiments. We also excluded the process of writ-
ing an adequate pre-/postcondition specification because this has to be done
for both techniques and highly influences what needs to be implemented and
verified. The same starting point reduces the divergence, so that we can analyze
the results on the same basis. We want to qualitatively analyze how the partici-
pants develop and verify code. Therefore, we took intermediate snapshots of the
code every time the code was verified and analyzed the defects created during
the development process. We checked a total of 347 versions of programs, some-
thing which is not feasible with larger programs and more participants. The user

392 T. Runge et al.

experience with the tools was measured qualitatively by a questionnaire in order
to find improvement potentials. The material of the user study is published on
GitHub.2

Objective. We surveyed in Sect. 2.3 whether CbC can have a positive impact on
programming and verifying code. Hence, we want to evaluate whether a positive
impact can be detected (i.e, programmers appreciate that defects could be more
easily detected with CbC). We consider three research questions to evaluate the
methodologies (RQ1–2) and the tools (RQ3) qualitatively.

RQ1: What errors do participants make with CbC or PhV?
RQ2: What is the process of participants to create programs with CbC or PhV?
RQ3: Do participants prefer CorC or KeY?

Participants. Our participants were students of a software quality course at TU
Braunschweig, Germany. We decided for these students because they were taught
the fundamentals of software verification, and they got an introduction to both
tools. They have experience in verifying methods with both tools although the
specific algorithms of this experiment were new to them. We had ten participants
which were divided into two groups randomly. The programming experience
that was measured with an initial questionnaire [18] was 2.189 for group A
and 1.791 for group B.3 The experience of individuals ranged between 1.609
and 2.777. With a Mann-Whitney test, we calculated no significant difference
between both groups (p-value = 0.1514). Most of the students have several years
of programming experience in industry, and therefore, can be compared to junior
developers. Six participants had three to seven years experience as programmer
in industry, two were new programmers in larger projects, and only two never
programmed in larger projects.

The participants voluntarily attended in the experiment. They knew that
they took part in an experiment and that this experiment did not affect the
grade of the course. Every participant was paid AC 10 to create an incentive for
them. Participants who solved one or both exercises also had the chance to win
AC 50 (i.e., one of them was randomly selected). This lottery should increase the
motivation to solve the exercises by creating a realistic pressure to succeed.

Material. In our experiment, the participants had to implement and verify
two algorithms. For every participant, we prepared a computer with an Eclipse
installation that supports CorC and KeY, and contained a workspace with the
two exercises. We also provided a cheat sheet containing the syntax of KeY and
CorC to help the participants. In order for us to properly analyze the experiment,
participants took the programming experience questionnaire before the exercises

2 https://github.com/Runge93/UserstudyCbCPhV.
3 The calculation is explained in the work by Feigenspan et al. [18]. They derived with

stepwise regression testing that the experience in comparison to classmates with
factor 0.441 summed up with the logical programming experience with factor 0.286
is the best indicator for programming experience.

Comparing Correctness-by-Construction with Post-Hoc Verification 393

and a user experience questionnaire afterwards. The user experience question-
naire is a combination of open questions (OQ 1–4) and the User Experience
Questionnaire4 (UEQ).

OQ1: What was better in CorC/KeY?
OQ2: How did you proceed with the task in CorC/KeY?
OQ3: Which tool would you use for verification, and why?
OQ4: Which tool better supports avoiding or fixing defects, and why?

UEQ is an established questionnaire which measures six properties of a prod-
uct (e.g., attractiveness) by asking the user to rate the product with 26 items.
Each item describes the product positively and negatively, and the user must
evaluate which and to what extent one of the descriptions fits. Additionally, the
workspaces were saved to analyze the created code and specifications.

Tasks. We used the Latin square design to arrange the participants. Group A
used CorC for a maximum element algorithm, and KeY for modulo. Group B did
the exercises in the same order, but each one with the other tool. We switched
the order of the tools to address learning and ordering effects. We believe that
an order between tools is worse than an order between exercises because we
want to get insights in the usability of the tools. Additionally, the order between
exercises was not varied because a split into four groups was not manageable. For
each exercise, we provided a pre-/postcondition, and a task description in which
we explained the purpose of the algorithm, so that the partcipants understood
what the implementation should achieve.

The algorithm maximum element finds the index of the maximum element in
an array. The array is assumed to be non-empty to simplify the algorithm, so that
an index of the array should always be returned. The algorithm modulo gets two
integers a and b as input and computes the two values factor and remainder for
the equation factor ∗ b + remainder = a. For the construction of the algorithm,
the division and modulo operations are prohibited. Both algorithms are similar
in size and cyclomatic complexity.

The tasks were designed such that a small, manageable subset of Java is
sufficient to implement the algorithms. Assignments, If-Then-Else, and While
were the only necessary statements. We excluded method calls because they
complicate the verification for these two algorithms unnecessarily.

Variables. In our experiment, the tool is an independent variable, with the
two treatments CorC and KeY. To check the correctness of the code in KeY,
we reran the proof for the solution of every participant. In CorC, we checked
that all nodes in the refinement hierarchy are proven. If a solution was not
proven, we checked whether the code is correct with KeY and, if necessary,
adjusted the specification, such as a loop invariant, to close the proof. If the code
was also incorrect, we checked how many defects were in the code by adjusting
the code. To evaluate the programming and verification process, we analyzed
the intermediate snapshots. Here, the changes and defects were also counted in
4 https://www.ueq-online.org/.

394 T. Runge et al.

Table 1. Defects in code and specification of the final programs of participants

#Defects KeY CorC

Code Specification Code Specification

Verified 2 3

No defects 8 2 4 3

Minor defects 1 4 3 2

Major defects 1 3 1 2

Incomplete 0 1 2 3

terms of changed lines. For example, if an incorrect assignment was fixed by
a participant, we count one change in the program and reduce the number of
defects by one. The time needed for every exercise was measured manually. If a
participant solved a task, the time was noted. After 30 min, we interrupted the
participants when they were not finished.

Deviations. The participants assigned themselves randomly to a group by
selecting one computer. We missed that the participants per groups were
unequal. Group A had six participants, and group B had only four. This unequal
distribution changed which exercise was done with which tool. Since we used the
Latin square design, the influence should not be significant because we still had
ten results for each treatment.

4 Results and Discussion

In this section, we present the results of our evaluation. We analyzed the data
of the created programs and the answers of the questionnaire. The compara-
bly small number of participants reduces the generalizability of the results, but
allows us to evaluate the process of the participants in detail by analyzing all 347
intermediate code snapshots. This gives us anecdotal evidence to qualitatively
discuss advantages and disadvantages of CbC and PhV.

4.1 Defects in Implementation

To answer the first research question, RQ1, what errors do participants make
with CbC or PhV, we analyze defects in the program and the specification.

There are ten implementations with each tool. The defects in the code are
shown in Table 1 in column two and four, numbered left-to-right from one. With
KeY, eight programs were correct and two of them were verified. In one case,
only a loop guard was slightly incorrect (e.g., two variables were compared with
less than, but less than or equal was correct). Only one program contained major
defects. We classified a program to have major defects, if we could not correct

Comparing Correctness-by-Construction with Post-Hoc Verification 395

Table 2. Initial and final defects in the programs of participants

Row Initial defects Final defects KeY CorC

1 0 0 6 1

2 1 0 1 1

3 2 0 1 0

4 3 0 0 1

5 4 0 0 1

6 1 1 1 0

7 2 1 0 2

8 3 1 0 1

9 >5 >5 1 1

10 Incomplete 0 2

the program with at most five changes. With CorC, four programs were correct
and three of them could be verified. In three programs, a minor defect occurred,
one program had numerous mistakes, but also two programs were incomplete.

In the case of intermediate specifications which needed to be provided, for
both tools the results were worse. In Table 1, the defects in intermediate and loop
invariant specifications are shown in column three and five. Only in two cases for
KeY and three cases for CorC no defects occurred. In KeY, four specifications
contained minor defects, such as a missing boundary for a control variable or
an incorrect comparison of two variables. Three programs had major defects
in the specification. For example, it was not properly specified which elements
of the array were already examined in the maximum element algorithm. One
participant did not create an invariant. In the case of CorC, two minor and two
major defects occurred, but also three algorithms had incomplete specifications.
Two of these three incomplete specifications could be explained as incomplete
programs. In the third case, the algorithm was created but not specified.

To analyze the defects in more detail, we counted the defects during the
programming task. In Table 2, the defects in the initial (i.e., programs at the
first verification attempt) and final programs are shown. One difference between
programming in KeY and CorC is that the participants in KeY started the
first verification after the program was completely constructed. In CorC, some
users started earlier, with incomplete programs because they could verify Hoare
triples for parts of the programs that were already completely concretized. With
KeY, six participants created a program without any defects (Row 1). In two
cases (rows 2 and 3), one or two defects were found. One participant started
with one defect, but could not find the defect (Row 6). The participant also had
three defects in an intermediate result, but never found the incorrect loop guard
condition. One program had more than five defects in the beginning and the end
(Row 9). With CorC, only one program had no defects in the beginning (Row 1).
Three participants started with one to four defects and fixed the defects (rows 2,
4, and 5). One participant who started with two defects and ended with one
(Row 7), had a correct intermediate result, but inserted one defect in the final
version. One participant had a result which could not be fixed easily (Row 9).

396 T. Runge et al.

Two programs were incomplete in CorC (Row 10). Their developers started with
the first refinements, but could not finalize the program in the CorC editor.

The construction of algorithms with KeY was mostly the same. The partici-
pants created a correct or nearly correct algorithm. Afterwards, a loop invariant
was constructed and the program was verified. Astonishingly, no participant could
verify the program on the first try even though the program was correct because
the loop invariants were incorrect or too weak (e.g., for modulo the special case that
the input parameters could be equal was not handled). The approach of the par-
ticipants to get the program to a verifiable state was different. Some participants
mostly changed the invariant and verified the program again. Others changed the
loop and the invariant. A correct program was changed up to ten times to another
correct solution, but no sufficient invariant for KeY to verify the program was
found. Some participants also changed whether the loop variable was increased
or decreased several times.

With CorC, the most common approach was to create the program with all
refinements and specify the intermediate conditions or loop invariants in parallel.
Often the program was completely refined before the first verifier call. If the ver-
ification was not possible, missing parts such as the initialization of control vari-
ables were added, assignment or conditions were changed. In three cases, the initial
defects were found, but in one case, a correct intermediate program was changed to
an incorrect program. The participant with the incorrect result started with a pro-
gram where he forgot to decrease the control variable in the loop. Afterwards, the
participant decreased the variable correctly, but the loop invariant was wrong, so
the statements couldnot be verified. So, the programwas changed again to decrease
the control variable at another place in the program. In the process, the participant
introduced an incorrect execution path where the variable is not decreased. Two
other participants started with a loop, but forgot the initialization of necessary
variables. This mistake was recognized during the exercise.

In summary, both tools in some cases lead to correct and verified programs.
Small defects occurred with both tools, but in CorC, we observed incomplete
programs. If the program could not be verified, participants mostly changed the
loop guards, the loop body, or loop invariants. The changes in the code are fewer
with CorC than with KeY. If a program could not be verified, the problem was
in most cases an insufficient loop invariant or a wrong loop guard. With PhV,
most participants created correct code in the first place. As shown in Table 2,
only three defects were found in the process in total. With CbC, the users started
mostly with a defective program and found twelve defects in total. This higher
number of found defects may be explained with better tool support in CorC,
but also with the higher number of existing defects. With PhV, only four defects
existed by excluding the completely wrong program. Thus 75% of the defects
were found. For CbC, there are 15 defects in total, so 80% have been found.

RQ1. Comparing the defects in code, participants made similar errors with
both techniques (e.g., incorrect loop guard), but they made fewer and mostly
minor errors with PhV. This could be explained with the familiar environment of
standard Java with JML. The two incomplete programs in CorC can be explained
by problems interacting with the tool. Thus in total, more correct programs

Comparing Correctness-by-Construction with Post-Hoc Verification 397

were created with PhV than with CbC. That more programs were verified with
CbC anyway is interesting. One explanation could be that programs with CbC
were less changed. The participants might have thought more about the program
instead of changing the program by trial-and-error. Due to the similar correction
rates of defects for both tools, we cannot confirm a negative influence of CbC
in the programming process, but we should further investigate why more defect
programs with CbC exist.

4.2 Analysis of Programming Procedure

From the intermediate snapshots, we can evaluate the programming procedure
by analyzing the changes and defects in code and intermediate specification,
and missing program or specification parts. We analyzed 20 solutions containing
between 9 and 39 snapshots. We excluded the incomplete and entirely incorrect
cases because we could not count wrong or missing parts with the same scale as
for the other cases. In the following, three typical results are shown.

In Fig. 1, we show the graph of a participant solving the maximum element task
in CorC. The participant started the verification process with two missing lines
of code and two missing intermediate specification lines. The participant also had
two defects in the intermediate specification. Overall, 25 steps were taken by the
participant to achieve the correct solution. In the first 13 steps, the program and
the specification were changed, but no defects were fixed. In Step 14, the invariant
of the program was corrected. The special case that there can be more than one
maximum element in the array was included in the invariant. The next steps were
used to verify the program, until the participant realized that the initialization of
variables was missing. After this fix in Step 21, the program was verified.

In Fig. 2, the process to construct the maximum element algorithm in KeY is
shown. The participant started with a correct program where the invariant was
missing. After introducing the invariant with a defect, the participant changed
the code and the invariant during the whole task without finding a sufficient
invariant. The program was changed to iterate the array from forward to back-
ward and vice versa several times. The main reason that the program could not
be verified was that the invariant did not specify which elements of the array
were already visited. There were similar cases with KeY where also only the
invariant was wrong. The code and intermediate specifications were changed by
most participants during their development process. There were two participants
who mostly changed the invariant instead of the code.

In Fig. 3, we show a graph of a user developing the modulo algorithm in
CorC. The participant started with one defect in the code, an incorrect loop
guard, and two missing specification parts, the invariant and an intermediate
condition. In the first steps, the participant tried to verify the whole program
without changing it. Then, the missing specifications were added, but both were
wrong. In the invariant, the comparison operator was the wrong way around,
and the intermediate condition was too weak (i.e., it was not specified that the
correct factor was found). The specification was changed until step twelve, then
the participant tried to verify the program again. As this did not lead to a

398 T. Runge et al.

0

0,5

1

1,5

2

2,5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Changes Code Changes SpecificaƟon Missing Code

Missing SpecificaƟon # Defects in Code # Defects in SpecificaƟon

% verified

Fig. 1. Process to construct maximum element algorithm in CorC

0
0,5

1
1,5

2
2,5

3
3,5

4
4,5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Changes Code Changes SpecificaƟon Missing Code

Missing SpecificaƟon # Defects in Code # Defects in SpecificaƟon

% verified

Fig. 2. Process to construct maximum element algorithm in KeY

0

0,5

1

1,5

2

2,5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

Changes Code Changes SpecificaƟon Missing Code

Missing SpecificaƟon # Defects in Code # Defects in SpecificaƟon

% verified

Fig. 3. Process to construct modulo algorithm in CorC

Comparing Correctness-by-Construction with Post-Hoc Verification 399

-1,25
-1,00
-0,75
-0,50
-0,25
0,00
0,25
0,50
0,75
1,00
1,25
1,50
1,75

AƩracƟveness Perspicuity Efficiency Dependability SƟmulaƟon Novelty

CorC KeY

Fig. 4. Results of the user experience questionnaire

solution, the code and specification were changed again. The wrong comparison
in the invariant was found, but the other two problems remained until the end.

RQ2. With the detailed analysis of all 347 program snapshots, we can discuss
the programming process of the participants. We saw that correct programs were
changed several times if they could not be verified, and surprisingly remained
correct. The participants did not realize that only the intermediate specification
was insufficient. They need better tool support to pinpoint the defects in code
or specification. We also noticed a non-monotonic construction process for both
techniques. By monotonic, we mean that a program is specified, constructed,
and then verified to be correct. An example for the non-monotonic construction
process with CbC and PhV are the trial-and-error changes in specification and
code. For example with PhV, the users changed to iterate the array from forward
to backward in several cases. With CbC, the users verified a correct part of
the program, but changed it if they could not verify the complete program. In
comparison to PhV, participants using the CbC approach changed the code less.
Furthermore, a correct specification may favor the finding of mistakes in the
program. Often defects were found after a correct loop invariant was introduced.
In our evaluation, all programs with correct specifications had no defects.

4.3 User Experience

The results of the UEQ are presented in Fig. 4. The answers of the participants
were evaluated according to the six measurements: attractiveness, perspicuity,
efficiency, dependability, stimulation, and novelty. The scale is between +3 and
−3 for each item. Overall, the average answers of the participants are higher
for CorC. For perspicuity both tools got a negative mean value. KeY also has a
negative result for novelty. We measured a significant difference with the T-test.5

Stimulation (p = 0.0457) and novelty (p = 0.0274) are significantly different.

5 Statistical hypothesis test to compare two independent samples which are normally
distributed.

400 T. Runge et al.

For the open questions, we clustered the answers to analyze whether the
participants had similar experiences. The results are shown in the following.

OQ1. What was better in CorC/KeY? Five to six participants valued the clar-
ity of CorC. They also valued the good feedback of CorC to spot the defects
in the program because the program is split into individually provable state-
ments. On the negative side, the unfamiliar syntax and the handling of the tool
were mentioned. In the case of KeY, the well-known Java and JML syntax was
appreciated by nearly all participants. Two participants also valued the clarity
of KeY. One participant disliked the bad error messages of KeY. Another one
mentioned that KeY gives more information about the problem, but this follows
from the design of the experiment. CorC uses KeY as back-end for verification,
but we suppressed the KeY editor on purpose in CorC because the verification
problems for the implemented algorithms should be small enough to be verified
automatically [34]. In the normal configuration, CorC can deliver the same infor-
mation by opening the proof in KeY. In summary, the known syntax in KeY was
an advantage, but the participants appreciated the better potential in CorC to
find the defects because the program was decomposed into provable statements.

OQ2. How did you proceed with the task in CorC/KeY? In KeY, all participants
created the code first, then they created the loop invariant and verified the
program. One participant emphasized that the program was inferred from the
postcondition. In CorC, the common case was to construct the code stepwise.
Two participants explicitly mentioned that they created the program in CorC
first, then specified the program. Two others started with the specification in
CorC. In contrast to KeY, the participants wrote specifications only in CorC
before or during the construction of the code.

OQ3. Which tool (CorC/KeY) would you use for verification, and why? Five
participants decided to use CorC for verification. They appreciated the clarity.
Two participants mentioned the support to verify and debug individual state-
ments. One participant highlighted the reflective coding process that is encour-
aged by CorC. Four participants decided to use KeY. They liked the familiar
environment and syntax. As in the first question, one participant mentioned that
KeY gives more information. There is no clear trend towards one tool.

OQ4. Which tool (CorC/KeY) better supports avoiding or fixing defects, and
why? Most participants decided for CorC to avoid or fix defects. They appreci-
ated that defects are assigned to individual statements, therefore, it was easier
to understand the problem. One participant mentioned that the stepwise con-
struction helped to create correct programs. For both tools, some participants
indicated that defects were detected and only correct code could be verified.
Although nearly the same number of participants would use KeY or CorC for
verification, most participants wanted to use CorC to find or fix defects in the
coding process. That defects were associated to specific statements was well
received by the participants.

RQ3. The third research question, whether participants prefer CorC or KeY,
can be answered with the results of the questionnaire. The participants preferred

Comparing Correctness-by-Construction with Post-Hoc Verification 401

KeY because of the familiar syntax, and CorC for the better feedback if there
were defects in the code. This leads to a balanced vote on which tool the partic-
ipants would use for verification. Interestingly, the participants voted in favor of
CorC when it comes to finding and fixing defects. This should be further inves-
tigated; what keeps participants from using CorC even though they mention
that it helped better to find defects. With the answers of the participants and
the analysis of the snapshots, we can also confirm how the participants worked
on the tasks. In KeY, the program was developed, and afterwards the specifi-
cation was constructed. So, the code was mostly correct in the first place. In
CorC, they had different approaches. They interleaved coding and specification
or started with the specification. This results in starting the verification earlier
with incomplete or incorrect programs. Surprisingly, nobody complained about
the additional specification effort in CorC.

4.4 Threats to Validity

In our experiment, we had only 10 participants. This reduces the generalizability
of the results, but allowed us to analyze all 347 versions of program snapshots in
detail. The participants were all students of a software quality course. We could
ensure that all students had the required theoretical and practical precognition.
They are no experts in verifying software, but smaller tasks, such as those of
our experiment, were solved before by the participants in class. Most students
also have part-time jobs in companies, so the results are generalizable to junior
developers. The motivation of the students is doubtful, but the lottery gave an
incentive to accomplish the tasks. Another limitation for the experiment was
the limited time. Most participants have accomplished to write correct code,
but only five out of twenty algorithms were also verified. With more time it is
possible that more algorithms would have been verified. We only used two small
size exercises in our experiment, and therefore, cannot generalize the results to
bigger problems. The results of the experiment also depend on our introduction
of the tools—though we tried to introduce both tools equally without bias to
the students.

5 Related Work

In the literature, tool support for verification was previously evaluated, but PhV
was not compared with CbC.

Spec# is an extension of the programming language C# to annotate
code with pre-/postconditions and verify the code using the theorem prover
Boogie [10,11]. Barnett et al. [11] explained their lessons learned of constructing
this verification framework. In contrast, we focus on how users solve program-
ming and specification tasks. Petiot et al. [33] examined how programmers could
be supported when a proof is not closed. They implemented tool support that
categorizes the failure and gives counter examples to improve the user feedback.
This idea is complementary to the CbC method by pinpointing the failure to

402 T. Runge et al.

a small Hoare triple, which was appreciated by the participants in this study.
Johnson et al. [23] interviewed developers about the use of static analysis tools.
They came to the same result as we did that good error reporting is crucial
for developers. Hentschel et al. [21] studied the influence of formal methods to
improve code reviews. They detected a positive impact of using the symbolic exe-
cution debugger (SED) to locate errors in already existing programs. This setup
is different to our evaluation where the participants had to program actively.
The KeY tool [12,13] was already evaluated to get insight into how participants
use the tool interactively. In contrast, we wanted to evaluate the automatic part
of KeY because we think that most users do not have a theoretical background
to verify a program interactively.

Besides CorC and KeY, there are other programming languages and tools
using specification for program verification. For example Eiffel [28,29] with the
verifier AutoProof [24,35], SPARK [9], Whiley [32], OpenJML [15], Frama-C [16],
VCC [14], Dafny [26,27], VeriFast [22], and VerCors [5]. These languages and
verification tools can be used to compare CbC with post-hoc verification. As we
only used a subset of the Java language in our experiment (comparable to a sim-
ple while language), the difference to other programming languages is minimal,
and we expect similar results for those tools as with KeY.

A related CbC approach is the Event-B framework [1]. Here, automata-
based systems are specified, and can be refined to concrete implementations.
The Rodin platform [3] implements the Event-B method. For the predecessor of
Event-B, namely the B method, Atelier B [2] is used to prove correctness. The
main difference to CorC is the different abstraction level. CorC uses source code
with specification rather than automata-based systems. The CbC approaches
of Back [8] and Morgan [30] are related to CbC by Dijkstra, and it would be
interesting to evaluate these approaches in comparison to our CbC tool in a
future study. For example, ArcAngel [31] could be used as an implementation
of Morgan’s refinement calculus. Back et al. [6,7] build the invariant based pro-
gramming tool SOCOS. They start explicitly with the specification of not only
pre-/postconditions but also invariants before the coding process. In their exper-
iment, they discovered that good tool support is needed and that invariants are
found iteratively by refining an incomplete and partly wrong invariant; an insight
which we can confirm.

6 Conclusion and Future Work

We compared correctness-by-construction and post-hoc verification by using the
tools CorC and KeY. Participants could create and verify programs, but the
majority failed to create invariants that were strong enough. When a program
could not be verified, trial-and-error was the most popular strategy to fix the
program. Regarding user experience, KeY and CorC were both considered useful
to verify software, but the good feedback of CorC was explicitly highlighted. Nev-
ertheless, the defects in the programs with CorC indicate that the participants
need more time to get used to CorC.

Comparing Correctness-by-Construction with Post-Hoc Verification 403

We evaluated the user study qualitatively to get insights in how users create
verified programs. For future work, we could repeat the experiment with more
participants to get quantitative data about defects in the programs. Furthermore,
our insights about the trial-and-error programming process could be used to
improve the usability of both tools.

Acknowledgment. We would like to thank Alexander Knüppel and Domenik
Eichhorn for their help with the user study. The hints and suggestions of Alexan-
der helped to construct the final version of the study. Thanks to Domenik for setting
up the tools.

References

1. Abrial, J.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press, Cambridge (2010)

2. Abrial, J.R., Abrial, J.R.: The B-Book: Assigning Programs to Meanings. Cam-
bridge University Press, Cambridge (2005)

3. Abrial, J.R., Butler, M., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin, L.: Rodin:
an open toolset for modelling and reasoning in event-B. Int. J. Softw. Tools Technol.
Transf. 12(6), 447–466 (2010)

4. Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R., Schmitt, P.H., Ulbrich, M.:
Deductive Software Verification-The KeY Book: From Theory to Practice, vol.
10001. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-319-49812-6

5. Amighi, A., Blom, S., Darabi, S., Huisman, M., Mostowski, W., Zaharieva-
Stojanovski, M.: Verification of concurrent systems with VerCors. In: Bernardo,
M., Damiani, F., Hähnle, R., Johnsen, E.B., Schaefer, I. (eds.) SFM 2014. LNCS,
vol. 8483, pp. 172–216. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
07317-0 5

6. Back, R.-J.: Invariant based programming: basic approach and teaching experi-
ences. Formal Aspects Comput. 21(3), 227–244 (2009)

7. Back, R.-J., Eriksson, J., Myreen, M.: Testing and verifying invariant based pro-
grams in the SOCOS environment. In: Gurevich, Y., Meyer, B. (eds.) TAP 2007.
LNCS, vol. 4454, pp. 61–78. Springer, Heidelberg (2007). https://doi.org/10.1007/
978-3-540-73770-4 4

8. Back, R.-J., Wright, J.: Refinement Calculus: A Systematic Introduction. Springer,
Heidelberg (2012)

9. Barnes, J.G.P.: High Integrity Software: The Spark Approach to Safety and Secu-
rity. Pearson Education, London (2003)

10. Barnett, M., Fähndrich, M., Leino, K.R.M., Müller, P., Schulte, W., Venter, H.:
Specification and verification: the Spec# experience. Commun. ACM 54(6), 81–91
(2011)

11. Barnett, M., Leino, K.R.M., Schulte, W.: The Spec# programming system: an
overview. In: Barthe, G., Burdy, L., Huisman, M., Lanet, J.-L., Muntean, T. (eds.)
CASSIS 2004. LNCS, vol. 3362, pp. 49–69. Springer, Heidelberg (2005). https://
doi.org/10.1007/978-3-540-30569-9 3

12. Beckert, B., Grebing, S., Böhl, F.: A usability evaluation of interactive theorem
provers using focus groups. In: Canal, C., Idani, A. (eds.) SEFM 2014. LNCS, vol.
8938, pp. 3–19. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15201-
1 1

404 T. Runge et al.

13. Beckert, B., Grebing, S., Böhl, F.: How to put usability into focus: using focus
groups to evaluate the usability of interactive theorem provers. Electron. Proc.
Theor. Comput. Sci. 167, 4–13 (2014)

14. Cohen, E., et al.: VCC: a practical system for verifying concurrent C. In: Berghofer,
S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp.
23–42. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03359-9 2

15. Cok, D.R.: OpenJML: JML for Java 7 by extending OpenJDK. In: Bobaru, M.,
Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617, pp.
472–479. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20398-
5 35

16. Cuoq, P., Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.:
Frama-C. In: Eleftherakis, G., Hinchey, M., Holcombe, M. (eds.) SEFM 2012.
LNCS, vol. 7504, pp. 233–247. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-33826-7 16

17. Dijkstra, E.W.: A Discipline of Programming. Prentice Hall, Upper Saddle River
(1976)

18. Feigenspan, J., Kästner, C., Liebig, J., Apel, S., Hanenberg, S.: Measuring pro-
gramming experience. In: 2012 IEEE 20th International Conference on Program
Comprehension (ICPC), pp. 73–82. IEEE (2012)

19. Gries, D.: The Science of Programming. Springer, Heidelberg (1987)
20. Hall, A., Chapman, R.: Correctness by construction: developing a commercial

secure system. IEEE Softw. 19(1), 18–25 (2002)
21. Hentschel, M., Hähnle, R., Bubel, R.: Can formal methods improve the efficiency

of code reviews? In: Ábrahám, E., Huisman, M. (eds.) IFM 2016. LNCS, vol. 9681,
pp. 3–19. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-33693-0 1

22. Jacobs, B., Smans, J., Piessens, F.: A quick tour of the VeriFast program verifier.
In: Ueda, K. (ed.) APLAS 2010. LNCS, vol. 6461, pp. 304–311. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-17164-2 21

23. Johnson, B., Song, Y., Murphy-Hill, E., Bowdidge, R.: Why don’t software develop-
ers use static analysis tools to find bugs? In: Proceedings of the 2013 International
Conference on Software Engineering, pp. 672–681. IEEE Press (2013)

24. Khazeev, M., Rivera, V., Mazzara, M., Johard, L.: Initial steps towards assessing
the usability of a verification tool. In: Ciancarini, P., Litvinov, S., Messina, A.,
Sillitti, A., Succi, G. (eds.) SEDA 2016. AISC, vol. 717, pp. 31–40. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-70578-1 4

25. Kourie, D.G., Watson, B.W.: The Correctness-by-Construction Approach to Pro-
gramming. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27919-
5

26. Leino, K.R.M.: Specification and verification of object-oriented software. Eng.
Methods Tools Softw. Saf. Secur. 22, 231–266 (2009)

27. Leino, K.R.M.: Dafny: an automatic program verifier for functional correctness.
In: Clarke, E.M., Voronkov, A. (eds.) LPAR 2010. LNCS (LNAI), vol. 6355, pp.
348–370. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17511-
4 20

28. Meyer, B.: Eiffel*: a language and environment for software engineering. J. Syst.
Softw. 8(3), 199–246 (1988)

29. Meyer, B.: Applying “design by contract”. Computer 25(10), 40–51 (1992)
30. Morgan, C.: Programming from Specifications, 2nd edn. Prentice Hall, Upper Sad-

dle River (1994)
31. Oliveira, M.V.M., Cavalcanti, A., Woodcock, J.: ArcAngel: a tactic language for

refinement. Formal Aspects Comput. 15(1), 28–47 (2003)

Comparing Correctness-by-Construction with Post-Hoc Verification 405

32. Pearce, D.J., Groves, L.: Whiley: a platform for research in software verification.
In: Erwig, M., Paige, R.F., Van Wyk, E. (eds.) SLE 2013. LNCS, vol. 8225, pp.
238–248. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-02654-1 13

33. Petiot, G., Kosmatov, N., Botella, B., Giorgetti, A., Julliand, J.: Your proof fails?
Testing helps to find the reason. In: Aichernig, B.K.K., Furia, C.A.A. (eds.) TAP
2016. LNCS, vol. 9762, pp. 130–150. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-41135-4 8

34. Runge, T., Schaefer, I., Cleophas, L., Thüm, T., Kourie, D., Watson, B.W.: Tool
support for correctness-by-construction. In: Hähnle, R., van der Aalst, W. (eds.)
FASE 2019. LNCS, vol. 11424, pp. 25–42. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-16722-6 2

35. Tschannen, J., Furia, C.A., Nordio, M., Polikarpova, N.: AutoProof: auto-active
functional verification of object-oriented programs. In: Baier, C., Tinelli, C. (eds.)
TACAS 2015. LNCS, vol. 9035, pp. 566–580. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-46681-0 53

36. Watson, B.W., Kourie, D.G., Schaefer, I., Cleophas, L.: Correctness-by-
construction and post-hoc verification: a marriage of convenience? In: Margaria,
T., Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9952, pp. 730–748. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-47166-2 52

110

A.3. Teaching Correctness-by-Construction and Post-hoc
Verification — The Online Experience

Teaching Correctness-by-Construction
and Post-hoc Verification – The Online

Experience

Tobias Runge1(B), Tabea Bordis1(B), Thomas Thüm2(B), and Ina Schaefer1(B)

1 TU Braunschweig, Brunswick, Germany
{tobias.runge,t.bordis,i.schaefer}@tu-bs.de

2 University of Ulm, Ulm, Germany
thomas.thuem@uni-ulm.de

Abstract. Correctness of software is an important concern in many
safety-critical areas like aviation and the automotive industry. In order
to have skilled developers, teaching formal methods is crucial. In our soft-
ware quality course, we teach students two techniques for correct software
development, post-hoc verification and correctness-by-construction. Due
to Covid, the last course was held online. We present our lessons learned
of adapting the course to an online format on the basis of two user stud-
ies; one user study held in person in 2019 and one online user study
held after the online course. For good online teaching, we suggest the
use of accessible (web-)tools for active participation of the students to
compensate the advantages of teaching in person.

1 Introduction

Development of correct software is a concern which is becoming increasingly
important. In areas like aviation and the automotive industry, where human
lives depend on it, software safety requirements are considerably higher. There-
fore, formal methods should be taught to young software developers, so that
they learn a reasonable approach to develop correct programs, instead of hack-
ing programs into correctness. With this skill of correct software development,
developers can avert major errors in software projects by specifying and ver-
ifying the safety-critical parts [35]. Additionally, a development process that
includes verification can reduce overall development time because most software
is correct from the start, which reduces maintenance time and effort. Besides the
prevalent post-hoc verification (PhV) approach, where software is verified after
implementation, correctness-by-construction (CbC) [23] is an approach where
software is incrementally refined from a specification. In CbC, each refinement
step guarantees the correctness of the whole programs. CbC expands the reper-
toire of programmers with a formal reasoning style that prevents errors in the
first place.

Teaching formal methods, the correct specification and verification of pro-
grams, is the topic of the Master course Software Quality 2 at TU Braunschweig,
c© Springer Nature Switzerland AG 2021
J. F. Ferreira et al. (Eds.): FMTea 2021, LNCS 13122, pp. 101–116, 2021.
https://doi.org/10.1007/978-3-030-91550-6_8

102 T. Runge et al.

Germany. In the course, students learn the basics of deductive software verifi-
cation and correctness-by-construction on the practical example of specifying
and verifying Java code. In the corresponding exercises, the students solve tasks
using corresponding tools. In contrast to previous years, we offered the course
of last term online (due to the pandemic).

A difficulty in teaching formal methods is that courses are based on a lot of
formal background which may discourage students. Therefore, we highlight the
benefit to integrate practical experiences of practical tool usage in teaching that
help students to consolidate the taught topics [17]. With tools, students receive
immediately feedback if their found solutions are correct. They can also work
on larger tasks that are not doable on pen-and-paper. A problem here is the
effort to install various tools on different machines, especially when students use
their own machines due to online teaching. Tools should be easy to install or
web-based such that students enjoy active participation in lectures and exercises
of formal method courses. Some good examples for tool support are KeY [3],
Whiley [30], and Dafny [25].

Besides an experience report on our online course, we evaluate the learning
success of the students with two user studies. We compare the results of an
online user study with an earlier user study conducted in the same course, but
in person [33]. In the qualitative user study, we evaluate how students solved
tasks with two verification techniques post-hoc verification and correctness-by-
construction. They used the tools KeY [3] (as instance of a PhV tool) and
(Web)CorC [32] (as instance of a CbC tool). Therefore, our user study has four
quadrants. We compare CbC with PhV and online with in person courses. With
the data from these two studies, we share our lessons learned in transferring
the course to an online format, we discuss the quality of the online course, and
point out challenges and opportunities for improving online courses in the future.
We also compare the web version WebCorC with the previous version CorC to
determine important aspects of good tool support. Furthermore, we compare
how well students interact with CbC and PhV by collecting their user feedback.

As a result, we confirmed the findings of the first user study. The students
made fewer defects in the code with PhV than with CbC, but overall the results
are worse than in the first user study. This indicates a worse learning outcome
due to the online format. The qualitative questionnaire was answered in favor of
CbC. The students liked the structured reasoning of CbC and rated the support
provided by the CorC tool as more suitable for finding defects than KeY for PhV.
For online teaching, we detect that easily accessible tool support is beneficial for
participation in exercises. Additionally, courses on formal methods should be
interactive to encourage student participation, thus we discuss how to improve
online teaching.

2 Related Work

Teaching formal methods has been discussed by many researchers [11,14,17,
26]. They discuss their teaching experiences and evaluate the learning success

Teaching Correctness-by-Construction and Post-hoc Verification 103

of students with respect to different tools and teaching strategies. In detail,
Liu et al. [26] highlight the benefits of a good mix of pen-and-paper and tool
supported exercises. On paper, students consolidate what they learned without
being supported by a tool, and with tools they increase their productivity and
learn to analyze defects in the specifications or programs. The interest of students
also rises if they can solve exercises on tools and get positive feedback by verifying
programs. Creuse et al. [14] mention that teaching by example is beneficial for an
easier and more practical entry into formal methods. That the students demand
immediate and good feedback on their specification or verification process and
want to understand clearly occurring problems is identified by Catano [11]. We
differ from this related work [11,14,17,26] that does not examine the aspects
of online teaching. In this paper, we discuss new challenges regarding online
teaching by comparing our course with a previous course held in person.

With respect to the user study, we compare it with related work that eval-
uated the usage of verification tools. Petiot et al. [31] evaluated the interaction
of programmers with verification tools. The authors analyzed how programmers
can be supported when they encounter an open proof goal. To improve user
feedback, they categorize defects and calculate counter examples. In the work of
Johnson et al. [22], developers were interviewed about their usage of static anal-
ysis tools. They also recognized that developers need good error reporting. The
influence of formal methods in code reviews was studied by Hentschel et al. [20].
In their study, the symbolic execution debugger (SED) had a positive impact
on the location of defect in programs. KeY was also evaluated to analyze how
participants interact with the tool during the verification process [9,10]. Back [5]
evaluated in an experiment that good tool support is necessary to develop cor-
rect software with a refinement based approach. Additionally, he discovered an
iterative procedure to refine an incomplete or partially incorrect invariant to a
final solution, an insight that we confirm in our first user study [33]. In our user
study, we focus more on the usability of the tools during program constructions,
how programmers utilize the tools and adapt their programming procedure. In
our study, we used KeY as automatic verifier. Thus, we excluded the expertise
on interactive proving from our study. We focused on the development of cor-
rect programs guided by a specification. In our study, the participants have to
implement the programs by themselves.

3 Teaching Formal Methods – Software Quality 2

In this section, we describe the structure of the formal methods course Software
Quality 2 at TU Braunschweig. We compare the previous course held in person
with the current course in an online format. The goal of this course is to teach
students deductive post-hoc verification and correctness-by-construction such
that students are able to construct correct programs with these approaches. The
course is named Software Quality 2, as we also offer a course Software Quality
1 that focuses on testing software.

104 T. Runge et al.

In Person Course. The course in person is divided into two parts, 12 lectures
with 11 corresponding exercises, each one lasting 90 min. The students attending
this course are mostly Master students that had at least two courses in program-
ming, and three courses in theoretical computer science. Normally, between 20
and 50 students attend the course. The lectures are a presentation on topics
like design by contract, software model checking, sequent calculus, deductive
verification, specifying programs with JML, verifying programs with KeY, and
constructing correct programs with CbC. The presentations include some inter-
mediate questions to the audience (e.g., to complete examples) and questions in
the end to consolidate the lessons learned. We provide a video of each lecture,
so students can prepare the exams by rewatching specific lessons. In the videos,
the slides and the audio of the lecture are recorded.

The exercises are divided between pen-and-paper exercises for writing first-
order logic and using the sequent calculus, and tool-supported exercises. For the
tool-supported exercises, we use different tools: OpenJML [13] to show testing
with JML annotated code, Java Pathfinder [19] for software model checking,
KeY [3] for program verification, and CorC [32] for correct-by-construction soft-
ware development. All these tools are pre-installed on machines at the university
such that exercises are performed smoothly. The exercises are mostly interac-
tive such that the students solve the tasks and present the solutions, and these
solutions are discussed with the audience. This structure of the exercises should
consolidate knowledge better than a frontal presentation of solutions.

The course exam is oral. We have a small group of students such that oral
exams are feasible. In these exams, we can check whether students understood
the topics of this course and can answer cross-cutting questions, and whether
they can apply learned techniques to solve code specification and verification
tasks. Oral exams are more time-consuming than written exams, but as a teacher
one gets better feedback on whether students have understood the content.

Online Course. The setting for the online course is the same as for the previous
courses in person: 12 lectures with 11 exercises with weekly meetings covering the
same topics. The number of students slightly increased to around 60 students.
We upload videos of the recorded lectures of the previous year. Additionally, we
give a short recap of the topic followed by a discussion where students can ask
questions in the weekly meeting. For the exercises, we upload exercise sheets
with tasks that have to be prepared as homework. If the task includes the use
of tools, we add an instruction for the installation and usage. In the weekly
online session for the exercises, the students are asked to present their solutions
which are discussed with the audience afterwards. Thereby, we use Google Docs
documents that can be edited by everyone in the session to collect and store the
correct answers for exam preparation.

To keep the interactive character of the exercise in the online course, we use
the same tools in the exercises as we do for the course in person (i.e. OpenJML,
Java Pathfinder, KeY, and CorC). Due to the format of an online session, we
could not monitor whether students were actually actively participating. For
the tools, we tried to find the easiest way with as few steps as possible for

Teaching Correctness-by-Construction and Post-hoc Verification 105

the installation. However, with most of the tools we had some problems with
the installation due to outdated documentations or the need of specific JDK or
Eclipse versions such that finding a good solution was time-consuming.

The oral exams are held online in the video conference system provided by
our university. The student has to attend with camera such that we can check
that the right person is taking the exam and that no other persons are in their
room. An advantage of taking the oral exam online is that we are able to include
practical tasks using tools introduced in the exercises. To omit difficulties in the
installation, we installed the tools on our computer and shared the screen. The
students then have to explain what they would do and what result they expect.

4 Verification Techniques and Tool Support

We compare in our user study, how students solve tasks using post-hoc verifi-
cation (PhV) and correctness-by-construction (CbC). We briefly introduce PhV
and CbC in the following.

4.1 Post-hoc Verification

The post-hoc verification process [3], verifies the correctness of programs after the
implementation. A prover checks that the implementation complies with the pre-
/postcondition specification. PhV does not give a development guideline, such
that programmers can freely implement the programs as long as the specification
is in the end fulfilled. This free process decreases the time to construct a first
(potentially faulty) version of a program, but can increase the time to construct
a verified version, as it is more likely that defects occur in the code [35].

As an instance, KeY [3] verifies the correctness of Java programs that are
specified with the Java modelling language (JML). Starting from a specified
program, KeY symbolically executes the programs and closes the remaining
proof obligations (semi-)automatically. As we are focusing on the programming
and specification aspects in our user study, we use KeY as an automatic tool.
This goes along with most programmers not having a theoretical background to
verify programs interactively.

Besides KeY, there are a number of tools in the area of specification and
program verification: the language Eiffel [27] with the verifier AutoProof [34], the
languages SPARK [8], Dafny [25], and Whiley [30], and the tools OpenJML [13],
Frama-C [15], VCC [12], VeriFast [21], and VerCors [4]. All languages and tools
are candidates to be compared with the CbC methodology, but we decided for
KeY because of the previous familiarity of our study participants. Since we used
only a subset of the Java language without method calls or custom objects, the
difference to other programming languages is minimal.

4.2 Correctness-by-Construction

Correctness-by-construction [16,23,28] is a methodology to incrementally con-
struct correct programs. Starting with a pre-/postcondition specification and an

106 T. Runge et al.

initially abstract program, refinement rules are applied to create an implemen-
tation that fulfills the specification. The correctness is guaranteed by the rules if
specific side conditions for their applicability hold. Dijsktra [16] and Kourie and
Watson [23] identified that the CbC process guides programmers to a correct
implementation that has low defects rates and is of better structure than a pro-
gram ad hoc hacked to correctness. A disadvantage of CbC is the fine-grained
refinement process that programmers must adhere to. This complicates program
construction for inexperienced programmers, but the fine-grained development
with the explicit specification in each node raises awareness for defects in the
mind of the programmer [35].

Besides the CbC approach proposed by Kourie and Watson [23], there are
other refinement based approaches that guarantee the correctness of the pro-
gram under development. In the Event-B framework [1], specified automata-
based system are refined to concrete implementations. It is implemented in the
Rodin platform [2]. In comparison to the CbC approach used here, the abstrac-
tion level is different. CbC uses specified source code instead of automata as
main artifact. Morgan [28] and Back [7] proposed also related CbC approaches.
Morgan’s refinement calculus is implemented in the tool ArcAngel [29]. Back et
al. [5,6] developed the tool SOCOS. In comparison to CbC, SOCOS starts with
invariants additionally to a pre-/postcondition specification.

Fig. 1. Program construction in
WebCorC

The tool CorC [32] implements the CbC
process in a graphical and textual editor.
CorC supports developers by offering refine-
ment rules as proposed by Kourie and Wat-
son [23] to develop programs and checking
the correctness of each applied refinement
with a program verifier KeY [3]. In CorC, a
programmer builds stepwise a correct method
by getting feedback directly when one refine-
ment is not correct, for example, when the
programmer specifies an invariant that is not
satisfied at the beginning of the loop.

WebCorC1 is an adaption of CorC [32].
Similar to CorC, we decided for the graph-
ical editor in WebCorC because of the stu-
dent feedback collected during the Software
Quality courses. The graphical editor helps
students learn the CbC approach by visual-
izing all important aspects of specifying and
refining a program into a correct result. CorC
is implemented in Java in the Eclipse framework. In WebCorC, we transferred
the graphical editor using a client-server structure, reusing the logic of CorC on
server side, but redeveloping the graphical editor as web-frontend. In comparison
to CorC, the implementation of WebCorC has no detailed feedback in a console

1 https://www.isf.cs.tu-bs.de/WebCorC/.

Teaching Correctness-by-Construction and Post-hoc Verification 107

when a refinement cannot be proven. This feedback was added only after the
user study.

In Fig. 1, we show a program construction in WebCorC. At the top, we specify
in the first gray node the program under development. The precondition states
that an integer x is greater than zero. In the postcondition, x should be equal to
5. We solve this problem by introducing a loop statement in the first refinement
step, called repetition in WebCorC. We introduce a repetition statement for
illustration purposes. Of course, an assignment directly solves the problem. For
the repetition, we need additional specification: a loop guard, a loop invariant,
and a variant. We continue the loop as long as x is not equal to 5. The loop body
introduced in the next refinement step, the third node at the bottom, increments
x by one. Both refinement steps are checked by WebCorC to be correct.

5 User Study Design

In this section, we describe the design of our user study that was conducted
online after the end of the Software Quality 2 course. The goal of this evaluation
is to compare the results of the students with the results of a previous study that
was held in person. Therefore, we adopt the design of the previous study [33]. We
want to get insights into the learning success of the students whether the online
course and the use of WebCorC leads to noticeable differences in the outcome.
To better compare both studies, we explain the commonalities and differences
in the user study design in the following. Note that we used CorC in the first
user study and WebCorC in the second user study. If we talk about both tools,
we write (Web)CorC.

5.1 General User Study Design

The user study is designed such that students solve two programming tasks each
with a different tool. We compare correctness-by-construction and post-hoc ver-
ification with the tools (Web)CorC and KeY. Starting with a pre-/postcondition
specification, an algorithm should be implemented and verified.

Objective. We want to evaluate whether the CbC approach has a positive or
a negative impact on the programming results. We consider the following two
research questions to evaluate the verification approaches and tools.

RQ1: What kind of errors do participants make with CbC and PhV?
RQ2: To which degree do participants prefer CbC over PhV?

To evaluate the usability of CbC and PhV, we take the user experience
questionnaire (UEQ), and ask the questions OQ1−OQ8:

OQ1: How do you rate your overall work with WebCorC from 1 (very bad) to
5 (very good)?

OQ2: What is your general process when solving tasks with WebCorC/KeY?

108 T. Runge et al.

OQ3: Do you prefer a web-frontend over the Eclipse environment and why?
OQ4: Were there any specific obstacles during the task execution process?
OQ5: Is the construction of a program by modeling through a refinement struc-

ture helpful and why?
OQ6: Do you prefer WebCorC or KeY in general and why?
OQ7: Which of these two tools would you use for verification and why?
OQ8: Which tool better supports avoiding or fixing defects and why?

The UEQ [24] is a standardized test to measure six usability properties of a
tool. A participant is asked to rate the tool with 26 items. Each item is a pair of
adjectives that describe the tool, one negative and one positive adjective. The
user can rate on a 7-point Likert-scale which of the adjectives and to what extent
fits more. The range for the answers is between +3/−3.

General Design Decisions. The user study is limited to 90 min. To compare
both tools, each participant should implement an algorithm with each tool. We
set 30 min per task. Thus, the algorithms should be implementable and verifiable
in this time frame. We decide for algorithms with a size of under ten lines,
but including a loop to have participants writing loop invariants. We give the
pre-/postcondition specification of the algorithms so that all participants have
the same starting point. This reduces the divergence and lead to comparable
programming results. Writing the pre-/postcondition would also cost too much
time in this experiment. We decide for the tools (Web)CorC and KeY because the
participants have experience with these tools which increases the expressiveness
of this study. The material of the user study is published on GitHub.2

Tasks. Two algorithms must be correctly implemented and verified. The algo-
rithm minimum element calculates the index of the minimum element in an
array. The array is non-empty to omit the special case from the algorithm. The
algorithm modulo calculates the remainder from two input integers; a dividend a
and a divisor b. In the algorithm, division and modulo operators are prohibited.
The algorithms are similar in size and cyclomatic complexity.

We design the tasks to be small enough to be doable in the time frame. We
also design them such that both (Web)CorC and KeY can be used to implement
them correctly. For both tasks, assignments, conditional statements and loops
where sufficient.

The groups of participants are arranged with the Latin square design. Group
A uses (Web)CorC for the first task, and PhV afterwards. Group B does the
same tasks but the tools in different order. The tools are switched to address
the possibility of learning effects by forcing a specific tool order.

Participants. The participants are students at TU Braunschweig, Germany
attending the Software Quality course. These students were taught the funda-
mentals of software verification, and they learned to use the tools (Web)CorC
and KeY. During the course they implement, specify, and verify methods with
both tools. We analyzed the programming experience of the participants with a
questionnaire [18]. To weaken the restraint against a group of students, we had

2 https://github.com/Runge93/UserstudyCbCPhV.

Teaching Correctness-by-Construction and Post-hoc Verification 109

several students with two to five years of programming experience in industry.
Therefore, the participants can be compared with junior developers. The stu-
dents freely attended the user study. We told them the goal of this experiment,
and we offered a monetary payment for attendance. We raffled two times AC 25.

Variables. We have the tools as independent variable in our user study, with
the treatments CbC and PhV. The correctness of the task were checked with
KeY using the automatic mode. For CbC, we checked the task by reverifying
each refinement step. When some task was not verifiable, we manually checked
for defects in the program or specification. These defects were counted by line.

5.2 Differences in the First and Second User Study

In the first user study, we have 10 participants in two groups who have no signif-
icant difference in the programming experience [33]. In the second user studies,
we have 13 participants. With a programming experience questionnaire [18], we
measure a similar experience in both groups. A value of 2.137 for group A and
2.550 for group B3. With a Mann-Whitney test, no significant difference between
the two groups is measured.

In the first user study, we prepare machines at the university with CorC and
KeY. They directly implement both tasks in the Eclipse IDE. Here, they can
interact with KeY directly to get feedback about the verification status. In the
second user study, we prepare a workspace where the participants can develop
one of the algorithms with WebCorC. For the PhV process, they can use their
preferred IDE. When they want to verify the algorithm, they upload it and get
feedback about the success of the verification. This process can be repeated until
a verified result is achieved. As the participants in the second study only upload
files in the post-hoc verification tasks and do not interact with KeY directly, we
abandon the UEQ for the tool KeY.

In the first user study, we monitored all participants in a controlled exper-
iment in person. In the second user study, we adapt this by having an audio
conference. Due to legal restrictions, we cannot use proctoring tools.

6 Results and Discussion

In this section, we show the results of our user study. We evaluate the implemen-
tations of each participant by looking at the final result. We focus on a qualitative
evaluation of the programming procedure and results of CbC and PhV. Addi-
tionally, we evaluate the answers of our questionnaire (UEQ and OQ1−OQ8) to
complete the discussion.

6.1 Defects in Implementation and Specification

To answer the first research question, we analyze defects in the code and the spec-
ification. By code, we refer to the implemented algorithm without the specifica-
tion. By specification, we refer to auxiliary annotations such as loop invariants.
3 The calculation is explained in the work by Feigenspan et al. [18].

110 T. Runge et al.

Table 1. Defects in code and specification of the final programs of participants

#Defects PhV 1st CbC 1st PhV 2nd CbC 2nd

Code Spec. Code Spec. Code Spec. Code Spec.

No defects 8 2 4 3 9 1 2 1

Minor defects 1 7 3 4 4 10 4 5

Major defects 1 0 1 0 0 0 0 0

Incomplete 0 1 2 3 0 2 7 7

We classify a program to have major defects, if the program cannot be corrected
without rewriting the algorithm. Otherwise, we classify it to have minor defects.
The same classification applies for defects in the specification.

Table 1 shows the defects the participants have in their final result when they
finished a task in the first and second user study. When we compare CbC and
PhV, the participants have fewer coding defects with PhV than with CbC in both
user studies. The coding results for PhV and CbC are generally better in the first
user study, we have more results without defects for both approaches. Across all
participants, a typical defect is a loop guard with a wrong logical comparison
operator. With CbC, a recurring problem is that participants forget to initialize
variables correctly. In both studies participants have incomplete results in the
program for CbC. In the second study, seven participants have not completed
the program for CbC.

When we compare defects in the auxiliary specification, more participants
have no defects with CbC in the first user study compared with the results for
PhV. In the second user study, for each approach only one participant has no
defects. In general, the specification results are better in the first user study. More
participants have no defects with PhV and CbC. Typical defects with PhV are a
missing variant or missing checks whether variables stay in a specific boundary
(e.g., out of bounds checks in arrays). With CbC, a common specification defect is
that the invariant does not hold initially or after the last loop iteration. However,
the participants do not forget the variant when they specify a loop. In both
user studies and with both approaches, we have incomplete specifications. Five
incomplete results of the auxiliary specification are due to incomplete code.

6.2 User Experience

For the evaluation of the user experience, we show the results of the user expe-
rience questionnaire in Fig. 2. The blue results for CorC are from the first user
study [33], the red results for WebCorC are from the second study. The answers
of the participants are combined into six measurements: attractiveness, perspicu-
ity, efficiency, dependability, stimulation, and novelty. Except for efficiency, the
results are better in the first user study. The largest differences are in the scales
of stimulation and dependability. The stimulation is rated lower because some
participants rate WebCorC demotivating. Participants also rate WebCorC as

Teaching Correctness-by-Construction and Post-hoc Verification 111

-1,25
-1,00
-0,75
-0,50
-0,25
0,00
0,25
0,50
0,75
1,00
1,25
1,50
1,75

AƩracƟveness Perspicuity Efficiency Dependability SƟmulaƟon Novelty

CorC 1st WebCorC 2nd

Fig. 2. Results of the user experience questionnaire

unpredictable which results in a negative score for dependability. The items easy
to learn/difficult to learn and complicated/easy are answered differently resulting
in a big variance for the perspicuity measurement in the second user study.

For question OQ1-OQ8, common answers of the participants are summa-
rized in Table 2. Some participants dislike the limited feedback of WebCorC in
comparison to CorC, but they prefer the web-frontend due to the easy accessi-
bility. The general process of solving tasks is split between writing specification
or the program first. When comparing WebCorC with KeY, the majority of par-
ticipants prefer WebCorC to solve verification tasks because of the structured
process. The participants in favor of KeY argue that they are more familiar with
textual programming.

6.3 Discussion of the Research Questions

RQ1. When we compare the defects in code, the participants have similar defects
in both approaches (e.g., incorrect loop guards or incomplete invariants), but
they have fewer defects with PhV. A possible reason is the familiar environment
of writing Java code in a textual editor. Overall, we have worse results in the
second study. Regarding the complete results, we explain the difference between
both studies with the better feedback of CorC in comparison to WebCorC such
that students can find defects more easily. Another reason is that we monitored
active participation in the exercises in person. For the online course, we cannot
confirm this. It seems that the students were better prepared in the first user
study. We noticed that considerably more participants in the second user study
have not the necessary knowledge to construct programs with CbC. Some stu-
dents may not have participated in the exercises and may not have familiarized
themselves with (Web)CorC.

RQ2. We answer the second research question, whether participants prefer CbC
or PhV. Participants like the familiar programming style with PhV, but the
majority prefer (Web)CorC over KeY. The participants mention that CorC has
better and fine-grained console feedback which helps detecting defects during
program construction. In the previous study, the participants highlight the good

112 T. Runge et al.

Table 2. Answers for the questions OQ1−OQ8

Question Answer

OQ1 On average, the participants rate the work with WebCorC slightly
worse (2.1/5)

OQ2 They think about the solution first. The group of participants is split
between first writing code or specification

OQ3 CorC has more functionality. Web-frontend is easier to access and
system independent

OQ4 Some participants are not experienced enough to interact with
WebCorC

OQ5 Participants find defects in corner cases with WebCorC. They divide
the problem into smaller blocks. CbC rules are too restrictive. Some
are unfamiliar with graphical programming

OQ6 Six answers in favor of (Web)CorC. CorC has better feedback than
WebCorC. Two participants prefer KeY because of the familiar
programming style

OQ7 Six answers in favor of (Web)CorC. Two answers in favor of KeY

OQ8 Six answers in favor of (Web)CorC, mostly because of the better
feedback for verification results. Two answers in favor of KeY, as KeY
shows the whole proof tree

feedback for each refinement step, which is not implemented in WebCorC yet.
With better feedback, they would prefer WebCorC over CorC due to the easier
handling and installation. Surprisingly, nobody complains about the additional
specification effort in CbC.

Compared to the first UEQ shown in Fig. 2, we get slightly worse results
in the second study. The main reason is worse user feedback for WebCorC in
comparison to CorC. This insight coincides with the answers of the open ques-
tions in both user studies. Thus, participants rate WebCorC more demotivating,
unpredictable, and harder to learn because CorC is more advanced. Due to the
online course, it was also harder to teach the tools to the students. Students
asked fewer questions, therefore, problems were not discovered that also arose
during the user study (e.g. the correct initialization of variables). In person,
problems stand out more quickly and can be easily explained. Nevertheless, the
participants in both studies prefer (Web)CorC over KeY. Considering that the
students have more defects with (Web)CorC, the students seem to factor in that
they like the CbC approach for correct software development. The main reason
against (Web)CorC is that participants are more familiar with the programming
style in KeY. A limitation that is likely due to the shorter time of working with
the CbC process.

6.4 Threats to Validity

External Validity. The user studies had 10 and 13 participants. With this limited
number of participants, the generalizability of the results is restricted, but we

Teaching Correctness-by-Construction and Post-hoc Verification 113

were able to analyze the programming results of each participant in detail. The
participants are all Computer Science students that learned verification in the
Software Quality 2 course. Therefore, they are not experts in verification, but
should be able to solve smaller examples as the ones asked in this study. Through
their statements in the programming experience questionnaire, most students
can be compared to junior developers. Furthermore, the small algorithms reduce
the generalizability for larger algorithmic problems. Regarding the time frame
of a course, a longer study was not feasible.

Internal Validity. The motivation of the participants and their effort of solving
the tasks could not be monitored due to the online version of this user study. As
the time was limited for each task, most solutions were not verified completely.
With additional time, it would be possible for more algorithms to be verified.

7 Lessons Learned for Online Teaching

In this section, we conclude the paper by summarizing our lessons learned for
online teaching. The first three findings are based on the results in the user
studies. The last three also include our experiences from the online course.

Procedure of Software Development. By analyzing the questionnaire and
the programming results of the user study, we notice that students are mostly
hacking programs into correctness. By teaching the correctness-by-construction
approach, we enable students to think of the specification and the corner cases
first, before starting to program. This is well-received by the students, but the
approach needs time to be adopted.

Accessibility of Tools. In the questionnaire, students highlight that tools
should be easy to install for online teaching. If a tool needs many installation
steps or has a high potential to fail on some machines, students will not actively
participate in exercises. Students that are not able to solve the CbC tasks indi-
cate missing knowledge in (Web)CorC. Also, tools should be freely available such
that students are not excluded because they cannot afford the tool. Many tools
that we use during our lectures are Eclipse plug-ins. For Eclipse plug-ins, the
easiest way to install them is by using an update site. However, for some tools,
the update sites are not accessible anymore or only work with specific versions
of Eclipse or JDK. That has to be checked before a course.

Feedback of Tools. From the questionnaire, we know that tools should give
detailed and fine-grained feedback if errors occur in the development process.
Without feedback, the finding of defects during new tasks gets frustrating such
that students tend to give up faster online. This confirms results in the litera-
ture [11,26].

Besides of the user studies, we also collect feedback during the courses. Good
teaching is characterized by active participation of students [17,26]. As students
are more quickly distracted online, we describe how to improve the online course
such that students actively participate. Regarding the fact that we have more

114 T. Runge et al.

programming defects in the second user study, we still have to improve the online
course to be as good as the course in person.

Breakout Rooms. During the online exercises, we found that including tasks
where students can work in small groups in breakout rooms increases the number
of actively participating students. This holds, especially when the teacher is not
constantly in the same room and the students can work together on a task, which
has not been prepared in advance. Generally, breakout rooms also help students
to connect with each other and build learning groups for exams which became
more difficult during the pandemic.

Interactions in an Online Setting. In online courses, it is way more important
that students are willing to follow the lecture and to participate in exercises.
In the results of the user study, we encounter several students that indicate
missing background knowledge for the tasks. To prevent this, we derive the
following best practices for online teaching: Students should attend exercises with
cameras which increases attention. Students should be integrated into lectures
by asking questions. When videos and slides are provided in addition to a lecture,
students can consolidate what has been learned. Exercises with voluntary tasks
are working only for a minority of students. Other students will attend the
exercises unprepared. So exercises need to be mandatory or could provide bonus
points for the final exam.

Openness to Novel Approaches. Students are open minded for new tech-
niques and tools as we can see from our experiences with (Web)CorC. As teach-
ers, we have to ensure that new topics are introduced interactively and with
examples. However, when the new technique is not introduced properly, students
will not consider it for future tasks and fall back to old familiar approaches. We
want to ensure that formal methods are not taught for the sake of the course,
but be anchored in the mind of young computer scientists. So the introduction
of the new techniques needs to be thorough, well illustrated using meaningful
examples, and supported by accessible tools.

Acknowledgments. We thank Huu Cuong Nguyen and Malena Horstmann for their
help in preparing and conducting the user study.

References

1. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press, Cambridge (2010)

2. Abrial, J.R., Butler, M., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin, L.: Rodin:
an open toolset for modelling and reasoning in Event-B. STTT 12(6), 447–466
(2010)

3. Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R., Schmitt, P.H., Ulbrich, M.:
Deductive Software Verification-The KeY Book: From Theory to Practice, vol.
10001. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-319-49812-6

Teaching Correctness-by-Construction and Post-hoc Verification 115

4. Amighi, A., Blom, S., Darabi, S., Huisman, M., Mostowski, W., Zaharieva-
Stojanovski, M.: Verification of concurrent systems with VerCors. In: Bernardo,
M., Damiani, F., Hähnle, R., Johnsen, E.B., Schaefer, I. (eds.) SFM 2014. LNCS,
vol. 8483, pp. 172–216. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
07317-0 5

5. Back, R.J.: Invariant based programming: basic approach and teaching experiences.
FAOC 21(3), 227–244 (2009)

6. Back, R.-J., Eriksson, J., Myreen, M.: Testing and verifying invariant based pro-
grams in the SOCOS environment. In: Gurevich, Y., Meyer, B. (eds.) TAP 2007.
LNCS, vol. 4454, pp. 61–78. Springer, Heidelberg (2007). https://doi.org/10.1007/
978-3-540-73770-4 4

7. Back, R.J., Wright, J.: Refinement Calculus: A Systematic Introduction. Springer,
Heidelberg (2012)

8. Barnes, J.G.P.: High Integrity Software: The Spark Approach to Safety and Secu-
rity. Pearson Education (2003)

9. Beckert, B., Grebing, S., Böhl, F.: A usability evaluation of interactive theorem
provers using focus groups. In: Canal, C., Idani, A. (eds.) SEFM 2014. LNCS, vol.
8938, pp. 3–19. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15201-
1 1

10. Beckert, B., Grebing, S., Böhl, F.: How to put usability into focus: using focus
groups to evaluate the usability of interactive theorem provers. EPTCS 167, 4–13
(2014)

11. Cataño, N.: Teaching formal methods: lessons learnt from using Event-B. In: Don-
gol, B., Petre, L., Smith, G. (eds.) FMTea 2019. LNCS, vol. 11758, pp. 212–227.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32441-4 14

12. Cohen, E., et al.: VCC: a practical system for verifying concurrent C. In: Berghofer,
S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp.
23–42. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03359-9 2

13. Cok, D.R.: OpenJML: JML for Java 7 by extending OpenJDK. In: Bobaru, M.,
Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617, pp.
472–479. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20398-
5 35

14. Creuse, L., Dross, C., Garion, C., Hugues, J., Huguet, J.: Teaching deductive ver-
ification through FRAMA-C and SPARK for non computer scientists. In: Dongol,
B., Petre, L., Smith, G. (eds.) FMTea 2019. LNCS, vol. 11758, pp. 23–36. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-32441-4 2

15. Cuoq, P., Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.:
Frama-C. In: Eleftherakis, G., Hinchey, M., Holcombe, M. (eds.) SEFM 2012.
LNCS, vol. 7504, pp. 233–247. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-33826-7 16

16. Dijkstra, E.W.: A Discipline of Programming. Prentice Hall, Hoboken (1976)
17. Divasón, J., Romero, A.: Using Krakatoa for teaching formal verification of

Java programs. In: Dongol, B., Petre, L., Smith, G. (eds.) FMTea 2019. LNCS,
vol. 11758, pp. 37–51. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
32441-4 3

18. Feigenspan, J., Kästner, C., Liebig, J., Apel, S., Hanenberg, S.: Measuring pro-
gramming experience. In: ICPC, pp. 73–82. IEEE (2012)

19. Havelund, K., Pressburger, T.: Model checking Java programs using Java
pathfinder. STTT 2(4), 366–381 (2000)

116 T. Runge et al.

20. Hentschel, M., Hähnle, R., Bubel, R.: Can formal methods improve the efficiency
of code reviews? In: Ábrahám, E., Huisman, M. (eds.) IFM 2016. LNCS, vol. 9681,
pp. 3–19. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-33693-0 1

21. Jacobs, B., Smans, J., Piessens, F.: A quick tour of the VeriFast program verifier.
In: Ueda, K. (ed.) APLAS 2010. LNCS, vol. 6461, pp. 304–311. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-17164-2 21

22. Johnson, B., Song, Y., Murphy-Hill, E., Bowdidge, R.: Why don’t software devel-
opers use static analysis tools to find bugs? In: ICSE, pp. 672–681. IEEE Press
(2013)

23. Kourie, D.G., Watson, B.W.: The Correctness-by-Construction Approach to Pro-
gramming. Springer, Heidelberg (2012)

24. Laugwitz, B., Held, T., Schrepp, M.: Construction and evaluation of a user experi-
ence questionnaire. In: Holzinger, A. (ed.) USAB 2008. LNCS, vol. 5298, pp. 63–76.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89350-9 6

25. Leino, K.R.M.: Dafny: an automatic program verifier for functional correctness.
In: Clarke, E.M., Voronkov, A. (eds.) LPAR 2010. LNCS (LNAI), vol. 6355, pp.
348–370. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17511-
4 20

26. Liu, S., Takahashi, K., Hayashi, T., Nakayama, T.: Teaching formal methods in
the context of software engineering. ACM SIGCSE Bull. 41(2), 17–23 (2009)

27. Meyer, B.: Eiffel: a language and environment for software engineering. JSS 8(3),
199–246 (1988)

28. Morgan, C.: Programming from Specifications, 2nd edn. Prentice Hall, Hoboken
(1994)

29. Oliveira, M.V.M., Cavalcanti, A., Woodcock, J.: ArcAngel: a tactic language for
refinement. FAOC 15(1), 28–47 (2003)

30. Pearce, D.J., Groves, L.: Whiley: a platform for research in software verification.
In: Erwig, M., Paige, R.F., Van Wyk, E. (eds.) SLE 2013. LNCS, vol. 8225, pp.
238–248. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-02654-1 13

31. Petiot, G., Kosmatov, N., Botella, B., Giorgetti, A., Julliand, J.: Your proof fails?
Testing helps to find the reason. In: Aichernig, B.K.K., Furia, C.A.A. (eds.) TAP
2016. LNCS, vol. 9762, pp. 130–150. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-41135-4 8

32. Runge, T., Schaefer, I., Cleophas, L., Thüm, T., Kourie, D., Watson, B.W.: Tool
support for correctness-by-construction. In: Hähnle, R., van der Aalst, W. (eds.)
FASE 2019. LNCS, vol. 11424, pp. 25–42. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-16722-6 2

33. Runge, T., Thüm, T., Cleophas, L., Schaefer, I., Watson, B.W., et al.: Comparing
correctness-by-construction with post-hoc verification—a qualitative user study.
In: Sekerinski, E. (ed.) FM 2019. LNCS, vol. 12233, pp. 388–405. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-54997-8 25

34. Tschannen, J., Furia, C.A., Nordio, M., Polikarpova, N.: AutoProof: auto-active
functional verification of object-oriented programs. In: Baier, C., Tinelli, C. (eds.)
TACAS 2015. LNCS, vol. 9035, pp. 566–580. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-46681-0 53

35. Watson, B.W., Kourie, D.G., Schaefer, I., Cleophas, L.: Correctness-by-
construction and post-hoc verification: a marriage of convenience? In: Margaria,
T., Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9952, pp. 730–748. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-47166-2 52

A.4. Traits: Correctness-by-Construction for Free 127

A.4. Traits: Correctness-by-Construction for Free

Traits: Correctness-by-Construction
for Free

Tobias Runge1,2(B), Alex Potanin3(B), Thomas Thüm4(B),
and Ina Schaefer1,2(B)

1 TU Braunschweig, Braunschweig, Germany
2 Karlsruhe Institute of Technology, Karlsruhe, Germany

{tobias.runge,ina.schaefer}@kit.edu
3 Australian National University, Canberra, Australia

alex.potanin@anu.edu.au
4 University of Ulm, Ulm, Germany

thomas.thuem@uni-ulm.de

Abstract. We demonstrate that traits are a natural way to sup-
port correctness-by-construction (CbC) in an existing programming lan-
guage in the presence of traditional post-hoc verification (PhV). With
Correctness-by-Construction, programs are constructed incrementally
along with a specification that is inherently guaranteed to be satisfied.
CbC is complex to use without specialized tool support, since it needs a
set of refinement rules of fixed granularity which are additional rules on
top of the programming language.

In this work, we propose TraitCbC, an incremental program con-
struction procedure that implements correctness-by-construction on the
basis of PhV by using traits. TraitCbC enables program construction
by trait composition instead of refinement rules. It provides a program-
ming guideline, which similar to CbC should lead to well-structured pro-
grams, and allows flexible reuse of verified program building blocks. We
introduce TraitCbC formally and prove the soundness of our verification
strategy. Additionally, we implement TraitCbC as a proof of concept.

1 Introduction

Correctness-by-Construction (CbC) [19,22,30,37] is a methodology that incre-
mentally constructs correct programs guided by a pre-/postcondition specifica-
tion.1 CbC uses small tractable refinement rules where in each refinement step,
an abstract statement (i.e., a hole in the program) is refined to a more concrete
implementation that can still contain some nested abstract statements. While
1 The approach should not be confused with other CbC approaches such as CbyC of

Hall and Chapman [24]. CbyC is a software development process that uses formal
modeling techniques and analysis for various stages of development (architectural
design, detailed design, code) to detect and eliminate defects as early as possible [13].
We also exclude data refinement from abstract data types to concrete ones during
code generation as for example in Isabelle/HOL [23].

c© IFIP International Federation for Information Processing 2022
Published by Springer Nature Switzerland AG 2022
M. R. Mousavi and A. Philippou (Eds.): FORTE 2022, LNCS 13273, pp. 131–150, 2022.
https://doi.org/10.1007/978-3-031-08679-3_9

132 T. Runge et al.

refining the program, the correctness of the whole program is guaranteed through
the check of conditions in the refinement rules. The construction ends when no
abstract statement is left. Through the structured reasoning discipline that is
enforced by the refinement rules, it is claimed that program quality increases
and verification effort is reduced [30,50].

Despite these benefits, CbC has a drawback: the refinement rules extend the
programming language (i.e., refinements are an additional linguistic construct to
transform programs). Special tool support [42] is necessary to introduce the CbC
refinement process to a programming language. Additionally, the predefined rules
have a fine granularity such that for every new statement the programmer adds
to the program, an application of a refinement rule is necessary. Consequently,
the concepts of CbC (e.g., abstract statements and refinement rules) increase
the effort and necessary knowledge of the developer to construct programs.

Post-hoc verification (PhV) is another approach to develop correct programs.
A method is verified against its pre- and postconditions after implementation. In
practice, it often happens that a program is constructed first, with the objective
of verifying it later [50]. This can lead to tedious verification work if the program
is not well-structured. An example is the difficult search for the many reasons
preventing the verification of a method to be completed: an incorrect specifica-
tion, an incorrect method, or inadequate tool support. Therefore, a structured
programming approach is desirable to construct programs which are amenable
to software verification.

In this work, we use traits [20] to overcome the drawbacks of CbC (com-
plex programming style using external refinement rules) and introduce a pro-
gramming guideline for an incremental trait-based program construction app-
roach that guarantees that the resulting trait-based program is correct-by-
construction. TraitCbC is based on PhV. With TraitCbC, the same programs
can be verified as with PhV, but in addition, TraitCbC introduces an explicit
program construction approach. It utilizes the flexibility of traits, which is ben-
eficial for scenarios as incremental development [18] and the development of
software product lines [10,15].

Traits [20] are a flexible object-oriented language construct supporting a rich
form of modular code reuse orthogonal to inheritance. A trait contains a set
of concrete or abstract methods (i.e., the method has either a body or has no
body), independent of any class or inheritance hierarchy.2 Traits are independent
modules that can be composed into larger traits or classes. When traits are
composed, the resulting code contains all methods of all composed traits. To
verify traits, Damiani et al. [18] proposed a modular and incremental post-hoc
verification process. Each method in every trait is verified in isolation by showing
that the method satisfies its contract [35]. Then, during the composition of traits,
it has to be checked whether a method implemented in one trait is compatible
with the abstract method with the same signature in another trait. That means,

2 The term trait has been used by many programming languages: Java interfaces with
default methods are a good approximation for what has been called trait in the
literature, while Scala traits are mixins [21], and Rust traits are type classes [46].

Traits: Correctness-by-Construction for Free 133

a concrete method has to satisfy the specification of the abstract method. A
concrete method with a weaker precondition and a stronger postcondition fulfills
the contract of the abstract method (cf. Liskov substitution principle [34]).

A developer using TraitCbC starts by implementing a method (e.g., a method
a) in a first trait. Similar to CbC, the method can contain holes that are refined
in subsequent steps. A hole in TraitCbC is an abstract method (e.g., an abstract
method b) that is called in method a; that is, a call to an abstract method
corresponds to an abstract statement in CbC. In the next step, one of these new
abstract methods (e.g., b) is implemented in a second trait, again more abstract
methods can be declared for the implementation. Similar to PhV, it must be
proven that the implemented methods satisfy their specifications. Afterwards,
the traits are composed; the composition operation checks that the contract
of the concrete method b in the second trait fulfills the contract of the abstract
method b in the first trait. This incremental process stops when the last abstract
method is implemented, and all traits are composed.

The main result of our work is the discovery that traits intrinsically enable
correctness-by-construction. This work is not about pushing verification forward
in the sense of adding more expressive power. TraitCbC realizes a refinement-
based program development approach using pre-/postcondition contracts and
method calls instead of refinement rules and abstract statements as in CbC.
Refinement rules in the form of trait composition exist as a direct concept of
the programming language instead of being a program transformation concept.
Additionally, each method implemented in the refinement process can be reused
by composing traits in different contexts (i.e., already proven methods can be
called by new methods under construction). This is advantageous compared
to the limited reuse potential of methods in class-based inheritance. Finally,
TraitCbC is parametric w.r.t. the specification logic. Thus, a language with
traits can adopt the proposed CbC methodology.

2 Motivating Example

In this section, we go through an example of how our development process
enables CbC using traits.

Incremental Construction of MaxElement. We use a sample object-oriented lan-
guage in the code examples. We construct a method maxElement that finds the
maximum element in a list of numbers. A list has a head and a tail. Only non-empty
lists have a maximum element. This is explicit in the precondition of our specification,
where we require that the list has at least one element. In the postcondition, we spec-
ify that the result is in the list and larger than or equal to every other element. A
method contains checks that the result is a member of the list. In the first step, we
create a trait MaxETrait1 that defines the abstract method maxElement. The method
maxElement is abstract, i.e., equivalent to an abstract statement in CbC.

134 T. Runge et al.

1 trait MaxETrait1 {

2 @Pre: list.size() > 0

3 @Post: list.contains(result) &

4 (forall Num n: list.contains(n) ==> result >= n)

5 abstract Num maxElement(List list);

6 }

In the second step in trait MaxETrait2, we implement the method maxElement using
two abstract methods. We introduce an if-elseif-else-expression where the branches
invoke abstract methods. The guards check whether the list has only one element or
whether the current element is larger than or equal to the maximum of the rest of the
list. The abstract method accessHead returns the current element, and the abstract
method maxTail returns the maximum in the remaining list. So, we recursively search
the list for the largest element by comparing the maximum element of the list tail with
the current element until we reach the end of the list.

1 trait MaxETrait2 {

2 @Pre: list.size() > 0

3 @Post: list.contains(result) &

4 (forall Num n: list.contains(n) ==> result >= n)

5 Num maxElement(List list) =

6 if (list.size() == 1) {accessHead(list)}

7 elseif (accessHead(list) >= maxTail(list))

8 {accessHead(list)}

9 else {maxTail(list)}

10
11 @Pre: list.size() > 0

12 @Post: result == list.element ()

13 abstract Num accessHead(List list);

14
15 @Pre: list.size() > 1

16 @Post: list.tail (). contains(result) &

17 (forall Num n: list.tail (). contains(n) ==> result >= n)

18 abstract Num maxTail(List list);

19 }

The correct implementation of the method maxElement can be guaranteed under
the assumptions that all introduced abstract methods are correctly implemented. Sim-
ilar to PhV, a program verifier conducts a proof of method maxElement and uses the
introduced specifications of the methods accessHead and maxTail. When the proof
succeeds, we know that the first method is correctly implemented. In our incremental
CbCTrait process, we verify each method implementation directly after construction;
and so we are able to reuse each implemented method in the following steps (e.g., by
calling the method in the body of other methods).

We now compose the developed traits to complete the first refinement step. To
perform the composition MaxETrait1 + MaxETrait2, we check that the specification
of the method maxElement fulfills the specification of the abstract method in the first
trait (cf. Liskov substitution principle [34]). In this case, this means checking that:
MaxETrait1.maxElement(..).pre ==> MaxETrait2.maxElement(..).pre as well as:
MaxETrait2.maxElement(..).post ==> MaxETrait1.maxElement(..).post.
When the composition of two verified traits is successful, the result is also a verified
trait. Note that the composed trait does not need to be verified directly by a program
verifier in TraitCbC because it is correct by construction. In this example, the specifi-
cations are the same, thus checking for a successful composition is trivial, but this is

Traits: Correctness-by-Construction for Free 135

not generally the case. In particular, the logic needs to take into account ill-founded
specifications and recursion in the specification. We discuss the difficulties of handling
those cases in the technical report [41].

The methods accessHead and maxTail are implemented in the next two refinement
steps in traits MaxETrait3 and MaxETrait43. As we implement a recursive method, the
method maxTail calls the maxElement method, thus maxElement is introduced as an
abstract method in this trait. We have to verify that the method accessHead satisfies
its specification using a program verifier. Similarly, we have to verify the correctness
of the method maxTail.

1 trait MaxETrait3 {

2 @Pre: list.size() > 0

3 @Post: result == list.element ()

4 Num accessHead(List list) = list.element ()

5 }

1 trait MaxETrait4 {

2 @Pre: list.size() > 1

3 @Post: list.tail (). contains(result) &

4 (forall Num n: list.tail (). contains(n) ==> result >= n)

5 Num maxTail(List list) = maxElement(list.tail ())

6
7 @Pre: list.size() > 0

8 @Post: list.contains(result) &

9 (forall Num n: list.contains(n) ==> result >= n)

10 abstract Num maxElement(List list);

11 }

As before, all traits are composed, and it is checked that the specifications of
the concrete methods fulfill the specifications of the abstract ones. As we have no
contradicting specifications for the same methods, the composition is well-formed. The
final program MaxE is as follows.

1 class MaxE = MaxETrait1 + MaxETrait2 + MaxETrait3 + MaxETrait4

Advantages of TraitCbC. As shown in the example, TraitCbC enables the CbC pro-
gramming style without the need of external refinement rules. In classical CbC, when
designing a unit of code, the programmer has to proceed with atomic steps of a pre-
defined granularity. In contrast, in TraitCbC the programmer is free to divide a unit
of code in any granularity, by including as many auxiliary methods as needed to bring
the verification to an appropriate granularity. TraitCbC helps to construct code in
fine-grained steps which are more amenable for verification than single more complex
methods. If the programmer chooses to not include any auxiliary methods at all, this is
essentially the same as the traditional post-hoc verification style. In the example above,
we could implement the method maxElement in one step without the intermediate step
that introduces the two abstract methods accessHead and maxTail.

Additionally, the already proven auxiliary methods in traits can be reused. For
example, if we want to implement a minElement method, we could reuse already
implemented traits to reduce the programming and verification effort. The method
minElement is implemented in the following in trait MinE with one abstract method.

3 The methods could also be implemented in one trait.

136 T. Runge et al.

The specification of the method accessHead is the same as for the method accessHead

above, so MaxETrait3 can be reused. In this example, we show the flexible granular-
ity of TraitCbC by directly implementing the else branch, instead of introducing an
auxiliary method as for maxElement.

1 trait MinE {

2 @Pre: list.size() > 0

3 @Post: list.contains(result) &

4 (forall Num n: list.contains(n) ==> result <= n)

5 Num minElement(List list) =

6 if (list.size() == 1) {accessHead(list)}

7 elseif (accessHead(list) <= minElement(list.tail ()))

8 {accessHead(list)}

9 else {minElement(list.tail ())}

10

11 @Pre: list.size() > 0

12 @Post: result == list.element ()

13 abstract Num accessHead(List list);

14 }

The correctness of minElement is verified with the specifications of the method
accessHead. By composing MinE with MaxETrait3, we get a correct implementation
of minElement. Note how this verification process supports abstraction: as long as the
contracts are compatible, methods can be implemented in different styles by differ-
ent programmers to best meet non-functional requirements while preserving the spec-
ified observable behavior [9]. A completely different implementation of maxElement

can be used if it fulfills the specification of the abstract method maxElement in trait
MaxETrait1. This decoupling of specification and corresponding satisfying implemen-
tations facilitates an incremental development process where a specified code base is
extended with suitable implementations [18].

3 Object-Oriented Trait-Based Language

In this section, we formally introduce the syntax, type system, and flattening semantics
of a minimal core calculus for TraitCbC. We keep this calculus for TraitCbC parametric
in the specification logic so that it can be used with a suitable program verifier and
associated logic. The presented rules to compose traits are conventional. The focus of
our work is to enable a CbC approach using traits that programmers can easily adopt.
Therefore, we present the calculus to prove soundness of TraitCbC, but focus on the
presentation of the advantages of incremental trait-based programming in this paper.
Indeed, languages with traits and with a suitable specification language intrinsically
enable incremental program construction. For the sake of completeness, reduction rules
of TraitCbC are presented in the technical report [41].

3.1 Syntax

The concrete syntax of our core calculus for TraitCbC is shown in Fig. 1, where non-
terminals ending with ‘s’ are implicitly defined as a sequence of non-terminals, i.e.,
vs ::= v1 . . . vn. We use the metavariables t for trait names, C for class names and m
for method names. A program consists of trait and class definitions. Each definition
has a name and a trait expression E . The trait expression can be a Body , a trait name,

Traits: Correctness-by-Construction for Free 137

a composition of two trait expressions E , or a trait expression E where a method is
made abstract, written as E[makeAbstract m]. A Body has a flag interface to define
an interface, a set of implemented interfaces Cs and a list of methods Ms. Methods
have a method header MH consisting of a specification S, the return type, a method
name, and a list of parameters. Methods have an optional method body. In the method
body, we have standard expressions, such as variable references, method calls, and
object initializations. For simplicity, we exclude updatable state. Field declarations are
emulated by method declarations, and field accesses are emulated by method calls.

The specification S in each method header is used to verify that methods are
correctly implemented. The specification is written in some logic. In our examples, we
will use first-order logic (cf. the example in Sect. 2). A well-formed program respects
the following conditions:

Every Name in Ds must be unique so that Ds can be seen as a map from names
to trait expressions. Trait expressions E can refer to trait names t. A well-formed Ds
does not have any circular trait definitions like t = t or t1 = t2 and t2 = t1. In a Body ,
all names of implemented interfaces must be unique and all method names must be
unique, so that Body is a map from method names to method definitions. In a method
header, parameters must have unique names, and no explicit parameter can be called
this.

3.2 Typing Rules

In our type system, we have a typing context Γ ::= x1 : C1 . . . xn : Cn which assigns
types Ci to variables xi. We define typing rules for our three kinds of expressions: x,
method calls, and object initialization. We combine typing and verification in our type
checking Γ � e : C � P0 |= P1. This judgment can be read as: under typing context
Γ , the expression e has type C, where under the knowledge P0 we need to prove P1.
The knowledge P0 is our collected information that we use to prove a method correct.
That means, in our typing rules, we collect the knowledge about the parameters and
expressions in a method body to verify that this method body fulfills the specification
defined in the method header. The verification obligation P1 should follow from the
knowledge P0.

We check if methods are well-typed with judgments of form Ds;Name � M : OK .
This judgment can be read as: in the definition table, the method M defined under
the definition Name is correct. The typing rules of Fig. 2 are explained in the technical
report [41] in detail. The first four rules type different expressions and collect the
information of these expressions to prove with rule MOK that a method fulfills its
specification. In the rule MOK with keyword verify, we call a verifier to prove each
method once. Abstract methods (AbsOK) are always correct. Rule BodyOK ensures
that all methods in a body are correctly typed.

3.3 Flattening Semantics

When we implement methods in several traits, we have to check that these traits are
compatible when they are composed. This process to derive a complete class from a
set of traits is called flattening. We follow the traditional flattening semantics [20]. A
class that is defined by composing several traits is obtained by flattening rules. All
methods are direct members of the class [20]. Overall, our flattening process works as

138 T. Runge et al.

Fig. 1. Syntax of the trait system

a big step reduction arrow, where we reduce a trait expression into a well-typed and
verified body.

To introduce our flattening rules in Fig. 3, we first define the helper functions. The
function allMeth collects all method headers with the same name as m in all input
bodies (Definition 1). When two Bodys are composed (Definition 2), the implemented
interfaces are united and the methods are composed. The composition of methods (Def-
inition 3) collects methods that are only defined in one of the input sets. If a method
is in both sets, it is composed (Definition 4). Here, we distinguish four cases. If one
method is abstract and the other is concrete, we have to show that the precondition
of the abstract method implies the precondition of the concrete method. Additionally,
the postcondition of the concrete one has to imply the postcondition of the abstract
one. This is similar to Liskov’s substitution principle [34]. The second case is the sym-
metric variant of the first case. In the third and fourth case, two abstract methods
are composed. Here, the specification of one abstract method has to imply the spec-
ification of the other abstract method such that an implementation can still satisfy
all specifications of abstract methods. If both method are concrete, the composition is
correctly left undefined. This composition error can be resolved by making one method
m abstract in the Body , as defined in Definition 5. The resulting Body is similar with
the difference that the implementation of the method m is omitted. The flattening
rules in Fig. 3 are explained in the following in detail. In these rules, a set of traits
is flattened to a declaration containing all methods. If abstract and concrete methods
with the same name are composed, Definitions 2–4 are used to guarantee correctness
of the composition.

Definition 1 (All Methods). allMeth(m, Bodys) =
{MH ; | Body ∈ Bodys, Body(m) = MH ; }

Definition 2 (Body Composition). Body1 + Body2 = Body
{interface? [Cs1] Ms1} + {interface? [Cs1] Ms1} =
{interface? [Cs1 ∪ Cs2] Ms1 + Ms2}

Traits: Correctness-by-Construction for Free 139

Fig. 2. Expression typing rules

Definition 3 (Methods Composition). Ms1 + Ms2 = Ms
• (M Ms1) + Ms2 = M (Ms1 + Ms2)
if methName(M) /∈ dom(Ms2)

• (M1 Ms1) + (M2 Ms2) = M1 + M2 (Ms1 + Ms2)
if methName(M1) = methName(M2)

• ∅ + Ms = Ms

Definition 4 (Method Composition). M1 + M2 = M
• S method C m(C1 x1 . . . Cn xn) e; + S′ method C m(C1 . . . Cn);

= S method C m(C1 x1 . . . Cn xn) e;
if Pre(S′) implies Pre(S) and Post(S) implies Post(S′)

• MH 1; + MH 2 e; = MH 2 e; + MH 1;
• S method C m(C1 x1 . . . Cn xn); + S′ method C m(C1 . . . Cn);

= S method C m(C1 x1 . . . Cn xn);
if Pre(S′) implies Pre(S) and Post(S) implies Post(S ′)

• S method C m(C1 x1 . . . Cn xn); + S′ method C m(C1 . . . Cn);
= S′ method C m(C1 x1 . . . Cn xn);
if (Pre(S) implies Pre(S ′) and Post(S ′) implies Post(S))
and not (Pre(S ′) implies Pre(S) and Post(S) impliesPost(S ′))

Definition 5 (Body Abstraction). Body [makeAbstract m]
{[Cs] Ms1 S method C m(Cxs) ; Ms2}[makeAbstract m]
= {[Cs] Ms1 S method C m(Cxs); Ms2}

140 T. Runge et al.

Fig. 3. Flattening rules

FlatTop. The first rule flattens a set of declarations D1 . . . Dn to a set D′
1 . . . D′

n.
We express this rule in a non-computational way: we assume to know the resulting
D′

1 . . . D′
n, and we use them as a guide to compute them. Note that if there is a resulting

D′
1 . . . D′

n then it is unique; flattening is a deterministic process and D′
1 . . . D′

n are used
only to type check the results. They are not used to compute the shape of the flattened
code.

Non computational rules like this are common with nominal type systems [27] where
the type signatures of all classes and methods can be extracted before the method
bodies are verified.

DFlat. This rule flattens an individual definition by flattening the trait expression.
When the flattening produces a class definition, we also check that the body denotes an
instantiable class; a class whose only abstract methods are valid getters. The function
abs(Body) returns the abstract methods.

BFlat. It may look surprising that the Body does not flatten to itself. This repre-
sents what happens in most programming languages, where implementing an interface
implicitly imports the abstract signature for all the methods of that interface. In the
context of verification also the specification of such interface methods is imported.
In concrete, Body ′ is like Body , but we add Ms by collecting all the methods of the
interfaces that are not already present in the Body .

Moreover, we check that all the methods defined in the class respect the typing
and the specification defined in the interfaces: if a class has S method Foo foo(); or S
method Foo foo() e; and there is a S′

method Foo foo(); in the interface, then S must
respect the specification S′. The system then checks that the Body is well-typed and
verified by calling Ds; Name � Mi : OK

TFlat. A trait t is flattened to its declaration Ds(t).

Traits: Correctness-by-Construction for Free 141

+Flat. The composition of two expression E1 and E2, where both expressions are first
reduced to Body1 and Body2, results in the composition of these bodies as defined in
Definition 2.

AbsFlat. An expression E where one method m is made abstract flattens to a Body ′.
We know that E flattens to Body . The only difference between Body and Body ′ is
that the one method m is abstract in Body ′. In Body , the method can be abstract or
concrete.

3.4 Soundness of the Trait-based CbC Process

In this section, we formulate our main result of the TraitCbC process. We prove sound-
ness of the flattening process with a parametric logic. The proofs of the lemmas and
theorems are in the technical report [41]. We claim that if you have a language without
code reuse and with sound and modular PhV verification then the language supports
CbC simply by adding traits to the language. That is, traits intrinsically enable a CbC
program construction process.

To prove soundness of the refinement process of TraitCbC (Theorem 2: Sound CbC
Process) as exemplified in Sect. 2, we have to show that the flattening process is correct
(Theorem 1: General Soundness). In turn, to prove General Soundness, we need two
lemmas which state that the composition of traits is correct (Lemma 1) and that a
trait after the makeAbstract operation is still correct (Lemma 2).

In Lemma 1, we have well-typed definitions Ds, and two well-typed and verified
traits in Ds, and the resulting trait/class is also well-typed and verified.

Lemma 1 (Composition correct).
If Ds(t1) = Body1, Ds(t2) = Body2, Ds(Name) = Body, Ds; t1 � Body1 : OK,
Ds; t2 � Body2 : OK, and Body1 + Body2 = Body,
then Ds;Name � Body : OK

Lemma 2 shows that if we have a well-typed and verified trait, the operation
makeAbstract results in a trait/class that is also well-typed and verified.

Lemma 2 (MakeAbstract correct).
If Ds(t) = Body, Ds(Name) = Body ′, Ds; t � Body : OK,

and Body [makeAbstract m] = Body ′,
then Ds;Name � Body ′ : OK

With these Lemmas, we can prove Theorem 1. Given a sound and modular verifica-
tion language, then all programs that flatten are well-typed and verified. In a modular
verification language, a method can be fully verified using only the information con-
tained in the method declaration and the specification of any used method. Moreover,
our parametric logic must support at least a commutative and associative and (but
of course other ways to merge knowledge could work too) and a transitive implication
(but of course other forms of logical consequence could work too).

Theorem 1 (General Soundness).
For all programs Ds where Ds flattens to Ds ′, and Ds ′ is well-typed;
that is, forall Name = Body ∈ Ds ′, we have Ds ′; Name � Body : OK.

We now show that the TraitCbC process is sound. Theorem 2 states that starting
with one abstract method and a set of verified traits, the composed program is also
verified.

142 T. Runge et al.

Theorem 2 (Sound CbC Process).
Starting from a fully abstract specification t0, and some refinement steps t1 . . . tn, we
can write C = t0 + · · · + tn as our whole CbC refinement process; where t0 + t1 is the
application of the first refinement step. If we use CbC to construct programs, we can
start from verified atomic units and get a verified result. Formally, if t0 = {MH } t1 =
{Ms1} . . . tn = {Msn} are well-typed, and
t0 = {MH } t0 = {MH }
t1 = {Ms1} . . . tn = {Msn} ⇓ t1 = {Ms1} . . . tn = {Msn}
C = t0 + · · · + tn C = Body
then C = Body is well-typed.

Proof. This is a special case of Theorem 1.

Theorem 2 shows clearly that trait composition intrinsically enables a CbC refine-
ment process: A object-oriented programming language with traits and a corresponding
specification language supports an incremental CbC approach.

Table 1. Comparison of TraitCbC with classical CbC

Classic CbC TraitCbC

Language Additional rules for a
programming language.

Programming language with
traits. Needs specification
language.

Tool
support

Pen and paper. Some specialized
tools available.

Relies on prevalent PhV
verification tools.

Construction
Rules

Specific refinement rules. Refinement by composition of
traits.

Debugging Guarantees the correctness of
each refinement step. Only
refinements without abstract
statement are directly verified.

Guarantees the correctness of
each refinement step. Each
method is specified such that
each refinement can directly be
verified.

Proof
complexity

Many, but small proofs . Any granularity of proofs.

Reuse Refinement steps cannot be
reused; only fully implemented
methods can.

Each verified method in a trait
can be reused.

Applications Focuses on small but
correctness-critical algorithms.

As TraitCbC is based on PhV,
it can be used in areas of PhV.
Additionally, traits are
beneficial for incremental
development approaches and
development of software product
lines.

Traits: Correctness-by-Construction for Free 143

4 Trait-Based Correctness-by-Construction
in Comparison to Classical CbC

In this section, we discuss the benefits of TraitCbC in comparison to classical CbC. To
do this, we describe classical CbC first.

Classical correctness-by-construction (CbC) [19,30,37] is an incremental approach
to construct programs. CbC uses a Hoare triple specification {P} S {Q} stating that if
the precondition P holds, and the statement S is executed, then the statement termi-
nates and postcondition Q holds. The CbC refinement process starts with a Hoare triple
where the statement S is abstract. This abstract statement can be seen as a hole in the
program that needs to be filled. With a set of refinement rules, an abstract statement
is replaced by more concrete statements (i.e., statements in the guarded command lan-
guage [19] that can contain further abstract statements). The process stops, when all
abstract statements are refined to concrete statements so that no holes remain in the
program. As each refinement rule is sound and each correct application of a refinement
rule guarantees to satisfy the starting Hoare triple, the resulting program is correct-
by-construction [30]. The CbC process is strictly tied to a set of predefined refinement
rules. A programmer cannot deviate from this concept. To apply a refinement rule, it
has to be checked that conditions of the rule application are satisfied. This is done by
pen-and-paper or with specialized tools [42].

In Table 1, we compare TraitCbC and classical CbC:

Language. The classical CbC approach is external to a programming language. It needs
the definition of refinement rules. TraitCbC is usable with languages that have traits,
a specification language, and a corresponding verification framework. In this work, we
focus on object-orientation, but the general TraitCbC programming guideline presented
in this paper is also suitable for functional programming environments using abstract
and concrete functions with specifications instead of traits and methods.

Tool Support. To use one of the approaches, tool support is desired. For classical CbC,
mostly pen and paper is used. There are a few specialized tools such as CorC [42],
tool support for ArcAngel [38], and SOCOS [4,5]. These tools force a certain program-
ming procedure on the user. This procedure can be in conflict with their preferred
programming style. For TraitCbC, tools for post-hoc verification can be reused. There
are tools for many languages such as Java [3], C [16], C# [7,8]. Other languages are
integrated with their verifier from the start, e.g., Spec# [8] and Dafny [32]. TraitCbC
as presented in this paper is a core calculus, designed to show the feasibility of the
concept. We believe that scaling up TraitCbC to a complete programming language
reusing existing verification techniques would be feasible and would result in a similarly
expressive verification process, but supporting more flexible program composition. In
Sect. 5, we show how a prototype can be constructed by using the KeY verifier [3].

Construction Rules. To construct a program, classical CbC has a strict concept of refine-
ment rules. A programmer cannot deviate from the granularity of the rules. In contrast,
PhV does not give a mandatory guideline how to construct programs. TraitCbC is a
bridge between both extremes. Programs can be constructed stepwise as with classical
CbC, but if desired, any number of refinement steps can be condensed up to PhV based
programming.

Debugging. If errors occur in the development process, TraitCbC gives early and
detailed information. By specifying the method under development and any abstract

144 T. Runge et al.

method that is called by this method, we can directly verify the correctness of the
method under development. We assume that the introduced abstract methods will be
correctly implemented in further refinement steps. With each step, the programmer
gets closer to the solution until finally all abstract methods are implemented. Classi-
cal CbC relies on the same process, but here the abstract statements (similar to our
abstract methods) are not explicitly specified by the programmer. Additional specifi-
cations in classical CbC are introduced only with some rules such as an intermediate
condition in the composition rule. Then, these specifications are propagated through
the program to be constructed. When arriving at a leaf in the refinement process, the
correctness of the statement can be guaranteed. The problem in classical CbC is that
all refinement steps where abstract statements occur cannot be verified directly. In the
worst case, a wrong specification is found only after a few refinement steps.

Proof Complexity. TraitCbC can have the same granularity and also the same proof
effort as classical CbC, since each method implementation can correspond to just one
refinement step. The advantage of TraitCbC is that programmers can freely implement
a method body. They must not stick to the same granularity as in the classical CbC
refinement rules. As in PhV, they can implement a complete method in one step. The
programmer can balance proof complexity against verifier calls.

Reuse. If we want to reuse developed methods or refinement steps, the approaches
differ. In classical CbC, no refinement steps can be reused. A fully refined method can
be reused in both approaches. For TraitCbC, we can easily reuse even very small units
of code, since they are represented as methods in the traits.

Applications. The classical CbC approach does not scale well to development proce-
dures for complete software system. Rather, individual algorithms can be developed
with CbC [50]. As soon as we scale TraitCbC to real languages, we have the same appli-
cation scenarios as PhV. As argued by Damiani et al. [18] traits enable an incremental
process of specifying and verifying software. Bettini et al. [10] proposed to use traits
for software product line development and highlighted the benefits of fine-grained reuse
mechanisms. Here, TraitCbC’s guideline is suitable for constructing new product lines
step by step from the beginning.

Summary. In summary, TraitCbC bridges the gap between PhV and CbC. It enables a
CbC process for trait-based languages without introducing refinement rules. The con-
crete realization of specifying and verifying methods is similar to PhV, but additionally
to PhV, TraitCbC provides an incremental development process. This development pro-
cess combined with the flexibility of traits allows correct methods to be developed in
small and reusable steps. Moreover, we have introduced a core calculus and proved
that the construction and composition of trait-based programs is correct.

5 Proof-of-Concept Implementation

In this section, we describe the implementation, which instantiates TraitCbC in Java
with JML [31] as specification language and KeY [3] as verifier for Java code. Our
trait implementation is based on interfaces with default implementation. Our open
source tool is implemented in Java and integrated as plug-in in the Eclipse IDE.4

4 Tool and evaluation at https://github.com/TUBS-ISF/CorC/tree/TraitCbC.

Traits: Correctness-by-Construction for Free 145

Besides this prototype, other languages with a suitable verifier, such as Dafny [32] and
OpenJML [17], can also be used to implement TraitCbC.

In Listing 1, we show the concrete syntax. Each method in a trait is specified with
JML with the keywords requires and ensures for the pre- and postcondition. To verify
the correctness of programs, we need two steps. First, we verify the correctness of a
method implemented in a trait w.r.t. its specification. Second, for trait composition,
our implementation checks the correct composition for all methods (cf. Definition 2).
It is verified that the specification of a concrete method satisfies the specification of
the abstract one with the same signature (cf. Definition 4). These verification goals
are sent to KeY, which starts an automatic verification attempt. The syntax of trait
composition is shown in line 24. In a separate tc-file, the name of the resulting trait is
given and the composed traits are connected with a plus operator.

1 public interface MaxElement1 {

2 /*@ requires list.size() > 0;

3 @ ensures (\forall int n; list.contains(n);

4 @ \result >= n) & list.contains(\result);

5 @*/

6 public default int maxElement(List list) {

7 if (list.size() == 1) return accessHead(list);

8 if (list.element () >= maxElement(list.tail ()))

9 { return accessHead(list) }

10 else { return maxTail(list) } }

11
12 /*@ requires list.size() > 0;

13 @ ensures \result == list.element ();

14 @*/

15 public int accessHead(List list);

16
17 /*@ requires list.size() > 1;

18 @ ensures (\forall int n; list.tail (). contains(n);

19 @ \result >= n) & list.tail (). contains(\result);

20 @*/

21 public int maxTail(List list);

22 }

23

24 ComposedMax = MaxElement1 + MaxElement2

Listing 1. Example in our implementation

Evaluation. We evaluate our implementation by a feasibility study. First, we reim-
plemented an already verified case study in our trait-based language. We used the
IntList [43] case study, which is a small software product line (SPL) with a common
code base and several features extending this code base. Here, we can show that our
trait-based language also facilitates reuse. The IntList case study implements func-
tionality to insert integers to a list in the base version. Extensions are the sorting of
the list and different insert options (e.g., front /back). We implement five methods
that exists in different variants with our trait-based CbC approach. We implement
the case study in different granularities. The coarse-grained version is similar to the
SPL implementation we started with [43], confirming that traits are also amenable to
implement SPLs as shown by Bettini et al. [10]. The fine-grained version implements
the five methods incrementally with 12 refinement steps. We can reuse 6 of these steps
during the construction of method variants.

146 T. Runge et al.

We also implement three more case studies BankAccount [48], Email [25], and
Elevator [39] with TraitCbC and CbC to show that it is feasible to implement object-
oriented programs with both approaches. We used CorC [42] as an instance of a CbC
tool. We were able to implement nine classes and verify 34 methods with a size of 1–20
lines of code. For future work, a user study is necessary to evaluate the usability of
TraitCbC in comparison to CbC to confirm our stated advantages.

6 Related Work

Traits are introduced in many languages to support clean design and reuse, for example
Smalltalk [20], Java [12] by utilizing default methods in interfaces, and other Java-
like languages [11,33,45]. The trait language TraitRecordJ was extended to support
post-hoc verification of traits [18]. The authors added specifications of methods in
traits for the verification of correct trait composition and proposed a modular and
incremental verification process. None of these trait languages were used to formulate
a refinement process to create correct programs. They only focus on code reuse or
post-hoc verification.

Automatic verification is widely used for different programming languages. The
object-oriented language Eiffel focuses on design-by-contract [35,36]. All methods in
classes are specified with pre-/postconditions and invariants for verification purposes.
The tool AutoProof [29,49] is used to verify the correctness of implemented methods.
It translates methods to logic formulas, and an SMT solver proves the correctness. For
C#, programs written in the similar language Spec# [8] are verified with Boogie. That
is, code and specification are translated to an intermediate language and verified [7].
For C, the tool VCC [16] reuses the Spec# tool chain to verify programs. The tool
VeriFast [28] is able to verify C and Java programs specified in separation logic. For
Java, KeY [3] and OpenJML [17] verify programs specified with JML. TraitCbC is
parametric in the specification language, meaning that a trait-based language with a
specification language and a corresponding program verifier can be used to instantiate
TraitCbC. In our implementation, we use KeY [3] to prove the correctness of methods
and trait composition.

Event-B [1] is a related correctness-by-construction approach. In Event-B,
automata-based systems are specified and refined to a concrete implementation. Event-
B is implemented in the Rodin platform [2]. In comparison to CbC by Kourie and
Watson [30] as used in this paper, Event-B works on a different abstraction level with
automata-based systems instead of program code. The CbC approaches of Back et
al. [6] and Morgan [37] are also related. Back et al. [6] start with explicit invariants
and pre-/postconditions to refine an abstract program to a concrete implementation,
while Kourie and Watson only start with a pre-/postcondition specification. These
refinement approaches use specific refinement rules to construct programs which are
external to the programming language. With TraitCbC, we propose a refinement pro-
cedure that is part of the language by using trait composition.

Abstract execution [47] verifies the correctness of methods with abstract, but for-
mally specified expressions. Abstract Execution is similar to our refinement procedure
where abstract methods are called in methods under construction. The difference is
that abstract execution extends a programming language to use any expression in the
abstract part, not only method calls. Therefore, abstract execution can better rea-
son about irregular termination (e.g., break/continue) of methods. In comparison to

Traits: Correctness-by-Construction for Free 147

TraitCbC, abstract execution is a verification-centric approach without a guideline on
how to construct programs.

Synthesis of function summaries is also related [14,26,44]. Here, verification tools
automatically synthesize pre-/postconditions from functions to achieve modular ver-
ification and speed up the verification time. In comparison, TraitCbC is a complete
software development approach where specification and code are developed simulta-
neously by a developer to achieve a correct solution. Function summaries are just a
verification technique.

7 Conclusion

In this work, we present TraitCbC that guides programmers to correct implementa-
tions. In comparison to classical CbC, TraitCbC uses method calls and trait composi-
tion instead of refinement rules to guarantee functional correctness. We formalize the
concept of a trait-based object-oriented language where the specification language is
parametric to allow a broader range of languages to adopt this concept. The main
advantage of TraitCbC is the simplicity of the refinement process that supports code
and proof reuse.

As future work, we want to investigate how TraitCbC can be used to construct
software product lines. As proposed by Bettini et al. [10], trait languages are able to
implement SPLs. We want to extend the guideline of TraitCbC to construct SPLs with
a refinement-based procedure that guarantees the correctness of the whole SPL. To
reduce specification effort in TraitCbC, inheritance of traits is useful. Another option is
to integrate the concept of Rebêlo et al. [40] which supports the design-by-contract app-
roach with AspectJML and integrates crosscutting contract modularization to reduce
redundant specifications.

Since TraitCbC is parametric in the specification logic, TraitCbC’s soundness only
holds if such logic is consistent when composed in the presented manner. In particular,
the logic needs to take into account ill-founded specifications and non-terminating
recursion. In verification, ill-founded specifications and termination issues are often
considered as a second step5, separately from the verification of individual methods, and
our prototype still does not yet take care of this second step. That means that methods
are verified under the assumption that all other methods respect their contracts. If ill-
founded specifications and non-terminating recursion are handled naively, verification
might be unsound because of ill-founded reasoning. The technical report [41] shows
that this problem is even more pervasive in the case of trait composition or any other
form of multiple inheritance: naive composition of correct traits may produce incorrect
results.

References

1. Abrial, J.: Modeling in Event-B - System and Software Engineering. Cambridge
University Press (2010)

2. Abrial, J.R., Butler, M., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin, L.: Rodin:
an open toolset for modelling and reasoning in event-B. STTT 12(6), 447–466
(2010)

5 For example, Dafny approximately checks that the functions used in a specification
form an acyclic graph.

148 T. Runge et al.

3. Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R., Schmitt, P.H., Ulbrich, M.:
Deductive Software Verification-The KeY Book: From Theory to Practice, vol.
10001. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49812-6

4. Back, R.J.: Invariant based programming: basic approach and teaching experiences.
FAOC 21(3), 227–244 (2009)

5. Back, R.-J., Eriksson, J., Myreen, M.: Testing and verifying invariant based pro-
grams in the SOCOS environment. In: Gurevich, Y., Meyer, B. (eds.) TAP 2007.
LNCS, vol. 4454, pp. 61–78. Springer, Heidelberg (2007). https://doi.org/10.1007/
978-3-540-73770-4 4

6. Back, R.J., Wright, J.: Refinement Calculus: A Systematic Introduction. Springer,
New York (2012). https://doi.org/10.1007/978-1-4612-1674-2

7. Barnett, M., Fähndrich, M., Leino, K.R.M., Müller, P., Schulte, W., Venter, H.:
Specification and verification: the spec# experience. Commun. ACM 54(6), 81–91
(2011)

8. Barnett, M., Leino, K.R.M., Schulte, W.: The Spec# programming system: an
overview. In: Barthe, G., Burdy, L., Huisman, M., Lanet, J.-L., Muntean, T. (eds.)
CASSIS 2004. LNCS, vol. 3362, pp. 49–69. Springer, Heidelberg (2005). https://
doi.org/10.1007/978-3-540-30569-9 3

9. ter Beek, M.H., Cleophas, L., Schaefer, I., Watson, B.W.: X-by-construction. In:
Margaria, T., Steffen, B. (eds.) ISoLA 2018. LNCS, vol. 11244, pp. 359–364.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03418-4 21

10. Bettini, L., Damiani, F., Schaefer, I.: Implementing software product lines using
traits. In: SAC, pp. 2096–2102 (2010)

11. Bettini, L., Damiani, F., Schaefer, I., Strocco, F.: TRAITRECORDJ: a program-
ming language with traits and records. Sci. Comput. Program. 78(5), 521–541
(2013)

12. Bono, V., Mensa, E., Naddeo, M.: Trait-oriented programming in Java 8. In: PPPJ,
pp. 181–186 (2014)

13. Chapman, R.: Correctness by construction: a manifesto for high integrity software.
In: SCS, pp. 43–46 (2006)

14. Chen, H.Y., David, C., Kroening, D., Schrammel, P., Wachter, B.: Synthesising
interprocedural bit-precise termination proofs (t). In: ASE, pp. 53–64 (2015)

15. Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns.
Addison-Wesley (2002)

16. Cohen, E., et al.: VCC: a practical system for verifying concurrent C. In: Berghofer,
S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp.
23–42. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03359-9 2

17. Cok, D.R.: OpenJML: JML for Java 7 by extending OpenJDK. In: Bobaru, M.,
Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617, pp.
472–479. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20398-
5 35

18. Damiani, F., Dovland, J., Johnsen, E.B., Schaefer, I.: Verifying traits: an incre-
mental proof system for fine-grained reuse. FAOC 26(4), 761–793 (2014)

19. Dijkstra, E.W.: A Discipline of Programming. Prentice Hall (1976)
20. Ducasse, S., Nierstrasz, O., Schärli, N., Wuyts, R., Black, A.P.: Traits: a mechanism

for fine-grained reuse. TOPLAS 28(2), 331–388 (2006)
21. Flatt, M., Krishnamurthi, S., Felleisen, M.: Classes and Mixins. In: POPL, pp.

171–183 (1998)
22. Gries, D.: The Science of Programming. Springer, New York (1987). https://doi.

org/10.1007/978-1-4612-5983-1

Traits: Correctness-by-Construction for Free 149

23. Haftmann, F., Krauss, A., Kunčar, O., Nipkow, T.: Data refinement in
Isabelle/HOL. In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013.
LNCS, vol. 7998, pp. 100–115. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-39634-2 10

24. Hall, A., Chapman, R.: Correctness by construction: developing a commercial
secure system. Softw. IEEE 19(1), 18–25 (2002)

25. Hall, R.J.: Fundamental nonmodularity in electronic mail. ASE 12(1), 41–79 (2005)
26. Hoare, C.A.R.: Procedures and parameters: an axiomatic approach. In: Engeler,

E. (ed.) Symposium on Semantics of Algorithmic Languages. LNM, vol. 188, pp.
102–116. Springer, Heidelberg (1971). https://doi.org/10.1007/BFb0059696

27. Igarashi, A., Pierce, B.C., Wadler, P.: Featherweight Java: a minimal core calculus
for Java and GJ. TOPLAS 23(3), 396–450 (2001)

28. Jacobs, B., Smans, J., Piessens, F.: A quick tour of the VeriFast program verifier.
In: Ueda, K. (ed.) APLAS 2010. LNCS, vol. 6461, pp. 304–311. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-17164-2 21

29. Khazeev, M., Rivera, V., Mazzara, M., Johard, L.: Initial steps towards assessing
the usability of a verification tool. In: Ciancarini, P., Litvinov, S., Messina, A.,
Sillitti, A., Succi, G. (eds.) SEDA 2016. AISC, vol. 717, pp. 31–40. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-70578-1 4

30. Kourie, D.G., Watson, B.W.: The Correctness-by-Construction Approach to Pro-
gramming. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27919-
5

31. Leavens, G.T., Baker, A.L., Ruby, C.: JML: a Java modeling language. In: Formal
Underpinnings of Java Workshop (at OOPSLA 1998), pp. 404–420. Citeseer (1998)

32. Leino, K.R.M.: Dafny: an automatic program verifier for functional correctness.
In: Clarke, E.M., Voronkov, A. (eds.) LPAR 2010. LNCS (LNAI), vol. 6355, pp.
348–370. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17511-
4 20

33. Liquori, L., Spiwack, A.: FeatherTrait: a modest extension of featherweight Java.
TOPLAS 30(2), 1–32 (2008)

34. Liskov, B.H., Wing, J.M.: A behavioral notion of subtyping. TOPLAS 16(6), 1811–
1841 (1994)

35. Meyer, B.: Eiffel: a language and environment for software engineering. JSS 8(3),
199–246 (1988)

36. Meyer, B.: Applying “Design by Contract”. Computer 25(10), 40–51 (1992)
37. Morgan, C.: Programming from Specifications, 2nd edn. Prentice Hall (1994)
38. Oliveira, M.V.M., Cavalcanti, A., Woodcock, J.: ArcAngel: a tactic language for

refinement. FAOC 15(1), 28–47 (2003)
39. Plath, M., Ryan, M.: Feature integration using a feature construct. Sci. Comput.

Program. 41(1), 53–84 (2001)
40. Rebêlo, H., et al.: AspectJML: modular specification and runtime checking for

crosscutting contracts. In: MODULARITY, pp. 157–168. ACM, New York (2014)
41. Runge, T., Potanin, A., Thüm, T., Schaefer, I.: Traits for correct-by-construction

programming (2022). https://arxiv.org/abs/2204.05644
42. Runge, T., Schaefer, I., Cleophas, L., Thüm, T., Kourie, D., Watson, B.W.: Tool

support for correctness-by-construction. In: Hähnle, R., van der Aalst, W. (eds.)
FASE 2019. LNCS, vol. 11424, pp. 25–42. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-16722-6 2

43. Scholz, W., Thüm, T., Apel, S., Lengauer, C.: Automatic detection of feature
interactions using the Java modeling language: an experience report. In: SPLC.
ACM, New York (2011)

150 T. Runge et al.

44. Sery, O., Fedyukovich, G., Sharygina, N.: Interpolation-based function summaries
in bounded model checking. In: Eder, K., Lourenço, J., Shehory, O. (eds.) HVC
2011. LNCS, vol. 7261, pp. 160–175. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-34188-5 15

45. Smith, C., Drossopoulou, S.: Chai : traits for Java-like languages. In: Black, A.P.
(ed.) ECOOP 2005. LNCS, vol. 3586, pp. 453–478. Springer, Heidelberg (2005).
https://doi.org/10.1007/11531142 20

46. Sozeau, M., Oury, N.: First-class type classes. In: Mohamed, O.A., Muñoz, C.,
Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 278–293. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-71067-7 23

47. Steinhöfel, D., Hähnle, R.: Abstract execution. In: ter Beek, M.H., McIver, A.,
Oliveira, J.N. (eds.) FM 2019. LNCS, vol. 11800, pp. 319–336. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-30942-8 20

48. Thüm, T., Schaefer, I., Apel, S., Hentschel, M.: Family-based deductive verification
of software product lines. In: GPCE, pp. 11–20. ACM (2012)

49. Tschannen, J., Furia, C.A., Nordio, M., Polikarpova, N.: AutoProof: auto-active
functional verification of object-oriented programs. In: Baier, C., Tinelli, C. (eds.)
TACAS 2015. LNCS, vol. 9035, pp. 566–580. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-46681-0 53

50. Watson, B.W., Kourie, D.G., Schaefer, I., Cleophas, L.: Correctness-by-
construction and post-hoc verification: a marriage of convenience? In: Margaria,
T., Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9952, pp. 730–748. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-47166-2 52

148

A.5. Flexible Correct-by-Construction Programming

FLEXIBLE CORRECT-BY-CONSTRUCTION PROGRAMMING

TOBIAS RUNGE a,b, TABEA BORDIS a,b, ALEX POTANIN d, THOMAS THÜM e,
AND INA SCHAEFER a,b,c

a Institute of Information Security and Dependability (KASTEL), Karlsruhe Institute of Technology,
Germany
e-mail address: {tobias.runge, tabea.bordis, ina.schaefer}@kit.edu

b Institute of Software Engineering and Automotive Informatics, TU Braunschweig, Germany

c School for Data-Science and Computational Thinking, Stellenbosch University, South Africa

d School of Computing, Australian National University, Australia
e-mail address: alex.potanin@anu.edu.au

e Institute of Software Engineering and Programming Languages, University of Ulm, Germany
e-mail address: thomas.thuem@uni-ulm.de

Abstract. Correctness-by-Construction (CbC) is an incremental program construction
process to construct functionally correct programs. The programs are constructed stepwise
along with a specification that is inherently guaranteed to be satisfied. CbC is complex to
use without specialized tool support, since it needs a set of predefined refinement rules of
fixed granularity which are additional rules on top of the programming language. Each
refinement rule introduces a specific programming statement and developers cannot depart
from these rules to construct programs. CbC allows to develop software in a structured
and incremental way to ensure correctness, but the limited flexibility is a disadvantage
of CbC. In this work, we compare classic CbC with CbC-Block and TraitCbC. Both
approaches CbC-Block and TraitCbC, are related to CbC, but they have new language
constructs that enable a more flexible software construction approach. We provide for
both approaches a programming guideline, which similar to CbC, leads to well-structured
programs. CbC-Block extends CbC by adding a refinement rule to insert any block of
statements. Therefore, we introduce CbC-Block as an extension of CbC. TraitCbC
implements correctness-by-construction on the basis of traits with specified methods. We
formally introduce TraitCbC and prove soundness of the construction strategy. All
three development approaches are qualitatively compared regarding their programming
constructs, tool support, and usability to assess which is best suited for certain tasks and
developers.

Key words and phrases: Traits, Correctness-by-Construction, Formal Methods, Post-hoc Verification.

Preprint submitted to
Logical Methods in Computer Science

© FLEXIBLE CORRECT-BY-CONSTRUCTION PROGRAMMING
CC© Creative Commons

2 FLEXIBLE CORRECT-BY-CONSTRUCTION PROGRAMMING

1. Introduction

Correctness-by-Construction (CbC) [Dij76, Gri87, KW12, Mor94] is a methodology in the
field of formal methods to incrementally construct functionally correct programs guided by
a pre-/postcondition specification.1 In contrast to post-hoc verification, where a program
is typically specified and verified after implementing it, CbC is based around successively
creating a program together with the specification. This is achieved by applying refinement
rules from a small set of defined rules where in each refinement step, an abstract statement
(i.e., a hole in the program) is refined to a more concrete implementation that can still
contain some nested abstract statements. While refining the program, the correctness of
the whole program is guaranteed through applicability conditions that are defined in the
refinement rules. The construction ends when no abstract statement is left.

The underlying idea of this specification-first, refinement-based approach is that de-
velopers are forced to think about their algorithm more thoroughly rather than having a
trial-and-error verification approach. This trial-and-error verification can oftentimes be
experienced with post-hoc verification because programs are implemented first and therefore
not well-structured for the verification process which leads to tedious verification work.
Additionally, through the structured reasoning discipline that is enforced by the refinement
rules in CbC, errors are more likely to be detected earlier in the design process, and it is
argued that program quality increases and verification effort is reduced [KW12, WKSC16].

Despite these benefits, CbC intuitively has a drawback: The flexibility of creating a
program is limited to the set of refinement rules and the rigid, rule-based construction
process of applying one rule at a time. This is even increased by the granularity of the rules
which explicitly only allow to use one language construct at a time (e.g., one assignment
to a variable). Additionally, the refinement rules extend the programming language (i.e.,
refinement rules are an additional linguistic construct to transform programs), and therefore
special tool support (e.g., CorC [RSC+19, BCK+22]) is necessary to introduce the CbC
refinement process to a programming language. As a result, the barrier to construct
programs using CbC is large because the approach at first seems unintuitive and requires
effort, knowledge, and special tool support.

In this article, we introduce two alternative correctness-by-construction development
approaches that relax the inflexible CbC construction approach without losing the benefits
of CbC itself. Both introduce more flexible language constructs to create programs which
allow to condense construction steps that tackle the complex and strict programming style
of CbC. The goal is to propose a usable CbC apporach that offers reasonable constructs to
develop programs correctly. Therefore, we qualitatively discuss our two proposed approaches
and the original CbC approach regarding their programming constructs, tool support, and
usability to assess their benefits and drawbacks.

First, we present CbC-Block which adds new refinement rules. This introduction
of new refinement rules should not be seen as a further restriction, but as a relaxation of
the procedure. These new refinement rules increase the ways in which programs can be
developed as they allow to refine abstract statements to a specified block of code that fulfills
its specification. This basically means that this block can contain multiple assignments,

1The approach should not be confused with other CbC approaches such as CbyC of Hall and Chap-
man [HC02]. CbyC is a software development process that uses formal modeling techniques and analysis for
various stages of development (architectural design, detailed design, code) to detect and eliminate defects as
early as possible [Cha06]. We also exclude data refinement from abstract data types to concrete ones during
code generation as for example in Isabelle/HOL [HKKN13].

FLEXIBLE CORRECT-BY-CONSTRUCTION PROGRAMMING 3

selections, or loops whereas with classic CbC for each assignment, selection, and loop a
new refinement step is needed. Initially, a block is just an abstract placeholder, but it has
a pre-/postcondition specification so that the introduced specification of the block can be
checked against the specification of the refined abstract statement. In a next step, the
block is instantiated by some code, and it is directly proved that this code fulfills its own
specification. The idea of the block rules is similar to a method call, but a block can alter
local variables in the method under construction. A block of code can contain further
blocks which can be subsequently refined. Consequently, any nesting of blocks may occur.
CbC-Block is implemented as extension of the CorC tool support.

Second, we present TraitCbC which is a new software development approach that
enables correct-by-construction development by method abstraction and method compo-
sition without relying on refinement rules and special tool support. TraitCbC uses
traits [DNS+06], which are a flexible object-oriented language construct supporting a rich
form of modular code reuse orthogonal to inheritance. A trait is a set of concrete or abstract
methods (i.e., the method has either a body or has no body).2 Traits can be composed
into a larger trait or into a class that contains all methods of all composed traits. Trait
composition exists as a direct concept of the programming language [DNS+06] instead
of being a program transformation concept, such as the CbC refinement rules. On the
basis of traits, TraitCbC introduces a programming guideline for an incremental program
construction approach that guarantees that the resulting program is correct by construction.
A construction step comprises the development of a method and direct composition with
the existing code base to ensure correctness. TraitCbC allows the implementation of any
method size and complexity as long as the methods are composable with respect to their
specification. Even with this flexibility, TraitCbC keeps the advantages of a structured
incremental development approach.

The contribution of our article is to demonstrate and compare the range of possibilities
to develop programs correct by construction from strict rule-based CbC to the more relaxed
CbC-Block to TraitCbC without any refinement rules. In this article, we introduce
TraitCbC and explain the typing, reduction, and flattening rules. We give a proof that
TraitCbC guarantees to develop programs correct by construction. We also present the
CbC-Block approach with the block refinement rules. All approaches are implemented
in the CorC [RSC+19] tool support. We compare and discuss classic CbC, CbC-Block,
and TraitCbC qualitatively to assess their benefits and drawbacks. This article extends
previous work [RPTS22] by introducing the typing and reduction rules of TraitCbC in
detail. The soundness proof of TraitCbC is also presented in this article. CbC-Block is
a new approach that has not been presented before.

2. Correctness-by-Construction

Classic correctness-by-construction (CbC) [Dij76, KW12, Mor94] is an incremental approach
to construct programs. CbC uses a Hoare triple specification {P} S {Q} stating that if the
precondition P holds, and the statement S is executed, then the statement terminates and
postcondition Q holds. The CbC refinement process starts with a Hoare triple where the
statement S is abstract. This abstract statement can be seen as a hole in the program that
needs to be filled. With a set of refinement rules, an abstract statement is replaced by more

2Java interfaces with default methods are a good approximation for what has been called trait in the
literature

4 FLEXIBLE CORRECT-BY-CONSTRUCTION PROGRAMMING

Definition 1: Refinement Rules for the Correctness-by-Construction Approach

Let P be the precondition, Q be the postcondition, and S be an abstract statement.
Then, the Hoare triple {P}S{Q} is refinable to

• Skip: {P}skip{Q} iff P implies Q
• Assignment: {P} x := E{Q} iff P implies Q[x := E]
• Composition: {P}S1;S2{Q} iff intermediate condition M exists such that
{P}S1{M} and {M}S2{Q} hold
• Selection: {P}if G1 → S1 elseif . . . Gn → Sn fi{Q} iff P implies G1 ∨ · · · ∨Gn

and ∀i ∈ {1 . . . n} : {P ∧Gi}Si{Q} holds
• Repetition: {P}do [I, V] G → S od{Q} iff P implies I and I ∧ ¬G implies Q

and {I ∧G}S{I} holds and {I ∧G ∧ V = V0}S{I ∧ 0 ≤ V < V0} holds
• Weaken precondition: {P ′}S{Q} iff P implies P ′

• Strengthen postcondition: {P}S{Q′} iff Q′ implies Q
• Method Call: {P}m(a1, . . . , an) → b{Q} iff method {P ′}m(p1, . . . , pn) → r{Q′}

exists and P implies P ′[pi \ ai] and Q′[old(pi) \ old(ai), r \ b] implies Q

[RSC+19, KW12]

concrete statements (i.e., statements in the guarded command language [Dij76] that can
contain further abstract statements). The process stops, when all abstract statements are
refined to concrete statements so that no holes remain in the program. As each refinement
rule is sound and each correct application of a refinement rule guarantees to satisfy the
starting Hoare triple, the resulting program is correct by construction [KW12]. The CbC
approach is strictly tied to this set of predefined refinement rules. A developer cannot
deviate from this concept.

In Definition 1, we present the eight refinement rules of CbC by Kourie and Wat-
son [KW12]. The concrete program statements are written in the guarded command
language [Dij75]. To apply a refinement rule, it has to be checked that side conditions
of the rule application are satisfied. This is done by pen-and-paper or with specialized
tools [RSC+19]. For example, the skip rule introduces an empty statement that does not
alter the program state. This refinement is applicable if and only if the precondition P
implies the postcondition Q. The composition rule splits the Hoare triple {P}S{Q} into
two Hoare triples by using an intermediate condition M . This refinement is applicable, if
and only if the two new Hoare triples are correct. Of course, the statements S1 and S2 are
still abstract and can be further refined.

3. CbC-Block— CbC With Block Contracts

In this section, we introduce the CbC-Block approach that adds two new refinement rules
to classic CbC. The new refinement rules increase the ways to construct programs. Therefore,
the rigid CbC approach is loosened while retaining the benefits of a structured program
construction approach. A block rule refines an abstract statement to a block that is specified
with a block contract (i.e., a pre-/postcondition specification for that block) [ABB+16].
The block is a special statement that can be further refined in two ways. Similar to an
abstract statement, any CbC refinement rules can be applied. Additionally, the block can

FLEXIBLE CORRECT-BY-CONSTRUCTION PROGRAMMING 5

be instantiated by any sequence of concrete statements and further blocks with a block-
instantiation rule. Thus, a block can be used to condense the application of several CbC
refinement rules. For example, a block can be instantiated with a while-loop that already
contains a concrete body. This instantiation replaces the application of the repetition rule
and at least one assignment rule. We introduce CbC-Block with a motivating example
and present the block rules to introduce and instantiate blocks. In the end of this section,
we present CbC-Block implemented in the CbC tool CorC3 and evaluate its usability
with a user study.

3.1. Motivating Example. In this section, we exemplify the CbC-Block approach by
implementing a maxElement algorithm. The maxElement algorithm searches the largest element
in a list of integers. The list supports a get-method which returns the element at the specified
position in this list. A contains-method checks that the result is a member of the list. We
iterate with a while-loop through the list and use local variables to temporally save the
current largest element. We use Java and JML [LBR98] as programming and specification
language in the example.

In Listing 1, we start implementing method maxElement that is specified with a pre- and
postcondition contract. The precondition states that the list must contain at least one
element. The postcondition states that the largest element in the list is returned. In this
example, we start with a program where some CbC refinement rules are already applied,
and then, apply the block rules to finish the implementation.

The program is already split into three parts using the composition refinement rule with
two intermediate conditions between them. In the first part, two local variables i and j are
introduced with the assignment rule. The variable i is used to temporally store the largest
element. In the beginning, the largest element (up to that point) is the first element in the
list. The variable j is our loop variable to iterate through the list. In the third program
part, variable i is returned. We start with this program state to show that CbC-Block
also supports the standard CbC approach, but we will now use the block rules to exemplify
the benefits of CbC-Block.

In the second part between the two intermediate conditions, the block rule of CbC-
Block is applied. The block B1 is specified with a block contract in lines 13–16. For
the functional behavior, we specify the values of i and j, and the size of the list in the
precondition. This specification is equal to the preceding intermediate condition. The
postcondition of the block states that i is the largest element. This postcondition meets
the intermediate condition after the block. Therefore, we know that the program is correct
under the assumption that block B1 fulfills its specification. In the next steps, we concretize
the block, and the applied refinement rule guarantees that the instantiated block is correct
according to its specification. We can concretize the block either in one step, by instantiating
the block with concrete Java code or stepwise by instantiating the block with some Java
statements and other blocks.

We decide to partially implement the block. In Listing 2, we define the block that should
be refined by referring to block B1 in line 1 and repeat the specification of that block. Inside
the curly brackets the instantiation is shown. We implement the block with a while-loop.
We iterate through the list as long as variable j is smaller than the size of the list. This is
stated in the loop guard. The loop is specified with a loop invariant in lines 10–12. Thereby,

3https://github.com/KIT-TVA/CorC

6 FLEXIBLE CORRECT-BY-CONSTRUCTION PROGRAMMING

1 /*@ public normal_behavior

2 @ requires list.size() > 0;

3 @ ensures list.contains(\result) &&

4 @ (\forall int q; q >= 0 && q < list.size (); \result >= list.get(q));

5 @*/

6 public int maxElement(List list) {

7 int i = list.get (0);

8 int j = 1;

9

10 //@ Intm: list.size() > 0 && i == list.get (0) && j == 1;

11

12 /*@

13 @ normal_behavior

14 @ requires list.size() > 0 && i == list.get(0) && j == 1;

15 @ ensures list.contains(i) &&

16 @ (\forall int q; q >= 0 && q < list.size (); i >= list.get(q));

17 @*/

18 { \Block B1; }

19

20 //@ Intm: list.contains(i) &&

21 //@ (\forall int q; q >= 0 && q < list.size (); i >= list.get(q));

22

23 return i;

24 }

Listing 1: Initial program of maxElement

the variable i stores the largest element of the already checked elements up to the index
j. The index j is inside the bounds of the list. We use the difference between the size
of the list and j as loop variant. As variable j increases in each iteration, the difference
decreases, and the loop thus terminates. The increase of j is already implemented at the
end of the while-loop. The body of the loop contains another block B2 in lines 15–22. The
precondition of the block is the loop invariant with the difference that we know that variable
j is smaller than the size of the list. This block should update variable i that contains the
largest element. We want to compare the largest element with the next element in the list.
If that element is larger, variable i is updated. We checked one more element of the list,
and therefore, we increase the range of the universal quantifier in the postcondition. This
instantiation condenses the application of three CbC refinement rules, the repetition rule to
create the loop, a composition rule, and an assignment rule for the loop body.

The next step is to verify that the instantiation satisfies the block contract. Starting
with the precondition and after executing the introduced instantiation, the postcondition of
the block contract must be fulfilled. The details of checking this instantiation are explained
in the next section. When the correctness of this instantiation is shown, we can continue to
instantiate the next block B2.

In Listing 3, the instantiation of block B2 implements the case when a larger element is
found. The functional pre- and postcondition of the block differ by the range of considered
elements. In the postcondition, the range is increased by one. In this block, we compare the
current largest element i with the element at index j. If the element at index j is larger, we

FLEXIBLE CORRECT-BY-CONSTRUCTION PROGRAMMING 7

1 Block B1;

2

3 /*@

4 @ normal_behavior

5 @ requires list.size() > 0;

6 @ ensures list.contains(i) &&

7 @ (\forall int q; q >= 0 && q < list.size (); i >= list.get(q));

8 @*/

9 {

10 //@ loop_invariant list.contains(i) && j > 0 && j <= list.size() &&

11 //@ (\forall int q; q >= 0 && q < j; i >= list.get(q));

12 //@ decreases list.size() - j;

13 while (j < list.size ()) {

14

15 /*@

16 @ normal_behavior

17 @ requires list.contains(i) && j > 0 && j < list.size() &&

18 @ (\forall int q; q >= 0 && q < j; i >= list.get(q));

19 @ ensures list.contains(i) && j > 0 && j < list.size() &&

20 @ (\forall int q; q >= 0 && q < j+1; i >= list.get(q));

21 @*/

22 { \Block B2; }

23

24 j = j + 1;

25 }

26 }

Listing 2: Refinement of block B1

update variable i. In the other case, i is still the largest element and not updated. Again,
we condense CbC refinement rules by instantiating the block with concrete code. We have
to verify that the instantiation is correct. If this is done, we have finished the refinement
process because no further block or any abstract statement is left.

By guaranteeing the correctness of all refinement steps, we can conclude that the whole
program is correct by construction. The resulting program is shown in Listing 4. Here,
the blocks are recursively replaced with their instantiation. The specification is limited to
the method contract and the loop invariant and variant annotations. By stepwise refining
the program, we can detect errors when proving single refinement steps. This locality of
information helps to track down errors more easily than with monolithic post-hoc verification.

3.2. Block Refinement Rules of CbC-Block. In this section, we describe how refinement
rules are added to establish the CbC-Block approach. We describe the refinement rule to
introduce a block and the refinement rule to instantiate a block with concrete code.

For the block rules to be syntactically applicable, we extend Java to write a block with a
name. Normally, a block in Java is just a sequence of Java statements inside curly brackets.
In addition, Ahrendt et al.[ABB+16] defined block contracts to specify the behavior of a
Java block similar to a method [Mey92, Lei95]. To establish a CbC refinement process, we
introduce a specified block as an abstract statement in CbC-Block with an according

8 FLEXIBLE CORRECT-BY-CONSTRUCTION PROGRAMMING

1 Block B2;

2

3 /*@

4 @ normal_behavior

5 @ requires list.contains(i) && j > 0 && j < list.size() &&

6 @ (\forall int q; q >= 0 && q < j; i >= list.get(q));

7 @ ensures list.contains(i) && j > 0 && j < list.size() &&

8 @ (\forall int q; q >= 0 && q < j+1; i >= list.get(q));

9 @*/

10 {

11 if (list.get(j) > i) {

12 i = list.get(j);

13 }

14 }

Listing 3: Refinement of block B2

1 /*@ public normal_behavior

2 @ requires requires list.size() > 0;

3 @ ensures list.contains(\result) &&

4 @ (\forall int q; q >= 0 && q < list.size (); \result >= list.get(q));

5 @*/

6 public int maxElement(List list) {

7 int i = list.get (0);

8 int j = 1;

9 //@ loop_invariant list.contains(i) && j > 0 && j <= list.size() &&

10 //@ (\forall int q; q >= 0 && q < j; i >= list.get(q));

11 //@ decreases list.size() - j;

12 while (j < list.size ()) {

13 if (list.get(j) > i) {

14 i = list.get(j);

15 }

16 j = j + 1;

17 }

18 return i;

19 }

Listing 4: Final implementation of maxElement

refinement rule. In the refinement rule, we use the Hoare triple notation that is also used for
the classic CbC refinement rules. We focus on functional pre-/postconditions and exclude
regular and irregular termination of blocks for CbC-Block. For the instantiation of a block
(e.g., to write a sequence of Java statements that fulfill the specification), we follow the
syntax of a concrete block in Java, but we add a name for reference.

An abstract statement is refined by the block-introduction rule to a block with a name
and a block contract. Thus, a block name is an abstract placeholder. The side condition
of the refinement rule guarantees the correctness of the program to be developed. For
the block-introduction rule, we have to check three parts. First, the precondition of the
refined abstract statement must imply the precondition of the block. This ensures that the

FLEXIBLE CORRECT-BY-CONSTRUCTION PROGRAMMING 9

pre-state of the block is satisfied, and the block can be executed. Second, the postcondition
of the block must imply the postcondition of the refined abstract statement to continue the
program after the block. Third, the block must satisfy its own contract. As the block can
be seen as a Hoare triple, any CbC refinement rule can be applied to the block. The check
of the side condition of the applied refinement rule guarantees the correctness of the block
under development.

Rule 1 (Block-Introduction). Hoare triple {P}S{Q} is refinable to {P ′} Block B {Q′}
iff P implies P ′ and Q′ implies Q and {P ′} Block B {Q′} holds.

With the block-instantiation rule, we allow to instantiate a block with concrete code
that can contain further blocks (see the instantiation in Listing 2). For application, it must
be checked that this instantiation fulfills the block contract. We use the capabilities of
program verification. We translate the block to a method and verify whether this translated
block-method fulfills its contract. Thus, we have to prove that the dynamic formula P →
<statement;...>Q is fulfilled. Assuming the precondition, the postcondition must be satisfied
after executing the statements in the block. Dynamic logic extends first-order logic with
two operators. A diamond modality <p>Q and a box modality [p]Q with a program p and a
dynamic logic formula Q. Intuitively, the diamond modality states total correctness of the
program, and partial correctness is stated with the box modality.

The translation from a block to a block-method is as follows. The block contract is
translated to the contract of the block-method. The translated block-method is added to the
same class as the method in which the block is declared. The statements within the block
become the body of the block-method. As block could introduce local variables that are
already declared in the surrounding method [KFFD86], an α-conversion [Bar84] is necessary
to safely rename identifiers. A block does not have the same scope of a complete method and
neither has parameters nor a return type. Declarations of parameters and local variables have
to be added to the block-method, so that is has the same scope as the method. Therefore, we
translate accessible variables of the block to parameters of the block-method, and assignable
variables of the block to fields of the class containing the block-method. This differentiation
is done because a contract can only access parameter values before execution of the method,
but it can access the modified values of fields. Accessible or assignable fields of the class
are usable because the block-method is added to the class for verification purposes. The
return type of the block-method is void because we exclude the use of return statements
inside the block. This transformation is limited in its expressiveness as we are excluding
irregular termination, but sufficient to demonstrate the correctness-by-construction process
for normal execution.

Rule 2 (Block-Instantiation). Hoare triple {P} Block B {Q} is refinable to
{P} <statement;...> {Q} iff P → <statement;...> Q, where <statement;...> is any sequence
of concrete program statements possibly containing further blocks.

3.3. Discussion. In this subsection, we discuss the block refinement rules in comparison
to related approaches that allow to introduce code sequences, such as method calls, macro
expansions, and abstract execution.

10 FLEXIBLE CORRECT-BY-CONSTRUCTION PROGRAMMING

Difference to the Method Call Rule. The difference between the block refinement rules
and the method call refinement rule is that for a method call only the contract is used to
verify correctness of the caller. The content of the method is assumed to be correct with
respect to the method’s contract. With the block rules, both the contract and the content
of the block are always checked for correctness. A big difference between the block rules
and the method call rule is their scope. In a method, only variables of the method are
changed and no local variables of the calling context. A block allows the modification of
local variables as demonstrated in the motivating example.

Difference to Macro Expansion. Macro expansion is a textual transformation of input
source code. A preprocessor replaces macros with concrete source code. This is similar to the
block-instantiation rule, where a block name is replaced with concrete source code. As for
our block-instantiation rule, a macro expansion can capture identifiers already used in the
surrounding scope. Therefore, hygienic macro expansion uses α-conversion [Bar84] to rename
identifiers. The difference to CbC-Block is that CbC-Block demands a specification for a
block that is introduced in the block-introduction rule. Additionally, the block-instantiation
rule starts a procedure that verifies whether the block instantiation fulfills its specification.
A macro expansion is just a transformation of code.

Abstract Execution for Correctness-by-Construction. Abstract execution [SH19] is
a technique to specify and verify programs with partially abstract parts. Abstract execution
generalizes symbolic execution. It is tailored to Java, but the principles are applicable
to other sequential languages. Java and JML are extended with the concept of abstract
program element (APE); an abstract statement or an abstract expression. An APE is a
placeholder for any program part with or without side effects. To verify the correctness of
programs containing abstract program elements, these elements are specified with a contract
similar to a block contract. The extended specification language of abstract execution allows
to specify the behavior of the program element in cases of regular or irregular termination
including side effects [SH19]. The strength of abstract execution is the reasoning of irregular
termination that we exclude in CbC-Block.

APEs can be used similar to blocks of CbC-Block to establish a process for refinement-
based program construction. With abstract execution, we write programs containing APEs.
These programs can be verified to be correct under the assumption that the APEs fulfill their
specifications. In a refinement step, an APE is replaced by a program part that contains
concrete statements and possibly other abstract program elements. We have to verify that
the insertion fulfills the specification of the refined APE. This refinement is repeated until
no APE remains. Similar to classic CbC, this process does not require a program to be
monolithically verified, but it is sufficient that each APE replacement is verified to conclude
that the program is correct by construction. This process is the same as for CbC-Block
if we always instantiate a block without using any other CbC refinement rule. We still
argue that the application of other CbC refinement in tandem with blocks is beneficial
because they enforce a structured program construction process where developers think
about the implementation more thoroughly. Therefore, we decided for CbC-Block as
presented instead of utilizing abstract execution because CbC-Block is the sweet spot
between expressiveness and changes to the program construction process of classic CbC.
Combining classic CbC refinement rules with abstract execution requires major changes to

FLEXIBLE CORRECT-BY-CONSTRUCTION PROGRAMMING 11

classic CbC, so that the strength of abstract execution is usable (i.e., the refinement rules
must be adapted to consider irregular termination).

3.4. Implementation. In this subsection, we describe the implemented tool support for
CbC-Block. Classic CbC is already supported by the CorC tool [RSC+19]. CorC has a
graphical and a textual editor to develop programs. In this work, we extend CorC with
the new rules of CbC-Block. The textual IDE is implemented in Eclipse with Xtext.4

Xtext provides the functionality to develop IDEs for domain-specific languages. We use
Xtext to establish an editor for CorC-programs that consist of JML, Java, and the CbC-
specific keywords. The grammar of a CorC-program, which represents a refinement-based
construction according to CbC, is defined in Xtext. Based on this grammar, Xtext supports
syntax checks, highlighting and auto completion.

In CorC, we implemented the refinement rules of Definition 1. For CbC-Block, we
added refinement rules of block-introduction and block-instantiation. An instantiation is
written in a separated program starting with the name of the refined block and followed by
the contract and the block’s implementation. To verify that a block-instantiation fulfills
its block contract, a generator is implemented. It transforms a block-instantiation to a
method and starts the verification process by calling KeY [ABB+16]. The transformation to
a method follows the concept presented for the block-instantiation rule before. The generator
also creates the final method implementation if all refinement steps are proven. All block
instantiations must be recursively inserted to get the final method implementation. The
final method implementation can be integrated into an existing code base. This generator
can also construct partial methods when some parts are not fully refined. This is helpful in
intermediate steps of the construction to retain an overview of the current method.

3.5. Evaluation with a User Study. We evaluate CbC-Block with a user study. We
compare CbC-Block with classic CbC by (dis)allowing the use of the block rules to answer
the following research question.

RQ1: Does the CbC-Block approach improve classic CbC in terms of usability?

In the user study, we engaged five participants that know classic CbC and the CorC
tool. Knowledge of classic CbC and CorC is a necessary prerequisite because a new feature
was evaluated that could only be understood if the participants already knew the classic
CbC approach in CorC. Then, they can estimate the benefits of the new block refinement
rules. With this small number of participants, it was possible that everyone could solve the
study tasks consecutively.

Each participant had to implement two algorithms, one algorithm with CbC-Block
and the block rules and one algorithm with classic CbC and without the block rules. The
algorithms are maxElement and dutchFlag. The maxElement algorithm was already introduced as
the motivating example. The dutchFlag algorithm sorts a list containing only three different
elements. In the original description, each element has either a red, a blue or a white color.
The elements of the list are to be reordered so that the list results in the national flag of the
Netherlands (red, white, blue). We adapted the task to a list that contains an unknown
quantity of the numbers 0, 1, and 2. Both algorithms can be implemented in a few lines
of code with one loop through the list of elements. As both algorithms are explained to
the participants, we expected that the correct implementation is possible without major

4https://www.eclipse.org/Xtext/

12 FLEXIBLE CORRECT-BY-CONSTRUCTION PROGRAMMING

problems. For each task, they had 30 minutes. We split the participants in two groups using
the Latin Square design [WRH+12]. Each group implemented the algorithms in the same
order, but the approaches were used crosswise to address possible learning effects through an
order of the tools. After implementing both algorithms, we conducted a structured interview.
The questions of the interview are presented in Appendix A.

We summarize the most important answers of the participants and discuss the findings.
The tasks were correctly solved by all participants. In general, the participants needed
more time for the task with CbC-Block than for the task with classic CbC. As we only
had five participants, these statistics are only of limited significance. The participants
followed the CbC-Block approach and refined a program stepwise using the block rule.
All participants considered the introduction of the block rules to be useful. The rules save
the application of other CbC refinement rules during construction. For CbC-Block, the
participants positively mentioned the familiarity with a textual editor, the grouping of
statements for one refinement step by using a block, and the freedom to not be bound to
the classic CbC refinement rules. For classic CbC, the answers are in line with previous user
studies [RTC+19, RBTS21]. The participants positively mentioned the visual overview of
the refinements and the status of the verification. They liked the fine-grained feedback for
every applied refinement rule. As CbC-Block extends CbC, these positive answers also
apply for CbC-Block. The participants stated for both approaches that the incremental
construction helps to track down errors. The participants still miss more assistance if a
proof cannot be closed.

While we observed the participants, we noticed that both approaches need a correct
and sufficient specification as a starting point. If that is the case, refining and checking
side-conditions can be very successful. If, on the contrary, the specification needs to be
adjusted in the process, the effort to verify the program increases drastically. With classic
CbC, the participants are forced into the process of refining and verifying top-down. With
CbC-Block, the participants have more freedom to develop the program.

Regarding the finished tasks, all participants had experience with CorC. Therefore, it
is not surprising that all participants finished the task. They never used CbC-Block before,
but the participants conceptually understood the features of CbC-Block and accepted the
expansion well. Nonetheless, the participants need more time to fully understand the IDE
and the programming workflow of CbC-Block. This results in a longer time to implement
the algorithms.

We can answer RQ1 that CbC-Block is a promising feature to increase the usability
of CorC, but as for each new feature, developers need time to get used to. Some answers of
the participants highlight that with more training and better tool support, they are willing
to use the CbC-Block approach to construct correctness-critical programs.

Threats to Validity. In our user study, we had only five participants. Due to the small
number of participants, the qualitative results that we collected in the structured interview
are not generalizable. Nevertheless, the results are relevant, since the users are experts in
CorC and can therefore assess the advantages of the extension. A more comprehensive
evaluation with non-experts is not possible because they cannot properly interact with the
tool. The participants only implemented and verified two small algorithms in our experiment,
and therefore, we cannot generalize the results to larger problems.

FLEXIBLE CORRECT-BY-CONSTRUCTION PROGRAMMING 13

4. TraitCbC

In this section, we introduce TraitCbC with a motivational example. We present
TraitCbC formally and prove soundness of the TratiCbC program construction approach.
In the end of this section, we show the proof-of-concept implementation and a feasibility
evaluation.

TraitCbC uses method abstraction and method composition to enable an incremental
CbC-based development approach. This approach on method level allows a flexible way to
construct the desired program with any number and size of auxiliary methods. A developer
starts by implementing a method (e.g., a method a) in a first trait. Similar to classic CbC,
the method can contain holes that are refined in subsequent steps. A hole in TraitCbC
is an abstract method (e.g., an abstract method b) that is called in method a; that is, a
call to an abstract method corresponds to an abstract statement in classic CbC. In the next
step, one of these new abstract methods (e.g., b) is implemented in a second trait, again
more abstract methods can be declared for the implementation. To be correct, it must be
proven that each implemented method satisfies its specifications. Afterwards, the traits are
composed; the composition operation checks that the specification of the concrete method
b in the second trait fulfills the specification of the abstract method b in the first trait.
This incremental program construction approach stops when the last abstract method is
implemented, and all traits are composed.

4.1. Motivating Example. We illustrate using an example of how TraitCbC enables
CbC using traits. We use an object-oriented language in the code examples. In Listing 5,
we construct a method maxElement that finds the maximum element in a list of numbers.
We slightly adjust the implementation of the algorithm to better fit for TraitCbC. With
TraitCbC, we have an abstraction on method level. We utilize methods to outsource
program pieces that can be reused (i.e., we want to implement methods that are verified
once, but called several times in a program to reduce verification effort).

In this maxElement example, a list has a head and a tail. Only non-empty lists have a
maximum element. This is explicit in the precondition of our specification, where we require
that the list has at least one element. In the postcondition, we specify that the result is in
the list and larger than or equal to every other element. In the first step, we create a trait
MaxETrait1 that defines the abstract method maxElement. The method maxElement is abstract,
i.e., equivalent to an abstract statement in CbC.

1 trait MaxETrait1 {

2 @Pre: list.size() > 0

3 @Post: list.contains(result) &

4 (forall Num n: list.contains(n) ==> result >= n)

5 abstract Num maxElement(List list);

6 }

Listing 5: Initial trait for maxElement

In the second step in trait MaxETrait2 in Listing 6, we implement the method maxElement

using two abstract methods. We introduce an if-elseif-else-expression where the branches
invoke abstract methods. The guards check whether the list has only one element or whether
the current element is larger than or equal to the maximum of the rest of the list. The

14 FLEXIBLE CORRECT-BY-CONSTRUCTION PROGRAMMING

abstract method accessHead returns the current element, and the abstract method maxTail

returns the maximum in the remaining list. So, we recursively search the list for the largest
element by comparing the maximum element of the list tail with the current element until
we reach the end of the list.

1 trait MaxETrait2 {

2 @Pre: list.size() > 0

3 @Post: list.contains(result) &

4 (forall Num n: list.contains(n) ==> result >= n)

5 Num maxElement(List list) =

6 if (list.size() == 1) {accessHead(list)}

7 elseif (accessHead(list) >= maxTail(list))

8 {accessHead(list)}

9 else {maxTail(list)}

10

11 @Pre: list.size() > 0

12 @Post: result == list.element ()

13 abstract Num accessHead(List list);

14

15 @Pre: list.size() > 1

16 @Post: list.tail (). contains(result) &

17 (forall Num n: list.tail (). contains(n) ==> result >= n)

18 abstract Num maxTail(List list);

19 }

Listing 6: Implementation of maxElement with auxiliary methods

The correct implementation of the method maxElement can be guaranteed under the
assumptions that all introduced abstract methods are correctly implemented. Similar to
post-hoc verification, a program verifier conducts a proof of method maxElement and uses the
introduced specifications of the methods accessHead and maxTail. If the proof succeeds, we
know that the first method is correctly implemented. In our incremental CbCTrait approach,
we verify each method implementation directly after construction; and so we are able to
reuse each implemented method in the following steps (e.g., by calling the method in the
body of other methods).

We now compose the developed traits to complete the first construction step. To
perform the composition MaxETrait1 + MaxETrait2, we check that the specification of the
method maxElement fulfills the specification of the abstract method in the first trait (cf. Liskov
substitution principle [LW94]). In this case, this means checking that:
MaxETrait1.maxElement(..).pre ==> MaxETrait2.maxElement(..).pre as well as:
MaxETrait2.maxElement(..).post ==> MaxETrait1.maxElement(..).post.
When the composition of two verified traits is successful, the result is also a verified trait.
Note that the composed trait does not need to be verified directly by a program verifier in
TraitCbC because it is correct by construction. In this example, the specifications are the
same, thus checking for a successful composition is trivial, but this is not generally the case.
In particular, the logic needs to take into account ill-founded specifications and recursion in
the specification. We discuss more about the difficulties of handling those cases in previous
work [RPTS22].

FLEXIBLE CORRECT-BY-CONSTRUCTION PROGRAMMING 15

The methods accessHead and maxTail are implemented in the next two construction steps
in traits MaxETrait3 and MaxETrait4

5. The implementations are shown in Listing 7 and in
Listing 8. As we implement a recursive method, the method maxTail calls the maxElement

method, thus maxElement is introduced as an abstract method in this trait. We have to verify
that the method accessHead satisfies its specification using a program verifier. Similarly, we
have to verify the correctness of the method maxTail.

1 trait MaxETrait3 {

2 @Pre: list.size() > 0

3 @Post: result == list.element ()

4 Num accessHead(List list) = list.element ()

5 }

Listing 7: Implementation of accessHead

1 trait MaxETrait4 {

2 @Pre: list.size() > 1

3 @Post: list.tail (). contains(result) &

4 (forall Num n: list.tail (). contains(n) ==> result >= n)

5 Num maxTail(List list) = maxElement(list.tail ())

6

7 @Pre: list.size() > 0

8 @Post: list.contains(result) &

9 (forall Num n: list.contains(n) ==> result >= n)

10 abstract Num maxElement(List list);

11 }

Listing 8: Implementation of maxTail

As before, all traits are composed, and it is checked that the specifications of the
concrete methods fulfill the specifications of the abstract ones. As we have no contradicting
specifications for the same methods, the composition is well-formed. In Listing 9, the final
program MaxE is shown. All traits are composed.

1 class MaxE = MaxETrait1 + MaxETrait2 + MaxETrait3 + MaxETrait4

Listing 9: Trait composition

The already proven auxiliary methods in traits can be reused. For example, if we
want to implement a minElement method as shown in Listing 10, we could reuse already
implemented traits to reduce the programming and verification effort. The method minElement

is implemented in the following in trait MinE with one abstract method. The specification
of the method accessHead is the same as for the method accessHead above, so MaxETrait3 can
be reused. In this example, we show the flexible granularity of TraitCbC by directly
implementing the else branch, instead of introducing an auxiliary method as for maxElement.

5The methods could also be implemented in one trait.

16 FLEXIBLE CORRECT-BY-CONSTRUCTION PROGRAMMING

1 trait MinE {

2 @Pre: list.size() > 0

3 @Post: list.contains(result) &

4 (forall Num n: list.contains(n) ==> result <= n)

5 Num minElement(List list) =

6 if (list.size() == 1) {accessHead(list)}

7 elseif (accessHead(list) <= minElement(list.tail ()))

8 {accessHead(list)}

9 else {minElement(list.tail ())}

10

11 @Pre: list.size() > 0

12 @Post: result == list.element ()

13 abstract Num accessHead(List list);

14 }

Listing 10: Implementation of minElement with auxiliary method accessHead

The correctness of minElement is verified with the specifications of the method accessHead.
By composing MinE with MaxETrait3, we get a correct implementation of minElement. Note
how this verification process supports abstraction: as long as the contracts are compatible,
methods can be implemented in different styles by different developers to best meet non-
functional requirements while preserving the specified observable behavior [tBCSW18]. A
completely different implementation of maxElement can be used if it fulfills the specification
of the abstract method maxElement in trait MaxETrait1. This decoupling of specification and
corresponding satisfying implementations facilitates an incremental program construction
approach where a specified code base is extended with suitable implementations [DDJS14].

4.2. Object-Oriented Trait-Based Language. In this section, we formally introduce
the syntax, type system, reduction, and flattening semantics of a minimal core calculus for
TraitCbC. We keep this calculus for TraitCbC parametric in the specification logic so
that it can be used with a suitable program verifier and associated logic. The presented
rules to compose traits are conventional. The focus of our work is to enable a CbC approach
using traits that developers can easily adopt. Therefore, we present the calculus to prove
soundness of TraitCbC, but focus on the presentation of the advantages of incremental
trait-based programming in this paper. Indeed, languages with traits and with a suitable
specification language intrinsically enable incremental program construction.

4.2.1. Syntax. The concrete syntax of our core calculus for TraitCbC is shown in Fig. 1,
where non-terminals ending with ‘s’ are implicitly defined as a sequence of non-terminals,
i.e., vs ::= v1 . . . vn. We use the metavariables t for trait names, C for class names and
m for method names. A program consists of trait and class definitions. Each definition
has a name and a trait expression E . The trait expression can be a Body , a trait name, a
composition of two trait expressions E , or a trait expression E where a method is made
abstract, written as E[makeAbstractm]. A Body has a flag interface to define an interface,
a set of implemented interfaces Cs and a list of methods Ms. Methods have a method
header MH consisting of a specification S, the return type, a method name, and a list
of parameters. Methods have an optional method body. In the method body, we have

FLEXIBLE CORRECT-BY-CONSTRUCTION PROGRAMMING 17

Prog ::= Ds e
D ::= TD | CD
Name ::= t | C
TD ::= t = E
CD ::= C = E
E ::= Body | t | E + E | E[makeAbstract m]
Body ::= {interface? [Cs] Ms}
M ::= MH e?;
MH ::= S method C m(C1 x1 . . . Cn xn)
e ::= x | e.m(es) | new C(es)
Ev ::= [].m(es) | v.m(vs [] es) | new C(vs [] es)
v ::= new C(vs)
Γ ::= x1 : C1 . . . xn : Cn

S ::= . . . e.g. Pre : P Post : P
P ::= . . . e.g. First order logic

Figure 1: Syntax of the trait system

standard expressions, such as variable references, method calls, and object initializations.
For simplicity, we exclude updatable state. Field declarations are emulated by method
declarations, and field accesses are emulated by method calls.

The specification S in each method header is used to verify that methods are correctly
implemented. The specification is written in some logic. In our examples, we will use
first-order logic (cf. the example in Section 4.1). A well-formed program respects the
following conditions:

Every Name in Ds must be unique so that Ds can be seen as a map from names to
trait expressions. Trait expressions E can refer to trait names t. A well-formed Ds does not
have any circular trait definitions like t = t or t1 = t2 and t2 = t1. In a Body , all names of
implemented interfaces must be unique and all method names must be unique, so that Body
is a map from method names to method definitions. In a method header, parameters must
have unique names, and no explicit parameter can be called this.

4.2.2. Typing Rules. In our type system, we have a typing context Γ ::= x1 : C1 . . . xn : Cn

which assigns types Ci to variables xi. We define typing rules for our three kinds of
expressions: x, method calls, and object initialization. We combine typing and verification
in our type checking Γ ` e : C a P0 |= P1. This judgment can be read as: under typing
context Γ, the expression e has type C, where under the knowledge P0 we need to prove P1.
The knowledge P0 is our collected information that we use to prove a method correct. That
means, in our typing rules, we collect the knowledge about the parameters and expressions
in a method body to verify that this method body fulfills the specification defined in the
method header. The verification obligation P1 should follow from the knowledge P0.

We check if methods are well-typed with judgments of form Ds ; Name `M : OK . This
judgment can be read as: in the definition table, the method M defined under the definition
Name is correct. The typing rules of Fig. 2 are explained in the following. The first four
rules type different expressions and collect the information of these expressions to prove with
rule MOK that a method fulfills its specification. In the rule MOK with keyword verify,

18 FLEXIBLE CORRECT-BY-CONSTRUCTION PROGRAMMING

Γ ` x : Γ(x) a result : Γ(x) & result = x |= true
(x)

S method C m(C1 x1 . . . Cn xn) ; ∈ methods(C0) Γ ` e0 : C0 a P0 |= P ′
0 . . . Γ ` en : Cn a Pn |= P ′

n

x′
0 . . . x

′
n fresh S′ = S[this := x′

0, x1 := x′
1, . . . , xn := x′

n]
P = (result : C & P0[result := x′

0] & . . . & Pn[result := x′
n]& (Pre(S′) =⇒ Post(S′)))

Γ ` e0.m(e1 . . . en) : C a P |= P ′
0 & . . . & P ′

n & Pre(S′)
(Method)

Γ ` e1 : C1 a P1 |= P ′
1 . . . Γ ` en : Cn a Pn |= P ′

n

getters(C) = S1 method C1 x1(); . . . Sn method Cn xn(); x′
1 . . . x

′
n fresh S′

i = Si[this := result]
P ′′
i = (Pi[result := x′

i] & (Pre(S′
i) =⇒ result.xi() = x′

i)) P = (result : C & P ′′
1 & . . . & P ′′

n)

Γ ` new C(e1 . . . en) : C a P |= P ′
1 & . . . & P ′

n & Pre(S′
1) & . . .& Pre(S′

n)
(New)

Γ ` e : C′ a P |= P ′ C′ instanceof C

Γ ` e : C a P |= P ′ (sub)

Γ = this : Name, x1 : C1, . . . , xn : Cn Γ ` e : C a P |= P ′

verify Ds ` (Γ & Pre(S) & P) |= (P ′ & Post(S))

Ds; Name ` S method C m(C1 x1 . . . Cn xn) e; : OK
(MOK)

Ds; Name ` S method C m(C1 x1 . . . Cn xn); : OK
(AbsMOK)

Body = {interface? [Cs] M1 . . .Mn}
Ds;Name ` M1 : OK . . .Ds;Name ` Mn : OK

Ds;Name ` Body : OK
(BodyTyped)

Figure 2: Expression typing rules of TraitCbC

we call a verifier to prove each method once. Abstract methods (AbsOK) are always correct.
Rule BodyTyped ensures that all methods in a body are correctly typed.

x : As usual, the type of a variable is stored in the environment Γ. From the verification
perspective, we do not need to prove anything to be allowed to use a variable;
thus we use true. We know that the result of evaluating a variable is the value
of such variable, and that such value is of the type of the variable; thus we have
result : Γ (x) & result = x . The result is the returned value of evaluating this
expression, and variable : type is a predicate in our system. As you can notice, we are
assuming that our parametric logic supports at least a logical and (&); but of course
other ways to merge knowledge could work too.

Method: As usual, to type a method call, we inductively type the receiver and all the
parameters. In this way, we obtain all the types C0 . . . Cn, all the knowledge P0 . . . Pn,
and all the verification obligations P ′

0 . . . P
′
n. Inside of all conditions Pi |= P ′

i we call
the result of ei result. We cannot simply merge the knowledge of P0 . . . Pn, since
their result refers to different concepts. Thus, we chose fresh x′0 . . . x

′
n variables, and

we rename result of Pi and P ′
i into x′i. Similarly, S′ is the specification of the method

adapted using x′0 . . . x
′
n.

The verification obligation of course contains all the obligations of the receiver and
the parameters, but also requires the precondition of the method to hold.

The knowledge contains the knowledge of the receiver and the parameters, and the
method specification in implication form. Naively, one could expect that since the
precondition is already in the obligation we could simply add the postcondition to the

FLEXIBLE CORRECT-BY-CONSTRUCTION PROGRAMMING 19

knowledge. This would be unsound. By using the specification in implication form,
the system prevents circular reasoning: we could otherwise use the postcondition to
prove the precondition. Instead, when the system shows that the precondition of S′

holds, it can assume the postcondition of S′. Similar to logical and above, we are
assuming that our parametric logic supports at least logical implication, but of course
other forms of logical consequence could work too.

Note that the postcondition will contain information about the result of the method
body as information on the result variable.

New: As usual, to type an object instantiation, we inductively type all the parameters.
In this way we obtain all the types C1 . . . Cn, all the knowledge P1 . . . Pn, and all the
verification obligations P ′

1 . . . P
′
n. As we did for Method we use fresh variables to be

able to compose predicates.
As we mentioned above, we rely on abstract state operations to represent state:

that is, all the abstract methods in C need to be of form Si method Ci xi(); where
this.xi() returns the value of field xi, that in turn was initialized with the result of
expression ei. The function getters(C) returns all methods of this form.

Knowledge P ′′
i contains the knowledge of Pi (from expression ei) and it links such

knowledge to the result of calling method result.xi(), so that calling a getter on the
created object will return the expected value. However, the information is conditional
over verifying the precondition of such getter. Note that we do not need to add the
knowledge of the postcondition of xi() here; this will be handled by the Method rule
when xi() is called.

Knowledge P is simply merging the accumulated knowledge; while the final obli-
gation in addition to merging the accumulated obligations also requires that the
precondition of all the getters hold. In this way the getter preconditions behave like
the precondition of the constructor. By requiring those preconditions, we ensure that
we can call the getters on all the created objects.

Sub: The subsumption rule is standard. We allow subtyping between class names. Note
that we do not apply weakening and strengthening of conditions here.

Besides of typing correct programs, the typing rules of Trait-CbC have the goal to verify
the correctness of method implementations. The following rules check whether a method or
a Body are correct. The check for a correct method declaration in MOK calls a program
verifier to verify the correctness. We need just one verifier call for the verification of each
method because the rules above collected all needed knowledge and obligations.

MOK: In MOK, we construct a Γ, and we type the method body, obtaining knowledge
P and obligation P ′. The program verifier will know the type information of Γ, the
premise of the method, and the knowledge P , and will prove the obligation P ′ and the
postcondition of the method. This verification in the typing rule is indicated by the
keyword verify. Here, we use implication, but a different program verifier may use a
different form of logical consequence. The program verifier can access the specification
of all the other methods since we also provide the declaration table.

AbsMOK: Abstract methods are correctly typed.
BodyTyped: A Body is correctly typed, if all the methods in the declaration of the Body

are correctly typed.

20 FLEXIBLE CORRECT-BY-CONSTRUCTION PROGRAMMING

Ds ` e → e′

Ds ` Ev [e] → Ev [e′]
(Ctx)

S method C m(C1 x1, . . . , Cn xn) e; ∈ methods(C)

Ds ` new C(vs).m(v1 . . . vn) → e[this = new C(vs), x1 = v1, . . . , xn = vn]
(mcall)

abs(Ds(C)) = S1 method C1 x1(); . . . Sn method Cn xn();

Ds ` new C(v1 . . . vn).xi() → vi
(getter)

Figure 3: Reduction rules of TraitCbC

4.2.3. Reduction Rules. We formulate three reduction rules for our system to evaluate input
expressions to final values. We introduce an evaluation context Ev in our syntax in Fig. 1 to
define the order of evaluation. The rules of Fig. 3 are explained in the following.

Ctx: This is the conventional contextual rule, allowing the execution of subexpressions.
Mcall: We reduce a method call to an expression e, where the receiver is replaced with

new C(vs), and each parameter xi with the actual value vi. We also ensure that the
method is declared in the class C.

Getter: In our formalism, abstract methods without arguments represents getters. Notation
abs(Body) returns the set of all abstract methods in Body . A valid class can only have
abstract methods without arguments, and they will all represent getters.

4.2.4. Flattening Semantics. When we implement methods in several traits, we have to
check that these traits are compatible when they are composed. This process to derive a
complete class from a set of traits is called flattening. We follow the traditional flattening
semantics [DNS+06]. A class that is defined by composing several traits is obtained by
flattening rules. All methods are direct members of the class [DNS+06]. Overall, our
flattening process works as a big step reduction arrow, where we reduce a trait expression
into a well-typed and verified body.

To introduce our flattening rules in Fig 4, we first define the helper functions. The
function allMeth collects all method headers with the same name as m in all input bodies
(Definition 1). When two Bodys are composed (Definition 2), the implemented interfaces
are united and the methods are composed. The composition of methods (Definition 3)
collects methods that are only defined in one of the input sets. If a method is in both sets,
it is composed (Definition 4). Here, we distinguish four cases. If one method is abstract
and the other is concrete, we have to show that the precondition of the abstract method
implies the precondition of the concrete method. Additionally, the postcondition of the
concrete one has to imply the postcondition of the abstract one. This is similar to Liskov’s
substitution principle [LW94]. The second case is the symmetric variant of the first case. In
the third and fourth case, two abstract methods are composed. Here, the specification of
one abstract method has to imply the specification of the other abstract method such that
an implementation can still satisfy all specifications of abstract methods. If both methods
are concrete, the composition is correctly left undefined. This composition error can be
resolved by making one method m abstract in the Body , as defined in Definition 5. The
resulting Body is similar with the difference that the implementation of the method m is
omitted. The flattening rules in Fig. 4 are explained in the following in detail. In these

FLEXIBLE CORRECT-BY-CONSTRUCTION PROGRAMMING 21

rules, a set of traits is flattened to a declaration containing all methods. If abstract and
concrete methods with the same name are composed, Definitions 2-4 are used to guarantee
correctness of the composition.

Definition 1 (All Methods). allMeth(m, Bodys) =
{MH ; | Body ∈ Bodys, Body(m) = MH ; }

Definition 2 (Body Composition). Body1 + Body2 = Body
{interface? [Cs1] Ms1}+ {interface? [Cs1] Ms1} =
{interface? [Cs1 ∪ Cs2] Ms1 + Ms2}

Definition 3 (Methods Composition). Ms1 + Ms2 = Ms
• (M Ms1) + Ms2 = M (Ms1 + Ms2)

if methName(M) /∈ dom(Ms2)
• (M1 Ms1) + (M2 Ms2) = M1 +M2 (Ms1 + Ms2)

if methName(M1) = methName(M2)
• ∅+ Ms = Ms

Definition 4 (Method Composition). M1 +M2 = M
• S method C m(C1 x1 . . . Cn xn) e; + S′ method C m(C1 . . . Cn);

= S method C m(C1 x1 . . . Cn xn) e;
if Pre(S′) implies Pre(S) and Post(S) implies Post(S′)
•MH 1; + MH 2 e; = MH 2 e; + MH 1;
• S method C m(C1 x1 . . . Cn xn); + S′ method C m(C1 . . . Cn);

= S method C m(C1 x1 . . . Cn xn);
if Pre(S′) implies Pre(S) and Post(S) implies Post(S ′)
• S method C m(C1 x1 . . . Cn xn); + S′ method C m(C1 . . . Cn);

= S′ method C m(C1 x1 . . . Cn xn);
if (Pre(S) implies Pre(S ′) and Post(S ′) implies Post(S))
and not (Pre(S ′) implies Pre(S) and Post(S) impliesPost(S ′))

Definition 5 (Body Abstraction). Body [makeAbstract m]
{[Cs] Ms1 S method C m(Cxs) ; Ms2}[makeAbstract m]
= {[Cs] Ms1 S method C m(Cxs); Ms2}

FlatTop: The first rule flattens a set of declarations D1 . . . Dn to a set D′
1 . . . D

′
n. We express

this rule in a non-computational way: we assume to know the resulting D′
1 . . . D

′
n, and

we use them as a guide to compute them. Note that if there is a resulting D′
1 . . . D

′
n

then it is unique; flattening is a deterministic process and D′
1 . . . D

′
n are used only to

type check the results. They are not used to compute the shape of the flattened code.
Non computational rules like this are common with nominal type systems [IPW01]

where the type signatures of all classes and methods can be extracted before the
method bodies are verified.

DFlat: This rule flattens an individual definition by flattening the trait expression. When
the flattening produces a class definition, we also check that the body denotes an
instantiable class; a class whose only abstract methods are valid getters. The function
abs(Body) returns the abstract methods.

BFlat: It may look surprising that the Body does not flatten to itself. This represents what
happens in most programming languages, where implementing an interface implicitly
imports the abstract signature for all the methods of that interface. In the context of

22 FLEXIBLE CORRECT-BY-CONSTRUCTION PROGRAMMING

D′
1 . . . D

′
n ` D1 ⇓ D′

1 . . . D′
1 . . . D

′
n ` Dn ⇓ D′

n

D1 . . . Dn ⇓ D′
1 . . . D

′
n

(FlatTop)

Ds; Name ` E ⇓ Body if Name of form C then abs(Body) = S T x1(); . . . S T xn();

Ds ` Name = E ⇓ Name = Body
(DFlat)

Body = {interface? [Cs] M1 . . .Mn}
Body ′ = {interface? [Cs] M1 . . .Mn Ms}

Ms = {ΣallMeth(Ds, Cs, m) | m ∈ dom(Cs) and m /∈ dom(Body)} Ds; Name ` Body ′ : OK

Ds; Name ` Body ⇓ Body ′ (BFlat)

Ds; Name ` t ⇓ Ds(t)
(tFlat)

Ds; Name ` E1 ⇓ Body1 Ds; Name ` E2 ⇓ Body2

Ds; Name ` E1 + E2 ⇓ Body1 + Body2

(+Flat)

Ds; Name ` E ⇓ Body Body = {[Cs] M1 S method C m(C1 x1 . . . Cn xn) ; M2}
Body ′ = {[Cs] M1 S method C m(C1 x1 . . . Cn xn); M2}

Ds; Name ` E[makeAbstract m] ⇓ Body ′ (AbsFlat)

Figure 4: Flattening rules of TraitCbC

verification also the specification of such interface methods is imported. In concrete,
Body ′ is like Body , but we add Ms by collecting all the methods of the interfaces that
are not already present in the Body .

Moreover, we check that all the methods defined in the class respect the typing
and the specification defined in the interfaces: if a class has S method Foo foo(); or
S method Foo foo() e; and there is a S′ method Foo foo(); in the interface, then S must
respect the specification S′. The system then checks that the Body is well-typed and
verified by calling Ds; Name `Mi : OK

TFlat: A trait t is flattened to its declaration Ds(t).
+Flat: The composition of two expression E1 and E2, where both expressions are first

reduced to Body1 and Body2, results in the composition of these bodies as defined in
Definition 2.

AbsFlat: An expression E where one method m is made abstract flattens to a Body ′. We
know that E flattens to Body . The only difference between Body and Body ′ is that the
one method m is abstract in Body ′. In Body , the method can be abstract or concrete.

4.2.5. Soundness of TraitCbC. In this subsection, we formulate the main result of the
TraitCbC approach. We prove soundness of the flattening process with a parametric logic.
We claim that if you have a language without code reuse and with sound and modular
post-hoc verification then the language supports CbC simply by adding traits to the language.
That is, traits intrinsically enable a CbC program construction approach.

To prove soundness of the construction approach of TraitCbC (Theorem 2: Sound
CbC Process) as exemplified in Section 4.1, we have to show that the flattening process is
correct (Theorem 1: General Soundness). In turn, to prove General Soundness, we need two
lemmas which state that the composition of traits is correct (Lemma 1) and that a trait
after the makeAbstract operation is still correct (Lemma 2).

In Lemma 1, we have well-typed definitions Ds, and two well-typed and verified traits
in Ds, and the resulting trait/class is also well-typed and verified.

FLEXIBLE CORRECT-BY-CONSTRUCTION PROGRAMMING 23

Lemma 1 (Composition correct).
If Ds(t1) = Body1, Ds(t2) = Body2, Ds(Name) = Body, Ds; t1 ` Body1 : OK , Ds; t2 `
Body2 : OK , and Body1 + Body2 = Body,
then Ds; Name ` Body : OK

Proof. We prove by contradiction. We assume the resulting Body is ill typed. By definition
of BodyTyped, it means that one of the methods cannot be typed with either AbsMOK
or MOK. The list of methods that need to be typed is obtained by Definition 2.

Abstract methods can only be typed with AbsMOK and are never wrong. Implemented
methods can only be typed with MOK. If Γ ` e : C a P |= P ′ or the other precondition
verify Ds ` (Γ & Pre(S) & P) |= (P ′ & Post(S)) does not hold, it means that there was a
method mi with expression ei in Body1 (or symmetrically for Body2) that was well-typed
under Ds ; t1 ` Body1. That means that all of its implemented methods were well-typed and
verified. Typing ei produces Pi |= P ′

i by using a Γt1 containing this : t1.
If Ds; Name ` Body : OK is not applicable, the same expression ei was typed us-

ing a ΓName containing this : Name. It produced P ′′
i |= P ′′′

i so that verify Ds `
(ΓName & Pre(S) & P ′′

i) =⇒ (P ′′′
i & Post(S)) does not hold. We know that verify Ds `

(Γt1 & Pre(S) & Pi) =⇒ (P ′
i & Post(S)) holds by our assumption. By Definition 4, the

contracts of the methods in Body are simply stronger than the contracts of the methods in
Body1. The only difference between P ′′

i |= P ′′′
i and Pi |= P ′

i is in the contracts of methods
called on this. Assuming that our parametric logic implication is transitive, we know that
verify Ds ` (Γt1 & Pre(S) & Pi) =⇒ (P ′

i & Post(S)) entails verify Ds ` (ΓName & Pre(S)
& P ′′

i) =⇒ (P ′′′
i & Post(S)), thus we reach a contradiction.

Lemma 2 shows that if we have a well-typed and verified trait, the operation make−
Abstract results in a trait/class that is also well-typed and verified.

Lemma 2 (MakeAbstract correct).
If Ds(t) = Body, Ds(Name) = Body ′, Ds; t ` Body : OK ,

and Body [makeAbstract m] = Body ′,
then Ds; Name ` Body ′ : OK

Proof. We prove by contradiction. We assume the resulting Body ′ is ill typed. By definition
of BodyTyped, it means that one of the methods cannot be typed with either AbsMOK
or MOK. The list of methods that need to be typed is obtained by Definition 2.

Abstract methods can only be typed with AbsMOK and are never wrong. We know
that Body is typable by our assumption. The only difference between Body and Body ′ is
that the method m is made abstract. As we have seen for Lemma 1, we are typing Body ′ in
a different Γ. This case is even simpler than Lemma 1 because Body and Body ′ have exactly
the same specifications. The abstract method m and thus Body ′ cannot be ill typed.

With these Lemmas, we can prove Theorem 1. Given a sound and modular verification
language, then all programs that flatten are well-typed and verified. In a modular verification
language, a method can be fully verified using only the information contained in the method
declaration and the specification of any used method. Moreover, our parametric logic must
support at least a commutative and associative and (but of course other ways to merge
knowledge could work too) and a transitive implication (but of course other forms of logical
consequence could work too).

24 FLEXIBLE CORRECT-BY-CONSTRUCTION PROGRAMMING

Theorem 1 (General Soundness).
For all programs Ds where Ds flattens to Ds ′, and Ds ′ is well-typed;
that is, fo rall Name = Body ∈ Ds ′, we have Ds ′; Name ` Body : OK .

Proof. By induction on the size of Ds , and by induction on cases of E (the applied flattening
rule for E).

• Body only flattens if the Body can be shown to be well-typed.
• t only reads a trait from the already verified Ds ′.
• Body1 + Body2 is correct with Lemma 1. The lemma can be applied directly, if E is of

depth one (e.g., Body1 + Body2). If E is more complex, we have to apply other cases of
this case analysis.
• makeAbstract is handled similarly using Lemma 2.
• By the flattening relation, we know that Body1 and Body2 are well-typed in Ds. If we

start from a program containing only well-typed and verified traits, any new class we can
define by just composing those traits is well typed and verified.

We now show that the TraitCbC approach is sound. Theorem 2 states that starting
with one abstract method and a set of verified traits, the composed program is also verified.

Theorem 2 (Sound CbC Process).
Starting from a fully abstract specification t0, and some construction steps t1 . . . tn, we can
write C = t0 + · · ·+ tn as our whole CbC approach, where t0 + t1 is the application of the
first construction step. If we use CbC to construct programs, we can start from verified
atomic units and get a verified result. Formally, if t0 = {MH } t1 = {Ms1} . . . tn = {Msn}
are well-typed, and
t0 = {MH } t0 = {MH }
t1 = {Ms1} . . . tn = {Msn} ⇓ t1 = {Ms1} . . . tn = {Msn}
C = t0 + · · ·+ tn C = Body

then C = Body is well-typed.

Proof. This is a special case of Theorem 1.

Theorem 2 shows clearly that trait composition intrinsically enables a CbC approach:
An object-oriented programming language with traits and a corresponding specification
language supports an incremental CbC approach.

4.3. Proof-of-Concept Implementation. In this section, we describe the implementation,
which instantiates TraitCbC in Java with JML [LBR98] as specification language and
KeY [ABB+16] as verifier for Java code. Our trait implementation is based on interfaces
with default implementation. Our open source tool is implemented in Java and integrated as
plug-in in the Eclipse IDE.6 Besides this prototype, other languages with a suitable verifier,
such as Dafny [Lei10] and OpenJML [Cok11], can also be used to implement TraitCbC.

In Listing 11, we show the concrete syntax of our implementation. Each method in a trait
is specified with JML with the keywords requires and ensures for the pre- and postcondition.
To verify the correctness of programs, we need two steps. First, we verify the correctness
of a method implemented in a trait w.r.t. its specification. Second, for trait composition,
our implementation checks the correct composition for all methods (cf. Definition 2). The

6Tool and evaluation at https://doi.org/10.5281/zenodo.7766635

FLEXIBLE CORRECT-BY-CONSTRUCTION PROGRAMMING 25

syntax of trait composition is shown in Listing 12. In a tc-file (a file to specify the traits
to be composed), the name of the resulting trait is given and the composed traits are
connected with a plus operator. In Listing 12, trait MaxElement1 is composed with trait
MaxElement2. The trait MaxElement2 must implement the methods accessHead and maxTail, so
that we obtain a correct result in which all methods are implemented. To verify correctness
of the trait composition, it is checked that the specification of a concrete method satisfies
the specification of the abstract one with the same signature (cf. Definition 4). These
verification goals are sent to KeY, which starts an automatic verification attempt.

1 public interface MaxElement1 {

2 /*@ requires list.size() > 0;

3 @ ensures (\forall int n; list.contains(n);

4 @ \result >= n) & list.contains(\result);

5 @*/

6 default public int maxElement(List list) {

7 if (list.size() == 1) return accessHead(list);

8 if (list.element () >= maxElement(list.tail ()))

9 { return accessHead(list); }

10 else { return maxTail(list); } }

11

12 /*@ requires list.size() > 0;

13 @ ensures \result == list.element ();

14 @*/

15 public int accessHead(List list);

16

17 /*@ requires list.size() > 1;

18 @ ensures (\forall int n; list.tail (). contains(n);

19 @ \result >= n) & list.tail (). contains(\result);

20 @*/

21 public int maxTail(List list);

22 }

Listing 11: Example of a trait in our implementation

1 ComposedMax = MaxElement1 + MaxElement2

Listing 12: Example of a trait composition

Evaluation. We evaluate our implementation by a feasibility study. First, we reim-
plemented an already verified case study in our trait-based language. We used the
IntList [STAL11] case study, which is a small software product line (SPL) with a com-
mon code base and several features extending this code base. Here, we can show that our
trait-based language also facilitates reuse. The IntList case study implements functionality
to insert integers to a list in the base version. Extensions are the sorting of the list and
different insert options (e.g., front /back). We implement five methods that exists in different
variants with our trait-based CbC approach. We implement the case study in different
granularities. The coarse-grained version is similar to the SPL implementation we started

26 FLEXIBLE CORRECT-BY-CONSTRUCTION PROGRAMMING

Classic CbC CbC-Block TraitCbC

Language Additional refinement rules
for a programming language.

Needs specification language.

Additional refinement rules
for a programming language.

Introduces a specified block of

statements. Needs specifica-
tion language.

Programming language with
traits. Needs specification

language.

Tool

support

Pen and paper. Some special-

ized tools available.

Pen and paper. Some special-

ized tools available. Block in-

stantiation rule relies on post-
hoc verification tools.

Relies on post-hoc verification

tools.

Construc-

tion Rules

Specific refinement rules. Specific refinement rules. Construction by composition

of traits.

Correctness/

Debugging

Guarantees the correctness of

each refinement step.

Guarantees the correctness of

each refinement step. Refine-
ments can be condensed with

the block rules.

Guarantees the correctness of

each construction step. Each
method is specified so that

each constructed method can

directly be verified.

Proof
complexity

Many, but small proofs. Any granularity of proofs. Any granularity of proofs.

Reuse Refinement steps cannot be
reused; only fully imple-

mented methods can.

Refinement steps cannot be
reused; only fully imple-

mented methods can.

Each verified method in a
trait can be reused.

Applications Focuses on small, but

correctness-critical algo-
rithms.

Focuses on correctness-

critical algorithms.

As TraitCbC is based on

post-hoc verification, it can
be used in similar areas where

post-hoc verification is used.

Traits are beneficial for incre-
mental development and soft-

ware product lines.

Table 1: Comparison of TraitCbC with CbC-Block and classic CbC

with [STAL11], confirming that traits are also amenable to implement SPLs as shown by
Bettini et al. [BDS10]. The fine-grained version implements the five methods incrementally
with 12 construction steps. We can reuse 6 of these steps during the construction of method
variants.

We also implement three more case studies (BankAccount [TSAH12], Email [Hal05], and
Elevator [PR01]) with TraitCbC and classic CbC to show that it is feasible to implement
object-oriented programs with both approaches. We used CorC [RSC+19] as an instance of
a classic CbC tool. We were able to implement 9 classes and verify 34 methods with a size
of 1–20 lines of code. For future work, a user study is necessary to evaluate the usability of
TraitCbC in comparison to classic CbC to empirically confirm our stated advantages.

5. The Different CbC-based Program Construction Approaches in
Comparison

In this section, we discuss classic CbC in comparison to CbC-Block and TraitCbC.
In Table 1, we summarize how the three approaches compare regarding main aspects of
developing correct programs using tool support. The aspects comprise the programming
language, the tool support, the procedure to develop programs, and the verification of the
program.
Language. All approaches need an underlying programming and specification language.
The defined refinement rules of the classic CbC approach are external to a programming

FLEXIBLE CORRECT-BY-CONSTRUCTION PROGRAMMING 27

language. That means, each refinement rule introduces some statement of the programming
language by transforming the program. With CbC-Block and the block-instantiation rule
more than one statement of the language can be introduced at once. TraitCbC is usable
with languages that have traits. Methods can be implemented as defined by the language.
No refinement rules are necessary.
Tool Support. Tool support is helpful for any of the approaches. For classic CbC,
mostly pen and paper is used. There are a few specialized tools such as CorC [RSC+19],
ArcAngel [OCW03], and SOCOS [Bac09, BEM07]. These tools force a certain programming
procedure on the user because refinement rules must be applied to implement programs.
CbC-Block is implemented in CorC and extends the set of refinement rules with the
new rules for blocks. To verify the correctness of block instantiations, program verifiers
can be reused. There are program verifiers for many languages, such as Java [ABB+16],
C [CDH+09], and C# [BFL+11, BLS04]. Other languages are integrated with their verifier
from the start, e.g., Spec# [BLS04] and Dafny [Lei10]. For TraitCbC, we also need a
program verifier to prove the correctness of method implementations, but we do not need
specialized tools to construct methods, such as CorC.
Construction Rules. To construct a program, classic CbC has a strict concept of refinement
rules that must be applied to construct a program. CbC-Block relaxes this strict guideline
to construct programs. Programs can be constructed stepwise as with classic CbC, but
if desired, any number of refinement steps can be condensed with the block rules. In
the extreme case, a whole program can be developed in one step. TraitCbC offers this
flexibility to construct programs without the need of external refinement rules. Methods
can be developed freely and only need to be composed with respect to their specification.
Nevertheless, TraitCbC supports to construct code in fine-grained steps, which are more
amenable for verification than more complex methods.
Correctness/Debugging. Classical CbC gives explicit information about the program
states before and after execution of each statement by the Hoare triple notation. The
correctness of each applied refinement step is guaranteed by proving the side conditions
of the refinement rule. Some side conditions are not directly provable because abstract
statements in Hoare triples must be concretized first. In the worst case, a problem in the
program is found only after some refinement steps. The abstract statements in classic CbC
are not explicitly specified by the developer. Additional specifications in classic CbC are
introduced with some rules such as an intermediate condition in the composition rule. Then,
these specifications are propagated through the program to be constructed. Again, due to a
possible delayed check of a side condition, a wrong specification is found only after some
refinement steps.

If errors occur in the program development process, TraitCbC gives early and detailed
information on the level of verified methods. By specifying the method under development
and any abstract method that is called by this method, we can directly verify the correctness
of the method under development. We assume that the introduced abstract methods will be
correctly implemented in further refinement steps. With each step, the developer gets closer
to the solution until finally all abstract methods are implemented. CbC-Block combines
the characteristics of the other two approaches. The refinement rules of classic CbC can be
applied, or blocks of statements can be introduced. The specified block is verified similar to
a method in TraitCbC.
Proof Complexity. Classical CbC requires many small proofs to guarantee the correctness
of a program. CbC-Block can condense the proofs into larger proofs using the block

28 FLEXIBLE CORRECT-BY-CONSTRUCTION PROGRAMMING

refinement rules. TraitCbC can have the same granularity and also the same proof effort as
classic CbC, since each method implementation can correspond to just one refinement step.
The advantage of TraitCbC and CbC-Block is that developers can freely implement a
method body or a block. They must not stick to the same granularity as in the classic CbC
refinement rules. Proof complexity can be balanced against verifier calls.
Reuse. A fully refined method can be reused in all approaches. For TraitCbC, we can
easily reuse even very small units of code, since they are represented as methods in the
traits. In classic CbC and CbC-Block, no refinement step can be reused.
Applications. The classic CbC approach does not scale well to development proce-
dures for complete software system. Rather, individual algorithms can be developed with
CbC [WKSC16]. With the block rules, the scalability is improved because refinement steps
that are easy to prove can be combined into one block. This saves the application of
refinement rules and their corresponding correctness proofs. With ArchiCorC [KRS20],
we can even scale CbC to the development of correct component-based architectures. By
composing components specified with required and provided interfaces, we support the
creation of software architectures correct by construction.

As soon as we scale TraitCbC to real languages, we have the same application scenarios
as approaches that already use post-hoc program verification. As argued by Damiani et
al. [DDJS14], traits enable an incremental process of specifying and verifying software.
Bettini et al. [BDS10] proposed to use traits for software product line development and
highlighted the benefits of fine-grained reuse mechanisms. Here, TraitCbC’s guideline is
suitable for constructing new product lines step by step from the beginning.

Since CbC-Block extends classic CbC and can be freely applied at any granularity
of refinement steps, we propose to use CbC-Block for any implementation of correctness-
critical software, but the CbC approach must be well understood by the developer to be
efficiently usable. In TraitCbC, methods are developed and composed directly, so less
knowledge is needed to apply the approach, but developers can fall back into a post-hoc
verification process and thus lose the benefits of CbC (e.g., if the developers first develop
all methods and do not directly prove the correctness). In general, both approaches are
usable for program development and the right choice depends on the preferences and prior
knowledge of the developers.
Summary. In summary, TraitCbC and CbC-Block allow more flexible program con-
struction without losing the advantages of incremental correct-by-construction program
development. CbC-Block loosens the strict guideline of classic CbC by adding the block
refinement rules. CbC-Block still needs specialized tools, such as CorC to be applicable.
TraitCbC enables a CbC approach for trait-based languages without introducing refinement
rules. This program construction approach combined with the flexibility of traits allows
correct methods to be developed in small and reusable steps. TraitCbC is independent of
special CbC tools and requires only a program verifier.

6. Related Work

In the following, we discuss related work for specifying and verifying software. We discuss
related correctness-by-construction approaches and compare CorC with other tools for
CbC.

FLEXIBLE CORRECT-BY-CONSTRUCTION PROGRAMMING 29

Contracts and Program Verification. The implementation of CbC in CorC and the
implementation of TraitCbC use JML, Java DL and Java to specify and write programs.
For the verification, KeY [ABB+16] is integrated in the backend. KeY is a deductive program
verifier for Java programs specified with JML. In an intermediate step, the specified programs
are translated to Java DL. Similarly, OpenJML [Cok11] verifies Java programs specified with
JML. Besides Java/JML, many languages support pre-/postcondition contracts or other forms
of specification to state program behavior. First, the programming language Eiffel introduced
contracts and supported the design-by-contract approach [Mey88, Mey92]. Eiffel is an object-
oriented programming language, where classes are specified with invariants, and methods
with pre-/postconditions contracts. For the verification, AutoProof [KRMJ16, TFNP15] is
integrated that translates the specified program to a logic formula. Then, an SMT-solver
proves the validity of the formulas. For C#, the language Spec# is an extension to introduce
contracts and invariants [BLS04, BFL+11]. The verification is done by translating the proof
obligations to an intermediate language BoogiePL that can be verified with Boogie [BCD+05].
For the C language, the VCC [CDH+09] and Frama-C [CKK+12] tools verify annotated
C code. VCC reuses the Spec# tool chain. For Java and C, the VeriFast [JSP10] tool
verifies C and Java programs. VerCors [ABD+14] also support the verification of C and
Java programs with a focus on concurrent and distributed software. Another language with
integrated specifications and verification is Dafny [Lei10]. Dafny is a functional language, but
supports the compilation to other languages such as C#, Java, Go, and Python. Similarly,
Whiley [PG13] is a designed language with associated verifier to simplify the verification of
programs. The languages SPARK [Bar03] supports a subset of the Ada language to specify
and verify Ada programs. In contrast to JML, the specification is not written as comments,
but the Ada aspect-syntax is used to express contracts. The focus of all these languages
and verification tools is the specification of program behavior and the verification that a
program satisfies its specification. With CbC (CbC-Block and TraitCbC), we put the
correct construction of programs in the foreground, instead of just verifying the correctness
post-hoc. However, Watson et al. [WKSC16] argue that correctness-by-construction and
post-hoc verification can be used together to combine their mutual strengths.

To verify trait languages, Damiani et al. [DDJS14] added specifications of methods
in traits to verify correct trait composition. They proposed a modular and incremental
verification process. Traits are introduced in many languages to support clean design
and reuse, for example Smalltalk [DNS+06], Java [BMN14] by utilizing default methods
in interfaces, and other Java-like languages [BDSS13, LS08, SD05]. None of these trait
languages were used to formulate a CbC approach to create correct programs. They only
focus on code reuse or post-hoc verification.

Refinement-Based Correctness-by-Construction. The main idea of correctness-by-
construction is the stepwise construction of a program from a starting specification with
correctness guarantees for each step. We focused on correctness-by-construction by Kourie
and Watson [KW12] that we called classic CbC. This classic CbC approach is based on
Dijkstra [Dij76] and Gries [Gri87]. In this paragraph, we discuss related refinement-based
CbC approaches. All of these approaches create correct programs by refining an abstract
program or system to a concrete implementation. This is the main difference to the
composition-based CbC approach of TraitCbC, where atomic units of code are composed
to whole programs.

30 FLEXIBLE CORRECT-BY-CONSTRUCTION PROGRAMMING

Morgan’s refinement calculus [Mor94] is similar to correctness-by-construction by Kourie
and Watson [KW12]. Both approaches have the same theoretical foundation, but Morgan’s
refinement calculus is more elaborated with a large number of different refinement rules,
where many rules are only formally interesting. Kourie and Watson [KW12] reduced the
refinement rules to a minimal but sufficient set, such that CbC becomes comprehensible for
developers without a major background in formal methods. The language ArcAngel [OCW03]
with the verifier ProofPower [ZOC09] implements Morgan’s refinement calculus. The tool
uses a tactic language to apply a sequence of refinement rules for program refinement. Thus,
a tactic has the same benefit as the application of a block refinement in CbC-Block because
the application of refinement rules is condensed to one refinement step. The difference is
that for an introduced block of code in CbC-Block, it does not matter what classic CbC
refinement rules would have to be applied to introduce that block of code. A tactic still
applies the refinement rules stated in that tactic sequentially.

The invariant based programming [BW12, Bac09] shifts the focus from pre-/postcondition
contracts as starting point for refinements to invariants. The tool SOCOS [Bac09, BEM07]
implements Back’s methodology. Similar to CorC, SOCOS has a graphical user interface
to create a program in the form of a UML-style state chart. Refinement steps introduce
new states and transitions in the state chart and check compliance with the invariants.
A completely refined program is proved correct and executable code can be generated.
In CorC, the graphical user interface present the refinement steps in a hierarchical tree
structure that more directly represent the structure of the code (comparable with an abstract
syntax tree). Therefore, CorC and also the implementation of TraitCbC are on the level
of source code.

Further refinement-based methodologies are Event-B [Abr10, ABH+10] for automata-
based systems and Circus [OCW09, OGC08] for state-rich reactive systems. Both method-
ologies work on an abstraction level with abstract models instead of specified source code.
In refinement steps these abstract models of the system are transformed to concrete and
executable implementation. Here, each refined result guarantees conformations with the
initial model. Event-B is supported by the tool Rodin [ABH+10], and Circus is supported
by the tool CRefine [OGC08]. The main difference to CbC by Kourie and Watson [KW12],
and TraitCbC is the abstraction level. We specify and verify source code rather than
automata-based systems.

Data refinement [HKKN13, HL22, LT12, CDM13] is a related approach that focuses
on the refinement of (abstract) programs with abstract types to correct and more efficient
programs with concrete types. Haftmann et al. [HKKN13] examine how the Isabelle/HOL
code generator applies data refinements to produce executable versions of abstract programs.
Cohen et al. [CDM13] present an approach to refine Coq programs to enhance computational
efficiency. Haslbeck and Lammich [HL22] not only ensure functional correctness during data
refinement, they also verify worst-case complexity of algorithms at the LLVM level. The
main difference to CbC by Kourie and Watson [KW12] is that data refinement approaches
start with algorithms on abstract data structures that are refined to more concrete data
structures, whether CbC by Kourie and Watson focuses on the incremental development
of the algorithm itself. Therefore, both approaches can used in concert to develop more
efficient algorithm.

Extensions to Correctness-by-Construction and CorC. CorC has been extended in
several directions to allow the structured program development for larger software systems

FLEXIBLE CORRECT-BY-CONSTRUCTION PROGRAMMING 31

and further application areas. With ArchiCorC [KRS20], we integrate the construction of
correct software architectures. We bundle CorC programs into reusable software components.
The components communicate via required and provided interfaces where ArchiCorC
guarantees the compatibility between them. With VarCorC [BRS20] software product lines
are developed correct by construction. A software product lines is used to systematically
construct a family of similar software programs instead of developing monolithic programs.
VarCorC ensures the correctness of all possible software variants of the product line. In
addition to functional correctness, correctness-by-construction and CorC are extended to
guarantee nonfunctional properties. As a first example, we introduced CbC refinement
rules to ensure that programs [RKTS20, RKS+22] follow an information flow policy which
defines the allowed flow of information in a program. In every refinement step, security
and functional correctness of the program is guaranteed, such that insecure and incorrect
programs are prohibited by construction. The goal of these extensions is that program
development in CorC is scalable and that CbC can be used for additional application areas.
Orthogonally, this article focuses on improving the flexibility of developing programs correct
by construction (e.g., by introducing the block refinement rules).

Program and Specification Synthesis. Program synthesis is a technique that generates
programs from user given specifications automatically. Pioneers in this field are Manna et
al. [MW80]. Gulwani et al. [GPS+17] give an overview of state-of-the-art program synthesis
approaches. For example, for Fortran, Stickel et al. [SWL+94] deductively extract programs
from user-given graphical specifications. They compose procedures from libraries to full
implementations. Similarly, Gulwani et al. [GJTV10] synthesize programs by composing
base components from a specified library. Polikarpova et al. [PKSL16] synthesize recur-
sive programs from specifications by utilizing type information. Similarly, synthesis of
function summaries [Hoa71, CDK+15, SFS12] automatically generate pre-/postcondition
specifications from programs to achieve modular verification and to improve verification
time. With CbC (classic CbC, CbC-Block, or TraitCbC), developers have the task to
specify and create programs according to that specification. Therefore, CbC is a program
development approach where the developer determines the resulting program, while program
synthesis generates one of possibly many programs that fulfills the specification. Contrary
to this, the synthesis of a function summary generates one of possibly many specifications
for a program. Synthesis has scalability limitations due to an enormous search space of
programs/specifications and ambiguity of user intent.

7. Conclusion

In this article, we presented CbC-Block and TraitCbC two incremental program construc-
tion approaches that guide developers to implementations that are correct by construction.
CbC-Block extends classic CbC with block refinement rules. These rules allow to condense
the application of CbC refinement rules into one block refinement. Thus, CbC-Block
increase flexibility in the development of programs because any sequence of statements
can be introduced in a block, while still ensuring the correctness of that introduced block.
TraitCbC uses method calls and trait composition instead of refinement rules to guarantee
functional correctness. We formalize the concept of a trait-based object-oriented language
with a parametric specification language to allow a broader range of languages to adopt this
concept. The main advantage of TraitCbC is the simplicity of the refinement process that

32 FLEXIBLE CORRECT-BY-CONSTRUCTION PROGRAMMING

supports code reuse. We compared classic CbC, CbC-Block, and TraitCbC qualitatively
with regard to their programming constructs, tool support, and usability. CbC-Block
and TraitCbC both relax the strict guideline of CbC without losing the benefits of a
constructive program construction approach.

As future work, user studies could be conducted with all three approaches to further
evaluate the usability of the approaches. We want to investigate how the more flexible
construction approaches of TraitCbC and CbC-Block are received by developers. We
also want to compare the development times and potential types of programming errors
between the approaches. These user studies will help to develop concrete guidelines on which
approach is appropriate under which circumstances and with which team.

Acknowledgments. This work was partially supported by funding from the topic Engi-
neering Secure Systems of the Helmholtz Association (HGF) and by KASTEL Security
Research Labs (46.23.03). We thank Frederik Fröling for his work on CbC-Block in his
Master’s Thesis.

References

[ABB+16] Wolfgang Ahrendt, Bernhard Beckert, Richard Bubel, Reiner Hähnle, Peter H Schmitt, and
Mattias Ulbrich. Deductive Software Verification–The KeY Book: From Theory to Practice,
volume 10001. Springer, 2016.

[ABD+14] Afshin Amighi, Stefan Blom, Saeed Darabi, Marieke Huisman, Wojciech Mostowski, and Marina
Zaharieva-Stojanovski. Verification of Concurrent Systems with VerCors. In International School
on Formal Methods for the Design of Computer, Communication and Software Systems, volume
8483 of Lecture Notes in Computer Science, pages 172–216. Springer, 2014.

[ABH+10] Jean-Raymond Abrial, Michael Butler, Stefan Hallerstede, Thai Son Hoang, Farhad Mehta, and
Laurent Voisin. Rodin: An Open Toolset for Modelling and Reasoning in Event-B. International
Journal on Software Tools for Technology Transfer, 12(6):447–466, 2010.

[Abr10] Jean-Raymond Abrial. Modeling in Event-B - System and Software Engineering. Cambridge
University Press, 2010.

[Bac09] Ralph-Johan Back. Invariant Based Programming: Basic Approach and Teaching Experiences.
Formal Aspects of Computing, 21(3):227–244, 2009.

[Bar84] Hendrik P Barendregt. The Lambda Calculus, volume 3. North-Holland Amsterdam, 1984.
[Bar03] John Gilbert Presslie Barnes. High Integrity Software: The Spark Approach to Safety and Security.

Pearson Education, 2003.
[BCD+05] Mike Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs, and K Rustan M Leino.

Boogie: A Modular Reusable Verifier for Object-Oriented Programs. In International Symposium
on Formal Methods for Components and Objects, volume 4111 of Lecture Notes in Computer
Science, pages 364–387. Springer, 2005.

[BCK+22] Tabea Bordis, Loek Cleophas, Alexander Kittelmann, Tobias Runge, Ina Schaefer, and Bruce W.
Watson. Re-CorC-ing KeY: Correct-by-Construction Software Development Based on KeY. In
The Logic of Software. A Tasting Menu of Formal Methods. Springer, 2022.

[BDS10] Lorenzo Bettini, Ferruccio Damiani, and Ina Schaefer. Implementing Software Product Lines
Using Traits. In Proceedings of the 2010 ACM Symposium on Applied Computing, pages 2096–
2102, 2010.

[BDSS13] Lorenzo Bettini, Ferruccio Damiani, Ina Schaefer, and Fabio Strocco. TRAITRECORDJ: A
Programming Language with Traits and Records. Science of Computer Programming, 78(5):521–
541, 2013.

[BEM07] Ralph-Johan Back, Johannes Eriksson, and Magnus Myreen. Testing and Verifying Invariant
Based Programs in the SOCOS Environment. In International Conference on Tests and Proofs
(TAP), volume 4454 of Lecture Notes in Computer Science, pages 61–78. Springer, 2007.

FLEXIBLE CORRECT-BY-CONSTRUCTION PROGRAMMING 33

[BFL+11] Mike Barnett, Manuel Fähndrich, K. Rustan M. Leino, Peter Müller, Wolfram Schulte, and
Herman Venter. Specification and Verification: The Spec# Experience. Communication of the
ACM, 54(6):81–91, June 2011.

[BLS04] Mike Barnett, K Rustan M Leino, and Wolfram Schulte. The Spec# Programming System:
An Overview. In International Workshop on Construction and Analysis of Safe, Secure, and
Interoperable Smart Devices, pages 49–69. Springer, 2004.

[BMN14] Viviana Bono, Enrico Mensa, and Marco Naddeo. Trait-Oriented Programming in Java 8. In
Proceedings of the 2014 International Conference on Principles and Practices of Programming
on the Java platform: Virtual machines, Languages, and Tools, pages 181–186, 2014.

[BRS20] Tabea Bordis, Tobias Runge, and Ina Schaefer. Correctness-by-Construction for Feature-Oriented
Software Product Lines. In Proceedings of the 19th ACM SIGPLAN International Conference on
Generative Programming: Concepts and Experiences, pages 22–34. ACM, 2020.

[BW12] Ralph-Johan Back and Joakim Wright. Refinement Calculus: A Systematic Introduction. Springer
Science & Business Media, 2012.

[CDH+09] Ernie Cohen, Markus Dahlweid, Mark Hillebrand, Dirk Leinenbach, Micha l Moskal, Thomas
Santen, Wolfram Schulte, and Stephan Tobies. VCC: A Practical System for Verifying Concurrent
C. In International Conference on Theorem Proving in Higher Order Logics, volume 5674 of
Lecture Notes in Computer Science, pages 23–42. Springer, 2009.

[CDK+15] Hong-Yi Chen, Cristina David, Daniel Kroening, Peter Schrammel, and Björn Wachter. Synthe-
sising Interprocedural Bit-Precise Termination Proofs. In International Conference on Automated
Software Engineering (ASE), pages 53–64. IEEE, 2015.

[CDM13] Cyril Cohen, Maxime Dénès, and Anders Mörtberg. Refinements for Free! In Certified Programs
and Proofs: Third International Conference, pages 147–162. Springer, 2013.

[Cha06] Roderick Chapman. Correctness by Construction: A Manifesto for High Integrity Software. In
Proceedings of the 10th Australian Workshop on Safety Critical Systems and Software - Volume
55, SCS ’05, pages 43–46, 2006.

[CKK+12] Pascal Cuoq, Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien Signoles, and Boris
Yakobowski. Frama-C. In International Conference on Software Engineering and Formal Methods,
volume 7504 of Lecture Notes in Computer Science, pages 233–247. Springer, 2012.

[Cok11] David R Cok. OpenJML: JML for Java 7 by Extending OpenJDK. In NASA Formal Methods
Symposium, volume 6617 of Lecture Notes in Computer Science, pages 472–479. Springer, 2011.

[DDJS14] Ferruccio Damiani, Johan Dovland, Einar Broch Johnsen, and Ina Schaefer. Verifying Traits: An
Incremental Proof System for Fine-Grained Reuse. Formal Aspects of Computing, 26(4):761–793,
2014.

[Dij75] Edsger W. Dijkstra. Guarded Commands, Nondeterminacy and Formal Derivation of Programs.
Communication of the ACM, 18(8):453–457, August 1975.

[Dij76] Edsger W. Dijkstra. A Discipline of Programming. Prentice Hall, 1976.
[DNS+06] Stéphane Ducasse, Oscar Nierstrasz, Nathanael Schärli, Roel Wuyts, and Andrew P Black.

Traits: A Mechanism for Fine-Grained Reuse. ACM Transactions on Programming Languages
and Systems (TOPLAS), 28(2):331–388, 2006.

[GJTV10] Sumit Gulwani, Susmit Jha, Ashish Tiwari, and Ramarathnam Venkatesan. Component Based
Synthesis Applied to Bitvector Programs. Technical report, Citeseer, 2010.

[GPS+17] Sumit Gulwani, Oleksandr Polozov, Rishabh Singh, et al. Program Synthesis. Foundations and
Trends in Programming Languages, 4(1-2):1–119, 2017.

[Gri87] David Gries. The Science of Programming. Springer, 1987.
[Hal05] Robert J Hall. Fundamental Nonmodularity in Electronic Mail. Automated Software Engineering,

12(1):41–79, 2005.
[HC02] Anthony Hall and Roderick Chapman. Correctness by Construction: Developing a Commercial

Secure System. IEEE Software, 19(1):18–25, 2002.
[HKKN13] Florian Haftmann, Alexander Krauss, Ondřej Kunčar, and Tobias Nipkow. Data Refinement

in Isabelle/HOL. In International Conference on Interactive Theorem Proving, pages 100–115.
Springer, 2013.

[HL22] Maximilian PL Haslbeck and Peter Lammich. For a few dollars more: Verified fine-grained
algorithm analysis down to llvm. ACM Transactions on Programming Languages and Systems
(TOPLAS), 44(3):1–36, 2022.

34 FLEXIBLE CORRECT-BY-CONSTRUCTION PROGRAMMING

[Hoa71] Charles Antony Richard Hoare. Procedures and Parameters: An Axiomatic Approach. In
Symposium on Semantics of Algorithmic Languages, pages 102–116. Springer, 1971.

[IPW01] Atsushi Igarashi, Benjamin C Pierce, and Philip Wadler. Featherweight Java: A Minimal
Core Calculus for Java and GJ. ACM Transactions on Programming Languages and Systems
(TOPLAS), 23(3):396–450, 2001.

[JSP10] Bart Jacobs, Jan Smans, and Frank Piessens. A Quick Tour of the VeriFast Program Verifier. In
Asian Symposium on Programming Languages And Systems, volume 6461 of Lecture Notes in
Computer Science, pages 304–311. Springer, 2010.

[KFFD86] Eugene Kohlbecker, Daniel P Friedman, Matthias Felleisen, and Bruce Duba. Hygienic Macro
Expansion. In Proceedings of the 1986 ACM Conference on LISP and Functional Programming,
pages 151–161, 1986.

[KRMJ16] Mansur Khazeev, Victor Rivera, Manuel Mazzara, and Leonard Johard. Initial Steps Towards
Assessing the Usability of a Verification Tool. In International Conference in Software Engineering
for Defence Applications, volume 717 of Advances in Intelligent Systems and Computing, pages
31–40. Springer, 2016.

[KRS20] Alexander Knüppel, Tobias Runge, and Ina Schaefer. Scaling Correctness-by-Construction. In
International Symposium on Leveraging Applications of Formal Methods, pages 187–207. Springer,
2020.

[KW12] Derrick G Kourie and Bruce W Watson. The Correctness-by-Construction Approach to Program-
ming. Springer Science & Business Media, 2012.

[LBR98] Gary T Leavens, Albert L Baker, and Clyde Ruby. JML: a Java Modeling Language. In Formal
Underpinnings of Java Workshop (at OOPSLA’98), pages 404–420. Citeseer, 1998.

[Lei95] K Rustan M Leino. Toward Reliable Modular Programs. California Institute of Technology, 1995.
[Lei10] K Rustan M Leino. Dafny: An Automatic Program Verifier for Functional Correctness. In

International Conference on Logic for Programming Artificial Intelligence and Reasoning, pages
348–370. Springer, 2010.

[LS08] Luigi Liquori and Arnaud Spiwack. FeatherTrait: A Modest Extension of Featherweight Java.
ACM Transactions on Programming Languages and Systems (TOPLAS), 30(2):1–32, 2008.

[LT12] Peter Lammich and Thomas Tuerk. Applying Data Refinement for Monadic Programs to
Hopcroft’s Algorithm. In Interactive Theorem Proving: Third International Conference, ITP
2012, pages 166–182. Springer, 2012.

[LW94] Barbara H Liskov and Jeannette M Wing. A Behavioral Notion of Subtyping. ACM Transactions
on Programming Languages and Systems (TOPLAS), 16(6):1811–1841, 1994.

[Mey88] Bertrand Meyer. Eiffel: A Language and Environment for Software Engineering. Journal of
Systems and Software, 8(3):199–246, 1988.

[Mey92] Bertrand Meyer. Applying “Design by Contract”. Computer, 25(10):40–51, 1992.
[Mor94] Carroll Morgan. Programming from Specifications. Prentice Hall, 2nd edition, 1994.
[MW80] Zohar Manna and Richard Waldinger. A Deductive Approach to Program Synthesis. ACM

Transactions on Programming Languages and Systems (TOPLAS), 2(1):90–121, jan 1980.
[OCW03] Marcel Vinicius Medeiros Oliveira, Ana Cavalcanti, and Jim Woodcock. ArcAngel: A Tactic

Language for Refinement. Formal Aspects of Computing, 15(1):28–47, 2003.
[OCW09] Marcel Oliveira, Ana Cavalcanti, and Jim Woodcock. A UTP Semantics for Circus. Formal

Aspects of Computing, 21(1):3–32, 2009.
[OGC08] Marcel Vinicius Medeiros Oliveira, Alessandro Cavalcante Gurgel, and C G Castro. CRefine:

Support for the Circus Refinement Calculus. In 2008 Sixth IEEE International Conference on
Software Engineering and Formal Methods, pages 281–290. IEEE, Nov 2008.

[PG13] David J Pearce and Lindsay Groves. Whiley: A Platform for Research in Software Verification.
In International Conference on Software Language Engineering, volume 8225 of Lecture Notes in
Computer Science, pages 238–248. Springer, 2013.

[PKSL16] Nadia Polikarpova, Ivan Kuraj, and Armando Solar-Lezama. Program Synthesis from Polymor-
phic Refinement Types. ACM SIGPLAN Notices, 51(6):522–538, aug 2016.

[PR01] Malte Plath and Mark Ryan. Feature Integration Using a Feature Construct. Science of Computer
Programming, 41(1):53–84, 2001.

FLEXIBLE CORRECT-BY-CONSTRUCTION PROGRAMMING 35

[RBTS21] Tobias Runge, Tabea Bordis, Thomas Thüm, and Ina Schaefer. Teaching Correctness-by-
Construction and Post-hoc Verification–The Online Experience. In Formal Methods Teaching
Workshop, volume 13122 of Lecture Notes in Computer Science, pages 101–116. Springer, 2021.

[RKS+22] Tobias Runge, Alexander Kittelmann, Marco Servetto, Alex Potanin, and Ina Schaefer. In-
formation Flow Control-by-Construction for an Object-Oriented Language. In International
Conference on Software Engineering and Formal Methods, volume 13550 of Lecture Notes in
Computer Science, pages 209–226. Springer, 2022.

[RKTS20] Tobias Runge, Alexander Knüppel, Thomas Thüm, and Ina Schaefer. Lattice-Based Infor-
mation Flow Control-by-Construction for Security-by-Design. In FormaliSE@ICSE 2020: 8th
International Conference on Formal Methods in Software Engineering, pages 44–54. ACM, 2020.

[RPTS22] Tobias Runge, Alex Potanin, Thomas Thüm, and Ina Schaefer. Traits: Correctness-by-
Construction for Free. In International Conference on Formal Techniques for Distributed Objects,
Components, and Systems, volume 13273 of Lecture Notes in Computer Science, pages 131–150.
Springer, 2022.

[RSC+19] Tobias Runge, Ina Schaefer, Loek Cleophas, Thomas Thüm, Derrick Kourie, and Bruce W Watson.
Tool Support for Correctness-by-Construction. In International Conference on Fundamental
Approaches to Software Engineering, volume 11424 of Lecture Notes in Computer Science, pages
25–42. Springer, 2019.

[RTC+19] Tobias Runge, Thomas Thüm, Loek Cleophas, Ina Schaefer, and Bruce W Watson. Comparing
Correctness-by-Construction with Post-Hoc Verification - A Qualitative User Study. In Formal
Methods. FM 2019 International Workshops. Refine, volume 12233 of Lecture Notes in Computer
Science, pages 388–405. Springer, 2019.

[SD05] Charles Smith and Sophia Drossopoulou. Chai: Traits for Java-Like Languages. In European
Conference on Object-Oriented Programming, pages 453–478, Berlin, Heidelberg, 2005. Springer
Berlin Heidelberg.

[SFS12] Ondrej Sery, Grigory Fedyukovich, and Natasha Sharygina. Interpolation-Based Function Sum-
maries in Bounded Model Checking. In Hardware and Software: Verification and Testing, volume
7261 of Lecture Notes in Computer Science, pages 160–175. Springer, 2012.

[SH19] Dominic Steinhöfel and Reiner Hähnle. Abstract Execution. In International Symposium on
Formal Methods, pages 319–336. Springer, 2019.

[STAL11] Wolfgang Scholz, Thomas Thüm, Sven Apel, and Christian Lengauer. Automatic Detection of
Feature Interactions Using the Java Modeling Language: An Experience Report. In Proceedings
of the 15th International Software Product Line Conference, Volume 2, SPLC ’11, New York,
NY, USA, 2011. Association for Computing Machinery.

[SWL+94] Mark Stickel, Richard Waldinger, Michael Lowry, Thomas Pressburger, and Ian Underwood.
Deductive Composition of Astronomical Software from Subroutine Libraries. In International
Conference on Automated Deduction, volume 814 of Lecture Notes in Computer Science, pages
341–355. Springer, 1994.

[tBCSW18] Maurice H. ter Beek, Loek Cleophas, Ina Schaefer, and Bruce W. Watson. X-by-Construction. In
International Symposium on Leveraging Applications of Formal Methods, pages 359–364, Cham,
2018. Springer International Publishing.

[TFNP15] Julian Tschannen, Carlo A Furia, Martin Nordio, and Nadia Polikarpova. AutoProof: Auto-
Active Functional Verification of Object-Oriented Programs. In International Conference on
Tools and Algorithms for the Construction and Analysis of Systems, volume 9035 of Lecture
Notes in Computer Science, pages 566–580. Springer, 2015.

[TSAH12] Thomas Thüm, Ina Schaefer, Sven Apel, and Martin Hentschel. Family-Based Deductive Ver-
ification of Software Product Lines. In Proceedings of the 11th International Conference on
Generative Programming and Component Engineering, GPCE ’12, page 11–20, New York, NY,
USA, 2012. Association for Computing Machinery.

[WKSC16] Bruce W. Watson, Derrick G. Kourie, Ina Schaefer, and Loek Cleophas. Correctness-by-
Construction and Post-hoc Verification: A Marriage of Convenience? In International Symposium
on Leveraging Applications of Formal Methods, volume 9952 of Lecture Notes in Computer Science,
pages 730–748. Springer, 2016.

[WRH+12] Claes Wohlin, Per Runeson, Martin Höst, Magnus C Ohlsson, Björn Regnell, and Anders Wesslén.
Experimentation in Software Engineering. Springer Science & Business Media, 2012.

36 FLEXIBLE CORRECT-BY-CONSTRUCTION PROGRAMMING

[ZOC09] Frank Zeyda, Marcel Oliveira, and Ana Cavalcanti. Supporting ArcAngel in ProofPower. Elec-
tronic Notes in Theoretical Computer Science, 259:225–243, 2009.

Appendix A. Interview Questions

(1) Which task was more difficult and why?
(2) Which tasks were solved?
(3) What were the biggest problems during the development?
(4) Is the development according to CbC understandable?
(5) Is the use of the block rules understandable?
(6) Is the introduction of the block rules reasonable?
(7) Would you use the block rules when implementing according to CbC?
(8) How do you like the development in the textual editor?
(9) How do you like the development in the graphical editor?

(10) Is the textual or the graphical editor preferred?
(11) Which elements from the editors are particularly helpful or inadequate and why?
(12) What functionalities are still missing in the editors?
(13) What would it take for you to develop according to CbC in your workday?

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse 2,
10777 Berlin, Germany

A.6. Immutability and Encapsulation for Sound OO Information Flow Control 185

A.6. Immutability and Encapsulation for Sound OO
Information Flow Control

Immutability and Encapsulation for Sound OO Information
Flow Control

TOBIAS RUNGE, Karlsruhe Institute of Technology, Institute of Information Security and Dependability

(KASTEL), Germany and TU Braunschweig, Institute of Software Engineering and Automotive Informatics,

Germany

MARCO SERVETTO, Victoria University of Wellington, New Zealand

ALEX POTANIN, Australian National University, Australia

INA SCHAEFER, Karlsruhe Institute of Technology, Institute of Information Security and Dependability

(KASTEL), Germany and TU Braunschweig, Institute of Software Engineering and Automotive Informatics,

Germany

Security-critical software applications contain confidential information which has to be protected from

leaking to unauthorized systems. With language-based techniques, the confidentiality of applications can

be enforced. Such techniques are for example type systems that enforce an information flow policy through

typing rules. The precision of such type systems, especially in object-oriented languages, is an area of active

research: an appropriate system should not reject too many secure programs while soundly preserving

noninterference. In this work, we introduce the language SIFO which supports information flow control for

an object-oriented language with type modifiers. Type modifiers increase the precision of the type system by

utilizing immutability and uniqueness properties of objects for the detection of information leaks. We present

SIFO informally by using examples to demonstrate the applicability of the language, formalize the type system,

prove noninterference, implement SIFO as a pluggable type system in the programming language L42, and

evaluate it with a feasibility study and a benchmark.

CCS Concepts: • Security and privacy→ Information flow control.

Additional Key Words and Phrases: security, information flow, type system, mutation control, confidentiality,

integrity

1 INTRODUCTION
In security-critical software development, it is important to guarantee the confidentiality and

integrity of the data. For example, in a client-server application, the client has a lower privilege

than the server. If the client reads information from the server in an uncontrolled manner, we may

have a violation of confidentiality; this causes the client to release too much information to the user.

On the other hand, if the server reads information from the client in an uncontrolled manner, we

may have a violation of integrity; this causes the server to accept input that has not been validated.

Language-based techniques such as type systems are used to ensure specific information flow

policies for confidentiality or integrity [Sabelfeld and Myers 2003]. A type system assigns an explicit

security type to every variable and expression, and typing rules prescribe the allowed information

flow in the program and reject programs violating the security policy. For example, we can define a

Authors’ addresses: Tobias Runge, tobias.runge@kit.edu, Karlsruhe Institute of Technology, Institute of Information Security

and Dependability (KASTEL), Germany, TU Braunschweig, Institute of Software Engineering and Automotive Informatics,

Germany; Marco Servetto, marco.servetto@ecs.vuw.ac.nz, Victoria University of Wellington, New Zealand; Alex Potanin,

alex.potanin@anu.edu.au, Australian National University, Australia; Ina Schaefer, ina.schaefer@kit.edu, Karlsruhe Institute

of Technology, Institute of Information Security and Dependability (KASTEL), Germany, TU Braunschweig, Institute of

Software Engineering and Automotive Informatics, Germany.

© 2022 Association for Computing Machinery.

This is the author’s version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version

of Record was published in ACM Transactions on Programming Languages and Systems, https://doi.org/10.1145/3573270.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: December 2022.

2 Tobias Runge et al.

security policy as a lattice of security levels with the highest level high and the lowest level low, and

an information flow from high to low is prohibited.

For simple while-languages, type systems to control the information flow are widely stud-

ied [Hunt and Sands 2006; Li and Zhang 2017; Volpano et al. 1996]. We focus on the less researched

area of information flow control for object-oriented languages. Analysis techniques such as fine-

grained taint analysis [Arzt et al. 2014; Enck et al. 2014; Graf et al. 2013; Hedin et al. 2014; Huang

et al. 2014, 2012; Milanova and Huang 2013] detect insecure flows from sources to secure sinks by

analyzing the flow of data in the program. Coarse-grained dynamic information flow approaches [Jia

et al. 2013; Nadkarni et al. 2016; Roy et al. 2009; Xiang and Chong 2021] reduce the writing effort of

annotations by tracking information at the granularity of lexically or dynamically scoped section

of code instead of program variables. By writing annotation, users can increase precision of the

information flow results [Xiang and Chong 2021]. Moreover, there are approaches using program

logic [Amtoft et al. 2006, 2008; Beckert et al. 2013] to analyze and reason about information flow.

In this work, we focus on security type systems for object-oriented languages [Banerjee and Nau-

mann 2002; Barthe et al. 2007; Myers 1999; Strecker 2003]. Sun, Banerjee, and Naumann [Banerjee

and Naumann 2002; Sun et al. 2004] created a Java-like language annotated with security levels for

the standard information flow policy with only two security levels. Myers et al. [Myers 1999] created

the Jif language which extends Java with a type system that supports information flow control.

The precision of the type systems for object-oriented languages is a major challenge. Both related

approaches do not have an alias analysis or an immutability concept, so they conservatively reject

secure programs where confidential and non-confidential references could alias the same object.

This important drawback is addressed in our work. Additionally, as done for other type systems,

we give a correctness guarantee through a proof of noninterference: high data never influences

low data. This means that an attacker who can observe low data cannot obtain information about

high data. If an untrusted library is in the code base, the developer can leverage the type system to

ensure that only low data is served to such library.

We introduce SIFO
1
which supports information flow control for an object-oriented language

with type modifiers for mutability and alias control [Giannini et al. 2019]. With respect to former

work on security type systems for object-oriented languages, SIFO provides a more precise type

system, allowing to type more correct programs. In this work, we show that reasoning about

immutability and encapsulation is beneficial to reason about information flow. In addition to adding

expressivity, SIFO allows a natural and compact programming style, where only a small part of the

code needs to actually be annotated with security levels. This result is achieved by building over

the concept of promotion/recovery [Giannini et al. 2019; Gordon et al. 2012], and extending it to

allow methods and data structures to be implicitly parametric on the security level. For example,

with promotion, a data structure can be used with any security level, but security is still enforced

by not allowing data structures of different security levels to interfere with each other. This reduces

the programming effort of developers and supports reuse of programs and libraries [Giannini et al.

2019].

The contents of this paper are as follows. First, we introduce the language SIFO for information

flow control. Second, we formalize the type system by introducing typing and reduction rules.

Third, we show that our language is sound by proving the noninterference property that secret data

is never observable by a public state. Fourth, we implement SIFO and evaluate it with a feasibility

study and a benchmark to compare SIFO with state-of-the-art information flow analysis tools.

1
SIFO is an acronym for Secure Information Flow in an Object-oriented language

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: December 2022.

Immutability and Encapsulation for Sound OO Information Flow Control 3

2 INFORMAL PRESENTATION OF SIFO
In this section, we explain the challenges of securely checking the information flow in object-

oriented languages. We then give an informal introduction to SIFO. Last, we discuss well and ill

typed SIFO expressions for a more detailed explanation.

2.1 Motivating example
Consider the following partially annotated code using two security levels low and high:

1 class Person { low id; Person(low id){ this.id=id; } }

2 ...

3 low local_id = GiveMe.anId ();

4 high p = new Person(local_id);

5 high inside = p.id;

In SIFO, security is an instance based property: the person p is high, but other persons could have a

different security level. Security is also a deep property: the content of all the fields of p encodes

high information. In our example, every person has an id. Even if the id field is declared low, it will

encode high information inside of the high instance p. The value of local_id is low. We can use it to

initialize id since information can flow from low to high, but not from high to low.

When extracting the value of the field id, the information is now part of the high Person, and

thus, needs to be seen as high: p.id produces a high value.

Is this code conceptually correct with respect to information flow? Can we complete the type

annotations on this code to make it correct? If the id is just a primitive integer, this is possible and

easy in both SIFO
2
and other languages for information flow, such as Jif [Myers 1999]:

1 class Person { //SIFO CODE

2 Int id; //low is the default security level

3 Person(Int id){ this.id = id; } }

4 ...

5 local_id = GiveMe.anId (); //a low Int

6 high p = new high Person(local_id);

7 high inside = p.id;

The corresponding Jif code is also quite easy, but a little more involved and with a different

syntax; we report it in Listing 1. Both in SIFO in Line 6, and in Jif in Line 9, the value of local_id

gets promoted from low to high.

1 class Person[label L] {

2 final int{L;this} id;

3 Person(int{L;this} id){ this.id = id; }

4 }

5 ...

6 // label {high ->low} allows low and high to read the variable

7 int{high ->low} id = GiveMe.anId ();

8 // label {high ->} allows only high to read the variable

9 Person [{high ->}]{high ->} p = new Person [{high ->}](id);

10 int{high ->} inside = p.id;

Listing 1. Example in Jif syntax

What happens if the id is a more complex custom object type? The following code is accepted in

SIFO:

2
In the examples, we use a rich language including local variables and literals with the usual semantics. Those are supported

by our artifact, but in the formal model we present a minimal language where we keep only the most crucial OO features.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: December 2022.

4 Tobias Runge et al.

1 class Account { Int id; String name; Date firstTransaction ;... }

2 class Person {

3 Account id;

4 Person(Account id){ this.id = id; } }

5 ...

6 local_id = GiveMe.anId ();//a low Account

7 high p = new high Person(local_id);

8 high inside = p.id;

9 high name = inside.name;

As you can see, not much has changed. Of course, we need to define the Account class, but then we

can use it in the same way we use Int before.

On the other hand, Jif [Myers 1999] (the most closely related work) cannot accept this kind of

code. In a pure object-oriented setting, everything is an object, and pre-defined types, as integers,

should be treated as any other object. However, Jif treats primitive types in a privileged way. In Jif,

it is possible to write more flexible code relying on primitive types than on objects. The difficulty

revolves around aliasing and mutation: the local variable local_id is still available, and now it is

aliased inside of the high Person object p. Thus, if p is used to update any field of the Account, then

the low part of the program could see this high information through local_id. This can happen

because with the base type system of Java all objects can be both mutated and aliased. Jif builds on

top of Java and only adds type properties directly related to information flow, so it cannot make

immutability and aliasing assumptions. On the other side, SIFO builds on top of L42 [Giannini et al.

2019], a language with built-in support for immutability and aliasing control using type modifiers

(also called reference capabilities).

In L42, the default modifier for references is imm (immutable), and the default security level of

SIFO is low. Thus, a fully annotated version of the code above would look as follows:
3

1 class Account {

2 low imm Int id; low imm String name; low imm Date firstTransaction;

3 ... }

4 class Person {

5 low imm Account id;

6 Person(low imm Account id){ this.id = id; }

7 }

8 ...

9 low imm Account local_id = GiveMe.anId ();

10 high mut Person p = new high Person(local_id);

11 high imm Account inside = p.id;

12 high imm String name=inside.name;

Since the Account is immutable, in SIFO the value of local_id is promoted from low to high for the

constructor call, exactly as it happens for Int before. Indeed, deeply immutable objects allow for

the same kind of reasoning that primitive types allow in Java. In this way, SIFO code can scale and

use objects as easily as primitive types in contrast to Jif and other approaches.

To make the same kind of behavior accepted in Jif, the code would have to be modified in the

following way:

1 low mut Account local_id = GiveMe.anId (); //in Jif , there is no immutability

2 low mut Date a = local_id.firstTransaction;

3
To help readability, in the rest of the paper we will write type modifiers and security levels explicitly, but a syntactically

much lighter style, as shown above, is accepted by our artifact and it is the preferred way to code, once the programmer

gets used to those defaults.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: December 2022.

Immutability and Encapsulation for Sound OO Information Flow Control 5

3 high mut Person p = new high Person(

4 new high Account(local_id.id,local_id.name ,

5 new high Date(a.day ,a.month ,a.year)));

This code is accepted by both SIFO and Jif. This is a technique called defensive cloning [Bloch 2016];

it is very popular in settings where aliasing and mutability cannot be controlled.

In SIFO, we have mutable and immutable objects; where the reachable object graph (ROG) of an
immutable object is composed only of other immutable objects (deep immutability), while the ROG
of a mutable object can contain both mutable and immutable objects [Giannini et al. 2019]. The set

of mutable objects in a ROG is called MROG.
In addition to imm, L42 also offers the capsule concept: a capsule reference refers to a mutable

object whose MROG is reachable only through such reference. Both imm and capsule references can be

safely promoted from low to high; this avoids the need of defensive cloning also when encapsulated

mutable state is involved.

1 low capsule Account local_id = GiveMe.anId ();

2 high mut Person p = new high Person(local_id);

Capsule variables are affine, that is, they can only be used zero or one time, thus if p is used to

update the state of the account, the local capsule variable local_id cannot be used to examine these

updates.

As you can see from those examples, aliasing and mutability control is a fundamental tool

needed to support information flow in the context of an object-oriented language. A typical

misunderstanding of type modifiers is that a mutable field would always refer to a mutable object.

This is not the case, indeed all the fields of immutable objects will transitively contain only

immutable objects. This of course includes all fields originally declared as mutable. The same

applies to security labels: a low field in a high object would transitively contain only high objects.

This is different with respect to many other object-oriented languages, where the declarations

determine what to expect. If there is information from the context, that is normally explicit in the

usage site. In SIFO instead, the declared type is only a first approximation: the security level (and

type modifier) of an expression is a combination of what is declared in the class table and what is

implied from the usage site.

Note how in our example the class Person is declared with a low field, but the high Person object

actually stores a high value for such field. In SIFO, a low field is not like a low field in Jif, but it is

more like a field with generic/parametric security: the value of a low field of a low object will be low

but the value of a low field of a high object will be high. In general, the ROG of an object is always

at least as secure as the security of the object itself. This aligns nicely with mutability control in

L42, where immutable instances of classes declaring a mut field will hold immutable values in such

fields. Deep properties (like L42 immutability and SIFO security) allow for a much simpler and

more predictable reasoning with respect to (optionally) shallow properties, like Rust immutability

(that supports internal mutability) and Jif security (where low values can be stored in the ROG of

high values).

2.2 SIFO Concepts
Objects and references. As we anticipated above, in SIFO, we havemutable and (deeply) immutable

objects. We also have four kinds of references: imm, mut, capsule, and read [Giannini et al. 2019]. An

imm reference must point to an immutable object, and can be freely aliased, but as the name suggests,

the fields of an immutable object cannot be updated. A mut reference must point to a mutable object;

such an object can be aliased and mutated. A capsule reference points to a mutable object that is

kept under strict aliasing control: the mutable ROG reachable from the capsule reference cannot be

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: December 2022.

6 Tobias Runge et al.

T ::= s mdf C
s ::= high | low | . . . (user defined)
mdf ::= mut | imm | capsule | read
CD ::= class C implements C {𝐹 𝑀𝐷 } | interface C extends C {MH }
𝐹 ::= s mut C 𝑓 ; | s imm C 𝑓 ;

𝑀𝐷 ::= MH {return 𝑒;}
MH ::= s mdf method T m(T1 𝑥1, . . . , T𝑛 𝑥𝑛)
𝑒 ::= 𝑥 | 𝑒.𝑓 | 𝑒0 .𝑓 = 𝑒1 | 𝑒0.𝑚(𝑒) | new s C (𝑒)

Fig. 1. Syntax of the core calculus of SIFO

reached from other references. The capsule reference can be used only once to assign this isolated

portion of the heap to a reference of any kind. In particular, this means that a capsule reference can

be used to initialize/update an imm reference/field; when this happens all the objects in the ROG of
such a reference become immutable.

The “only used once” restriction is necessary so that no alias for the isolated portion of the heap

can be introduced, which would violate the capsule property.

Finally, a read reference is the common supertype of imm and mut. With a read reference, the ROG
cannot be mutated and aliases cannot be created; but there is no immutability guarantee that the

object is not accessible by other references, even mut ones.

Types. Types in SIFO are composed by a security level s, a type modifier mdf , and a class name

C. The security levels s are arranged in a lattice that specifies the allowed data flow direction

between them. For example, we have a lattice with a low and a high security level, where the allowed

information flow is from low to high, but not vice versa. The type modifier mdf can be mut, imm,

capsule, and read as introduced above. The subtyping relation between modifiers is defined as

follows: for all mdf , capsule ≤ mdf ,mdf ≤ read. This means that, for example, a mut reference can

be used if a read is needed, and a capsule reference can be used both as a mut or as an imm one. This

is sound, because capsule variables can be used only once.

Core Calculus. The syntax of the core calculus of SIFO is shown in Fig. 1. It covers classes C, field
names 𝑓 , method names𝑚, and declarations for classes, interfaces, and methods. A class consists

of fields and methods. The class itself has no modifier or security level. The modifiers and security

levels are associated with references and expressions. A field has a type T and a name. A method

has a return type, a list of input parameters with names and types, and also a security level and

a type modifier for the receiver; they are specified in front of the keyword method. We have the

standard expressions: variable, field access, field assignment, method call, and object construction.

When an object is initialized, its security level is initially determined by the constructor invocation.

Thus, different references to objects of the same class can have different security levels. 𝐶 ,𝑚, 𝑓 ,

and 𝑥 in Fig. 1 are all disjoint syntactic categories.

Method Calls. A method has to be defined in a class with parameter types, a return type and a

receiver type. For example, an Accumulator class has a low Int field acc and a method add that adds

another low Int parameter to the acc field and updates the field.

1 class Accumulator {

2 low imm Int acc;

3 low mut method low imm Int add(low imm Int x){ return this.acc=this.acc+x; }

4 }

5 ...// below we show examples of user code

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: December 2022.

Immutability and Encapsulation for Sound OO Information Flow Control 7

6 low Accumulator a = GiveMe.aLowAcc ();//a low Accumulator

7 low imm Int w = 5;

8 low imm Int x = a.add(w); //ok to call as low*low -> low

9

10 high Accumulator b = GiveMe.aHighAcc ();//a high Accumulator

11 high imm Int y = 6;

12 high imm Int z = b.add(y); //ok to call as high*high -> high

We can call such a method if the receiver and the actual input parameter are low. However, SIFO

adds flexibility to method calls using multiple method types. Formally defined in Section 4, they

allow to call a method as if it was declared with a range of different type modifiers and security

levels. In this example, the multiple method types rule allows us to call the add method also if the

receiver and the parameter are all increased to the same security level (for example to high) and

returning a value with this same security level. Without this feature, the method add needs to be

declared for each security level. This feature also has benefits in comparison to a parameterized

version of the language because legacy code and standard libraries can be used in SIFO without

adding security level annotations: low is the default security level, and imm is the default modifier.

Control Flow and Implicit Information Leaks. Information flow control mechanisms [Sabelfeld and

Myers 2003; Volpano et al. 1996] are used to enforce an information flow policy that specifies the

allowed data flow in programs. A program can leak information directly through a field update. This

can be prevented by ensuring that no confidential data is assigned to a less confidential variable.

However, information can also flow implicitly through conditionals, loops, and (crucial in OO)

dynamic dispatch. For example, the chosen branch of a conditional reveals information about the

values in the guard. As shown from Smalltalk [Goldberg and Robson 1983], in a pure OO language,

dynamic dispatch can be used to emulate conditional statements and various forms of iterations

and control flow. Thus, our core language does not contain explicit conditional statements, but they

can be added as discussed in Section 4. Loops can be implemented through recursive method calls.

Therefore, SIFO only needs a secure method call rule to prevent implicit information flow leaks.

In a method call, information of the method recevier can flow to the return value and mutable

parameters. Thus, the security levels of the return value and mutable parameters have to be

equal or higher than the security level of the receiver. Consider for example the following code:

res=myValue.aOrB(a,b) If the method aOrB returns the first or the second parameter depending on the

dynamic type of myValue, we could use the result to identify information about myValue. Note how

this pattern is very similar to the Church encoding of Booleans. Similarly, if parameter a is typed

low mut and the receiver has a high security level, information of the high receiver can be leaked by

observing the mutations on the parameter a after the method call.

2.3 Examples of Well-Typed and Ill-Typed SIFO Expressions
In Listing 2, we show secure and insecure programming statements to explain the reasoning about

information flow in SIFO.

A class Person contains a low imm String name and two high fields: a mut Password and an imm AccountId.

The Password and AccountId class have a String field to set the actual password/id. When accessing a

field, we consider the security level of both the field and the receiver and determine the least upper

bound of both security levels in the lattice. When an object is initialized, it is created as mutable,

and the initial security level is determined by the constructor invocation. For example, a Person can

be initialized with a low or with a high security level.

Consider the assignments in Listing 2 starting with Line 5 (line numbers are referenced in

parentheses in the following): To ensure confidentiality, the type system prevents the password to

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: December 2022.

8 Tobias Runge et al.

1 class Person{low imm String name; high mut Password pwd; high imm AccountId id;}

2 class Password{low imm String pwdS;}

3 class AccountId{low imm String idS;}

4

5 low mut Person p =...//a pre existing low Person reference

6 high mut Password pass = p.pwd;//ok , access of high Password

7 high imm String passS = p.pwd.pwdS;//ok, access is typed high

8 low imm String passS = p.pwd.pwdS;//wrong , high assigned to low

9

10 p.pwd.pwdS = highString;//ok, field update with high String

11 p.pwd.pwdS = p.name;//ok, as an imm String can be promoted

12 p.name = highString;//wrong , high String assigned to low p.name

13 high mut Person pHigh =...//a pre existing high Person

14 pHigh.name = highString;//ok, field update with high String

15

16 low mut Password newPass = new low Password("some");//ok

17 p.pwd = newPass;//wrong , mutable secret shared as low and high

18 newPass.pwdS = "password";//ok? Insecure with previous line

19

20 low capsule Password capsPass=new low Password("secret");//ok

21 p.pwd = capsPass;//ok, no alias introduced

22

23 low imm AccountId aid = new low AccountId("secretId");//ok

24 p.id = aid;//ok , aid is imm and can be aliased

25 aid.idS = "0";//wrong , immutable object cannot be updated

26

27 low read Person pRead = p;//ok, assigned to read reference

28 high imm String passS = pRead.pwd.pwdS;//ok, access is high

29 pRead.pwd.pwdS = highString;//wrong , read cannot be updated

30 someMutObject.fieldName = pRead;//wrong; there are no read fields

31 someMutObject.fieldName = pRead.id;//ok if the field has an imm type

Listing 2. SIFO examples

be leaked via a low reference (8), but it can be exposed to another high reference (6, 7). The password

can be updated with another high String (10), or with a low String (11), as we allow to promote the

security level of imm references. The opposite of updating a low field of a low reference with a high

String is forbidden (12), but the assignment is allowed if the reference and the String are high (14).

Until now, we explained assignments of immutable Strings; but the most interesting challenge

to guarantee confidentiality is about assigning mutable objects instead. For example, how can we

update the mutable p.pwd field? When a new Password object is created, it can be initialized as a low

object as the Password is not confidential on its own. The confidentiality is the association between

the Person object and the Password object. SIFO prevents that a low reference to a Password object is

assigned to a Person object (17). The reason is that the variable newPass is still in scope after the field

update, thus if (17) was accepted, (18) could be used to sneak a password change without the need

of any high information.

A secure assignment without aliases is shown in (20, 21). Here, the capsule modifier is utilized.

A reference to a Password object can be assigned to a Person object, if the reference to the Password

object is high. The password is initialized by the programmer as low capsule. The system of type

modifiers is flexible enough to promote the created object from mut to capsule. Since there is no mut

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: December 2022.

Immutability and Encapsulation for Sound OO Information Flow Control 9

value in the input, we are sure that an isolated portion of memory is created, as the created object

cannot be accessed from any other mut reference. In (21), the flexible type system can then promote

the variable capsPass to a high capsule, which is assigned to the p.pwd field.

As discussed before, aliases over imm references (24), are allowed to move from lower security to

higher one. The alias does not lead to a security leak because the type system ensures that fields of

AccountId aid cannot be updated (25). Both imm and capsule references are referentially transparent,

and can be used as a controlled way to communicate between different security levels.

Finally, with read references (27), imm fields can still be accessed (28), but no fields can be updated

(29). Here, we present a simplified L42 type system, where fields can only be mut or imm; thus there

is no field that can be updated using a read reference (30). In the full L42, it is possible to have, for

example, read linked lists of read elements, but this has some subtle interaction with promotions, so

we omit it here for simplicity. Of course, imm references reached from read references (31) can be

assigned to imm fields as usual.

For a more compelling example of our system that can promote expressions, consider the

following listing:

1 class PassFactory{

2 ...

3 low imm method low mut Password from(low imm String base){

4 low mut Password res = new low Password(base);

5 if (this.tooSimple(base)){res.pwd = this.complete(base);}

6 return res;

7 }

8 }

9 ...

10 p.pwd = passFactory.from("foo")

The method from is well typed. The method from returns a low mut Password res which could not

be directly assigned in (10) because a high security level is needed, but the system of type modifiers

is flexible enough to promote low mut Password res to a high security level by utilizing the capsule

modifier. Since there is no mut value in the input, we are sure that an isolated portion of memory is

created (a capsule). With controlled aliasing, we can promote the capsule reference to a high security

level (i.e., a low capsule Password can be promoted to a high capsule Password), and then, it can be

assigned to the field in (10). All in all, a mut references can be promoted to a capsule, transferred to

another security level and then reassigned to another mut reference.

Any method that takes a single mut in input, mutates it, and returns it as mut can be called with a

capsule parameter and the result will also be promoted to capsule. This pattern allows great flexibility

when encapsulated mutable objects need to be mutated [Giannini et al. 2019].

3 DEFINITIONS FOR THE SIFO TYPE SYSTEM
In this section, we define well-formedness of the type system and useful helper methods to introduce

typing rules in the following section.

Well-Formedness. A well-formed program respects the following conditions: All classes and

interfaces are uniquely named. All methods in a specific class or interface are uniquely named.

All fields in a specific class are uniquely named. All parameters in a method header are uniquely

named, and there is no explicit method parameter called this. The subtyping graph induced by

implemented interfaces is acyclic (in this simplified language, we do not have class extension).

capsule references can be used at most one time.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: December 2022.

10 Tobias Runge et al.

• sec(T) = s, returns the security level s in type T .
• mdf (T) = mdf , returns the modifier in type T .
• class(T) = C, returns the class C in the type T .
• fields(𝐶) = T1 𝑓1 . . . T𝑛 𝑓𝑛 , returns the field declarations of class C.
• 𝑝 (𝐶) = class C implements C {𝐹 𝑀}, returns the declaration of class C.
• lub(s0, . . . , s𝑛) = s, returns the least upper bound of the parameters s0, . . . s𝑛 .
• T [s′] = lub(s, s′) mdf C, where 𝑇 = s mdf C, defined only if 𝑠 ′ ≤ 𝑠 or 𝑠 ≤ 𝑠 ′; returns a new

type with security level lub(s, s′)
• mdf ▷mdf ′ = mdf ′′, returns the modifier of an expression when accessing a field.

mut ▷mdf = capsule ▷mdf = mdf
imm ▷mdf = mdf ▷ imm = imm

read ▷ mut = read.

Fig. 2. Helper functions

If 𝑠 mdf method 𝑇 𝑚(𝑇1 𝑥1 . . .𝑇𝑛 𝑥𝑛) is declared in 𝐶 , with 𝑇0 = 𝑠 mdf 𝐶 then

1: 𝑇0 [𝑠 ′] . . .𝑇𝑛 [𝑠 ′] → 𝑇 [𝑠 ′] ∈ methTypes(𝐶,𝑚)
2: (𝑇0 [𝑠 ′] . . .𝑇𝑛 [𝑠 ′] → 𝑇 [𝑠 ′]) [mut\capsule] ∈ methTypes(𝐶,𝑚)
3: (𝑇0 [𝑠 ′] . . .𝑇𝑛 [𝑠 ′] → 𝑇 [𝑠 ′]) [read\imm, mut\capsule] ∈ methTypes(𝐶,𝑚)

Fig. 3. Definition of multiple method types

Helper Functions. In Figure 2, we show some helper functions for our type system. The first

three notations extract the security level, the type modifier, and the class name from a type. The

next two return fields and class declarations. The lub operator is defined to return the least upper

bound of a set of input security levels arranged in a lattice. For example, since low ≤ high, we have

lub(low, high) = high. A lattice of security levels was first introduced by Bell and LaPadula [Bell and

La Padula 1976], and Denning [Denning 1976]. A lattice is a structure ⟨𝐿, ≤, lub,⊤,⊥⟩ where 𝐿 is a

set of security levels and ≤ is a partial order (e.g., low ≤ high). The lattice defines an upper bound

of security levels. A set of elements 𝑋 ⊆ 𝐿 has an upper bound 𝑦 if ∀𝑥 ∈ 𝑋 : 𝑥 ≤ 𝑦. An upper

bound 𝑢 of 𝑋 is the least upper bound (lub) if 𝑢 ≤ 𝑦 for each upper bound 𝑦 of 𝑋 . To form an upper

semi-lattice, a unique least upper bound (lub) for every subset of 𝐿 must exist. Additionally, we

restrict the lattice to be bounded with the greatest element ⊤ and the least element ⊥.
In Figure 2, the function s mdf C [s′] returns a new type whose security level is the least upper

bound of the two. The security level is set to lub(s, s′) and the modifier and class remain the same.

The last function mdf ▷mdf ′ computes a resulting modifier if a field with type modifier mdf ′ is
accessed from some reference with type modifier mdf . For example, if we access a mut field from

a mut reference we get a mut value, but if we access a mut field from a read reference, we get a read

value. If either the reference or the field are imm, then imm is returned; thanks to deep immutability,

the whole reachable object graph is immutable.

Multiple Method Types. Instead of a single method type as in Featherweight Java [Igarashi et al.

2001], we return a set of method types using methTypes(𝐶,𝑚) = {T0 → T0, . . . , T𝑛 → T𝑛}. The
programmer just declares a method with a single type, and the others are deduced by applying

all the transformations shown in Fig. 3. Multiple method types reduce the need of implementing

the same functionality several times, where the same parameter has only different type modifiers

or security levels. The base case, as declared by the programmer, can be transformed in various

ways: (1) A method working on lower security data can be transparently lifted to work on higher

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: December 2022.

Immutability and Encapsulation for Sound OO Information Flow Control 11

security data (some security level 𝑠 ′). This means that methods that are not concerned with security

are usually declared as working on a low receiver and low parameters, returning a low result. Note

that the security level remains unchanged when 𝑠 ′ is chosen as low. Thus, we can use 𝑇 [𝑠 ′] with 𝑠 ′
different from low when we are in a context where we need to manipulate secure data. The multiple

method types lift the method as if it was declared with higher receiver, parameters, and return type.

For example, a mathematical method should return the same security level as the security level of

the parameters. In our language, we can just implement this method once with the lowest security

level and reuse it with any other security level of the lattice. As a comparison, the Jif tutorial
4

suggests that a mathematical method should be implemented with a generic security level.

(2) The second case swaps all mut types for capsule ones. If we provide capsule instead of mut in

the input, we can use the method to produce a capsule return value. This corresponds to capsule

recovery/promotion in [Giannini et al. 2019]. By providing all mut parameters as capsule, the method

would not take any mut as input. Any mut object that is returned, is created inside of the method

execution (as we do not have any form of global state/variables) and thus can be seen as a capsule

from outside the scope of the method body. For example, a method declared as

low mut method low mut Person father(low imm String name)

can be also used as if it was declared as

low capsule method low capsule Person father(low imm String name),

where all mut parameters (just the receiver in this example) and the return type are turned into

capsule. (3) The third case swaps all mut types for capsule ones and all read types for imm ones. This is

useful if the method was returning a read value; in this case we can obtain an imm. This corresponds

to immutable recovery/promotion in [Giannini et al. 2019] and can be intuitively understood by

considering that a read reference can point to either an immutable or a mutable object. If it was an

immutable object, it is fine to return it as imm; if it was a mutable object, then for the same reasons

as case (2), we can promote it to capsule, which is a subtype of imm. Note that in all the three cases, a

method working on lower security data can be transparently lifted to work on higher security data.

4 TYPING RULES
The typing rules are presented in Fig. 4.We assume a reduction similar to Featherweight Java [Igarashi

et al. 2001; Pierce 2002]. We have a typing context Γ ::= 𝑥1 : 𝑇1 . . . 𝑥𝑛 : 𝑇𝑛 which assigns types T𝑖 to
variables 𝑥𝑖 .

Sub and Subsumption. We allow traditional subsumption for modifiers and class names.

However, we are invariant on the security level. We assume our interfaces to induce the

standard subtyping between class names.

T-Var. A variable 𝑥 is typed using the context Γ.
Field Access. The result of the field access has the class of the field 𝑓 . The security level is

the least upper bound of the security levels of 𝑒0 and 𝑓 . The resulting modifier is the sum

of the modifiers of 𝑒0 and 𝑓 as defined in Fig. 2. In this way, if we read a low mut Person field

from a high read receiver, we obtain a high read Person result.

Field Assign. The reference resulting from 𝑒0 has to be mut to allow the assignment. The

security level of the assigned expression 𝑒1 is the least upper bound of the security levels of

expression 𝑒0 and the field 𝑓 as declared in 𝐶 . For example, if we assign a high expression 𝑒1,

either the field 𝑓 or the reference resulting from 𝑒0 need to be high.

Call. We allow a method call if there is a method type where all parameters and the return

value are typable. The security levels of the return type and all mut or capsule parameters

have to be greater than or equal to the security level of the receiver. This requirement is

4
https://www.cs.cornell.edu/jif/doc/jif-3.3.0/manual.html

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: December 2022.

12 Tobias Runge et al.

𝐶 ≤ 𝐶′ mdf ≤ mdf ′

𝑠 mdf 𝐶 ≤ 𝑠 mdf ′ 𝐶′ (Sub)
Γ ⊢ 𝑒 : 𝑇 ′ 𝑇 ′ ≤ 𝑇

Γ ⊢ 𝑒 : 𝑇
(Subsumption)

Γ ⊢ 𝑥 : Γ (𝑥)
(T-Var)

Γ ⊢ 𝑒0 : 𝑠0 mdf
0
𝐶0 𝑠1 mdf

1
𝐶1 𝑓 ∈ fields (𝐶0)

Γ ⊢ 𝑒0 .𝑓 : lub(𝑠0, 𝑠1) mdf
0
▷mdf

1
𝐶1

(Field Access)

Γ ⊢ 𝑒0 : 𝑠0 mut𝐶0

Γ ⊢ 𝑒1 : lub(𝑠0, 𝑠) mdf 𝐶 𝑠 mdf 𝐶 𝑓 ∈ fields (𝐶0)
Γ ⊢ 𝑒0 .𝑓 = 𝑒1 : lub(𝑠0, 𝑠) mdf 𝐶

(Field Assign)

Γ ⊢ 𝑒0 : 𝑇0 . . . Γ ⊢ 𝑒𝑛 : 𝑇𝑛 sec (𝑇) ≥ sec (𝑇0)
if mdf (𝑇𝑖) ∈ {mut, capsule} then sec(𝑇𝑖) ≥ sec(𝑇0) 𝑇0 . . .𝑇𝑛 → 𝑇 ∈ methTypes (class (𝑇0), 𝑚)

Γ ⊢ 𝑒0 .𝑚 (𝑒1 . . . 𝑒𝑛) : 𝑇
(Call)

Γ ⊢ 𝑒1 : 𝑇1 [𝑠] . . . Γ ⊢ 𝑒𝑛 : 𝑇𝑛 [s] fields (𝐶) = 𝑇1 𝑓1 . . .𝑇𝑛 𝑓𝑛

Γ ⊢ new 𝑠 𝐶 (𝑒1 . . . 𝑒𝑛) : s mut C
(New)

Γ [mut\read] ⊢ 𝑒 : s mut C

Γ ⊢ 𝑒 : s capsule C
(Prom)

𝑠′ ≤ 𝑠 Γ ⊢ 𝑒 : s′ mdf 𝐶 mdf ∈ {imm, capsule}
Γ ⊢ 𝑒 : 𝑠 mdf 𝐶

(Sec-Prom)

this : 𝑠 mdf 𝐶, 𝑥1 : 𝑇1 . . . 𝑥𝑛 : 𝑇𝑛 ⊢ 𝑒 : 𝑇

𝐶 ⊢ 𝑠 mdf method𝑇 𝑚 (𝑇1 𝑥1 . . .𝑇𝑛 𝑥𝑛) {return 𝑒 ; }
(M-Ok)

𝐶 ⊢ M1 . . .𝐶 ⊢ 𝑀𝑛 mhs (𝐶) ⊆ mhs (M1 . . . 𝑀𝑛)
class𝐶 implements𝐶 {𝐹 M1 . . . 𝑀𝑛 }

(C-Ok)
mhs (𝐶) ⊆ MH

interface𝐶 extends𝐶 {MH }
(I-Ok)

Fig. 4. Expression typing rules

needed because through dynamic dispatch the receiver may leak information. This is one of

the crucial points of our formalism, as explained in Section 2.2.

New. The newly allocated object is created as a mutable object, and with a specified security

level 𝑠 . This rule checks that the parameter list 𝑒1 . . . 𝑒𝑛 has the same length as the declared

fields. The object of class 𝐶 has a list of fields 𝑓1 . . . 𝑓𝑛 . Each parameter 𝑒𝑖 is assigned to

a field 𝑓𝑖 . This assignment is allowed if the type of parameter 𝑒𝑖 is (a subtype of) 𝑇𝑖 [𝑠].
The programmer can choose 𝑠 to raise the expected security level over the level originally

declared for the fields. In order to use an actual parameter with a higher security level (𝑠)

to initialize a field defined with a lower security level, the newly created object needs to

have this chosen security level 𝑠 . By using rule Sec-prom, we can do the opposite, initializing

higher security fields with lower security imm/capsule values. For example if we have a class

Ex {low Object a; high Object b; topSecret Object c;}, we can create correct objects with

1 new low Ex(lowValue , highValue , topSecretValue)

2 new high Ex(highValue , highValue , topSecretValue)

3 new topSecret Ex(topSecretValue , topSecretValue , topSecretValue)

An object new high Ex(highValue, topSecretValue, topSecretValue) is incorrect because the sec-

ond parameter is topSecret. Accessing a high reference and a high field would return a high

value. This leaks the topSecretValue object.

The object new topSecret Ex(highValue, topSecretValue, topSecretValue) is only correct if the

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: December 2022.

Immutability and Encapsulation for Sound OO Information Flow Control 13

Γ ⊢ 𝑒 : 𝑠 imm Bool
Γ [mut (𝑠), final (𝑠)] ⊢ 𝑒1 : 𝑇 Γ [mut (𝑠), final (𝑠)] ⊢ 𝑒2 : 𝑇

Γ ⊢ if 𝑒 then 𝑒1 else 𝑒2 : 𝑇
(If)

Γ ⊢ 𝑒 : 𝑠 mdf 𝐶 mdf ∈ {imm, capsule}
Γ ⊢ declassify(𝑒) : ⊥ mdf 𝐶

(Decl)

Fig. 5. Extension: expression typing rules for if and declassify

highValue object can be promoted to topSecret. This is only possible for immutable or encap-

sulated objects.

Prom. Promotion from mut to capsule is possible if all mut references are only seen as read in

the typing context. Since a read cannot be saved into a field of a mut object, we know that

the reachable object graph from those read variables will not be part of the reachable object

graph of the result.

Sec-Prom. Security promotion raises the security level of a capsule or imm expression. This

captures the intuitive idea that a higher security level is allowed to see all data with lower

security levels. However, this is sound only for capsule or imm expression. An immutable object

cannot be modified, so the promotion is secure because no new confidential information

can be injected into its ROG. Also a capsule object can be passed to a new reference with a

higher security level. A leak through the lower capsule reference cannot happen, because a

capsule reference can be used at most one time. Instead, in the case of a mutable object, this

assignment would cause a possible leak: it would allow a high and low alias reference to the

same object; and if the high reference was updated with high data, the low reference would

see such data as well. Also read cannot be promoted: a promoted read object can have a low

mut alias reference to the same object that could now sneakely update the data seen as high.

M-Ok. This rule checks that the definition of a method is well typed. Using the receiver type

and the parameter types, 𝑒 must have the same type as the declared return type.

C-Ok. This rule checks that the definition of a class is well typed. The rule uses a helper

function mhs which returns the method headers declared in a set of classes or interfaces,

or it directly returns the headers of a set of methods. A well typed class 𝐶 implements all

methods that are declared in the interfaces 𝐶 .

I-Ok. A correct interface must contain all method headers of the implemented interfaces 𝐶 .

Implicit Information Flows. The language as presented is minimal but using well-known encodings

it can support imperative update of local variables (use box objects with a single field and field

updates) and conditionals (use any variation of the Smalltalk [Goldberg and Robson 1983] way

to support control structures). However, in Fig. 5, for the sake of a more compelling explanation,

we show how the if construct could be typed if we expand our language with if, Booleans and

updatable local variables.

If. For a conditional statement with a Bool expression in the guard, we define that both branches

𝑒1 and 𝑒2 must have the same type𝑇 . With Γ [mut (𝑠), final(𝑠)], we introduce two restrictions:
with mut (𝑠), we prevent mutation of mut objects with a security level lower than 𝑠 by seeing

them as read, and with final(𝑠), we prevent updating all local variables with a security level

lower than 𝑠 . If 𝑠 is the lowest security level, both functions do not restrict Γ.

Therefore, assignments to less confidential variables or fields in the branches are prohibited

to prevent leaks. This means that if the expression in the guard of a conditional statement has

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: December 2022.

14 Tobias Runge et al.

1 interface I {

2 low mut method low imm I doIt(low imm I l1 , low imm I l2);

3 }

4 class C1 implements I {

5 low mut method low imm I doIt(low imm I l1 , low imm I l2) {

6 return l1; }

7 }

8 class C2 implements I {

9 low mut method low imm I doIt(low imm I l1 , low imm I l2) {

10 return l2; }

11 }

12 ...

13 high mut C1 c1 = new high C1();

14 high mut C2 c2 = new high C2();

15 low imm C1 l1 = new low C1();

16 low imm C2 l2 = new low C2();

17 high mut I i = c1;//c1 assigned to reference of type I

18 low imm I x = i.doIt(l1,l2);//ILL TYPED in our system

19 //if it was accepted , by observing low variable x = l1

20 //we could deduce the content of the high variable i = c1

21

22 // equivalent behaviour using an if

23 if (i instanceof C1){ x = l1; } else { x = l2; }

Listing 3. Ill-typed example of a method call

a security level that is higher than the lowest security level, only assignments to variables of at

least the security level of the guard are allowed. Additionally, only mutable objects of at least the

security level of the guard can be mutated. In this way, only data whose security level is at least

the one of the guard can be mutated.

Using the Smalltalk-style as discussed above, our pre-existing rules would handle the encoded

code exactly as with the explicit If-rule, Booleans, and local variables. Thus, our system is minimal,

but does not lack expressiveness. The If-rule has a similar constraint as the Call-rule where return

type and mut and capsule parameters have to be greater than or equal to the security level of the

receiver.

The following example, in both OO style and with an explicit if shows the mechanism to prevent

implicit information flow leaks: In Listing 3, we have an interface I that declares a method doIt

that gets two low imm I parameters as input. The classes C1 and C2 implement the interface and the

method. The implemented method of C1 returns the first parameter and the implemented method

of C2 returns the second parameter. We initialize two high variables C1 c1 and C2 c2 and two low

variables C1 l1 and C2 l2. By assigning c1 to i in Line 17, we hide the information of the explicit class

behind the interface. However, if we are allowed to execute Line 18, calling the method doIt, the

class c1 is revealed because l1 is returned. The attacker gets the information about the explicit class

by observing the return value. This example is an object-oriented implementation of a conditional

statement. If we use an if instead of dynamic dispatch, the leak is clearly visible (see Line 23),

as we assign low variables in branches of a high guard. To prevent such leaks, we define that the

security level of the return type is never lower than the security level of the receiver. Information

does not only flow through the method result: also mut or capsule parameters can be used to push

information out of the method; thus also the security level of mut and capsule parameters must never

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: December 2022.

Immutability and Encapsulation for Sound OO Information Flow Control 15

be lower than the security level of the receiver. Thus, in both cases with the Call-rule and with

the If-rule the implicit leak is prevented.

Declassification. A mut or read reference can only be assigned to references of the same security

level. However, since imm and capsule references are referentially transparent, it is safe to assign

an imm or capsule object from a lower security level to a higher one. On the other hand, we are

not allowed to assign an object with a higher security level to a reference with a lower security

level. Similar to the if, we consider adding a declassify operator that can be used to manipulate the

security level s of expressions to allow a reverse information flow in appropriate cases. In some

cases, this reverse information flow is needed to develop meaningful programs. For example, if

a confidential password is hashed, the value should be assignable to a public output. With the

declassify expression, the security level of a capsule or imm reference is set to the lowest security

level. In Fig. 5, the Decl rule is shown.

Decl. The declassify rule is used to change the security level of capsule or imm expressions to

the bottom level of the lattice.

declassify should be used with caution because secure information is leaked in the case of

inappropriate use. In this rule, we cannot declassify an expression to a specific security level, but

this is not a limitation, since we can encapsulate declassification statements inside of methods which

directly promote the declassified expression to the desired security level. mut and read references

cannot be declassified because potentially existing aliases are a security hazard. For example, if you

declassify a high mut reference and a high read alias still exists, an attacker could use that now low mut

reference to mutate information visible as high. Declassification is not part of our system to type

check secure programs, and we do not need it to make secure programs, rather it is a mechanism to

break security in a controlled way. That is, when comparing with examples of other papers [Myers

1999], we do not use declassify to encode behavior. We can still use it to print out results to show

that the code is working. In the Decl rule that we present, declassify is just a special expression. In

the full SIFO language embedded in L42, declassification can be flexibly tuned to the user needs

preventing accidental declassification.

5 PROOF OF NONINTERFERENCE
In this section, we aim to ensure noninterference [Goguen and Meseguer 1982] according to our

information flow policy. Noninterference is a central criterion for secure information flow, as we

want to ensure that an attacker cannot deduce confidential data by observing data with lower

security levels. It is based on the indistinguishability of program states. Two program states are

indistinguishable (also referred to as observably similar) up to a certain security level if they agree

on their memory reachable from references with a security level lower than that specific security

level. Using this property, a program satisfies the noninterference Theorem 5.0 if and only if the

following holds: if a program is executed in two observably similar memories up to a certain

security level, then the resulting memories are also observably similar up to the same security level,

but may differ in higher security levels.

Theorem 5.0 (General Noninterference).

If we have expressions 𝑒1 and 𝑒2 without declassification that are well typed and have the same low
values, but possible different high values (𝑒1 lowEqual 𝑒2 see Definition 5.6), M1 and M2 are well typed
memories, M1 and M2 are low observably similar, M1 |𝑒1 →∗ M ′

1 |𝑣1, M2 |𝑒2 →∗ M ′
2 |𝑣2, then M ′

1 and M
′
2

are low observably similar, and memories M ′
1, M

′
2 , values 𝑣1, and 𝑣2 are well typed and 𝑣1 lowEqual 𝑣2.

In this section, we prove noninterference for a lattice with a low and a high security level (low ≤
high) for terminating programs. Nonterminating programs and programs with an arbitrary lattice

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: December 2022.

16 Tobias Runge et al.

𝑒 ::= 𝑥 | 𝑒.𝑓 | 𝑒.𝑓 = 𝑒 | 𝑒.𝑚(𝑒) | new s C (𝑒) | 𝑣
E𝑣 ::= [] | E𝑣 .𝑓 | E𝑣 .𝑓 = 𝑒 | 𝑣 .𝑓 = E𝑣 | E𝑣 .𝑚(𝑒) | 𝑣 .𝑚(𝑣 E𝑣 𝑒) | new s C (𝑣 E𝑣 𝑒)
E ::= [] | E .𝑓 | E .𝑓 = 𝑒 | 𝑒.𝑓 = E | E .𝑚(𝑒) | 𝑒.𝑚(𝑒 E 𝑒 ′) | new s C (𝑒 E 𝑒 ′)
𝑣 ::= s mdf 𝑜
𝑀 ::= 𝑜1 ↦→ 𝐶1 (𝑜1) . . . 𝑜𝑛 ↦→ 𝐶𝑛 (𝑜𝑛)

Fig. 6. Runtime syntax and values

𝑀 |𝑒 → 𝑀′ |𝑒′

𝑀 |E𝑣 [𝑒] → 𝑀′ |E𝑣 [𝑒′]
(Ctx)

𝑣 = 𝑠 mdf 𝑜
𝑜 ↦→ 𝐶 (𝑜1 . . . 𝑜𝑛) ∈ 𝑀 fields (𝐶) = 𝑇1 𝑓1 . . .𝑇𝑛 𝑓𝑛

𝑀 |𝑣.𝑓𝑖 → 𝑀 |lub(𝑠, sec(𝑇𝑖)) mdf ▷𝑚𝑑𝑓 (𝑇𝑖) 𝑜𝑖
(Field Access)

fields (𝐶) = _𝑇0 𝑓0 . . .𝑇𝑛 𝑓𝑛 𝑣1 = 𝑠 𝑚𝑑𝑓 𝑜 𝑣2 = _ _ 𝑜′ 𝑣′
2
= lub(𝑠, sec(𝑇0)) 𝑚𝑑𝑓 (𝑇0) 𝑜′

𝑀,𝑜 ↦→ 𝐶 (𝑜 𝑜0 . . . 𝑜𝑛) |𝑣1 .𝑓0 = 𝑣2 → 𝑀,𝑜 ↦→ 𝐶 (𝑜 𝑜′ 𝑜1 . . . 𝑜𝑛) |𝑣′2
(Field Update)

𝑇 ′
𝑖 = 𝑠′𝑖 𝑚𝑑𝑓 ′𝑖 𝐶𝑖 𝑣𝑖 = 𝑠𝑖 𝑚𝑑𝑓𝑖 𝑜𝑖 𝑣′𝑖 = 𝑠′𝑖 𝑚𝑑𝑓 ′𝑖 𝑜𝑖 𝑜0 ↦→ 𝐶0 (𝑜) ∈ 𝑀

𝑝 (𝐶0) = class𝐶0_{_ 𝑠 𝑚𝑑𝑓 {method𝑇 𝑚 (𝑇1 𝑥1 . . .𝑇𝑛 𝑥𝑛) {return 𝑒 }_}
𝑇 ′
0
. . .𝑇 ′

𝑛 → 𝑇 ′ =𝑚𝑜𝑠𝑡𝑆𝑝𝑒𝑐𝑀𝑒𝑡ℎ𝑇 𝑦𝑝𝑒 (𝐶0,𝑚, 𝑠0 . . . 𝑠𝑛,𝑚𝑑𝑓0 . . .𝑚𝑑𝑓𝑛)
𝑀 |𝑣0 .𝑚 (𝑣1 . . . 𝑣𝑛) → 𝑀 |𝑒 [𝑡ℎ𝑖𝑠\𝑣′

0
, 𝑥1\𝑣′1, . . . , 𝑥𝑛\𝑣′𝑛]

(call)

𝑣1 = 𝑠1 𝑚𝑑𝑓1 𝑜1 . . . 𝑣𝑛 = 𝑠𝑛 𝑚𝑑𝑓𝑛 𝑜𝑛

𝑀 |new 𝑠 𝐶 (𝑣1 . . . 𝑣𝑛) → 𝑀,𝑜 ↦→ 𝐶 (𝑜1 . . . 𝑜𝑛) |𝑠 mut 𝑜
(New)

Fig. 7. Reduction rules

do typecheck, and we expect noninterference to work for those too, but our proof technique does

not address those cases. We also do not include the declassify operation because this rule explicitly

allows high data to interfere with data of lower security levels. This means, declassify is only an

explicit mechanism to break security in a controlled way, as we explained in Section 4. In the

section, we use the notation of memory and expression. The meaning of these terms are overloaded.

A memory is often a stack in a while languages, in object-oriented languages, the memory is often

a heap. In our expression-based language, we model a heap (a map from memory locations to

the values stored for each field as defined by the location’s class), and we use the expressions

themselves to track the values that are accessible within each expression (similar to how the stack

achieves this during the execution). This means, memory𝑀 captures the heap and expression 𝑒

captures the stack and any inputs. We cannot model the whole memory without the expression.

5.1 Reduction Rules
SIFO is an additional type system layer and does not influence the language semantics. However,

for the sake of the noninterference proof, we need to instrument the small-step reduction to keep

track of security and modifiers during program execution. To this aim, we define in Fig. 6 values

𝑣 as a location 𝑜 in a store with security level and type modifier. The store is some memory M .

In M , a location points to some class C where each field is again a location 𝑜𝑖 in the memory M .

With the evaluation context E𝑣 , we define the order of evaluation. We assume two well-formedness

properties. The memory is well-formed ifM is a map from 𝑜 to𝐶 (𝑜), thus the locations 𝑜 in domain

of M are unique. The reduction arrow (M |𝑒 → M ′ |𝑒 ′) is well-formed if M and M ′
have no dangling

pointers with respect to 𝑒 and 𝑒 ′ (i.e., every pointer points to a valid object in the memory). In

Figure 7, the following reduction rules are shown.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: December 2022.

Immutability and Encapsulation for Sound OO Information Flow Control 17

Definition 5.1 (mostSpecMethType).
• mostSpecMethType(𝐶,𝑚, 𝑠𝑠,mdfs) = openCapsules(𝑇𝑠 ′ → 𝑇,mdfs)
𝑠 mdf method 𝑇0 𝑚(𝑇1 𝑥1 . . .𝑇𝑛 𝑥𝑛) 𝑖𝑛 𝐶
raiseFormalSecurity(𝑠 mdf 𝐶 𝑇1 . . .𝑇𝑛 → 𝑇0, 𝑠𝑠) = 𝑇𝑠 → 𝑇

raiseActualSecurity(𝑇𝑠, 𝑠𝑠,mdfs) = 𝑇𝑠 ′

• raiseFormalSecurity(𝑇1 . . .𝑇𝑛 → 𝑇0, 𝑠
′
1
. . . 𝑠 ′𝑛) = 𝑇 ′

1
. . .𝑇 ′

𝑛 → 𝑇 ′
0

𝑇𝑖 = 𝑠𝑖 mdf 𝑖 𝐶𝑖

𝑇 ′
𝑖 = lub(𝑠, 𝑠𝑖) mdf 𝑖 𝐶𝑖

𝑠 = lub({𝑠 ′𝑖 |𝑠 ′𝑖 > 𝑠𝑖 })

• raiseActualSecurity(𝑇0 . . .𝑇𝑛, 𝑠0 . . . 𝑠𝑛,mdf
0
. . .mdf 𝑛) = 𝑇 ′

0
. . .𝑇 ′

𝑛

𝑇𝑖 = 𝑠 ′′𝑖 mdf 𝑖 𝐶𝑖

𝑇 ′
𝑖 = 𝑠𝑒𝑐 (𝑇𝑖) mdf 𝑖 𝐶𝑖

if 𝑠𝑖 < 𝑠𝑒𝑐 (𝑇𝑖) 𝑡ℎ𝑒𝑛 mdf 𝑖 ∈ {capsule, imm}

• openCapsules(𝑇1 . . .𝑇𝑛 → 𝑇,mdf ′
1
. . .mdf ′𝑛) = 𝑇 ′

1
. . .𝑇 ′

𝑛 → 𝑇

𝑇𝑖 = 𝑠𝑖 mdf 𝑖 𝐶𝑖

𝑇 ′
𝑖 = 𝑠𝑖 mdf ′𝑖 ▷mdf 𝐶𝑖

𝑀 | (high𝑚𝑑𝑓 𝑜) .𝑚 (𝑣) →+ 𝑀′ | (𝑠 𝑚𝑑𝑓 𝑜′)
𝑀 |E𝑣 [(high𝑚𝑑𝑓 𝑜) .𝑚 (𝑣)] →𝑐𝑎𝑙𝑙 𝑀

′ |E𝑣 [(high𝑚𝑑𝑓 𝑜′)]
(Hrec)

𝑒 not of form E𝑣 [(high𝑚𝑑𝑓 𝑜) .𝑚 (𝑣)] 𝑀 |𝑒 → 𝑀′ |𝑒′

𝑀 |𝑒 →𝑐𝑎𝑙𝑙 𝑀
′ |𝑒′

(Hother)

Fig. 8. Additional reduction rules for the noninterference proof

Ctx. This is the conventional contextual rule, allowing the execution of subexpressions.

Field Access. A field access 𝑓𝑖 of a value 𝑣 is reduced to a location 𝑜𝑖 if the location 𝑜 of 𝑣

points to the suitable class 𝐶 (𝑜1 . . . 𝑜𝑛). The security level is the least upper bound of the

security levels of 𝑣 and 𝑓𝑖 and the modifier is the sum of modifiers of 𝑣 and 𝑓𝑖 .

Field Update. The store 𝑜 ↦→ 𝐶 (𝑜 𝑜0 . . . 𝑜𝑛) is updated with an assignment of 𝑣2 to the field

𝑓0. The location 𝑜0 is replaced with 𝑜 ′. The security level of the resulting value 𝑣 ′
2
is the least

upper bound of the security levels of expression 𝑣0 and the field 𝑓0 as declared in 𝐶 . The type

modifier of 𝑣 ′
2
is equal to the type modifier of the field 𝑓0 as declared in 𝐶 .

Call. We reduce a method call to an expression 𝑒 , where each value 𝑣𝑖 is assigned to a

parameter 𝑥𝑖 . As we use multiple method types, the actual assigned values 𝑣 ′𝑖 can have an

updated security level or type modifier. Additionally, the called method has to be declared in

the class 𝐶0 pointed to by the location in 𝑣0. The concrete calculation of the updated types

𝑇 ′
𝑖 with𝑚𝑜𝑠𝑡𝑆𝑝𝑒𝑐𝑀𝑒𝑡ℎ𝑇𝑦𝑝𝑒 is shown in Definition 5.1. The definition calculates the exact

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: December 2022.

18 Tobias Runge et al.

method types to support the proof of noninterference. To calculate the types𝑇 ′
𝑖 , the functions

needs as parameters, the class name 𝐶 , the method name𝑚, and the used security levels 𝑠𝑠

and type modifiers mdfs to call this method. First with raiseFormalSecurity, for each formal

parameter type 𝑇𝑖 , the security level can be raised. We collect all security levels 𝑠 ′𝑖 where a
security level higher than declared in the formal parameter is passed. The least upper bound

of the collected security levels is the minimum security level for all actual parameters. It is

allowed that formal parameter have higher security levels than 𝑠 if a current parameter is

passed with the same security level higher than 𝑠 . With raiseActualSecurity, it is checked
that the actual parameters have the same security level as the now raised formal parameters.

Only actual parameters with type modifier imm or capsule can be raised to the needed level. In

the last step, the combined type modifier of the actual and formal parameter is calculated

with the function of Fig. 2.

New. The newly created object is reduced to a location 𝑜 in the memory that points to the

class 𝐶 where each field is again a location 𝑜𝑖 . The reduced value has the same security level

𝑠 as in the expression before the reduction and a mut type modifier. Note that we do not need

to say that a new reference is not in the domain of the old memory. This is implicit by the

well-formedness of the memory.

Hrec, Hother. The two rules in Fig. 8 are added to condense the reduction of methods calls

on high receivers (→𝑐𝑎𝑙𝑙). These rules only consider a low ≤ high lattice of security levels and

are needed for our noninterference proof for technical reasons. We will prove noninterference

only for a low ≤ high lattice, but the typing rules work with any security lattice. As you

can see, we condense all execution steps that happen under the control of a high receiver

into a single more abstract step. Here, →+
is the transitive closure. Of course, rule (Hrec)

is not applicable when the reduction of such a method does not terminate; this is why our

proof technique only works on terminating programs: it does not make sense to talk about

noninterference for a program stuck into a non-terminating loop inside of a high method.

This program would never reach again a state where a low attacker may attempt to observe

data.

5.2 Definition of Similarity w.r.t. Security Levels
In this subsection, we define the (observable) similarity of two memories for the proof of non-

interference. Therefore, we need further definitions of reachable object graphs (ROG). We define

mutable, low, and high memories using a notation of reachable object graph. Definition 5.2 defines

the mutable ROG of a memory and the current state of the main expression 𝑒 . Note how this is similar

to ownership work where the stack is used to track the current top level state. In an expression-

based language, the stack is represented as the set of values inside of the main expression. The

MROG contains every location inside of the expression 𝑒 that has a mut or a capsule type modifier.

Additionally, mut fields of locations in the MROG are included. In Definition 5.3, the low ROG contains

every location inside of the expression 𝑒 that has a low security level. Additionally, low fields of

locations in the low ROG are included.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: December 2022.

Immutability and Encapsulation for Sound OO Information Flow Control 19

Definition 5.2. MRog(𝑀, 𝑒)=𝑜
• 𝑜 ∈ MRog(𝑀, 𝑒) if:

𝑒 = E[𝑠 mut 𝑜]
• 𝑜 ∈ MRog(𝑀, 𝑒) if:

𝑒 = E[𝑠 capsule 𝑜]
• 𝑜𝑖 ∈ MRog(𝑀, 𝑒) if:

𝑜 ∈ MRog(𝑀, 𝑒)
𝑜 ↦→ 𝐶 (𝑜1 . . . 𝑜𝑛) 𝑖𝑛 𝑀

{class 𝐶 _ {𝑇1 𝑓1 . . .𝑇𝑛 𝑓𝑛_}
mdf (𝑇𝑖) = mut

Definition 5.3. lowRog(𝑀, 𝑒) = 𝑜

• 𝑜 ∈ lowRog(𝑀, 𝑒) if:
𝑒 = E[low _ 𝑜]

• 𝑜𝑖 ∈ lowRog(𝑀, 𝑒) if:
𝑜 ∈ lowRog(𝑀, 𝑒)
𝑜 ↦→ 𝐶 (𝑜1 . . . 𝑜𝑛) 𝑖𝑛 𝑀

class 𝐶 _ {𝑇1 𝑓1 . . .𝑇𝑛 𝑓𝑛_}
sec(𝑇𝑖) = low

In Definition 5.4, the high ROG includes locations of high mut values. The high ROG also includes

every mut value that is pointed to by a location in the high ROG. Furthermore, the high mut fields of a

location in the low ROG are included. We exclude high imm values, as imm values can be referenced by

both low and high references.

Definition 5.4. highRog(𝑀, 𝑒) = 𝑜

• 𝑜 ∈ highRog(𝑀, 𝑒) if :

𝑒 = E[high mut 𝑜]
• 𝑜𝑖 ∈ highRog(𝑀, 𝑒) if :

𝑜 ′ ∈ highRog(𝑀, 𝑒)
𝑜 ′ ↦→ 𝐶 (𝑜1 . . . 𝑜𝑛) 𝑖𝑛 𝑀

class 𝐶 _ {𝑇1 𝑓1 . . .𝑇𝑛 𝑓𝑛_}
mdf (𝑇𝑖) = mut

• 𝑜𝑖 ∈ highRog(𝑀, 𝑒) if :

𝑜 ′ ∈ lowRog(𝑀, 𝑒)
𝑜 ′ ↦→ 𝐶 (𝑜1 . . . 𝑜𝑛) 𝑖𝑛 𝑀

class 𝐶 _ {𝑇1 𝑓1 . . .𝑇𝑛 𝑓𝑛_}
sec(𝑇𝑖) = high

mdf (𝑇𝑖) = mut

𝑜𝑖 ∈ 𝑑𝑜𝑚(𝑀)
In Definition 5.5, we define the observable similarity of two memories. Two memories M1 and

M2 are similar given an expression 𝑒 , if and only if the low locations of both memories are equal. As

explained before, the expression 𝑒 is needed to track the top level state. We need a transformation

on the memories to filter high locations and high fields of classes pointed by low locations. As we

are only interested in similarity of low locations for the noninterference proof, these high locations

have to be filtered. The filtering is defined by 𝑀 [𝑜𝑛𝑙𝑦 𝑜]. In the given memory M , each location

𝑜 is removed that is not in the input set 𝑜 . Additionally, for the 𝑜 in the input set 𝑜 , each 𝑜𝑖 in

𝑜 ↦→ 𝐶 (𝑜1 . . . 𝑜𝑛), where the corresponding field in class 𝐶 is defined with a high security level, is

replaced with the location 𝑜 to filter the explicit high location 𝑜𝑖 . Thus, with this transformation

two memories are equal, if they differ only in the high ROG.
Removing the high locations in this way may produce an ill type memory; this is not a problem

since those memories are only used as a device to define _𝑠𝑖𝑚𝑖𝑙𝑎𝑟 (𝑒)_ and not in the reduction.

Definition 5.5.
M1 𝑠𝑖𝑚𝑖𝑙𝑎𝑟 (𝑒) M2 ↔ M1 [𝑜𝑛𝑙𝑦 𝑙𝑜𝑤𝑅𝑜𝑔(M1, 𝑒)] = M2 [𝑜𝑛𝑙𝑦 𝑙𝑜𝑤𝑅𝑜𝑔(M2, 𝑒)]
where𝑀 [𝑜𝑛𝑙𝑦 𝑜] = 𝑀 ′

is defined as:

• (𝑜1 ↦→ 𝐶1 (𝑜1) . . . 𝑜𝑛 ↦→ 𝐶𝑛 (𝑜𝑛)) [𝑜𝑛𝑙𝑦 𝑜] =
𝑜1 ↦→ 𝐶1 (𝑜1) [𝑜𝑛𝑙𝑦 𝑜] . . . 𝑜𝑛 ↦→ 𝐶𝑛 (𝑜𝑛) [𝑜𝑛𝑙𝑦 𝑜]

• (𝑜 ↦→ 𝐶 (_)) [𝑜𝑛𝑙𝑦 𝑜] = 𝑒𝑚𝑝𝑡𝑦 if 𝑜 𝑖𝑠 𝑛𝑜𝑡 𝑖𝑛 𝑜

• (𝑜 ↦→ 𝐶 (𝑜1 . . . 𝑜𝑛)) [𝑜𝑛𝑙𝑦 𝑜] = 𝑜 ↦→ 𝐶 (𝑜 ′
1
. . . 𝑜 ′𝑛) if 𝑜 𝑖𝑛 𝑜 with:

𝑓 𝑖𝑒𝑙𝑑𝑠 (𝐶) = 𝑇1 𝑓 1 . . .𝑇𝑛 𝑓 𝑛

𝑜 ′𝑖 = 𝑜𝑖 if 𝑠𝑒𝑐 (𝑇𝑖) = low

𝑜 ′𝑖 = 𝑜 if 𝑠𝑒𝑐 (𝑇𝑖) = high

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: December 2022.

20 Tobias Runge et al.

The Definition 5.6 compares that two expressions are equal if we only consider the low values. It

is defined as rule induction, where the only interesting case is that high values are ignored. This

means, two expressions are lowEqual if either they are the same low expression, or possibly-different

high locations.

Definition 5.6. 𝑒 lowEqual 𝑒 ′

• 𝑥 lowEqual 𝑥
• 𝑒.𝑓 lowEqual 𝑒 ′.𝑓 iff 𝑒 lowEqual 𝑒 ′

• 𝑒0 .𝑓 = 𝑒 ′
0
lowEqual 𝑒1.𝑓 = 𝑒 ′

1
iff 𝑒0 lowEqual 𝑒1 𝑎𝑛𝑑 𝑒 ′

0
lowEqual 𝑒 ′

1

• 𝑒0 .𝑚(𝑒1 . . . 𝑒𝑛) lowEqual 𝑒 ′0.𝑚(𝑒 ′
1
. . . 𝑒 ′𝑛) iff 𝑒𝑖 lowEqual 𝑒 ′𝑖 for 𝑖 𝑖𝑛 0 . . . 𝑛

• new s C (𝑒1 . . . 𝑒𝑛) lowEqual new s C (𝑒 ′1 . . . 𝑒 ′𝑛) iff 𝑒𝑖 lowEqual 𝑒 ′𝑖 for 𝑖 𝑖𝑛 1 . . . 𝑛

• (low mdf 𝑜) lowEqual (low mdf 𝑜)
• (high mdf 𝑜) lowEqual (high mdf ′ 𝑜 ′)

The Definition 5.7 is essential to constrain reduction: an alternative to our reduction that is

undesirable could trivially preserve security by adding everything to the high memory so that no

low objects remain. The definition of preserves constraints the reduction to only change the high

memory in the few appropriate and necessary cases as follows: In the first trivial case, nothing is

added. In the second case, a new high object is created and added to the high ROG. In the third case,

a low capsule object is promoted to high and added to the high ROG. Here, all options of a promotion

of a capsule object are shown (field assign, method call as receiver and as parameter, and object

construction as a parameter).

Definition 5.7. 𝑀 preserves(e/e′) 𝑀 ′
if one of the three holds:

1) ℎ𝑖𝑔ℎ𝑅𝑜𝑔(𝑀, 𝑒) = ℎ𝑖𝑔ℎ𝑅𝑜𝑔(𝑀 ′, 𝑒 ′)
2) ℎ𝑖𝑔ℎ𝑅𝑜𝑔(𝑀, 𝑒), 𝑜 = ℎ𝑖𝑔ℎ𝑅𝑜𝑔(𝑀 ′, 𝑒 ′) 𝑡ℎ𝑒𝑛

𝑒 = 𝑐𝑡𝑥0 [𝑛𝑒𝑤 ℎ𝑖𝑔ℎ 𝐶 (𝑣)], 𝑒 ′ = 𝑐𝑡𝑥0 [high𝑚𝑑𝑓 𝑜]
3) ℎ𝑖𝑔ℎ𝑅𝑜𝑔(𝑀, 𝑒), 𝑀𝑅𝑂𝐺 (𝑀, high𝑚𝑑𝑓 ′ 𝑜) = ℎ𝑖𝑔ℎ𝑅𝑜𝑔(𝑀 ′, 𝑒 ′) 𝑡ℎ𝑒𝑛

𝑒 = 𝑐𝑡𝑥0 [𝑙𝑜𝑤 𝑐𝑎𝑝𝑠𝑢𝑙𝑒 𝑜], 𝑒 ′ = 𝑐𝑡𝑥1 [high𝑚𝑑𝑓 ′ 𝑜]
𝑎𝑛𝑑 𝑒 is equal to one of the following:

𝑐𝑡𝑥 [𝑣 .𝑓 = 𝑙𝑜𝑤 𝑐𝑎𝑝𝑠𝑢𝑙𝑒 𝑜]
𝑐𝑡𝑥 [(𝑙𝑜𝑤 𝑐𝑎𝑝𝑠𝑢𝑙𝑒 𝑜).𝑚(𝑣)],
𝑐𝑡𝑥 [𝑣 .𝑚(𝑣 (𝑙𝑜𝑤 𝑐𝑎𝑝𝑠𝑢𝑙𝑒 𝑜)𝑣 ′)],
𝑐𝑡𝑥 [𝑛𝑒𝑤 𝐶 (𝑣 (𝑙𝑜𝑤 𝑐𝑎𝑝𝑠𝑢𝑙𝑒 𝑜)𝑣 ′)]

5.3 Noninterference Theorem and Proof
We prove noninterference according to our information flow policy. In literature, there are many

proposed languages (with proofs) that are very similar to the type system proposed in this work [Gi-

annini et al. 2019]. Here, to avoid repeating those same proofs that are already presented in those

other works, we accept two assumptions. (1) Soundness: the reduction does not get stuck. (2) Im-

mutability and encapsulation: In addition to not getting stuck, the reduction also never mutates

the ROG of an immutable object, and the ROG of capsules is always encapsulated (i.e., all mutable

objects can be reached only through the capsule reference). Both assumptions are established and

proved before [Giannini et al. 2019].

To prove noninterference, we first introduce two lemmas that facilitate the proof. We show

that the reduction terminates using →𝑐𝑎𝑙𝑙 and we show that, given two similar memories, each

reduction step results in similar memories.

Call-Reduction Termination. We prove in Lemma 5.8 that the reduction →𝑐𝑎𝑙𝑙 does not interfere

with termination: if we have awell typedmemoryM and an expression 𝑒 and the program terminates

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: December 2022.

Immutability and Encapsulation for Sound OO Information Flow Control 21

with the normal reduction, then it also terminates with →𝑐𝑎𝑙𝑙 . The result for both reductions is

also the same.

Lemma 5.8 (→𝑐𝑎𝑙𝑙 Termination). If memory M and expression 𝑒 are well typed and if the reduction
terminates with →, then it terminates also with the reduction →𝑐𝑎𝑙𝑙 with the same result.

Proof. This can be verified by cases:→𝑐𝑎𝑙𝑙 behaves exactly like→, but has a different granularity

of the steps. Therefore,→𝑐𝑎𝑙𝑙 terminates in every case where→ terminates. □

Bisimulation. To establish noninterference, Lemma 5.9, the bisimulation core, states that two

well typed and similar memories M1 and M2 and expressions 𝑒1 and 𝑒2, where 𝑒1 lowEqual 𝑒2 holds,
reduce toM ′

1 |𝑒 ′1 andM ′
2 |𝑒 ′2 that are also similar, and the reduced expressions 𝑒 ′

1
and 𝑒 ′

2
are lowEqual.

We need property (2) to state that both memories are observably similar, and property (3) that also

the expressions are similar regarding the observable values. Both properties together represent

observably similar memories as in Theorem 5.0. Furthermore, the preservation property of each

memory ensures that the reduction only changes the high memory in necessary cases. With this

lemma, we know that each reduction step from similar memories results in similar memories: each

→𝑐𝑎𝑙𝑙 reduction step ensures noninterference.

Lemma 5.9 (Bisimulation Core).

Given well typed memories and expressions without declassification M1, M2 , 𝑒1, and 𝑒2
where M1 |𝑒1 →∗ _|𝑣1 and M2 |𝑒2 →∗ _|𝑣2.
If the following holds
1) M1 |𝑒1 →𝑐𝑎𝑙𝑙 M ′

1 |𝑒 ′1,
2) M1 similar (e1) M2 ,
3) and 𝑒1 lowEqual 𝑒2,
then:
A) M2 |𝑒2 →𝑐𝑎𝑙𝑙 M ′

2 |𝑒 ′2 and 𝑒 ′1 lowEqual 𝑒 ′2,
B) M ′

1 similar (e′1) M ′
2 ,

C) M1 preserves(e1/e′1) M ′
1,

D) M2 preserves(e2/e′2) M ′
2 ,

E) M ′
1,M

′
2, 𝑒

′
1
, 𝑒 ′

2
are well typed

Proof. We prove that all five conditions A–E are satisfied. For A and B, we prove this theorem
by cases on →𝑐𝑎𝑙𝑙 . We only prove the cases including a context, because the proofs with an empty

context imply the correctness of the rules without a context.

Proof of A and B by cases:

Case Ctx + Call:

If 𝑒1 and 𝑒2 are of form E𝑣 [(high mdf 𝑜).𝑚(𝑜)], the proof is by rule (Hrec).

Proof of A: The only point of non-determinism in this language is the way new object identities

are chosen, and the only way to introduce a new 𝑜 is with the New rule. From assumption (1) and
Lemma 5.8, we know that there is an execution of→𝑐𝑎𝑙𝑙 , containing an arbitrary number of reduction

steps (→). The reduction is of form𝑀 |E𝑣 [(high mdf 𝑜).𝑚(𝑣)] →𝑐𝑎𝑙𝑙 𝑀
′ |E𝑣 [(high mdf 𝑜 ′′)], where

the result is a high value, thus by the definition of lowEqual, E𝑣 [(high _ _)] lowEqual E𝑣 [high _ _)]
holds.

Proof of B: We execute a number of steps on the high receiver. By assumption (1) and Lemma 5.8,

this process terminates and produces a result. By typing rule Call, we know the result is high

and the parameters 𝑣𝑠 must only contain low read/imm/capsule values. By the assumption that the

language satisfies the modifier properties (e.g. immutability), we do not modify the ROG of the low

read/imm parameters. The low capsules are promoted to high in both memories, and thus, will not be

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: December 2022.

22 Tobias Runge et al.

part of the low ROG anymore.

All the other parameters and the receivers are high, so they will not influence the low values: the

whole ROG of a high object is high, and computation can only influence reachable objects since we

do not have any static variables. So B holds since the (shrunken) low ROG on both memories cannot

be mutated.

If 𝑒1 and 𝑒2 are not of form E𝑣 [(high mdf 𝑜).𝑚(𝑜)], the proof is by rule (Hother).

Proof of A: In this case we are doing a single reduction step→. The only way to introduce non-

determinism is by creating a new object, but this step is a method call. Thus, M1 = M ′
1, M2 = M ′

2
and 𝑒 ′

1
lowEqual 𝑒 ′

2
.

Proof of B: The expressions 𝑒1 and 𝑒2 must be of form E𝑣 [(low mdf 𝑜).𝑚(𝑜)] and the low receiver

is the same on both sides. Moreover, since the original memories are similar, the low 𝑜 is an in-

stance of the same class, thus the method call will resolve to the same body, and the application

of reduction rule (Call) is deterministic and is identically in both cases, so the memories are not

influenced (except for the usual shrinkage on promoted low capsule and low imm objects). Thus, B holds.

Case Ctx + Field Update:

Proof of A: By assumption (1), we know the expression reduces. The only way to introduce a

new 𝑜 is with the (new) rule; thus A holds since we use the same process to get 𝑣 ′
2
(the rule applies

a deterministic procedure).

Proof of B: In this case, if 𝑣2 is low, we know: M1 |E𝑣 [𝑣1.𝑓0 = 𝑣2], M2 |E𝑣 [𝑣1 .𝑓0 = 𝑣2], and
M1 similar (Ev [v1 .f0 = v2]) M2 . Thus, M ′

1 |𝑣 ′2, M ′
2 |𝑣 ′2, and M ′

1 similar (Ev [v ′2]) M ′
2 .

If 𝑣2 is high, then we could have a different value in the second reduction, but this value will also

be high, and thus, not influence similarity. By well typing, this high value will be stored in a high

field. Intuitively, if 𝑣1 is low, we can assign a high only if 𝑓0 is high. In this case, the low ROG did not

contain 𝑣2 and now does not contain 𝑣 ′
2
, so B holds. If 𝑣1 is high, then it was not part of the low ROG

to begin with, so B holds.

However, we need to inspect all possible field update cases to check that all assignments do not

violate our similarity property:

To shorten the writing for all cases, we assume a low reference low1, a high reference high1 with a

low field lowF and a high field highF. The assigned objects can be low low2 or high high2.

• low1.lowF=low2 This is equal in both reduction, so B holds.

• low1.highF=low2 This is ok if low is imm or capsule. If we have removed the last low reference to

’low’, then the result of _[only _] will shrink in the same way in both computations.

• high1.highF=low2 This is ok if low is imm or capsule, and thus, it is absent in the low ROG.
• high1.lowF=low2 This is ok if low is imm or capsule, and thus, it is absent in the low ROG.
Note for the capsule cases: The value 𝑣2 was low capsule in E𝑣 [𝑣1.𝑓0 = 𝑣2], thus it was kept as part
of the low memory by _[only _]. In the next step 𝑣 ′

2
is now high, thus it is not kept as part of the low

memory by _[only _]. Since the only change between the result of the _[only _] memory is the

absence of the low capsule, B holds.

• low1.lowF=high2 This is forbidden by the type system.

• low1.highF=high2 This is ok and irrelevant, since it does not change the low ROG.
• high1.highF=high2 This is ok and irrelevant, since it does not change the low ROG.
• high1.lowF=high2 This is ok and irrelevant, since it does not change the low ROG.

Case Ctx + Field Access:

Proof of A: The only way to introduce non-determinism is the way new objects are created. We

are accessing a location 𝑜 that is equal in both cases or it is a high location. As we are not modifying

the memories, M1 = M ′
1 and M2 = M ′

2 and 𝑒
′
1
lowEqual 𝑒 ′

2
holds.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: December 2022.

Immutability and Encapsulation for Sound OO Information Flow Control 23

Proof of B: The memory is not changed by accessing a field. M1 similar (e) M2 holds before and

M1 = M ′
1 and M2 = M ′

2 , thus B holds.

Case Ctx + New:

In this case, assumption (1) is of form M1 |E𝑣 [new 𝑠 𝐶 (𝑣)] →𝑐𝑎𝑙𝑙 M1, 𝑜 ↦→ 𝐶 (_) | E𝑣 [(𝑠 mut 𝑜)], and
(A) is similar with M2 .

Proof of A: This can be obtained by simply choosing a suitable reference ‘o’ for the New rule.

Proof of B: It holds because the newmemories grow by adding the same exact object on both sides.

Proof of C and D:

To prove the conditionsC andD, we have to show that if𝑀 and 𝑒 are well typed and𝑀 |𝑒 →𝑐𝑎𝑙𝑙 M ′ |𝑒 ′
then𝑀 preserves(e/e′) M ′

. That means, each reduction step ensures the preserve property that the

high memory is only changed in necessary cases. This statement holds by the construction of our

reduction rules. We only promote expressions to high if it is necessary. No unnecessary promotions

are done. The only changes from low to high are explicitly stated in Definition 5.7: creation of a new

high object and the promotion of a low capsule expression. Thus, C and D holds.

Proof of E:

Proving condition E is more complex. From our assumptions we conclude that the well typedness

of the base language is not violated, since the SIFO type system is just stricter than the regular L42

system. However, we need to prove that the→𝑐𝑎𝑙𝑙 reduction preserves the added security typing.

This is quite subtle thanks to multiple method types (Fig. 3): The type system as presented does not

respect preservation; that is, when calling a method that has been typed using multiple method

types, the inlined body of the method may not respect our provided type system. However, we are

using the→𝑐𝑎𝑙𝑙 reduction, and the call reduction skips in a single step to the full method evaluation.

The method body will evaluate to a value; we have not formally specified typing rules for values

and memory; the intuition we present here in our proof sketch is that security is not relevant in

the memory; as you can see from the grammar in Fig. 6, we keep the security level on the value

(outside of the memory), so the result of a high method call with→𝑐𝑎𝑙𝑙 is well typed because it is

only concerned with the non-security aspects of the type system, and the security level is tracked

during reduction. See how, for example, in rule Call of Fig. 4, the security level and modifier of the

parameters can be promoted before inlining the method body. □

To prove the noninterference Theorem 5.10, we use the property that the reduction terminates

(Lemma 5.8) and the bisimulation core that each reduction step meets the requirements of nonin-

terference (Lemma 5.9). We prove, if two memories that are similar and both expressions reduce,

the new memories still have to be similar and the reduced values are equal w.r.t. low values. This

Theorem 5.10 has the same shape as Theorem 5.0, but uses the definitions for similarity of memories

(Def. 5.5) and expressions (Def. 5.6). As we said before, we exclude declassification in the proof.

Therefore, we cannot guarantee security for programs with declassify expressions. Related works

generalize the noninterference property to provide stronger guarantees for programs including

declassification [Sabelfeld and Sands 2009].

Theorem 5.10 (Noninterference).

If we have expressions 𝑒1 and 𝑒2 without declassification that are well typed and 𝑒1 lowEqual 𝑒2, M1
and M2 are well typed memories, M1 similar (e1) M2 , M1 |𝑒1 →∗ M ′

1 |𝑣1, and M2 |𝑒2 →∗ M ′
2 |𝑣2 then

M ′
1 similar (v1) M ′

2 , 𝑣1 lowEqual 𝑣2, and M
′
1, M

′
2 , 𝑣1, and 𝑣2 are well typed.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: December 2022.

24 Tobias Runge et al.

Proof. From Lemma 5.8 and M1 |𝑒1 →∗ M ′
1 |𝑣1 and M2 |𝑒2 →∗ M ′

2 |𝑣2, we know that M1 |𝑒1 →𝑐𝑎𝑙𝑙

M ′
1 |𝑣1 and M2 |𝑒2 →𝑐𝑎𝑙𝑙 M ′

2 |𝑣2. Then, by induction on the number of steps of →𝑐𝑎𝑙𝑙 :

Base: 𝑒1 lowEqual 𝑒2 lowEqual 𝑣1 lowEqual 𝑣2, M1 = M ′
1, M2 = M ′

2 . Thus, M
′
1 similar (v1) M ′

2
holds because M1 similar (e1) M2 .

Inductive step: By Lemma 5.9 (bisimulation core) and the inductive hypothesis, each reduction

step establishes similar memories M ′
1 and M ′

2 , computes lowEqual expressions, and preserves that

only necessary values are in the high ROG. □

6 TOOL SUPPORT AND EVALUATION
In this section we present tool support for SIFO and evaluate feasibility of SIFO by implementing

five case studies. Additionally, we benchmark precision and recall of the information flow analysis

by adapting the IFSpec benchmark suite [Hamann et al. 2018] to SIFO.

6.1 Tool Support
We implement SIFO as a pluggable type system for L42 [Giannini et al. 2019]. L42 is a pure object-

oriented language with a rich type system supporting the type modifiers used by SIFO.

Conveniently, L42 allows pluggable type systems [Andreae et al. 2006; Papi et al. 2008] to add an

additional layer of typing. We add rules to support the typing of expressions with security levels.

Both Java and L42 supports pluggable type systems using annotations: type names preceded by the

symbol @. In our SIFO library, these annotations are used to introduce the security levels.
5

Some changes of SIFO are necessary to comply with L42: L42 supports the uniform access

principle [Meyer 1988]; thus there is no dedicated syntax for field assign and field access, but they

are modeled by getters and setters. Additionally, the constructor does not have dedicated syntax,

but it is a static method with return type This. In this way, we only need to type check method

calls. Moreover, this allows more flexibility since multiple method types are now transparently

and consistently applied in all those cases. We also had to extend our type system to support the

features of L42. While adding loops and other conventional constructs was trivial, we had to be

careful while extending our type system to support exceptions, since exceptions constitute yet

another way for a method execution to propagate secret information to an observer. Thus, we

consider exceptions similar to a return type.

Additionally, an exception prevents the execution of the code after it was thrown. Thus, after the

exception is caught, the programmay collect information about when the execution was interrupted

in order to discover what expression raised the exception. This is another option to propagate secret

information to an observer. Our current extension supporting exceptions is quite conservative,

requiring the use of a single security level for all free variables, exceptions, and results of a try-catch

block. In future work, we plan to formalize the extension with exceptions more precisely.

6.2 Feasibility Evaluation
To evaluate the feasibility of SIFO, we implemented four case studies from the literature in SIFO:

Battleship [Stoughton et al. 2014; Zheng et al. 2003], Email [Hall 2005], Banking [Thüm et al. 2012],

and Paycard (http://spl2go.cs.ovgu.de/projects/57). Additionally, we implemented a novel

case study of our own, the Database. The metrics of the case studies are shown in Table 1.

6.2.1 Battleship. Our evaluation is focused on the Battleship case study because this program is

carefully described by Stoughton et al. [Stoughton et al. 2014] as a general benchmark to evaluate

5
You can find a version of L42 with our SIFO library and the case studies at https://l42.is/SifoArtifactLinux.zip and https:

//l42.is/SifoArtifactWin.zip. This also contains more information about the detailed syntax in the readme.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: December 2022.

Immutability and Encapsulation for Sound OO Information Flow Control 25

Name #Security Levels #Security

Annotations

#Lines of Code

Battleship 4 (+2 generic) 21 (208 in Jif) 431 (611 in Jif)

Database 4 6 73

Email 2 20 260

Banking 2 20 127

Paycard 2 15 95

Table 1. Metrics of the case studies

information flow control. Moreover, this case study is also implemented in Jif
6
, thus allowing us to

directly compare their results with our work.

Battleship is the implementation of a two player board game. At the start, each player places a

fixed number of ships of varying length on their private board. The board has a two-dimensional

grid. The players only know the placement on their board and have to guess where the other

player placed the ships. During the game, the players take turns and shoot cells on the board of the

opponent to sink ships. The first player wins the game who sinks all opponent’s ships.

Thanks to our flexible SIFO type system, we implemented most of the code without any security

annotations. We wrote a generic PlayerTrait trait that is parameterized over the security levels SelfL
and OtherL to distinguish both players. Our implementation of Battleship uses many features from

full L42, not just the minimal core presented in this paper. In particular, we rely on L42 traits and

their encoding for generics. We will expand on this in Section 7.

Our ExampleGame class implements a mutually distrustful player scenario [Stoughton et al. 2014].

In this setting, even if one of the two players is replaced with an adversarial player, we ensure that

only a correctly executed game will terminate without exception. This scenario highlights nicely

the properties of our system: we ensure noninterference that an adversarial player is unable to read

the opponent’s board state. In ExampleGame, the two players Player1 and Player2 create the boards
and shoot consecutively. We have to ensure that each player creates a confidential board that the

other player cannot read. In the concrete implementation, we annotate the board with the security

level of one of the players to restrict readability. Deep immutability enforces that the board is not

manipulated during the game. Then, each player gets a reference to the confidential board of the

opponent. Contrast this with the Jif implementation of the same game: Jif uses the concept of label

expressions that specify the allowed readers and writers of objects. In Jif, boards can be read by

only one player, but they are trusted by both players. The first player creates a board, the second

player endorses this board, and the first player then saves this board that is trusted by both players.

Endorsement is the name of downgrading integrity, similar to declassification for confidential data.

The endorsement of the board is implemented in Jif with defensive cloning. A new trusted board is

created, and all ships on the input board are cloned to add them to the trusted board. In SIFO, the

endorsement and defensive cloning is not necessary because we can rely on deep immutability of

the type system that prevents manipulation of the boards.

When a player shoots, it has to be correctly revealed if it was a miss, a hit, or a hit that sunk a

specific ship. The process of one shooting round is shown in Listing 4. The method round has as

parameter which is the opposing player. In Line 2, there is a dynamic check for validity of the game.

6
See [Zheng et al. 2003] found on the Jif website https://www.cs.cornell.edu/jif/

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: December 2022.

26 Tobias Runge et al.

1 mut method Bool round(mut OtherPlayer other) = (

2 X[this.myRound (); !this.win(this.myShots ()); !this.win(this.otherShots ())]

3 coord = this.fire()

4 @OtherL FireResult res = this.board (). fire(coord=coord ,shots=this.myShots ())

5 ResultSigner s = this.signer ()

6 @OtherL ResultSigner.Signed signed = s(label=coord.toS(),data=res)

7 ResultSigner.Signed freeSigned=other.declassify(signed)

8 X[this.signer (). mine(freeSigned ,label=coord.toS ())]

9 r = freeSigned.data (). answer (). repr()

10 this.myShots (\ myShots.with(row=coord.row(),col=coord.col(),val=r))

11 this.myRound(Bool.false ())

12 this.win(this.myShots ())

13)

Listing 4. Implementation of one shooting in SIFO

X works like assert in Java. It must be the round of the player, and the game must not be yet won

by any player. The method fire in Line 3 asks for the next coordinates to shoot. These coordinates

are used to check for the result of the shot on the board. As this is the board of the opponent,

the result is labeled with the opponent’s security level (Line 4). We now have to declassify the

result to be able to read it, but only the opponent has the right to declassify the result of such

shot. An adversarial opponent could manipulate the declassified result, we therefore use a signing

mechanism to exclude manipulation. Thus, the confidential result is signed by the shooting player

and send to the opponent (Line 6), so that the opponent declassifies the result (miss, hit, ship sunk)

in Line 7. In Line 8, it is checked that the correct signed result is returned. In our implementation,

we can rule out manipulation as the correct result is immutable and a newly created result by

the opponent cannot have the signature of the shooting player. The shot and the result are then

added to a list for validating subsequent rounds (e.g., in Line 12 to check whether the game is won).

Then, the opponent player takes turn. If a game rule violation is detected during the game (e.g., a

manipulated result of a shot), the game can be aborted by either player.

In Jif, a player must trust that the result of a shot is correctly revealed by the opponent. In Jif,

it would be easy to implement a BadPlayer that returns an incorrect result of a shot, as there is

no check for a manipulation [Stoughton et al. 2014]. Additionally, the Jif implementation uses

defensive cloning when passing the coordinates of a shot to the opposing player.

We now compare both implementation on a more general level. Most classes are written pa-

rameterized with a security level 𝐿 in Jif. In SIFO, we write classes like Ship without any security

annotation, but we are able to use them in secure contexts with our promotion rules. With this

technique, we are able to write only 21 security annotations in the whole implementation. In Jif,

we count 208 annotations.

For the creation of players, we have a similar concept as Jif. While Jif used a generic Player class,

we created a generic PlayerTrait trait with two security levels SelfL and OtherL. This generic trait is
instantiated as PlayerTrait['SelfL=>Player1;'OtherL=>Player2]which can then be used to create object

instances. In Jif, [Player1,Player2] player1 = new Player[Player1,Player2](); is written to create a new

player.

In summary, we implemented Battleship in SIFO by relying on our promotion rules and the

immutability of trustworthy objects. Thanks to preexisting L42 features, we have not needed the

complex expressiveness of Jifs label expression, which is also discussed in Section 7.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: December 2022.

Immutability and Encapsulation for Sound OO Information Flow Control 27

6.2.2 Database. The Database is a system where two databases are not allowed to interfere.

Through the different security levels, we ensure that a value read from one database cannot be

inserted into the other one. This can be obtained just by annotating the Gui class with six security

annotations, as shown in Listing 5.

1 Gui={

2 mut @Left Database dbLeft

3 mut @Right Database dbRight

4 class method mut This (mut @Left Database dbLeft , mut @Right Database dbRight)

5 class method mut This ()=(

6 capsule @Left Database dbl=Database(name=S"left",rows=Rows ())

7 capsule @Right Database dbr=Database(name=S"right",rows=Rows ())

8 This(dbLeft=dbl , dbRight=dbr)

9)

10 }

Listing 5. Gui implementation in SIFO

The other classes are implemented without any security level. This is possible because the class

Gui is the only class that uses databases with different security levels. This means that the actual

database code is all free from security annotations; as you can see above different instances of

low capsule Database can be transparently promoted to different security levels Left and Right.

6.2.3 Further case studies. The Email system ensures that encrypted emails are only decrypted if

the public and private key pair used is valid. It also guarantees that private keys are not leaked.

The Email system needed only 20 security annotations in 260 lines of code.

Banking and Paycard are two systems that represent payment systems where it is crucial that

the calculations of new balances are correct and information is not leaked. By setting the balance

to high and checking that the system is typable, we are certain that the balance is not leaked to

attackers. For BankAccount and Paycard 20 and 15 security annotations were needed with 127 and

95 lines of code.

6.2.4 Discussion. Code following a pure object-oriented style is often directly supported by SIFO

without any special adaptation. However, when updates to local variables and statements/condi-

tionals are used, the programmer may have to rely on some simple programming patterns: for

example, in a conditional, we cannot directly update a high field of a low object, as low objects cannot

be manipulated in high conditional statements. This limitation can be circumvented by wrapping

the updatable field into a mutable proxy object (e.g., o.proxy.field instead of o.field). Such a proxy

object can then be saved in a high temporary variable; and such a variable can be used to manipulate

the state. We have to use the high proxy object because our if-rule is slightly conservative. It does

not check if only high fields of a low object are manipulated. This is still easier in comparison to

Jif because in Jif, the object instance has to be cloned so that the user keeps a reference to the low

object and can manipulate the high field data with the cloned instance.

Another insight is that major parts of the case studies could be written without any use of

security levels because the multiple method types promote the parameters of a called method to

the required security levels in necessary cases. This allowed us to write secure programs relying

on libraries and data structures without any security annotation. In our case study, we could reuse

a list implementation and securely promote it to any security level if needed. The type system

then checks that instantiated lists of different security levels did not interfere. For example, a

high list can only contain objects of at least a high security level. Moreover, we were also able to

encode domain-specific data structures and functionality without any security annotation. In Jif,

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: December 2022.

28 Tobias Runge et al.

this requires generic classes written with security annotations in all cases. Information flow can be

enforced by annotating just the few method bodies that put separate systems into communication.

Major parts of the case studies were implemented without the use of declassify. We only needed

it in Battleship to declassify shot results as intended by the game. Additionally, we declassified

console output at the end of program execution in the other case studies to print results for the

user.

By explicitly typing references as imm or capsule, the code quality increases, because programmers

can rely on properties which are enforced by the type system. Furthermore, the security levels serve

as active documentation for the programmer. In the Database example, we know which database

a value comes from by reading the security level. To reduce the writing effort for programmers,

sensible defaults are useful: if a security level is not specified, low is used.

6.3 Benchmarking with IFSpec
To evaluate precision and recall of SIFO, we applied SIFO to the IFSpec benchmark suite [Hamann

et al. 2018]. IFSpec contains 80 samples to test information flow analysis tools. In addition to

the core samples, 152 samples from the benchmark suite SecuriBench Micro
7
are adapted and

integrated into IFSpec. The samples are all available in Java and Dalvik. To benchmark SIFO,

we translated the 80 core sample when it was possible. Samples that used Java specific features

were not translated. In total 40 samples are implemented in SIFO. For these samples, we compare

SIFO with Cassandra [Lortz et al. 2014], JOANA [Graf et al. 2013], JoDroid [Mohr et al. 2015],

KeY [Ahrendt et al. 2016], and Co-Inflow [Xiang and Chong 2021] (with and without additional

security annotations) which were all evaluated before with IFSpec.

Each sample is labeled as secure or insecure. When a sample contains a leak and a tool reports a

leak, we categorize it as true positive (TP). When a sample contains no leak and a tool reports no

leak, we categorize it as true negative (TN). When a sample contains no leak but a tool reports a

leak, we categorize it as false positive (FP). When a sample contains a leak but a tool reports no leak,

we categorize it as false negative (FN). From these four categories, we can calculate precision and

recall of the tools. The recall is computed as: #𝑇𝑃/(#𝑇𝑃 +#𝐹𝑁). Recall determines the percentage of

samples correctly classified as insecure considering all samples containing a leak. The precision is

computed as: #𝑇𝑃/(#𝑇𝑃 + #𝐹𝑃). Precision determines the percentage of samples correctly classified

as insecure considering all samples classified as insecure by the tool.

In Table 2, we show the results of the benchmarking. All six tools found the 18 samples containing

a leak. This results in a recall of 100% for all tools. No tool classified a sample false negative. Regarding

precision, the tools have slight differences. Cassandra and Co-Inflow without additional annotations

have the lowest precision of 54.5%. JOANA has the highest precision of 62.1%, but Co-Inflow has a

higher precision of 81.8% if additional security annotation is given by the programmer. SIFO has a

precision of 58.1%.

Discussion of the False Positive Samples. With SIFO, 13 samples are typed as insecure, which are

labeled as secure by the authors of the benchmark. We will classify these samples into categories

to discuss the result of SIFO. For six samples, the type system of SIFO is not precises enough to

recognize that the sample is secure. For example, if in a conditional expression both branches assign

the same value to a low reference, we pessimistically dismiss this program.

Three samples are constructed to introduce a leak which is overwritten in the end. A simple

example is that a secret value is assigned to a public variable and in the next line, the public variable

is overwritten. We clearly prohibit the first assignment of the secret value. These examples are

constructed for taint analysis tools and are not suitable for type systems.

7
https://github.com/too4words/securibench-micro

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: December 2022.

Immutability and Encapsulation for Sound OO Information Flow Control 29

Tool #Samples TP TN FP FN Recall Precision

Cassandra 40 18 7 15 0 100% 54.5%

JOANA 40 18 11 11 0 100% 62.1%

JoDroid 40 18 9 13 0 100% 58.1%

KeY 40 18 8 14 0 100% 56.3%

Co-Inflow 40 18 7 15 0 100% 54.5%

Co-Inflow-

Annotations

40 18 18 4 0 100% 81.8%

SIFO 40 18 9 13 0 100% 58.1%

Table 2. Overview of the benchmark results

One sample is labeled as secure because in the provided code there is no way to access the secret

values. In sample Webstore, a secret and a public value are assigned to a public list and only the

public value is accessed in the code. When a simple getter-method for the secret value is added,

the sample would be insecure. As our type system is modular, we directly prohibit the assignment

of secret values to the public list. We do not check that there is currently no available method to

access the stored value.

For three samples, again the modular reasoning of the type system pessimistically rejects secure

programs. In DeepCall, a chain of method calls is insecure because the first secret value is propagated

through all calls and returned as a public value. In the similar sample DeepCall2, the last call always

returns the same value independent of the secret input value. This sample is considered secure. Our

types system does not check all method calls globally, it just reasons that a secret value is passed to

the next method and that a secret return value is expected. That the secret return value is actually

a public constant in the sample DeepCall2 is outside of the modular reasoning.

Most examples that SIFO rejects are constructed by developers to contain a security problem

which is erased or not accessible in the remaining code of the sample. As our type system prohibits

any introduction of security violations, we reject these samples. To support this statement, we

rewrote eight of the 13 false positive samples to be semantically similar and accepted by SIFO.

7 RELATEDWORK
Static and dynamic program analysis [Austin and Flanagan 2009; Nielson et al. 1999; Russo and

Sabelfeld 2010; Zhang et al. 2015], as well as security type systems [Banerjee and Naumann 2002;

Ferraiuolo et al. 2017; Hunt and Sands 2006; Li and Zhang 2017; Simonet 2003; Volpano et al. 1996]

are used to enforce information flow policies. We refer to Sabelfeld and Myers [2003] for a detailed

overview.

Taint Analysis. Taint analysis [Arzt et al. 2014; Enck et al. 2014; Hedin et al. 2014; Huang et al.

2014, 2012; Milanova and Huang 2013; Roy et al. 2009] is a related analysis technique that detects

direct information flows from tainted sources to secure sinks by analyzing the assignments of

variables and fields. Those taint analysis works do not provide a soundness property, while the

SIFO noninterference proof guarantees the security of type checked code. Except for JSFlow [Hedin

et al. 2014], Cassandra [Lortz et al. 2014], JOANA [Graf et al. 2013], and JoDroid [Mohr et al. 2015],

these related works do not cover implicit information flows through conditionals, loop statements,

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: December 2022.

30 Tobias Runge et al.

or dynamic dispatch. SIFO also detects implicit information flows through dynamic dispatch

(conditional and loop statements are not in the core language, but included in our implementation).

Crucially, the noninterference proof of SIFO relies on detecting implicit information flow.

Coarse-grained dynamic information flow approaches [Jia et al. 2013; Nadkarni et al. 2016;

Xiang and Chong 2021] track information at the granularity of lexically or dynamically scoped

section of code. Instead of labeling every value individually, coarse-grained approaches label an

entire section with one label. All produced values within this scope implicitly have that same label.

Therefore, the writing effort for developers to annotate programs is reduced. To still obtain good

results of the information flow analysis, for example, Xiang and Chong [Xiang and Chong 2021]

introduce opaque labeled values to permit labeled values where programmers have not provided a

label. If no further annotation is given by the programmer, the precision of the information flow

analysis can be decreased. As the evaluation shows, Co-Inflow [Xiang and Chong 2021] has better

precision when the programmer annotates the program. However, the precision is not a limitation

of coarse-grained approaches compared to fine-grained approaches. Type systems for fine- and

coarse-grained information flow control are equivalent in terms of precision as shown by Rajani et

al. [Rajani et al. 2017; Rajani and Garg 2018]. For dynamic information flow control mechanisms,

Vassena et al. [Vassena et al. 2019] have similar results.

The work by Huang, Milanova et al. [Huang et al. 2014, 2012; Milanova and Huang 2013] is

closely related to our approach because viewpoint adaption with polymorphic types is similar to

our mdf ▷ mdf ′ operator for type modifiers. For field accesses, the type of the accessed object

depends on the reference and the field type. They use read-only references to improve the precision

of their static analysis technique by allowing subtyping if the reference is read-only. In SIFO, we

also use deep immutable and capsule references, extending the expressiveness of our language.

Comparison to Jif. In this work, we explored the specific area of secure type systems for object-

oriented languages [Banerjee and Naumann 2002; Barthe et al. 2007; Barthe and Serpette 1999;

Myers 1999; Sabelfeld and Myers 2003; Strecker 2003; Sun et al. 2004]. The most important work

to compare against is Jif [Myers 1999] (see Section 2). In this paper, we presented a minimal core

of SIFO for the soundness and noninterference proofs. Nonetheless, we compare SIFO with Jif by

discussing their common and different features. A main difference is the handling of aliases: Jif

does not use any kinds of regions or alias analysis to reason about bounded side effects. Therefore,

Jif pessimistically discards many programs introducing aliases (see the example in Section 2.1 that

is not typable in Jif). On the other hand, SIFO restricts the introduction of insecure aliases and is

therefore able to safely type more programs. SIFO’s expressiveness relies on the safe promotion of

imm or capsule references. As shown in Section 2 and in Section 6.2, programs can be typed securely

without defensive cloning [Bloch 2016] because imm and capsule modifiers allow promoting objects

to higher security levels. In Jif, a similar promotion is only allowed for primitive types.

The SIFO type system leverages on a minimalistic syntax of security annotation, where types

contain a security level. Jif offers a much more elaborated syntax: in Jif, a security label is an

expression consisting of a set of policies [Myers and Liskov 2000]. Each policy has an owner 𝑜

and a set of readers 𝑟 . For example, the label 𝑜1 : 𝑟1;𝑜2 : 𝑟1, 𝑟2 states that the policy of 𝑜1 allows 𝑟1
to read the value and 𝑜2 allows 𝑟1 and 𝑟2 to read the value. Hence, 𝑟1 is the only reader to fulfill

both policies. These label expressions get more complicated, the more policies are conjoined, but a

programmer gets more flexibility to express fine-grained access restrictions.

SIFO has a similar expressiveness to Jif, but does not need to resort to such complex label

expressions. To show this, consider the following scenario from Jif [Myers and Liskov 2000]:

A person Bob that wants to create his tax form using an online service. In the scenario, Bob

wants to prevent his information from being leaked to the online service, and the provider of the

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: December 2022.

Immutability and Encapsulation for Sound OO Information Flow Control 31

1 class Protected {

2 final label{this} lb;

3 Object {*lb} content;

4 public Protected{LL}(Object {*LL} x, label LL) {

5 lb = LL;

6 super ();

7 content = x;}

8 public Object {*L} get(label L):{L} throws (IllegalAccess) {

9 switch label(content) {

10 case (Object {*L} unwrapped) return unwrapped;

11 else throw new IllegalAccess ();}}

12 public label get_label () {

13 return lb;}}

Listing 6. Class Protected in Jif with security parameterization [Myers 1999]

service does not want its technology and data to be leaked in the process of generating the tax

form. This constraint is related to the mutually distrustful players of the Battleship case study. To

comply with these constraints, Bob labels his data with 𝑏𝑜𝑏 : 𝑏𝑜𝑏 and sends it to the online service

provider. The provider, labels its own data with 𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑟 : 𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑟 , so the calculated tax has the

label 𝑏𝑜𝑏 : 𝑏𝑜𝑏;𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑟 : 𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑟 . This result cannot be read because the labels disagree on their

reader sets. To release the information to Bob, the provider declassifies the label by removing the

provider policy. As only the final tax form is declassified, the released information from the provider

is limited. The final tax form with the label 𝑏𝑜𝑏 : 𝑏𝑜𝑏 is then sent to Bob.

In SIFO, we can handle the same scenario as follows: Bob wants to protect his private information,

so he can set the security level to bob, but he can also set a type modifier. With read, he ensures

that his data cannot be manipulated and integrated into the provider’s data. With imm, only the

manipulation is prevented. If Bob trust the provider, he can send a capsule object to the provider.

The provider can then manipulate and alias the data, but Bob is sure, that the manipulation is

restricted to only the data reachable from the given reference. In the case of the provider, they get

a reference to the data of Bob with a security level and a type modifier. In the most restricted case

of a read reference, the provider can still use the information and calculate the final tax form, but

a manipulation or aliasing of Bob’s data is prevented. The security level of the result is the least

upper bound of bob and provider. To declassify the results for Bob, the final tax form needs to be imm

or capsule to allow safe sharing or transfer of the confidential data.

With this example, we discuss the secure transfer of data. In SIFO, by using a read, imm, or capsule

modifiers, Bob specifies how the information is usable. In Jif, the label bob:bob does not restrict

the use in the same way. There is no language support to ensure that a unique portion of store

is transferred to the provider. There is also no guarantee that the data is not manipulated, as

with imm. In Jif, if the provider has a read permission for Bob’s data, they can freely manipulate it.

Furthermore, if the provider wants to ensure that they are the current owner of Bob’s tax data, they

have to clone the data (defensive cloning [Bloch 2016]).

To grasp the difference in the annotation burden, consider the Jif example in Listing 6 of a class

that protects data from insecure access. Jif uses a parameterized label system where a class or

methods have a generic label 𝐿. The label 𝐿 can be initialized with any specific security level. This

places a large conceptual burden on the programmer, as the label 𝐿 is used in every field and method

of the class. Additionally, no legacy code can be used that is not parameterized properly.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: December 2022.

32 Tobias Runge et al.

SIFO encourages a style where most code is completely clear of any security annotation; in

particular, most algorithms and most common data types like collections does not need any kind

of security annotations at all. Only code that is explicitly and directly involved in the handling of

security-critical data needs to be written with security in mind. Unlabeled classes and methods are

implicitly annotated with the lowest security level. Thanks to the flexibility of multiple method

types, they can be safely promoted to any higher level.

Jif has additional features that are not presented in the core of SIFO. The SIFO core works with a

finite lattice of security levels instead of the complex label expressions in Jif [Myers and Liskov 2000]

with an infinite set of possible labels. Thanks to the embedding in L42, we get label polymorphism

for free by relying on L42 encodings for generics. Thus, on one side SIFO allows to remove the

complexity of having most of the labels generic, on the other side when generic labels are truly

needed (for example to write code that have to work on unknown labels) we can rely on the L42

generics encoding, as we do in the BattleShip example.

Jif has dynamic checks of security labels. See Line 9 in Listing 6 where the security level of the

object content is checked. This feature can be emulated in SIFO with the following programming

pattern. Any is the equivalent of Object in Java.

1 BoxLeft=Data:{ @Left Any left}

2 BoxRight=Data:{ @Right Any right}

3 ...

4 low Any a

5 if a <:BoxRight return a.right ()

In a more concrete example, a Person Bob creates a BoxLeft or BoxRight object with the secure

data in the field. This object is then sent as low Any a to Alice and Alice can discover with instanceof

(<: in L42) if it is a BoxLeft or a BoxRight object. As you can see, by knowing the explicit type, we

know also the security level of the data in the field. Thus, by adding an explicit boxing step, we

enable the users to handle any kind of label and to dynamically check on those.

Jif has robust declassification [Chong and Myers 2006] which means that an attacker is not able to

declassify information, or to influence what information is declassified by the system that is above

the security level that the attacker is allowed to read. In the full embedding in L42, declassification

can be sealed behind the object capability model, as we did in the Battleship case study. The L42

object capability model is flexible and can provide a range of useful guarantees [Miller 2006]. Indeed,

you can see the Battleship case study as an exemplar representation of robust declassification. Even

if we replace one of the player with adversarial code, such code will not be able to declassify the

opposing board; even while holding a reference to such a board.

In future work, we want to extend SIFO to work with any partial order of security levels

as discussed in Section 9. With this feature, we are closer to the expressive power of Jifs label

expressions.

Other Information Flow Techniques. Hoare-style program logics are also used to reason about

information flow. The work of Andrews and Reitman [Andrews and Reitman 1980] encodes infor-

mation flow in a logical form for parallel programs. Amtoft et al. [Amtoft et al. 2006; Amtoft and

Banerjee 2004] use Hoare-style program logic and abstract interpretation to analyze information

flow. This approach is the basis in SPARK Ada for specifying and checking information flow [Amtoft

et al. 2008]. For Java, Beckert et al. [Beckert et al. 2013] formalized the information flow property in

a programming logic using self-composition of programs and an existing program verification tool

to check information flow. Similarly, Barthe et al. [Barthe et al. 2004] and Darvas et al. [Darvas et al.

2005] analyze the information flow by using self-composition of programs and standard software

verification systems. Terauchi and Aiken [Terauchi and Aiken 2005] combined a self-composition

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: December 2022.

Immutability and Encapsulation for Sound OO Information Flow Control 33

technique with a type system to profit from both techniques. Küsters et al. [Küsters et al. 2015]

propose a hybrid approach by using JOANA [Graf et al. 2013] and verification with KeY [Ahrendt

et al. 2016] to check the information flow.

The related IFbC approach by Schaefer et al. [Runge et al. 2020; Schaefer et al. 2018] ensures

information flow-by-construction. Here, the information flow policy is ensured by applying a sound

set of refinement rules to a starting specification. Instead of checking the security after program

creation, the programmer is guided by the rules to never violate the policy. Compared to SIFO, their

approach is limited to a while language without objects.

8 CONCLUSION
In this work, we presented a type system of an object-oriented language for secure lattice-based

information flow control using type modifiers that detects direct and implicit information flows.

This language supports secure software development by enforcing noninterference. We leverage

previous work on immutability and encapsulation to greatly increase the expressive power of our

language. Additionally, promotion/multiple method types encourage reusability of secure programs

without burdening the developer. We formalized the secure type system, proved noninterference,

and showed feasibility by implementing SIFO as a pluggable type system for L42, and conducting

an evaluation with several case studies. In the future, we want to formalize exceptions in SIFO

to extend the expressiveness of the language. We also want to generalize the proof to include

declassification.Furthermore, we could reduce the typing effort of programmers by introducing

type inference.

9 FUTUREWORK: INTEGRITY AND CONFIDENTIALITY
As noted by Biba [Biba 1977] integrity can be seen as a dual to confidentiality, which means

that either of them can be checked with the same information flow analysis techniques. For

confidentiality, information must not flow to inappropriate destinations; dually, for integrity,

information must not flow from inappropriate sources. In this work, we made all our discussion

about confidentiality. If a user of SIFO is instead interested in integrity, they can simply use our type

system with any lattice of integrity levels. However, it is also possible to track both properties at

the same time: The trick is to not rely too much on data sources with the lowest or highest security

level (e.g. low and high): since high can see all the information, high offers no integrity. In the same

way, low can write to all the information, thus low data needs to be always intrinsically valid/trusted.

high

low

alice
Confidential

bob
Confidential

alice
Trusted

bob
Trusted

Note that we can still declare low fields and low data

structures, it is sufficient for sensitive data to be stored

somewere nested inside the ROG from a non low reference,

as we shown with the database case study.

In this work, we assumed a lattice of security levels.

However, Logrippo [Logrippo 2018] has proposed that

just a partially ordered set would be appropriate to model

security. If we allowed just a partial order of security lev-

els, SIFO would allow to encode both integrity and con-

fidentiality at the same time instead of using two lattices

for confidentiality levels and integrity levels. Consider

the following example, where Bob and Alice have both

confidential and trusted data. We can define a partially

ordered set as shown on the right.

Integrity: aliceTrusted/bobTrusted is data that Alice/Bob trust to be valid. For example, only low

and bobTrusted can write on bobTrusted data. Confidentiality: aliceConfidential/bobConfidential is data

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: December 2022.

34 Tobias Runge et al.

that Alice/Bob wants to keep private. For example, low, aliceTrusted, bobTrusted, and bobConfidential

can write on bobConfidential, but bobConfidential can only be read by bobConfidential and high. Those

security levels also imply that bobTrusted can be read by bobTrusted, aliceConfidential, bobConfidential,

and high.

Being able to express integrity and confidentiality at the same time with the same lattice is clearly

a great advantage; however we are still investigating if supporting partially ordered sets instead of

a lattice would have subtle consequences that interfere with our noninterference property.

Acknowledgments. This work was supported by funding from the topic Engineering Secure

Systems of the Helmholtz Association (HGF) and by KASTEL Security Research Labs (46.23.03).

REFERENCES
Wolfgang Ahrendt, Bernhard Beckert, Richard Bubel, Reiner Hähnle, Peter H. Schmitt, and Mattias Ulbrich (Eds.). 2016.

Deductive Software Verification - The KeY Book - From Theory to Practice. Lecture Notes in Computer Science, Vol. 10001.

Springer.

Torben Amtoft, Sruthi Bandhakavi, and Anindya Banerjee. 2006. A Logic for Information Flow in Object-Oriented Programs.

In POPL. 91–102.
Torben Amtoft and Anindya Banerjee. 2004. Information Flow Analysis in Logical Form. In SAS (LNCS, Vol. 3148). Springer,

100–115.

Torben Amtoft, John Hatcliff, Edwin Rodríguez, Robby, Jonathan Hoag, and David A. Greve. 2008. Specification and

Checking of Software Contracts for Conditional Information Flow. In FM. Springer, 229–245.

Chris Andreae, James Noble, Shane Markstrum, and Todd Millstein. 2006. A Framework for Implementing Pluggable Type

Systems. In OOPSLA. 57–74.
Gregory R. Andrews and Richard P. Reitman. 1980. An Axiomatic Approach to Information Flow in Programs. TOPLAS 2, 1

(1980), 56–76.

Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel, Jacques Klein, Yves Le Traon, Damien

Octeau, and Patrick D. McDaniel. 2014. FlowDroid: Precise Context, Flow, Field, Object-Sensitive and Lifecycle-Aware

Taint Analysis for Android Apps. In PLDI, Vol. 49. ACM, 259–269.

Thomas H Austin and Cormac Flanagan. 2009. Efficient Purely-Dynamic Information Flow Analysis. In PLAS. ACM,

113–124.

Anindya Banerjee and David A Naumann. 2002. Secure Information Flow and Pointer Confinement in a Java-like Language..

In CSFW, Vol. 2. 253.

Gilles Barthe, Pedro R D’Argenio, and Tamara Rezk. 2004. Secure Information Flow by Self-Composition. In CSF. IEEE,
100–114.

Gilles Barthe, David Pichardie, and Tamara Rezk. 2007. A Certified Lightweight Non-Interference Java Bytecode Verifier. In

European Symposium on Programming. Springer, 125–140.
Gilles Barthe and Bernard P Serpette. 1999. Partial Evaluation and Non-Interference for Object Calculi. In FLOPS, Vol. LNCS.

Springer, 53–67.

Bernhard Beckert, Daniel Bruns, Vladimir Klebanov, Christoph Scheben, Peter H Schmitt, and Mattias Ulbrich. 2013.

Information Flow in Object-Oriented Software. In LOPSTR, Vol. LNCS. Springer, 19–37.
D Elliott Bell and Leonard J La Padula. 1976. Secure Computer System: Unified Exposition and Multics Interpretation. Technical

Report. MITRE Corp Bedford MA.

Kenneth J Biba. 1977. Integrity Considerations for Secure Computer Systems. Technical Report. MITRE Corp Bedford MA.

Joshua Bloch. 2016. Effective Java. Pearson Education India.

Stephen Chong and Andrew C Myers. 2006. Decentralized Robustness. In 19th IEEE Computer Security Foundations Workshop
(CSFW’06). IEEE, 12–pp.

Ádám Darvas, Reiner Hähnle, and David Sands. 2005. A Theorem Proving Approach to Analysis of Secure Information

Flow. In SPC, Vol. LNCS. Springer, 193–209.
Dorothy E Denning. 1976. A Lattice Model of Secure Information Flow. CACM 19, 5 (1976), 236–243.

William Enck, Peter Gilbert, Seungyeop Han, Vasant Tendulkar, Byung-Gon Chun, Landon P. Cox, Jaeyeon Jung, Patrick

McDaniel, and Anmol N. Sheth. 2014. TaintDroid: An Information-Flow Tracking System for Realtime Privacy Monitoring

on Smartphones. TOCS 32, 2, Article 5 (June 2014), 29 pages.
Andrew Ferraiuolo, Weizhe Hua, Andrew C Myers, and G Edward Suh. 2017. Secure Information Flow Verification with

Mutable Dependent Types. In DAC. IEEE, 1–6.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: December 2022.

Immutability and Encapsulation for Sound OO Information Flow Control 35

Paola Giannini, Marco Servetto, Elena Zucca, and James Cone. 2019. Flexible Recovery of Uniqueness and Immutability.

Theoretical Computer Science 764 (2019), 145–172.
Joseph A Goguen and José Meseguer. 1982. Security Policies and Security Models. In S&P. IEEE, 11–11.
Adele Goldberg and David Robson. 1983. Smalltalk-80: The Language and its Implementation. Addison-Wesley Longman

Publishing Co., Inc.

Colin S. Gordon, Matthew J. Parkinson, Jared Parsons, Aleks Bromfield, and Joe Duffy. 2012. Uniqueness and Reference

Immutability for Safe Parallelism. 47, 10 (2012), 21–40. https://doi.org/10.1145/2398857.2384619

Jürgen Graf, Martin Hecker, and Martin Mohr. 2013. Using JOANA for Information Flow Control in Java Programs - A

Practical Guide. In Proceedings of the 6th Working Conference on Programming Languages (ATPS’13) (Lecture Notes in
Informatics (LNI) 215). Springer, 123–138.

Robert J Hall. 2005. Fundamental Nonmodularity in Electronic Mail. Automated Software Engineering 12, 1 (2005), 41–79.

Tobias Hamann, Mihai Herda, HeikoMantel, Martin Mohr, David Schneider, andMarkus Tasch. 2018. A Uniform Information-

Flow Security Benchmark Suite for Source Code and Bytecode. In Nordic Conference on Secure IT Systems. Springer,
437–453.

Daniel Hedin, Arnar Birgisson, Luciano Bello, and Andrei Sabelfeld. 2014. JSFlow: Tracking Information Flow in JavaScript

and Its APIs. In SAC (Gyeongju, Republic of Korea). ACM, 1663–1671.

Wei Huang, Yao Dong, and Ana Milanova. 2014. Type-based Taint Analysis for Java Web Applications. In FASE (LNCS,
Vol. 8411). Springer, 140–154.

Wei Huang, Ana Milanova, Werner Dietl, and Michael D Ernst. 2012. ReIm & ReImInfer: Checking and Inference of Reference

Immutability and Method Purity. ACM SIGPLAN Notices 47, 10 (2012), 879–896.
Sebastian Hunt and David Sands. 2006. On Flow-Sensitive Security Types. SIGPLAN Not. 41, 1 (Jan. 2006), 79–90.
Atsushi Igarashi, Benjamin C Pierce, and Philip Wadler. 2001. Featherweight Java: A Minimal Core Calculus for Java and GJ.

TOPLAS 23, 3 (2001), 396–450.
Limin Jia, Jassim Aljuraidan, Elli Fragkaki, Lujo Bauer, Michael Stroucken, Kazuhide Fukushima, Shinsaku Kiyomoto, and

Yutaka Miyake. 2013. Run-time Enforcement of Information-Flow Properties on Android. In European Symposium on
Research in Computer Security. Springer, 775–792.

Ralf Küsters, Tomasz Truderung, Bernhard Beckert, Daniel Bruns, Michael Kirsten, and Martin Mohr. 2015. A Hybrid

Approach for Proving Noninterference of Java Programs. In 2015 IEEE 28th Computer Security Foundations Symposium.

IEEE, 305–319.

Peixuan Li and Danfeng Zhang. 2017. Towards a Flow-and Path-Sensitive Information Flow Analysis. In CSF. IEEE, 53–67.
Luigi Logrippo. 2018. Multi-level Access Control, Directed Graphs and Partial Orders in Flow Control for Data Secrecy and

Privacy. In Foundations and Practice of Security. Springer International Publishing, 111–123.
Steffen Lortz, Heiko Mantel, Artem Starostin, Timo Bähr, David Schneider, and Alexandra Weber. 2014. Cassandra: Towards

a Certifying App Store for Android. In Proceedings of the 4th ACM Workshop on Security and Privacy in Smartphones &
Mobile Devices. 93–104.

Bertrand Meyer. 1988. Eiffel: A Language and Environment for Software Engineering. Journal of Systems and Software 8, 3
(1988), 199–246.

Ana Milanova and Wei Huang. 2013. Composing Polymorphic Information Flow Systems with Reference Immutability. In

FTfJP. ACM, Article 5, 7 pages.

Mark Samuel Miller. 2006. Robust Composition: Towards a Unified Approach to Access Control and Concurrency Control. Ph.D.
Dissertation. Johns Hopkins University, Baltimore, Maryland, USA.

Martin Mohr, Jürgen Graf, and Martin Hecker. 2015. JoDroid: Adding Android Support to a Static Information Flow Control

Tool. In Software Engineering (Workshops). Citeseer, 140–145.
Andrew C. Myers. 1999. JFlow: Practical Mostly-Static Information Flow Control. In POPL (San Antonio, Texas, USA). ACM,

New York, NY, USA, 228–241.

Andrew C Myers and Barbara Liskov. 2000. Protecting Privacy Using the Decentralized Label Model. TOSEM 9, 4 (2000),

410–442.

Adwait Nadkarni, Benjamin Andow, William Enck, and Somesh Jha. 2016. Practical DIFC Enforcement on Android. In 25th
USENIX Security Symposium (USENIX Security 16). 1119–1136.

Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. 1999. Principles of Program Analysis. Springer.
Matthew M Papi, Mahmood Ali, Telmo Luis Correa Jr, Jeff H Perkins, and Michael D Ernst. 2008. Practical Pluggable Types

for Java. In ISSTA. 201–212.
Benjamin C Pierce. 2002. Types and Programming Languages. MIT press.

Vineet Rajani, Iulia Bastys, Willard Rafnsson, and Deepak Garg. 2017. Type Systems for Information Flow Control: The

Question of Granularity. ACM SIGLOG News 4, 1 (2017), 6–21.
Vineet Rajani and Deepak Garg. 2018. Types for Information Flow Control: Labeling Granularity and Semantic Models. In

2018 IEEE 31st Computer Security Foundations Symposium (CSF). IEEE, 233–246.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: December 2022.

36 Tobias Runge et al.

Indrajit Roy, Donald E Porter, Michael D Bond, Kathryn S McKinley, and Emmett Witchel. 2009. Laminar: Practical Fine-

Grained Decentralized Information Flow Control. In Proceedings of the 30th ACM SIGPLAN Conference on Programming
Language Design and Implementation. 63–74.

Tobias Runge, Alexander Knüppel, Thomas Thüm, and Ina Schaefer. 2020. Lattice-Based Information Flow Control-by-

Construction for Security-by-Design. In FormaliSE. To appear.

Alejandro Russo and Andrei Sabelfeld. 2010. Dynamic vs. Static Flow-Sensitive Security Analysis. In CSF. IEEE, 186–199.
Andrei Sabelfeld and Andrew C. Myers. 2003. Language-Based Information-Flow Security. J-SAC 21, 1 (2003), 5–19.

Andrei Sabelfeld and David Sands. 2009. Declassification: Dimensions and Principles. Journal of Computer Security 17, 5

(2009), 517–548.

Ina Schaefer, Tobias Runge, Alexander Knüppel, Loek Cleophas, Derrick Kourie, and Bruce W Watson. 2018. Towards

Confidentiality-by-Construction. In ISoLA (LNCS, Vol. 11244). Springer, 502–515.
Vincent Simonet. 2003. Flow Caml in a Nutshell. In APPSEM-II. 152–165.
Alley Stoughton, Andrew Johnson, Samuel Beller, Karishma Chadha, Dennis Chen, Kenneth Foner, andMichael Zhivich. 2014.

You Sank My Battleship! A Case Study in Secure Programming. In Proceedings of the Ninth Workshop on Programming
Languages and Analysis for Security (Uppsala, Sweden) (PLAS’14). Association for Computing Machinery, New York, NY,

USA, 2–14.

Martin Strecker. 2003. Formal Analysis of an Information Flow Type System for MicroJava. Technische Universität München,
Tech. Rep (2003).

Qi Sun, Anindya Banerjee, and David A Naumann. 2004. Modular and Constraint-Based Information Flow Inference for an

Object-Oriented Language. In SAS, Vol. LNCS. Springer, 84–99.
Tachio Terauchi and Alex Aiken. 2005. Secure Information Flow as a Safety Problem. In SAS, Vol. LNCS. Springer, 352–367.
Thomas Thüm, Ina Schaefer, Sven Apel, and Martin Hentschel. 2012. Family-based Deductive Verification of Software

Product Lines. In GPCE. 11–20.
Marco Vassena, Alejandro Russo, Deepak Garg, Vineet Rajani, and Deian Stefan. 2019. From Fine-to Coarse-Grained

Dynamic Information Flow Control and Back. Proceedings of the ACM on Programming Languages 3, POPL (2019), 1–31.

Dennis M. Volpano, Cynthia E. Irvine, and Geoffrey Smith. 1996. A Sound Type System for Secure Flow Analysis. JCS 4, 2/3
(1996), 167–188.

Jian Xiang and Stephen Chong. 2021. Co-Inflow: Coarse-grained Information Flow Control for Java-like Languages. In 2021
IEEE Symposium on Security and Privacy (SP). IEEE, 18–35.

Danfeng Zhang, Yao Wang, G Edward Suh, and Andrew C Myers. 2015. A Hardware Design Language for Timing-Sensitive

Information-Flow Security. Acm Sigplan Notices 50, 4 (2015), 503–516.
Lantian Zheng, Stephen Chong, Andrew C Myers, and Steve Zdancewic. 2003. Using Replication and Partitioning to Build

Aecure Distributed Systems. In 2003 Symposium on Security and Privacy, 2003. IEEE, 236–250.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: December 2022.

222

A.7. Lattice-Based Information Flow Control-by-Construction
for Security-by-Design

Lattice-Based Information Flow Control-by-Construction
for Security-by-Design

Tobias Runge

TU Braunschweig

Germany

tobias.runge@tu-bs.de

Alexander Knüppel

TU Braunschweig

Germany

a.knueppel@tu-bs.de

Thomas Thüm

University of Ulm

Germany

thomas.thuem@uni-ulm.de

Ina Schaefer

TU Braunschweig

Germany

i.schaefer@tu-bs.de

ABSTRACT
Many software applications contain confidential information, which

has to be prevented from leaking through unauthorized access. To

enforce confidentiality, there are language-based security mecha-

nisms that rely on information flow control. Typically, these mech-

anisms work post-hoc by checking whether confidential data is

accessed unauthorizedly after the complete program is written.

The disadvantage is that incomplete programs cannot be inter-

preted properly and information flow properties cannot be built

in constructively. In this work, we present a methodology to con-

struct programs incrementally using refinement rules to follow

a lattice-based information flow policy. In every refinement step,

confidentiality and functional correctness of the program is guar-

anteed, such that insecure programs are prohibited by construction.

Our contribution is fourfold. We formalize refinement rules for the

constructive information flow control methodology, prove sound-

ness of the refinement rules, show that our approach is at least as

expressive as standard language-based mechanisms for informa-

tion flow, and implement it in a graphical editor called CorC. Our

methodology is also usable for integrity properties, which are dual

to confidentiality.

KEYWORDS
correctness-by-construction, information flow control, security-

by-design

ACM Reference Format:
Tobias Runge, Alexander Knüppel, Thomas Thüm, and Ina Schaefer. 2020.

Lattice-Based Information Flow Control-by-Construction for Security-by-

Design. In 8th International Conference on Formal Methods in Software Engi-
neering (FormaliSE ’20), October 7–8, 2020, Seoul, Republic of Korea. ACM,

New York, NY, USA, 11 pages. https://doi.org/10.1145/3372020.3391565

1 INTRODUCTION
Today, customers have a high demand for secure software. An im-

portant security property of data is confidentiality, which means

FormaliSE ’20, October 7–8, 2020, Seoul, Republic of Korea
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.

This is the author’s version of the work. It is posted here for your personal use. Not

for redistribution. The definitive Version of Record was published in 8th International
Conference on Formal Methods in Software Engineering (FormaliSE ’20), October 7–8,
2020, Seoul, Republic of Korea, https://doi.org/10.1145/3372020.3391565.

that no confidential information is leaked to unauthorized or ex-

ternal systems. Another important property is integrity to ensure

that critical software is functionally correct and is not influenced

by other untrusted software parts. To improve the process of de-

veloping secure software, security-by-design techniques have been

proposed. These techniques provide guidelines for the overall de-

velopment process to design and implement secure software. For

example, a well-known process is the Security Development Life-
cycle (SDL) by Microsoft [16]. At implementation level, SDL relies

on post-hoc program analysis techniques (i.e., techniques applied

after the creation of the program) to ensure confidentiality and

integrity [13].

The information flow between variables on source code level is

mostly analyzedwith language-based static analysis techniques [28].

Such techniques specify security policies to determine the permitted

information flow between variables in the program. For example,

we may define a policy with two confidentiality levels, high and

low, arranged in a lattice where variables are categorized into either

of the two. To prevent information leaks, the lattice-based informa-

tion flow policy prohibits a flow from high to low variables. The

same applies for trusted and untrusted variables with a policy that

prohibits an information flow from untrusted to trusted variables

(i.e., to preserve integrity). As shown by Biba [12], integrity can be

seen as a dual to confidentiality, which means that either of them

can be checked with the same information flow analysis techniques.

Standard information flow analyses are based on security types

systems [28, 31]. Such a type system assigns to every variable and

expression an explicit security type. A set of typing rules describes

the allowed information flow and discards programs that violate

the security policy.

In contrast to post-hoc analyses that cannot ensure informa-

tion flow properties during program construction, but only check

programs after their creation, we propose to develop programs

that are secure by construction analogous to the correctness-by-

construction (CbC) approach for functional correctness [18]. Guided

by a pre-/postcondition specification, an abstract program is re-

fined stepwise to a concrete implementation. By applying a sound

set of refinement rules, the resulting program is correct by con-

struction. In this paper, we propose Information Flow Control-by-

Construction (IFbC) to create functionally correct programs, which

also satisfy a lattice-based information flow policy for capturing

confidentiality and integrity. The information flow policy can be

1

FormaliSE ’20, October 7–8, 2020, Seoul, Republic of Korea Tobias Runge, Alexander Knüppel, Thomas Thüm, and Ina Schaefer

specified in any bounded upper semi-lattice (i.e., security levels

are arranged in a partially ordered set representing the allowed

direction of information flow).

In every step of the program construction in IFbC, the security

levels associated with variables are updated according to our refine-

ment rules, and therefore prevent a violation of the information

flow policy. Furthermore, the current status of all variables can be

observed in (partial) programs after each refinement step. To give

programmers more flexibility while constructing a program, we

allow to reverse the information flow in appropriate cases. We intro-

duce a declassify operation, which can be used if the programmer

encrypts or otherwise disguises the confidential information. As

the refinement rules also take functional correctness into account,

programmers using our methodology create programs that meet

two properties, namely functional correctness and security.

In this paper, we demonstrate the strengths of a constructive

methodology to develop secure and correct programs. We give

two examples to emphasize the advantage of ensuring confiden-

tiality and integrity throughout the development process, rather

than having to check this property afterwards. With a sound set of

refinement rules, developers can never construct an insecure pro-

gram, contrary to security type systems that only discard insecure

programs. Therefore, IFbC can reduce the post-hoc analysis effort

or even make it obsolete, as developers are guided by constructive

rules to an already secure program [32]. The IFbC approach con-

tributes to the security-by-design paradigm to close the gap of a

constructive process at implementation level. It can be used sup-

plementary to existing processes and analyses for security-critical

programs during development.

IFbC presented in this paper extends C14bC by Schaefer et al. [29].

C14bC uses a confidentiality specification with only two levels,

high and low, and refinement rules to ensure the confidentiality of

programs written in a simple while-language without method calls.

Moreover, Schaefer et al. [29] discussed potential tool support for

this approach. Finally, we list the four contributions of this work.

• We create an IFbC methodology to construct functionally

correct and secure programs regarding a lattice-based con-

fidentiality and integrity policy. Confidentiality, integrity,

and functional correctness are ensured simultaneously while

constructing the program. The underlying language of IFbC

is also extended by method calls to support more meaningful

programs.

• We prove the soundness of the proposed refinement rules,

such that a program constructed by IFbC never violates our

information flow policy.

• We show that IFbC is at least as expressive as a type sys-

tem for lattice-based information flow control to justify that

IFbC can be used supplementary in a program development

process.

• We implement the IFbC methodology in a tool called CorC

and discuss applicability of our approach.

2 FOUNDATIONS
In this section, we provide the background on correctness-by-

construction and information flow in order to introduce IFbC in

{P} S {Q} 𝑐𝑎𝑛 𝑏𝑒 refined 𝑡𝑜

Skip : {P} skip {Q} iff P implies Q (1)

Assignment : {P} x := E {Q} iff P implies Q[x := E] (2)

Composition : {P} S1 ; S2 {Q} iff there is M such that (3)

{P} S1 {M} and {M} S2 {Q}
Selection : {P} if G then S1 else S2 fi {Q} iff (4)

{P ∧ G} S1 {Q} 𝑎𝑛𝑑{P ∧ ¬G} S2 {Q}
Repetition : {P} do G → S od {Q} iff there is an (5)

invariant I and a variant V such that

(P implies I) and (I ∧ ¬G implies Q)
and {I ∧ G} S {I} and
{I ∧ G ∧ V = V0} S {I ∧ 0 ≤ V < V0}

Weaken pre : {P′} S {Q} iff P implies P′ (6)

Strengthen post : {P} S {Q′} iff Q′ implies Q (7)

Method call : {P} M(a1 . . . an) {Q} for a method (8)

{P′} M(z1 . . . zn) {Q′} iff P = P′[zi\ai]

and Q = Q′[zoldi , zi\aoldi , ai]

Figure 1: Correctness-by-construction refinement rules [18]

the subsequent section. We also introduce lattices as underlying

mathematical structure for lattice-based information flow policies.

2.1 Functional Correctness-by-Construction
Correctness-by-construction (CbC) [18] is an approach to construct

programs guided by a pre-/postcondition specification. CbC starts

with an abstract Hoare triple {P} S {Q} consisting of a precondition
P, an abstract statement S, and a postcondition Q. This triple is

successively refined using a set of refinement rules to a concrete

implementation, which satisfies the specification. For simplicity in

this paper, we consider the guarded command language introduced

by Dijkstra [15]. Each of the refinement rules takes an abstract state-

ment and replaces it with a more concrete guarded command lan-

guage statement. Every refinement rule preserves the correctness

of the program if a discharged side condition is proven correct [25].

The eight considered refinement rules are shown in Fig. 1. As

concrete instructions, we have skip, assignment, and method call
with call by value-result. Composition is used for a sequence of

statements. Selection and repetition are used for the control flow

of the program. In Fig. 1, the side conditions for applicability of a

refinement rule are shown. For example, when refining to a method

call, it has to be proven that the pre-/postcondition specification of

the refined triple is equal to the specification of the called method.

This refinement rule also requires that the parameters of themethod

are correctly passed where ai are the actual parameters and zi are
the formal parameters. The parameters with superscript old refer

to parameters before the execution of the method.

2

Lattice-Based Information Flow Control-by-Construction for Security-by-Design FormaliSE ’20, October 7–8, 2020, Seoul, Republic of Korea

Private
Front

Private
Back

Secret
Front

Secret
Back

Public
Top

Secret

Figure 2: Example of a lattice of confidentiality levels

2.2 Information Flow Control
Information flow control mechanisms [28, 31] are used to specify

programs with respect to a security policy. The policy can establish

confidentiality of processed information to prevent leaks of unau-

thorized information, or it can guarantee integrity of the processed

information by ensuring that trusted parts are not influenced by

untrusted parts. Both properties can be analyzed by considering

the information flow, as confidentiality can be modeled as dual to

integrity [12, 28]. Confidentiality requires that information flow to

specific destinations is prevented. Similarly, integrity requires that

a flow from specific sources is prevented to ensure that the system

is not harmed by untrusted sources. Integrity also requires a func-

tionally correct program because incorrect methods can violate the

integrity by computing wrong data. Correctness can be achieved

with the presented CbC approach of Section 2.1.

To give an example of a security policy for confidentiality, we

consider a company with two different departments. A front office

that should know personal information of customers (e.g., their

name and age) and a back office that should know critical financial

information of customers. The back office does not know other

personal information to make unbiased decisions. The front office

on the other hand should treat the customers without being influ-

enced by their financial status. To establish this policy, a lattice as in

Fig. 2 can be used. This lattice also includes Public data for general
access, and Top Secret data for access by the management. The

front and back office are also divided into two levels, Private and

Secret, for data with different confidentiality levels. The arrows

in the graph show the allowed flow directions.

Lattice. Bell, LaPadula [11], and Denning [14] were the first

to arrange confidentiality levels in a lattice. This arrangement of

confidentiality levels in our example fulfills the requirements of a

bounded upper semi-lattice. A lattice is a structure ⟨𝐿, ≤, 𝑙𝑢𝑏,⊤,⊥⟩
where L is a set of levels and ≤ is a partial order (e.g., Public ≤
Private Front). The relation operator is reflexive, antisymmetric,

and transitive, but per definition not every pair of elements need to

be comparable. An upper bound in the lattice is defined as follows:

for a set of elements 𝑋 ⊆ 𝐿, an upper bound 𝑦 exists if ∀𝑥 ∈ 𝑋 :

𝑥 ≤ 𝑦. The element 𝑢 is the least upper bound (𝑙𝑢𝑏 : P(𝑋) → 𝑋),

of all 𝑥 ∈ 𝑋 if 𝑢 ≤ 𝑦 for all upper bounds 𝑦. We restrict the lattice

to be a bounded upper semi-lattice, which has the greatest element

⊤ and the least element ⊥, (i.e., ⊥ ≤ 𝑎 ≤ ⊤ for every 𝑎 ∈ 𝐿). For

every combination of levels, a unique least upper bound (𝑙𝑢𝑏) must

exist. The 𝑙𝑢𝑏 is used to calculate the least security level such that

violations of the information flow policy are prevented (e.g., that

no financial information flows to a member of the front office).

We distinguish between two information flow types. Information

can flow directly through an assignment statement, which assigns

(1) ⊢ x : 𝜏 var (2) 𝜏 ≤ 𝜏 ′

⊢ 𝜏 ⊆ 𝜏 ′
(3) ⊢ p : 𝜌 ⊢ 𝜌 ⊆ 𝜌 ′

⊢ p : 𝜌 ′

(4) ⊢ 𝜏 ⊆ 𝜏 ′

⊢ 𝜏 ′ cmd ⊆ 𝜏 cmd
(5) ⊢ x : 𝜏 var ⊢ e′ : 𝜏

⊢ x := e′ : 𝜏 cmd

(6) ⊢ c : 𝜏 cmd ⊢ c′ : 𝜏 cmd
⊢ c; c′ : 𝜏 cmd

(7) ⊢ e : 𝜏 ⊢ c : 𝜏 cmd
⊢ while e do c : 𝜏 cmd

(8) ⊢ e : 𝜏 ⊢ c : 𝜏 cmd ⊢ c′ : 𝜏 cmd
⊢ if e then c else c′ : 𝜏 cmd

Figure 3: Security type system [31]

data to another variable. Here, we have to ensure that the assigned

variable gets a security level of at least the 𝑙𝑢𝑏 of all variables

used in the expression to prevent a leak. Information can also flow

indirectly through conditional or loop statements. If confidential

data is used in a guard of a conditional statement, the chosen branch

gives information about the variables in the guard. Therefore, the

confidentiality level in the branches must be the least upper bound

of the levels in the guards, too.

Security Type System. A security type system [28] ensures the

compliance of a program with an information flow policy. A set of

typing rules determine the allowed information flow and discard

programs, which violate the security policy. An excerpt of a type

system by Volpano et al. [31] is shown in Fig. 3. Here, we have

security levels 𝜏 that are arranged in a lattice 𝐿 ⟨𝐿, ≤⟩ with 𝜏 ∈ 𝐿.

The language consists of statements c that are typed with 𝜏 𝑐𝑚𝑑 ,

expressions e that are typed with a security level 𝜏 , and variables x
that are typed with 𝜏 𝑣𝑎𝑟 (Rule 1). The typing of expressions should

prevent a leak through direct information flow, and the typing of

statements is used for the indirect information flow. Variables are

expressions. Expressions and statements are both phrases p. The
different types 𝜏 𝑐𝑚𝑑 , 𝜏 𝑣𝑎𝑟 , and 𝜏 are all phrase types 𝜌 . The partial

order of confidentiality levels (≤) is extended to a subtype relation

⊆ (rules 2–4) to use subtyping in the other typing rules 5–8. Typ-

ing Rule 5 shows a secure assignment. To assign expression e′ to
x, both expressions must agree on their security level. Through

subtyping (2–4), an assignment from a lower to a higher security

level is allowed. The rules 6–8 describe the standard program flow

constructs for sequence, conditional, and repetition. Here, the secu-

rity levels of the commands c, c′, and guards e have to be equal or

subtyping has to be used.

3 INFORMATION FLOW
CONTROL-BY-CONSTRUCTION

To motivate the IFbC approach, we give two examples. The first

example creates a confidential program, and the second example

uses an information flow policy to ensure integrity of a program.

Auction Example for Confidentiality. To illustrate IFbC for con-

fidentiality, we construct a program for an auction. The input is

an array of bids for an item, and the goal is to find the maximum

bid that wins the auction. The array of bids is traversed to find

this maximum, which is published. We assume three security levels

public, private, and secret with public < private < secret
and each variable is labeled with one of these security levels.

3

FormaliSE ’20, October 7–8, 2020, Seoul, Republic of Korea Tobias Runge, Alexander Knüppel, Thomas Thüm, and Ina Schaefer

1 pre: publishBid = 0
2 post: \forall int x; ((x >= 0
3 & x < bids.length)
4 -> (publishBid >= bids[x]))
5 void auction(private int[] bids,
6 public int publishBid) {
7 public int i = 0;
8 secret int highestBid = 0;
9 do (i < bids.length) {
10 if (highestBid < bids[i]) {
11 highestBid = bids[i];
12 else {
13 skip
14 } fi
15 i = i + 1;
16 } od
17 publishBid = declassify(highestBid);
18 }

Listing 1: Program of the auction example

The auction method is specified such that it gets as input a

private array bids and a public variable publishBid (pB). The
method sets pB to the maximum bid of the auction. In IFbC, param-

eters are passed by value-result. The security levels of other local

variables used in the code are not specified yet. If needed, program-

mers can add additional variables with an initially chosen security

level while constructing the program, where the resulting security

level of the variables can be changed in the program to prevent

leaks. Additionally, a functional specification of the program can be

given to construct a functionally correct program. The refinement

rules of Fig. 1 are used to guarantee the functional correctness.

Simultaneously, refinement rules of IFbC are used to ensure the

specified confidentiality policy.

To construct the program with IFbC, we start with a provided

IFbC triple {Vpre, P} S {Vpost , Q}[𝜂]. This specification indicates

the security levels of variables before (labeling function Vpre
) and

after (Vpost
) program execution. An instance would be the specifi-

cation of the auction problem as above: Vpre,Vpost
:= public pB,

private bids. The security context 𝜂 is used to reason about in-

direct information flow. It tracks the security level of guards used

in conditional or loop statements. Furthermore, the triple includes

the abstract statement S that is refined to a concrete program. The

functional specification is provided as logical precondition P and
postcondition Q (cf. pre and post in Listing 1). In the following, we

construct the program and refer to the functional refinement rules

that are applied. By refining the program, we can also guarantee

that the security specification is met by construction.

In Fig. 4, we show the refinement steps for the auction example in

a graphical notation. Here, we omit the functional specification to fo-

cus on the information flow. The postcondition contains the public
variable publishBid (indicated by the predicate public(pB) in the

graphic), the private variables bids and i (a control variable of

the loop), and the secret variable highestBid (hB) (a temporary

variable for the maximum bid). The precondition specifies that

publishBid is public and bids has a private security level. The

additional variables i and hB, which do not occur in the specifi-

cation above, are added by the programmer while constructing

S

{public(i,pB) private(bids)
 secret(hB)}[public]

 i = 0; hB = 0;
{public(pB) private(bids,i)

 secret(hB)}[public]

 do i < bids.length → RS od pB = declassify(hB);

{public(i,pB) private(bids)
 secret(hB)}[private]

 i = i + 1; if hB < bids[i] → S1 else S2 fi

 hB = bids[i]; skip

Ref(1)

Ref(2) Ref(3)

Ref(5)Ref(4)

Ref(6) (private context)

Ref(7) Ref(10)

Ref(8) (secret context) Ref(9) (secret context)

{public(pB) private(bids)}
{public(pB) private(bids,i)

secret(hB)}[public]

S1 S2

S22S21

RS1 RS2

Figure 4: Refinement steps for the auction example

the program. Their resulting confidentiality levels are determined

through the application of the refinement rules.

To construct the algorithm as in Listing 1, we want to divide the

problem into three parts, an initialization of some temporary vari-

ables, the loop through the array of bids to search for the highest

bid, and the assignment of the highest bid to the public variable pB.
The first split into the initialization and the rest of the program is

done with Refinement (1). It introduces a composition statement (cf.

Rule 3 in Fig. 1), splitting the problem in two abstract subproblems

S1 and S2 with an intermediate specification, which is calculated

by IFbC while refining the program. The intermediate specification

presents the security level of variables between statements.

In Refinement (2), the initialization of the temporary variables

is done with the assignment statement i = 0; hB = 0; (cf. Rule 2,
indeed it is a multi-step refinement with Rule 3 and 2). The state-

ment initializes i as public and highestBid as secret variable, as
declared by the programmer. In the declarations, the variables are

initially labeled by the programmer, and further refinement rules

ensure that these labeled variables are correctly adjusted during

the refinements. In the postcondition of statement S2, which is the

postcondition of the starting triple, the variable i has a private se-
curity level. Here, we can see that the security level of i is updated

from public to private in the program to prevent a leak.

In Refinement (3), we further split the second part of the program

with the composition rule to iterate through the array of bids first,

and then, to assign the highest bid to a public variable with the

use of a declassify operation. Refinement (5) assigns the highest bid

and is explained after the refinement of the loop.

Refinement (4) creates the loop to iterate through the array

of bids searching for the maximum as long as the control vari-

able i is smaller than the length of the array (cf. Rule 5 for func-

tional correctness). As the variable bids in the guard of the loop

(i < bids.length) has a private security level, the security con-

text of the loop body has to be increased to private to prevent leaks
through indirect information flow. That means, sub-statements of

the repetition can only assign information to variables of at least

the security level of the new security context. For example, if we

would assign to a public variable in the loop body, an attacker

4

Lattice-Based Information Flow Control-by-Construction for Security-by-Design FormaliSE ’20, October 7–8, 2020, Seoul, Republic of Korea

could deduce that the guard was evaluated to true by reading that

public variable (e.g., bids.length is bigger than i).
The refinements (6)–(10) create the loop body which compares

the next element of the arraywith the current highest bid. If the next

element is greater, we update the highest bid. Refinement (6) splits

the loop bodywith a composition into a check of the next bid and the

increment of the loop variable. The refinements (7)–(9) establish the

selection to check whether the next bid is higher than the current

highest bid. As hB is used in the guards, the security context inside

the selection statement is increased to secret. In Refinement (8),

we assign a new highest bid to our variable (hB = bids[i];). As
hb is already secret, the security level stays the same, otherwise

the security level of the variable has to be increased to secret
because of the secret security context. In the case that the next

bid is smaller or equal to the highest bid, Refinement (9) introduces

a skip statement to not alter the program state.

The assignment in Refinement (10) increments the loop counter.

Here, we increase the security level of i through the private se-
curity context. The security level of the public variable i is set

to private. This increase of the security level propagates through

the program, and therefore the security level of i is private in the

initial triple of the program.

In Refinement (5), we construct the last part of the program, the

assignment to the variable pB. Normally, by assigning secret data

to a public variable, the public security level has to be increased

to secret. This prevents a leak through direct information flow, as

secret data would be accessible through a public variable. With

a declassify operation, programmers can prevent the increase of

the security level (e.g., if they are sure that the confidential data is

allowed to be published, or the data is encrypted beforehand).

Banking Example for Integrity. In Fig. 5, we show a second exam-

ple demonstrating how IFbC works for integrity. A user withdraws

money from a bank account and the balance should be updated if

the withdrawal is trustworthy. In the other case, the balance is not

updated to secure the integrity of the bank. The precondition of the

program specifies that it gets two trusted variables balance and
checked (checked is used as parameter to return the result of the

method), and an untrusted variable withdraw as input. The post-
condition specifies that these security levels must not be altered.

The allowed flow is from trusted to untrusted. The complete

program with a functional specification is shown in Listing 2. The

balance is reduced by the value of withdraw if the value of vari-
able checked is true. In the other case, the balance is not altered.
The Boolean variable checked is set by a method call to check.

To construct the program, we use a composition Refinement (1)

to split the problem into a check whether the withdrawal is allowed

and the update of the balance variable. Refinement (2) introduces

a method call to check whether the system can trust the input

variable withdraw. If this is the case, the variable checked is set to

a true value. When calling the method, all parameters are passed

by value-result, and therefore their security level can be changed.

For example, the method check could be specified that it returns

balance with an untrusted security level, as we allow an update

of the security levels from trusted to untrusted. Then, the bank
method would have to proceed with an untrusted variable. In our

case, the security levels stay the same because we assume that

S

{trusted(balance, checked)
untrusted(withdraw)}[trusted]

check(balance, withdraw, checked); if checked → S1 else S2 fi

balance = declassify(balance – withdraw); skip

Ref(1)

Ref(2) Ref(3)

Ref(5)Ref(4)

{trusted(balance, checked)
untrusted(withdraw)}

{trusted(balance, checked)
untrusted(withdraw)}[trusted]

S1 S2

Figure 5: Refinement steps for the banking example

1 pre: true
2 post: (! checked -> balance ==
3 \old(balance)) & (checked -> balance
4 == \old(balance) - withdraw);
5 void bank(trusted int balance,
6 trusted boolean checked,
7 untrusted int withdraw) {
8 check(balance, withdraw, checked);
9 if (checked) {
10 balance = declassify(balance - withdraw);
11 } else {
12 skip
13 } fi
14 }

Listing 2: Program of the banking example

the method check is specified that way. To verify that the method

check fulfills its specification, it would be created with IFbC.

Refinements (3)–(5) introduce the selection statement to set the

new balance of the bank account. As a trusted variable is used in

the guard, the security context stays the same. With the declassify

operation, we can calculate the new balance in the then-branch.

Without declassify, it is not permitted to assign an untrusted value
to the trusted variable balance. In the else-branch, a skip state-

ment is used that does not alter the program.

For clarity, we give individual examples for confidentiality and

integrity, but both policies can be ensured in the same program

simultaneously by construction, as the IFbC refinement rules oper-

ate on any lattice of security levels. Practically, the variables would

be labeled with a confidentiality and an integrity level, which are

updated individually. Another possibility is to create the power

set of both lattices and label every variable with a combination of

security levels [31].

4 FORMALIZING INFORMATION FLOW
CONTROL-BY-CONSTRUCTION

In this section, we formalize IFbC for the construction of function-

ally correct and secure programs. With this approach, programmers

can incrementally construct programs, where the security levels

are organized in a lattice structure to guarantee a variety of con-

fidentiality and integrity policies. IFbC defines seven refinement

rules to create secure programs. As these rules are based on re-

finement rules for correctness-by-construction, programmers can

create programs that are functionally correct and secure.

5

FormaliSE ’20, October 7–8, 2020, Seoul, Republic of Korea Tobias Runge, Alexander Knüppel, Thomas Thüm, and Ina Schaefer

𝑉𝑎𝑟𝑠 Set of program variables

S Statement (from the GCL [15])

x ∈ 𝑉𝑎𝑟𝑠 Program variable

E Expressions over the program

variables in 𝑉𝑎𝑟𝑠

𝑣𝑎𝑟𝑠 (E) ⊆ 𝑉𝑎𝑟𝑠 Set of variables occurring in

expression 𝐸

𝐿 Bounded upper semi-lattice (𝐿, ≤)
of security levels

Vpre,Vpost , 𝑙 : 𝑉𝑎𝑟𝑠 → 𝐿 Labeling function to map a

variable to a security level

𝑙𝑢𝑏𝐿 : P(𝐿) → 𝐿 Least upper bound of the security

levels in 𝐿

𝜂 ∈ 𝐿 Security context

{Vpre, P} S {Vpost , Q}[𝜂] IFbC triple

Figure 6: Basic notations for IFbC

4.1 Refinement Rules for Program
Construction

To formalize the IFbC rules, we introduce in Fig. 6 basic notations for

variables and security levels, which are used in the refinement rules.

Every variable of the program is associated to one security level.

Levels are arranged in a bounded upper semi-lattice with one great-

est and one least level. The functional and security specification of a

program is defined by an IFbC triple {Vpre, P} S {Vpost , Q}[𝜂]. As
a Hoare triple, the IFbC triple consists of a precondition {Vpre, P},
an abstract statement S, and a postcondition {Vpost , Q}. The func-
tional specification is declared in the logical formulas P and Q. In the
following, we focus on security, so the functional specification will

be omitted. The labeling functionVpre
assigns security levels to all

variables before the statement S is executed andVpost
assigns secu-

rity levels to all variables after the execution. The label 𝜂 is used to

capture the security context of the IFbC triple. This security context

is used to reason about implicit information flow by tracking the

security levels of guards in conditional or loop statements. The

refinement rules replace an abstract statement by a more concrete

statement. In the refined triple, the security levels of the variables

are updated to implement the security policy of the program.

Skip. The first IFbC rule introduces a skip statement, which does

not alter the program. It refines an IFbC triple {Vpre} S {Vpost }[𝜂]
to a skip. The rule is applicable if the variables and their associated

security levels stay the same.

Rule 1 (Skip).

{Vpre} S {Vpost }[𝜂] is refinable to {Vpre} skip {Vpost }[𝜂] iff
Vpost (x) = Vpre (x) for all x ∈ 𝑉𝑎𝑟𝑠 .

Assignment. With the assignment rule, an abstract statement S
is refined to an assignment of the form x := E. This represents

explicit information flow from the variables in the expression E to

the variable x on the left-hand side. This direct flow can cause a

leak if data with a higher security level is assigned to x. We can

prevent this leak by enforcing the security level of x.
To apply the refinement, the labeling functionVpost

has to be

altered. The new security level of the variable x is determined

by the least upper bound of the security levels of all variables in

the expression, the security level of the context to consider the

indirect information flow and the security level of x itself. This new
security level is assigned to x in the labeling function Vpost

in the

postcondition of the IFbC triple. So, the only difference ofVpre
and

Vpost
is the update of the security level of variable x.

Rule 2 (Assignment).

{Vpre} S {Vpost }[𝜂] is refinable to {Vpre} x := E {Vpost }[𝜂] iff
Vpost (y) = Vpre (y) for all y ∈ 𝑉𝑎𝑟𝑠 \ {𝑥}, and Vpost (x) =

𝑙𝑢𝑏 ({Vpre (v) | v ∈ 𝑣𝑎𝑟𝑠 (E)} ∪ {Vpre (x), 𝜂}).

Composition.With the composition rule, an abstract IFbC triple

{Vpre} S {Vpost }[𝜂] is refined to two triples {Vpre} S1 {V′}[𝜂]
and {V′} S2 {Vpost }[𝜂], which are executed sequentially. Both

triples can be further refined. To apply the rule, a labeling function

V′
is introduced, which assigns a security level to all program

variables after the execution of the first statement and before the

execution of the second statement. The exact labeling function

V′
is determined by refining S1 and S2 to concrete statements.

The labeling functionsVpre
andVpost

and the security context 𝜂

are not changed. For all variables, the security level can only be

increased by the program. To capture a reverse information flow in

specific cases, the declassify operation and new variables are used.

Rule 3 (Composition).

{Vpre} S {Vpost }[𝜂] is refinable to {Vpre} S1; S2 {Vpost }[𝜂] iff
there exists a labeling function V ′

: 𝑉𝑎𝑟𝑠 → 𝐿 such that {Vpre} S1
{V′}[𝜂] and {V′} S2 {Vpost }[𝜂] and for all v ∈ 𝑉𝑎𝑟𝑠 : Vpre (v) ≤
V′ (v) ≤ Vpost (v).

Selection. The selection rule refines an abstract statement S to an

if statement if(G) → S1 else S2 fi. Here, an implicit leak can

occur as the selected branch reveals information about the guard.

To prevent this, the statements in the branches have to be labeled

with at least the security level of the guard. As selection statements

can be nested, a security context is used to track the current security

level that is needed to prevent an implicit leak.

By applying the refinement rule, the security context of the sub-

statements have to be adjusted to the least upper bound of the

security level of the if-guard and the security context of the outer

selection statement. Both sub-statements with the new security

context can be further refined.

Rule 4 (Selection).

{Vpre} S {Vpost }[𝜂] is refinable to {Vpre} if G → S1 else S2 fi
{Vpost }[𝜂] iff {Vpre} S1 {Vpost }[𝜂 ′] and {Vpre} S2 {Vpost }[𝜂 ′]
with 𝜂 ′ = 𝑙𝑢𝑏 ({Vpre (v) | v ∈ 𝑣𝑎𝑟𝑠 (G)} ∪ {𝜂}).

Repetition. The repetition rule introduces a classic while loop. By

executing the loop, information about the guard is revealed. To

prohibit this indirect leak, the security context of the inner loop

statement is adjusted to the least upper bound of the security levels

of the loop-guard and the security context of the outer repetition

statement.

Rule 5 (Repetition).

{Vpre} S {Vpost }[𝜂] is refinable to {Vpre} do G → S1 od {Vpost }
[𝜂] iff {Vpre} S1 {Vpost }[𝜂 ′] with𝜂 ′ = 𝑙𝑢𝑏 ({Vpre (v) | v ∈ 𝑣𝑎𝑟𝑠 (G)}
∪{𝜂})

6

Lattice-Based Information Flow Control-by-Construction for Security-by-Design FormaliSE ’20, October 7–8, 2020, Seoul, Republic of Korea

4.2 Method Call Rule
In a method call, all variables are passed by value-result and appear

in the specification of the method. The security level of these passed

variables may change, while the security level of other variables

remains the same. By calling the method, the parameters of the

caller are assigned to the parameters of the called method and the

reverse assignment is done when returning from the method. It has

to be ensured that in the beginning the security levels of variables

of the called method are higher than or equal to the security levels

of variables of the caller to prevent flows from higher to lower

security levels. It also has to be ensured that the security levels in the

postcondition of the caller are higher than or equal to the security

levels of the called method for the same reason. For example, a

secure value of the method has to be assigned to a variable with at

least this security level in the program of the caller. Additionally,

the called method has to satisfy its specification, which can be

shown in a separate IFbC refinement.

Rule 6 (Method Call).

{Vpre} S {Vpost }[𝜂] is refinable to {Vpre} M(a1, . . . , an) {Vpost }[𝜂]
iff for a method {Vpre

call } M(z1, . . . , zn) {V
post
call }[𝜂] and for all param-

eters: Vpre (ai) ≤ Vpre
call (zi) ∧ Vpost

call (zi) ≤ Vpost (ai) where ai
are the actual parameters and zi are the formal parameters.

4.3 Declassification
With our information flow policy, we are not allowed to assign an

expression with a higher security level to a variable with a lower

security level without increasing the security level of the variable.

This restricts the possibility to develop meaningful programs; in

some cases the information flow from a more secure variable to a

less secure one should be possible. For example, if a password is

saved into a secure variable, an encrypted or hashed version of the

password should be assignable to a less confidential variable. A de-

classification operator [22, 33] can be used to allow the assignment,

but it should only be used if the programmer is sure that no secure

information is leaked.

The declassification rule is a specialized assignment rule, where

an expression E assigned to variable x is surrounded by the declas−
sify operator. With this rule, the security level of the assigned

variable is only set to the least upper bound of its security level and

the security context. The difference to the standard assignment rule

is that the security levels of variables of the assigned expression are

not used to determine the new security level. The declassification

refinement rule is only meaningful if the assigned expression would

increase the security level of the assigned variable. If the security

levels of all variables of the expression are lower than the security

level of the assigned variable, the standard assignment rule and the

declassification rule behave the same.

Rule 7 (Declassification Assignment).

{Vpre} S {Vpost }[𝜂] is refinable to {Vpre} x := declassify(E)
{Vpost }[𝜂] iff Vpost (y) = Vpre (y) for all y ∈ 𝑉𝑎𝑟𝑠 \ {𝑥}, and
Vpost (x) = 𝑙𝑢𝑏 ({Vpre (x), 𝜂}).

5 PROOF OF SOUNDNESS AND
EXPRESSIVENESS OF IFBC

We want to ensure that programs constructed with IFbC are secure.

We assume that declassify is correctly used by the programmer

because IFbC can detect the use of declassify, but it can not prevent

an inappropriate application. In the following, we prove soundness

of our IFbC rules.

Definition 1 (Secure program).

Let S be an IFbC program and {Vpre} x := E {Vpost }[𝜂] be an arbi-
trary IFbC triple in program S. Moreover, let G be the (possibly empty)
set of all defined guards along the refinements from the root to that
triple (i.e., in conditional statements and loops). We say that program
S is secure (denoted by 𝑠𝑒𝑐𝑢𝑟𝑒 (S)) iff for all such triples the following
two conditions hold:

∀v ∈ 𝑣𝑎𝑟𝑠 (E) : Vpost (x) ≥ Vpre (v) (No direct leak)
∀v ∈ 𝑣𝑎𝑟𝑠 (G) : Vpost (x) ≥ Vpre (v) (No indirect leak)

The variable x must have a security level that is greater than or

equal to all security levels of variables that are in the expression E to
prevent an assignment of secure information to an insecure variable.

Indirect information flow leaks are prevented if no information can

be deduced by analyzing the guards of conditional statements or

loops. The variable x must have at least the security level of all

guards used in the refinement branch.

To verify the soundness of IFbC, we start with a lemma to reason

about indirect information flow. By assigning an expression E to

a variable x, we know that x has at least the security level of the

security context 𝜂 that captures the current security level to prevent

indirect leaks (i.e., 𝜂 is used to track the security levels of guards

used in the refinement branch).

Lemma 1 (Confinement).

Let {Vpre} x := E {Vpost }[𝜂] be an IFbC triple, thenVpost (x) ≥ 𝜂.

Proof. Confinement is proven by the definition of the refine-

ment Rule 2 (Assignment). The new security level of x is com-

puted by Vpost (x) = 𝑙𝑢𝑏 ({Vpre (v) | v ∈ 𝑣𝑎𝑟𝑠 (E)} ∪ {Vpre (x), 𝜂}),
and therefore Vpost (x) ≥ 𝜂 by the definition of the least upper

bound. □

Soundness. With this lemma, we can prove the soundness theo-

rem, which states that a program is secure, if it is constructed using

our refinement rules.

Theorem 1 (Soundness).

If an IFbC triple {Vpre} S {Vpost }[𝜂] is refined to {Vpre} C {Vpost }[𝜂]
with the IFbC refinement rules without declassify, and C is a concrete
program, then 𝑠𝑒𝑐𝑢𝑟𝑒 (C) holds.

Proof. We prove the soundness with structural induction. Skip,
assignment, and method call are the basis steps because they are

the leaves of the refinement tree, and selection, repetition, and com-
position are proven in the induction step.

Induction Base:
• Assignment: {Vpre} S {Vpost }[𝜂] is refined to {Vpre} x := E
{Vpost }[𝜂]. By using the assignment rule, the new security level

of x isVpost (x) = 𝑙𝑢𝑏 ({Vpre (v) | v ∈ 𝑣𝑎𝑟𝑠 (E)} ∪ {Vpre (x), 𝜂}).
We have to show the absence of direct and indirect information

flow leaks.

7

FormaliSE ’20, October 7–8, 2020, Seoul, Republic of Korea Tobias Runge, Alexander Knüppel, Thomas Thüm, and Ina Schaefer

– Case direct information flow: We have to ensure that ∀v ∈
𝑣𝑎𝑟𝑠 (E) : Vpost (x) ≥ Vpre (v). The assignment rule sets the se-

curity level of x at least to 𝑙𝑢𝑏 ({Vpre (v) | v ∈ 𝑣𝑎𝑟𝑠 (E)}). With

the definition of 𝑙𝑢𝑏, we know that ∀v ∈ 𝑣𝑎𝑟𝑠 (E) : Vpost (x) ≥
Vpre (v), and therefore no leaks can occur.

– Case indirect information flow: We have to ensure that ∀v ∈
𝑣𝑎𝑟𝑠 (G) of guards G in the refinement branch: Vpost (x) ≥
Vpre (v). As we are at the start of the induction no refinement

rule is used so far and no guards G exist. Using Lemma 1, we

know thatVpost (x) ≥ 𝜂, so no leaks can occur.

• Skip: {Vpre} S {Vpost }[𝜂] is refined to {Vpre} skip {Vpost } [𝜂].
As the skip statement has no assignment to a variable, no direct

or indirect information flow can exist.

• Method Call: Given a method {Vpre
call } M(z1, . . . , zn) {V

post
call }[𝜂],

the method call rule assigns the parameters zi to the actual

parameters and ensures that the security levels are only increased.

Therefore, with the assumption that the method itself satisfies its

IFbC triple, the method call does not violate the security policy.

Induction Hypothesis: For each IFbC triple {Vpre} T {Vpost }[𝜂]
that was created in n refinement steps from an abstract IFbC triple

{Vpre} S {Vpost }[𝜂] (denoted as T = refined (S)), 𝑠𝑒𝑐𝑢𝑟𝑒 (T) holds.
Induction Step:
• Repetition: {Vpre} S {Vpost }[𝜂] is refined to {Vpre} do G → S1
od {Vpost }[𝜂] with {Vpre} S1 {Vpost }[𝜂 ′]. By using the repe-

tition rule, the security context for the statement S1 is set to

𝜂 ′ = 𝑙𝑢𝑏 ({Vpre (v) | v ∈ 𝑣𝑎𝑟𝑠 (G)} ∪ {𝜂}). By using the induction

hypothesis, we know that 𝑠𝑒𝑐𝑢𝑟𝑒 (S1) holds before introducing
the loop. We have to show that the refinement preserves security.

– Case direct information flow: Since the repetition statement

does not introduce an assignment, no direct leak can occur.

– Case indirect information flow: The repetition statement in-

troduces a guard G. To prevent an indirect leak, each assigned

variable x in the refinement branch of S1 needs at least the

security level of G (∀v ∈ 𝑣𝑎𝑟𝑠 (G) : Vpost (x) ≥ Vpre (v)).
Therefore, the repetition rules sets the security context from 𝜂

to 𝜂 ′ as shown above, where 𝜂 ′ is greater than or equal to every
security level of variables in the guard G. With the correctly

updated security context 𝜂 ′ and the Confinement Lemma 1

(Vpost (x) ≥ 𝜂 ′), we know that every assignment in the re-

finement tree of S1 has at least the security level of 𝜂 ′, and
therefore the complete program with the repetition statement

has no leaks.

• Selection: Selection is similar to repetition. A new guard is in-

troduced and the security context is correctly adjusted. The dif-

ference is that the adjusted security context applies for two sub-

statements.

• Composition: {Vpre} S {Vpost }[𝜂] is refined to {Vpre} S1; S2
{Vpost }[𝜂] with an intermediate labeling functionV′

. From the

induction hypothesis we know that both triples {Vpre} S1 {V′}
[𝜂] and {V′} S2 {Vpost }[𝜂] are secure. Since the following ap-
plies for all v ∈ 𝑉𝑎𝑟𝑠 : Vpre (v) ≤ V′ (v) ≤ Vpost (v), the
security levels can only be increased. No assignment or guard is

introduced, so no new direct or indirect leak can occur and the

rest of the program is secure through the induction hypothesis.

Therefore, we can deduce that 𝑠𝑒𝑐𝑢𝑟𝑒 (S) holds.
□

Expressiveness. We prove that IFbC is at least as expressive as

the information flow type system by Volpano et al. [31]. The type

system was already introduced in Section 2.2. Now, we prove that

every program, which is type safe (denoted as typesafe(C)), can also

be constructed using IFbC. Note that the statement c of the typing

rules and our statements S are analogous constructs for abstract

statements. The security context 𝜂 of our IFbC approach is also

analogous to the type 𝜏 𝑐𝑚𝑑 of the statement in the type system.

Theorem 2 (Expressiveness).

For all programs C, if typesafe(C) holds, then there exists {Vpre} S
{Vpost }[𝜂] as a starting IFbC triple which is refined to the same
program C (refined (S) = C) and 𝑠𝑒𝑐𝑢𝑟𝑒 (C) holds.

Proof. We prove the expressiveness with structural induction

on the type derivation. The typing rule for assignments (cf. typing

Rule 5 in Fig. 3) is the typing rule for the start of the induction and

typing rules 6, 7, and 8 are proven in the induction step.

Induction Base:

• Assignment: If x := e′ is type safe, where x is of type 𝜏 𝑣𝑎𝑟 and
e′ is of type 𝜏 , then we can refine a triple {Vpre} S {Vpost }[𝜂]
to {Vpre} x := e′ {Vpost }[𝜂], where x and e′ have the same se-

curity levels. Subtyping is allowed through typing Rule 2, which

is analogous to our lattice-based definition of 𝑙𝑢𝑏.

Induction Hypothesis: For each type safe program C that was

typed by n typing rules, the following holds: C = refined (S) and
𝑠𝑒𝑐𝑢𝑟𝑒 (𝐶).
Induction Step:

• Typing Rule 6: The rule ensures that if C and C′ are type safe,
C; C′ is also type safe. With the induction hypothesis, we know

that C and C′ are type safe and also the triples {Vpre} C {V ′}[𝜂]
and {V ′} C′ {Vpost }[𝜂] are secure. By using the composition

refinement rule, also {Vpre} C; C′ {Vpost }[𝜂] is secure as the

refinement rule ensures thatV ′
is the same in both triples.

• Typing Rule 7: The rule ensures that if C and e are type safe,

(while 𝑒 do𝐶 : 𝜏 cmd) is also type safe. With the induction hy-

pothesis, we know that C is type safe and also the triple {Vpre} C
{Vpost }[𝜂] is secure. To prove that the triple {Vpre} do G → C
od {Vpost }[𝜂 ′] is secure, we review the adjustment of the secu-

rity context in the type system and in our approach. The type

𝜏 𝑐𝑚𝑑 of the statement C can have any type that is more secure

than the type of e (cf. typing rules 4 and 7). This relation is anal-

ogously ensured by our repetition rule, which sets the security

context 𝜂 to 𝑙𝑢𝑏 ({Vpre (v) | v ∈ 𝑣𝑎𝑟𝑠 (G)} ∪ {𝜂 ′}). The security
level of the context has at least the security level of the guard.

• Typing Rule 8: This rule is similar to repetition. The only differ-

ence is that this rule needs two sub-statements C and C′.

□

6 TOOL SUPPORT AND APPLICATIONS
Instead of proving post-hoc that a program is secure, we create

with IFbC programs that are secure by construction. IFbC is at

least as expressive as standard type systems and security is guaran-

teed through the sound set of refinement rules. In order to make

IFbC amenable for programmers, we implemented tool support. We

discuss the applicability of IFbC at the end.

8

Lattice-Based Information Flow Control-by-Construction for Security-by-Design FormaliSE ’20, October 7–8, 2020, Seoul, Republic of Korea

Tool Support. We implemented tool support for IFbC, so that

programmers can construct programs, which follow a lattice-based

information flow policy. The tool guides a programmer to a secure

program with the help of the IFbC refinement rules. In every step

of the program refinement, a violation of the information flow

policy is prevented by updating the security levels of variables.

Simultaneously, refinement rules for correctness-by-construction

guarantee the functional correctness of the program.

IFbC is implemented in a graphical editor CorC.
1
The editor is

implemented in Java as an Eclipse modeling project. By tracking

variables and their security levels, programs can be constructed

that are secure with respect to the information flow policy. CorC

represents the refinement hierarchy of an IFbC program in a tree

structure. Every node represents an IFbC triple consisting of a pre-

/postcondition specification and a statement; a leaf is a concrete

statement and intermediate nodes are abstract statements. A refine-

ment is visualized as an edge between two nodes. If the program is

fully refined, it can be exported as Java code.

In Fig. 7, we show on the left-hand side an excerpt of the auction

example in CorC (cf. Line 14 in Listing 1). We zoomed in to focus on

the main features of the editor rather than showing the complete

program. The leaf node is selected, which contains the assignment i
= i + 1;. In the properties view, we show the security levels of the

variables in the pre- and postcondition and the context. As we can

see, we have an assignment to the public variable i. The calculated
least upper bound is private, as we are in a private context,

and therefore the security level of i is updated to private in the

postcondition. The outcome of the tool is equal to our calculated

security levels in the example above (cf. Fig. 4). In the middle of

the graphic, the palette of CorC is shown to add refinements per

drag and drop. On the right-hand side, the constructed program in

textual form is shown, which is generated automatically by CorC.

This IFbC implementation extends the CorC [25] tool for correct-

ness-by-construction. Besides information flow, CorC reasons about

the functional correctness using a functional specification. By re-

fining a program, the pre-/postcondition specification is updated

according to the refinement rules and the side conditions are dis-

charged automatically. To separate the functional conditions and

the security levels graphically, we decide for a properties view to

visualize the information flow at each step in the program. This

fits the separation of concerns because the conditions for the func-

tional correctness can be altered by the user, but the information

flow is calculated automatically by CorC. By using the refinement

rules and analyzing the declared variables, the security level of each

variable at each step in the program can be computed. Users do not

have to find invariants for loops or other specifications to ensure

compliance with the information flow policy. If the user detects

an inconsistency in the program, the exact spot where a variable

deviates from the intended behavior can be pinpointed.

Applicability of IFbC. To demonstrate applicability of IFbC, we

have conducted smaller case studies. Users already familiar with

CorCwere able to create secure programs while ensuring functional

correctness simultaneously. As the IFbC rules are applied automati-

cally, users only noticed the security mechanisms whenever they

were prevented from writing insecure code.

1
https://github.com/TUBS-ISF/CorC

We emphasize that correctness-by-construction is intended to

be used in correctness-critical applications [18]. Therefore, the

scope of this extension to prevent information leaks is the same.

Mostly small security-critical programs will be constructed with

IFbC. However, the approach also supports constructing larger

programs by splitting them into smaller ones using method calls.

An advantage of IFbC is the constructive nature. Instead of check-

ing that the information flow policy is not violated after writing

the program, users can directly construct programs to comply with

the policy. In every step of the program, even in partial programs,

all variables and their security levels can be observed without exe-

cuting the program. Another advantage is that the security (confi-

dentiality as well as integrity) and functional correctness are guar-

anteed simultaneously, as a secure program that does not have the

intended behavior is insufficient for the users. Functional correct-

ness is also a mandatory requirement for integrity.

IFbC can be used supplementary to existing standard quality

control mechanisms (e.g., a type system, provided that the type

system has the same expressiveness, or testing) to increase trust

in the created program. A program is constructed with IFbC, and

afterwards or at certain points, other mechanisms are used to cross-

check the correctness of the program. Overall, the IFbC approach is

feasible for creating critical software. As finished programs can be

automatically exported to Java, IFbC can be embedded into existing

concepts or processes for secure Java development.

The functional CbC tool without information flow was already

evaluated qualitatively with a user study [26]. In comparison to a

post-hoc verification tool, the participants appreciated the good

feedback of CorC to find defects in the code. The additional effort

for using the refinement rules, was not mentioned negatively.

7 RELATEDWORK
In the following, we discuss the differences to prior work and dis-

tinguish IFbC from other Hoare-style logics for information flow

control. We also discuss information flow type systems and func-

tional correctness-by-construction.

C14bC. We build on top of existing work. Schaefer et al. [29]

introduced C14bC as a constructive approach to reason about in-

formation flow. They introduced a Hoare-style confidentiality spec-

ification with two levels, high and low, and developed refinement

rules to create programs that ensure this specification. The pro-

grams are written in a simple while-language without method calls.

IFbC extends the specification of C14bC from high and low confi-

dentiality levels to a lattice of security levels. We adapted the refine-

ment rules to preserve the security of constructed programs for any

input of user defined security levels. Confidentiality, integrity, as

well as functional correctness can be ensured simultaneously in one

program. We also extended the underlying language with a method

call to improve the scalability of the approach, andwe proved sound-

ness of all refinement rules. Furthermore, IFbC is implemented as

tool support that ensures the lattice-based information flow policy.

Hoare-Style Logics for Information Flow. Previous works that use
Hoare-style program logics with information flow control analyze

the programs after construction, instead of guaranteeing the secu-

rity during construction. The work of Andrews and Reitman [5] is

9

FormaliSE ’20, October 7–8, 2020, Seoul, Republic of Korea Tobias Runge, Alexander Knüppel, Thomas Thüm, and Ina Schaefer

Figure 7: Excerpt of the auction example in CorC

similar to our approach, but they directly encode the information

flow in a logical form. They support multiple security levels for

parallel programs. Amtoft and Banerjee [3] also use Hoare-style

program logics and abstract interpretation to reason about infor-

mation flow leaks. They can give failure explanations based on the

derivation of strongest postconditions. This work is the basis for

specifying and checking information flow in SPARK Ada [4].

Program Analysis for Information Flow. Static and dynamic pro-

gram analysis is used to enforce information flow policies [23, 27,

28]. Examples are taint analysis [6] or security type systems [10, 17,

19, 31]. IFbC checks the compliance with an information flow policy

similar to a type system, but if necessary our approach updates

security levels of variables to prevent leaks in the program (cf. the

update of the security level of a variable in the assignment rule).

JFlow [21] is a related approach that extends Java to check in-

formation flow. In contrast to other languages, JFlow supports lan-

guage features such as objects, subclassing, and exceptions. With

our proposed security-by-construction method, we are more re-

strictive, but we created a concept to create secure and functionally

correct programs by construction that can be extended for richer

languages. If a similar expressiveness is given, IFbC can be used

supplementary to established program analysis tools to increase

the security of programs.

To discover security flaws early, Tuma et al. [30] proposed an

approach to analyze the information flow in a system at design

level using security data flow diagrams. Their technique is inspired

by type systems to detect violations of an information flow policy.

Functional Correctness-by-Construction. Correctness-by-construc-
tion is mostly used to ensure functional correctness. A specification

is refined stepwise to actual programs. The Event-B framework [1]

is an approach to refine specified automata-based systems to con-

crete and functionally correct implementations. The Event-B

method is implemented in the Rodin platform [2]. This approach

differs by another abstraction level. Our underlying functional

correctness-by-construction approach uses code and logical specifi-

cation rather than automata-based systems. The CbC approaches

of Back [9] and Morgan [20] are also related. Both can be used to

refine abstract programs into functionally correct programs. Im-

plementations are ArcAngel [24] for Morgan’s refinement calculus

and SOCOS for the refinement approach proposed by Back [7, 8].

All discussed approaches are limited to the functional correctness

and cannot reason about security.

8 CONCLUSION
In this work, we presented IFbC, a constructive approach for se-

cure lattice-based information flow control. This approach enables

security-by-design processes to guarantee the security of programs

during construction. We formalized the refinement rules of IFbC

and proved their soundness. We also showed that IFbC is at least

as expressive as a type system for information flow [31]. IFbC is

implemented in the open-source tool CorC. CorC support the infor-

mation flow rules presented in this paper, and it can also guarantee

the functional correctness of a program. With the tool support, we

evaluated our methodology by implementing some examples and

discussed the applicability of IFbC.

For future work, we can convert IFbC to be flow- and path-

sensitive to make it less pessimistic. By transforming the program

to eliminate false flow dependencies and by using dependent types

to better reason about branches in the control flow, more secure

programs can be accepted [19].

10

Lattice-Based Information Flow Control-by-Construction for Security-by-Design FormaliSE ’20, October 7–8, 2020, Seoul, Republic of Korea

REFERENCES
[1] Jean-Raymond Abrial. 2010. Modeling in Event-B - System and Software Engineer-

ing. Cambridge University Press.

[2] Jean-RaymondAbrial, Michael Butler, StefanHallerstede, Thai SonHoang, Farhad

Mehta, and Laurent Voisin. 2010. Rodin: An Open Toolset for Modelling and

Reasoning in Event-B. STTT 12, 6 (2010), 447–466.

[3] Torben Amtoft and Anindya Banerjee. 2004. Information FlowAnalysis in Logical

Form. In SAS (LNCS), Vol. 3148. Springer, 100–115.
[4] Torben Amtoft, John Hatcliff, Edwin Rodríguez, Robby, Jonathan Hoag, and

David A. Greve. 2008. Specification and Checking of Software Contracts for

Conditional Information Flow. In FM. Springer, 229–245.

[5] Gregory R. Andrews and Richard P. Reitman. 1980. An Axiomatic Approach to

Information Flow in Programs. TOPLAS 2, 1 (1980), 56–76.
[6] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel,

Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick D. McDaniel. 2014.

FlowDroid: Precise Context, Flow, Field, Object-Sensitive and Lifecycle-Aware

Taint Analysis for Android Apps. In PLDI, Vol. 49. ACM, 259–269.

[7] Ralph-Johan Back. 2009. Invariant Based Programming: Basic Approach and

Teaching Experiences. FAOC 21, 3 (2009), 227–244.

[8] Ralph-Johan Back, Johannes Eriksson, and Magnus Myreen. 2007. Testing and

Verifying Invariant Based Programs in the SOCOS Environment. In TAP (LNCS),
Vol. 4454. Springer, 61–78.

[9] Ralph-Johan Back and Joakim Wright. 2012. Refinement Calculus: A Systematic
Introduction. Springer Science & Business Media.

[10] Anindya Banerjee and David A Naumann. 2002. Secure Information Flow and

Pointer Confinement in a Java-like Language.. In CSFW, Vol. 2. 253.

[11] D Elliott Bell and Leonard J La Padula. 1976. Secure Computer System: Unified
Exposition and Multics Interpretation. Technical Report. MITRE Corp Bedford

MA.

[12] Kenneth J Biba. 1977. Integrity Considerations for Secure Computer Systems.
Technical Report. MITRE Corp Bedford MA.

[13] Bart De Win, Riccardo Scandariato, Koen Buyens, Johan Grégoire, and Wouter

Joosen. 2009. On the Secure Software Development Process: CLASP, SDL and

Touchpoints Compared. InfSof 51, 7 (2009), 1152–1171.

[14] Dorothy E Denning. 1976. A Lattice Model of Secure Information Flow. CACM
19, 5 (1976), 236–243.

[15] Edsger W. Dijkstra. 1976. A Discipline of Programming. Prentice Hall.
[16] Michael Howard, Steve Lipner, U Index, U Part, U Chapter, U Why In, U First

Steps, U New Threats, U Windows, U Seeking Scalability, et al. 2006. The Security
Development Lifecycle: SDL: A Process for Developing Demonstrably More Secure

Software. Microsoft Press.

[17] Sebastian Hunt and David Sands. 2006. On Flow-Sensitive Security Types. SIG-
PLAN Not. 41, 1 (Jan. 2006), 79–90.

[18] Derrick G. Kourie and Bruce W. Watson. 2012. The Correctness-By-Construction
Approach to Programming. Springer.

[19] Peixuan Li andDanfeng Zhang. 2017. Towards a Flow-and Path-Sensitive Informa-

tion Flow Analysis. In 2017 IEEE 30th Computer Security Foundations Symposium
(CSF). IEEE, 53–67.

[20] Carroll Morgan. 1994. Programming from Specifications (2nd ed.). Prentice Hall.

[21] Andrew C. Myers. 1999. JFlow: Practical Mostly-Static Information Flow Control.

In POPL. ACM, 228–241.

[22] Andrew C. Myers and Barbara Liskov. 2000. Protecting Privacy Using the Decen-

tralized Label Model. TOSEM 9, 4 (2000), 410–442.

[23] Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. 1999. Principles of
Program Analysis. Springer.

[24] Marcel Vinicius Medeiros Oliveira, Ana Cavalcanti, and Jim Woodcock. 2003.

ArcAngel: A Tactic Language for Refinement. FAOC 15, 1 (2003), 28–47.

[25] Tobias Runge, Ina Schaefer, Loek Cleophas, Thomas Thüm, Derrick Kourie, and

Bruce W Watson. 2019. Tool Support for Correctness-by-Construction. In FASE
(LNCS), Vol. 11424. Springer, 25–42.

[26] Tobias Runge, Thomas Thüm, Loek Cleophas, Ina Schaefer, and Bruce WWatson.

2019. Comparing Correctness-by-Construction with Post-Hoc Verification - A

Qualitative User Study. In Refine. Springer. To appear.

[27] Alejandro Russo and Andrei Sabelfeld. 2010. Dynamic vs. Static Flow-Sensitive

Security Analysis. In 2010 23rd IEEE Computer Security Foundations Symposium.

IEEE, 186–199.

[28] Andrei Sabelfeld and Andrew C. Myers. 2003. Language-Based Information-Flow

Security. J-SAC 21, 1 (2003), 5–19.

[29] Ina Schaefer, Tobias Runge, Alexander Knüppel, Loek Cleophas, Derrick Kourie,

and Bruce W Watson. 2018. Towards Confidentiality-by-Construction. In ISoLA
(LNCS), Vol. 11244. Springer, 502–515.

[30] Katja Tuma, Riccardo Scandariato, and Musard Balliu. 2019. Flaws in Flows:

Unveiling Design Flaws via Information Flow Analysis. In ICSA. IEEE, 191–200.
[31] Dennis M. Volpano, Cynthia E. Irvine, and Geoffrey Smith. 1996. A Sound Type

System for Secure Flow Analysis. JCS 4, 2/3 (1996), 167–188.
[32] Bruce W. Watson, Derrick G. Kourie, Ina Schaefer, and Loek Cleophas. 2016.

Correctness-by-Construction and Post-hoc Verification: A Marriage of Conve-

nience?. In ISoLA (LNCS), Vol. 9952. Springer, 730–748.
[33] Steve Zdancewic and Andrew C. Myers. 2001. Robust Declassification. In CSFW.

IEEE, 15–23.

11

234

A.8. Information Flow Control-by-Construction for an
Object-Oriented Language

Information Flow
Control-by-Construction

for an Object-Oriented Language

Tobias Runge1,2(B) , Alexander Kittelmann1,2 , Marco Servetto3,
Alex Potanin4 , and Ina Schaefer1,2

1 TU Braunschweig, Braunschweig, Germany
2 Karlsruhe Institute of Technology, Karlsruhe, Germany

{tobias.runge,alexander.kittelmann,ina.schaefer}@kit.edu
3 Victoria University of Wellington, Wellington, New Zealand

marco@ecs.vuw.ac.nz
4 Australian National University, Canberra, Australia

alex.potanin@anu.edu.au

Abstract. In security-critical software applications, confidential infor-
mation must be prevented from leaking to unauthorized sinks. Static
analysis techniques are widespread to enforce a secure information flow
by checking a program after construction. A drawback of these systems is
that incomplete programs during construction cannot be checked prop-
erly. The user is not guided to a secure program by most systems. We
introduce IFbCOO, an approach that guides users incrementally to a
secure implementation by using refinement rules. In each refinement
step, confidentiality or integrity (or both) is guaranteed alongside the
functional correctness of the program, such that insecure programs are
declined by construction. In this work, we formalize IFbCOO and prove
soundness of the refinement rules. We implement IFbCOO in the tool
CorC and conduct a feasibility study by successfully implementing case
studies.

Keywords: Correctness-by-construction · Information flow control ·
Security-by-design

1 Introduction

For security-critical software, it is important to ensure confidentiality and
integrity of data, otherwise attackers could gain access to this secure data. For
example, in a distributed system, one client A has a lower privilege (i.e., a lower
security level) than another client B. When both clients send information to each
other, security policies can be violated. If A reads secret data from B, confiden-
tiality is violated. If B reads untrusted data from A, the integrity of B’s data is
no longer guaranteed. To ensure security in software, mostly static analysis tech-
niques are used, which check the software after development [28]. A violation of
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
B.-H. Schlingloff and M. Chai (Eds.): SEFM 2022, LNCS 13550, pp. 209–226, 2022.
https://doi.org/10.1007/978-3-031-17108-6_13

210 T. Runge et al.

security is only revealed after the program is fully developed. If violations occur,
an extensive and repetitive repairing process of writing code and checking the
security properties with the analysis technique is needed. An alternative is to
check the security with language-based techniques such as type systems [28] dur-
ing the development. In such a secure type system, every expression is assigned
to a type, and a set of typing rules checks that the security policy is not vio-
lated [28]. If violations occur, an extensive process of debugging is required until
the code is type-checked.

To counter these shortcomings, we propose a constructive approach to
directly develop functionally correct programs that are secure by design with-
out the need of a post-hoc analysis. Inspired by the correctness-by-construction
(CbC) approach for functional correctness [18], we start with a security specifi-
cation and refine a high-level abstraction of the program stepwise to a concrete
implementation using a set of refinement rules. Guided by the security specifi-
cation defining the allowed security policies on the used data, the programmer
is directly informed if a refinement is not applicable because of a prohibited
information flow. With IFbCOO (Information Flow control by Construction for
an Object-Oriented language), programmers get a local warning as soon as a
refinement is not secure, which can reduce debugging effort. With IFbCOO,
functionally correct and secure programs can be developed because both, the
CbC refinement rules for functional correctness and the proposed refinement
rules for information flow security, can be applied simultaneously.

In this paper, we introduce IFbCOO which supports information flow con-
trol for an object-oriented language with type modifiers for mutability and alias
control [13]. IFbCOO is based on IFbC [25] proposed by some of the authors
in previous work, but lifts its programming paradigm from a simple impera-
tive language to an object-oriented language. IFbC introduced a sound set of
refinement rules to create imperative programs following an information flow
policy, but the language itself is limited to a simple while-language. In contrast,
IFbCOO is based on the secure object-oriented language SIFO [27]. SIFO’s type
system uses immutability and uniqueness properties to facilitate information flow
reasoning. In this work, we translate SIFO’s typing rules to refinement rules as
required by our correctness-by-construction approach. This has the consequence
that programs written in SIFO and programs constructed using IFbCOO are
interchangeable. In summary, our contributions are the following. We formalize
IFbCOO and establish 13 refinement rules. We prove soundness that programs
constructed with IFbCOO are secure. Furthermore, we implement IFbCOO in
the tool CorC and conduct a feasibility study.

2 Object-Oriented Language SIFO by Example

SIFO [27] is an object-oriented language that ensures secure information flow
through a type system with precise uniqueness and (im)mutability reasoning.
SIFO introduces four type modifiers for references, namely read, mut, imm, and
capsule, which define allowed aliasing and mutability of objects in programs.

Information Flow Control-by-Construction for an Object-Oriented Language 211

While, mut and imm point to mutable and immutable object respectively, a
capsule reference points to a mutable object that cannot be accessed from other
mut references. A read reference points to an object that cannot be aliased or
mutated. In this section, SIFO is introduced with examples to give an overview
of the expressiveness and the security mechanism of the language. We use in the
examples two security levels, namely low and high. An information flow from
low to high is allowed, whereas the opposite flow is prohibited. The security
levels can be arranged in any user-defined lattice. In Sect. 4, we introduce SIFO
formally. In Listing 1, we show the implementation of a class Card containing
a low immutable int number and two high fields: a mutable Balance and an
immutable Pin.

1 class Card{low imm int number; high mut Balance blc;

2 high imm Pin pin;}

3 class Balance{low imm int blc;}

4 class Pin{low imm int pin;}

Listing 1. Class declarations

In Listing 2, we show allowed and prohibited field assignments with
immutable objects as information flow reasoning is the easiest with these refer-
ences. In a secure assignment, the assigned expression and the reference need the
same security level (Lines 6,7). This applies to mutable and immutable objects.
The security level of expressions is calculated by the least upper bound of the
accessed field security level and the receiver security level. A high int cannot
be assigned to a low blc reference (Line 8) because this would leak confidential
information to an attacker, when the attacker reads the low blc reference. The
assignment is rejected. Updates of a high immutable field are allowed with a
high int (Line 9) or with a low int (Line 10). The imm reference guarantees
that the assigned integer is not changed, therefore, no new confidential infor-
mation can be introduced and a promotion in Line 10 is secure. The promotion
alters the security level of the assigned expression to be equal to the security
level of the reference. As expected, the opposite update of a low field with a
high int is prohibited in Line 11 because of the direct flow from higher to lower
security levels.

5 low mut Card c = new low Card ();//an existing Card reference

6 high mut Balance blc = c.blc;// correct access of high blc

7 high imm int blc = c.blc.blc;// correct access of high blc.blc

8 low imm int blc = c.blc.blc;// wrong high assigned to low

9 c.blc.blc = highInt;// correct field update with high int

10 c.blc.blc = c.number;// correct update with promoted imm int

11 high imm int highInt = 0;// should be some secret value

12 c.number = highInt;//wrong , high int assigned to low c.number

Listing 2. Examples with immutable objects

Next, in Listing 3, we exemplify which updates of mutable objects are legal
and which updates are not. We have a strict separation of mutable objects with

212 T. Runge et al.

different security levels. We want to prohibit that an update through a higher
reference is read by lower references, or that an update through lower references
corrupt data of higher references. A new Balance object can be initialized as a
low object because the Balance object itself is not confidential (Line 12). The
association to a Card object makes it a confidential attribute of the Card class.
However, the assignment of a low mut object to a high reference is prohibited.
If Line 13 would be accepted, Line 14 could be used to insecurely update the
confidential Balance object because the low reference is still in scope of the pro-
gram. Only an assignment without aliasing is allowed (Line 16). With capsule,
an encapsulated object is referenced to which no other mut reference points. The
low capsBlc object can be promoted to a high security level and assigned. After-
wards, the capsule reference is no longer accessible. In the case of an immutable
object, the aliasing is allowed (Line 18), since the object itself cannot be updated
(Line 19). Both imm and capsule references are usable to communicate between
different security levels.

12 low mut Balance newBlc = new low Balance (0); //ok

13 c.blc = newBlc;//wrong , mutable secret shared as low and high

14 newBlc.blc = 10;//ok? Insecure with previous line

15 low capsule Balance capsBlc = new low Balance (0); //ok

16 c.blc = capsBlc;//ok , no alias introduced

17 low imm Pin immPin = new low Pin (1234); //ok

18 c.pin = immPin;//ok , pin is imm and can be aliased

19 immPin.pin = 5678; //wrong , immutable object cannot be updated

Listing 3. Examples with mutable and encapsulated objects

3 IFbCOO by Example

With IFbCOO, programmers can incrementally develop programs, where the
security levels are organized in a lattice structure to guarantee a variety of con-
fidentiality and integrity policies. IFbCOO defines 13 refinement rules to create
secure programs. As these rules are based on refinement rules for correctness-
by-construction, programmers can simultaneously apply refinements rules for
functional correctness [12,18,26] and security. We now explain IFbCOO in the
following examples. For simplicity, we omit the functional specification. IFbCOO
is introduced formally in Sect. 4.

In IFbCOO, the programmer starts with a class including fields of the class
and declarations of method headers. IFbCOO is used to implement methods in
this class successively. The programmer chooses one abstract method body and
refines this body to a concrete implementation of the method. A starting IFb-
COO tuple specifies the typing context Γ and the abstract method body eA.
The expression eA is abstract in the beginning and refined incrementally to a
concrete implementation. During the construction process, local variables can be
added. The refinement process in IFbCOO results in a method implementation
which can be exported to the existing class. First, we give a fine-grained exam-
ple to show the application of refinement rules in detail. The second example
illustrates that IFbCOO can be used to implement larger methods.

Information Flow Control-by-Construction for an Object-Oriented Language 213

The first example in Listing 4 is a setter method. A field number is set
with a parameter x. We start the construction with an abstract expression
eA : [Γ ; low imm void] with a typing context Γ = low mut C this, low imm int x
extracted from the method signature (C is the class of the method receiver). The
abstract expression eA contains all local information (the typing context and its
type) to be further refined. A concrete expression that replaces the abstract
expression must have the same type low imm void, and it can only use vari-
ables from the typing context Γ . The tuple [Γ ; low imm void] is now refined
stepwise. First, we introduce a field assignment: eA → eA1.number = eA2.
The newly introduced abstract expressions are eA1 : [Γ ; low mut C] and
eA2 : [Γ ; low imm int] according to the field assignment refinement rule.
In the next step, eA1 is refined to this, which is the following refinement:
eA1.number = eA2 → this.number = eA2. As this has the same type as eA1,
the refinement is correct. The last refinement replaces eA2 with x, resulting in
this.number = eA2 → this.number = x. As x has the same type as eA2, the
refinement is correct. The method is fully refined since no abstract expression is
left.

1 low mut method low imm void setNumber(low imm int x) {

2 this.number = x; }

Listing 4. Set method

To present a larger example, we construct a check of a signature in an email
system (see Listing 5). The input of the method is an email object and a client
object that is the receiver of the email. The method checks whether the key with
which the email object was signed and the stored public key of the client
object are a valid pair. If this is the case, the email object is marked as verified.
The fields isSignatureVerified and emailSignKey of the class email have a
high security level, as they contain confidential data. The remaining fields have
low as security level.

1 static low imm void verifySignature(

2 low mut Client client , low mut Email email) {

3 low imm int pubkey = client.publicKey;

4 high imm int privkey = email.emailSignKey;

5 high imm boolean isVerified;

6 if (isKeyPairValid(privkey , pubkey)) {

7 isVerified = true;

8 } else {

9 isVerified = false;

10 }

11 email.IsSignatureVerified = isVerified;

12 }

Listing 5. Program of a secure signature verification

In Fig. 1, we show the starting IFbCOO tuple with the security level of the
variables (type modifier and class name are omitted) at the top. In our example,

214 T. Runge et al.

Ref(6) Γ [mut(high)]

eA : [low email, low client; low imm void]

low imm int pubkey = client.publicKey;
high imm int privkey = email.emailSignKey;

high imm boolean isVerified;

if isKeyPairValid(privkey, pubkey) then eT else eF email.isSignatureVerified = isVerified;

isVerified = true;

Ref(1)

Ref(2) Ref(3)

eA1 : [low email, low client; low imm void] eA2 : [low email, low client, low pubkey, high
privkey, high isVerified; low imm void]

eA22 : [low email, low
client, low pubkey, high
privkey, high isVerified;

low imm void]

eA21 : [low email, low
client, low pubkey, high
privkey, high isVerified;

low imm void]
Ref(4)

Ref(5) Γ [mut(high)]

Ref(7)

isVerified = false;

Fig. 1. Refinement steps for the signature example

we have two parameters client and email, with a low security level. To con-
struct the algorithm of Listing 5, the method implementation is split into three
parts. First, two local variables (private and public key for the signature verifi-
cation) are initialized and a Boolean for the result of the verification is declared.
Second, verification whether the keys used for the signature form a valid pair
takes place. Finally, the result is saved in a field of the email object.

Using the refinement rule for composition, the program is initially split into
the initialization phase and the remainder of the program’s behavior (Ref(1)).
This refinement introduces two abstract expressions eA1 and eA2. The typ-
ing contexts of the expressions are calculated by IFbCOO automatically dur-
ing refinement. As we want to initialize two local variables by further refining
eA1, the finished refinement in Fig. 1 already contains the local high variables
privkey and isVerified, and the low variable pubkey in the typing context of
expression eA2.

In Ref(2), we apply the assignment refinement1 to initialize the integers
pubkey and privkey. Both references point to immutable objects that are
accessed via fields of the objects client and email. The security levels of the
field accesses are determined with the field access rule checked by IFbCOO. The
determined security level of the assigned expression must match the security
level of the reference. In this case, the security levels are the same. Additionally,
it is enforced that immutable objects cannot be altered after construction (i.e.,
it is not possible to corrupt the private and public key). In Ref(3), the next
expression eA2 is split with a composition refinement into eA21 and eA22.

Ref(4) introduces an if-then-else-expression by refining eA21. Here, it is
checked whether the public and private key pair is valid. As the privkey

1 To be precise, it would be a combination of composition and assignment refinements,
because an assignment refinement can only introduce one assignment expression.

Information Flow Control-by-Construction for an Object-Oriented Language 215

T ::= s mdf C
s ::= high | low | . . . (user defined)
mdf ::= mut | imm | capsule | read
CD ::= class C implements C {F MD } | interface C extends C {MH }
F ::= s mut C f ; | s imm C f ;
MD ::= MH {return e;}
MH ::= s mdf method T m(T1 x1, . . . ,Tn xn)
e ::= eA | x | e0.f = e1 | e.f | e0.m(e) | new s C (e) | e0; e1

| if e0 then e1 else e2 | while e0 do e1 | declassify(e)
Γ ::= x1 : T1 . . . xn : Tn

::= [] .f .f = e e.f = .m(e) e.m(e e) new s C (e e)

Fig. 2. Syntax of the extended core calculus of SIFO

object has a high security level, we have to restrict our typing context with
Γ [mut(high)]. This is necessary to prevent indirect information leaks. With the
restrictions, we can only assign expressions to at least high references and mutate
high objects (mut(high)) in the then- and else-expression. If we assign a value
in the then-expression to a low reference that is visible outside of the then-
expression, an attacker could deduce that the guard was evaluated to true by
reading that low reference.

Ref(5) introduces an assignment of an immutable object to a high reference,
which is allowed in the restricted typing context. As explained, the assignment to
low references is forbidden. The assigned immutable object true can be securely
promoted to a high security level. In Ref(6), a similar assignment is done, but
with the value false. Ref(7) sets a field of the email object by refining eA22.
We update the high field of the email object by accepting the high expression
isVerified. With this last refinement step, the method is fully concretized. The
method is secure by construction and constitutes valid SIFO code (see Listing 5).

4 Formalizing Information Flow Control-by-Construction

In this section, we formalize IFbCOO for the construction of functionally correct
and secure programs. Before, we introduce SIFO as the underlying programming
language formally.

4.1 Core Calculus of SIFO

Figure 2 shows the syntax of the extended core calculus of SIFO [27]. SIFO is
an expression-based language similar to Featherweight Java [17]. Every refer-
ence and expression is associated with a type T . The type T is composed of
a security level s, a type modifier mdf and a class name C . Security levels are
arranged in a lattice with one greatest level � and one least level ⊥ forming
the security policy. The security policy determines the allowed information flow.
Confidentiality and integrity can be enforced by using two security lattices and
two security annotations for each expression. Each property is enforced by a

216 T. Runge et al.

strict separation of security levels. In the interest of an expressive language, we
allow the information flow from lower to higher levels (confidentiality or integrity
security levels) using promotion rules while the opposite needs direct interaction
with the programmer by using the declassify expression. For convenience, we
will use only one lattice of confidentiality security levels in the explanations.

The type modifier mdf can be mut, imm, capsule, and read with the following
subtyping relation. For all type modifier mdf : capsule ≤ mdf ,mdf ≤ read. In
SIFO, objects are mutable or (deeply) immutable. The reachable object graph
(ROG) from a mutable object is composed of mutable and immutable objects,
while the ROG of an immutable object can only contain immutable objects. A
mut reference must point to a mutable object; such an object can be aliased
and mutated. An imm reference must point to an immutable object; such an
object can be aliased, but not mutated. A capsule reference points to a mutable
object. The object and the mutable objects in its ROG cannot be accessed from
other references. As capsule is a subtype of imm and mut the object can be
assigned to both. Finally, a read reference is the supertype that points to an
object that cannot be aliased or mutated, but it has no immutability guarantee
that the object is not modified by other references. These modifiers allow us to
make precise decisions about the information flow by utilizing immutability or
uniqueness properties of objects. For example, an immutable object cannot be
altered, therefore it can be securely promoted to a higher security level. For a
mutable object, a security promotion is insecure because an update through other
references with lower security levels can corrupt the confidential information.

Additionally, the syntax of SIFO contains class definitions CD which can
be classes or interfaces. An interface has a list of method headers. A class has
additional fields. A field F has a type T and a name, but the type modifier can
only be mut or imm. A method definition MD consists of a method header and
a body. The header has a receiver, a return type, and a list of parameters. The
parameters have a name and a type T . The receiver has a type modifier and a
security level. An expression e can be a variable, field access, field assignment,
method call, or object construction in SIFO. In the extended version presented
in the paper, we also added abstract expressions, sequence of expressions, con-
ditional expression, loop expression, and declassification. With the declassify
operator a reverse information flow is allowed. The expression eA is abstract
and typed by [Γ ;T]. Beside the type T a local typing context Γ is used to
have all needed information to further refine eA. We require a Boolean type for
the guards in the conditional and loop expression. A typing context Γ assigns
a type Ti to variable xi. With the evaluation context E , we define the order of
evaluation for the reduction of the system. The typing rules of SIFO are shown
in the report [24].

4.2 Refinement Rules for Program Construction

To formalize the IFbCOO refinement rules, in Fig. 3, we introduce basic nota-
tions, which are used in the refinement rules.

L is the lattice of security levels to define the information flow policy and
lub is used to calculate the least upper bound of a set of security levels. The

Information Flow Control-by-Construction for an Object-Oriented Language 217

L Bounded upper semi-lattice (L, ≤) of security levels
lub : P(L) L Least upper bound of the security levels in L

{P ;Q;Γ ;T ; eA} Starting IFbCOO tuple
eA : [P ;Q;Γ ;T] Typed abstract expression eA

Γ [mut(s)] Restricted typing context
sec(T) = s Returns the security level s in type T

Fig. 3. Basic notations for IFbCOO

functional and security specification of a program is defined by an IFbCOO
tuple {P ;Q;Γ ;T ; eA}. The IFbCOO tuple consists of a typing context Γ , a
type T , an abstract expression eA, and a functional pre-/postcondition, which
is declared in the first-order predicates P and Q . The abstract expression is
typed by [P ;Q;Γ ;T]. In the following, we focus on security, so the functional
specification is omitted.

The refinement process of IFbCOO starts with a method declaration, where
the typing context Γ is extracted from the arguments and T is the method return
type. Then, the user guides the construction process by refining the first abstract
expression eA. With the notation Γ [mut(s)], we introduce a restriction to the
typing context. The function mut(s) prevents mutation of mutable objects that
have a security level lower than s. When the user chooses the lowest security level
of the lattice, the function does not restrict Γ . The function sec(T) extracts the
security level of a type T .

Refinement Rules. The refinement rules are used to replace an IFbCOO tuple
{Γ ;T ; eA} with a concrete implementation by concretizing the abstract expres-
sion eA. This refinement is only correct if specific side conditions hold. On the
right side of the rules, all newly introduced symbols are implicitly existentially
quantified. The rules can introduce new abstract expressions eAi which can be
refined by further applying the refinement rules.

Refinement Rule 1 (Variable)
eA is refinable to x if eA : [Γ ;T] and Γ (x) = T .

The first IFbCOO rule introduces a variable x, which does not alter the program.
It refines an abstract expression to an x if x has the correct type T .

Refinement Rule 2 (Field Assignment)
eA is refinable to eA0.f := eA1 if eA : [Γ ;T] and eA0 : [Γ ; s0 mut C0] and
eA1 : [Γ ; s1 mdf C] and s mdf C f ∈ fields(C0) and s1 = lub(s0, s).

We can refine an abstract expression to a field assignment if the following con-
ditions hold. The expression eA0 has to be mut to allow a manipulation of the
object. The security level of the assigned expression eA1 has to be equal to the
least upper bound of the security levels of expression eA0 and the field f . The
field f must be a field of the class C0 with the type s mdf C . With the security
promotion rule, the security level of the assigned expression can be altered.

218 T. Runge et al.

Refinement Rule 3 (Field Access)
eA is refinable to eA0.f if eA : [Γ ; s mdf C] and eA0 : [Γ ; s0 mdf 0 C0] and
s1 mdf 1 C f ∈ fields(C0) and s = lub(s0, s1) and mdf 0 � mdf 1 = mdf .

We can refine an abstract expression to a field access if a field f exists in the
class of receiver eA0 with the type s1 mdf 1 C . The accessed value must have the
expected type s mdf C of the abstract expression. This means, the class name
of the field f and C must be the same. Additionally, the security level of the
abstract expression eA is equal to the least upper bound of the security levels
of expression eA0 and field f . The type modifiers must also comply. The arrow
between type modifiers is defined as follows. As we allow only mut and imm fields,
not all possible cases are defined: mdf � mdf ′ = mdf ′′

• mut � mdf = capsule � mdf = mdf
• imm � mdf = mdf � imm = imm
• read � mut = read.

Refinement Rule 4 (Method Call)
eA is refinable to eA0.m(eA1, . . . , eAn) if eA : [Γ ;T] and eA0 : [Γ ;T0] . . . eAn :
[Γ ;Tn] and T0 . . . Tn → T ∈ methTypes(class(T0), m) and sec(T) ≥ sec(T0) and
forall i ∈ {1, . . . , n} if mdf(Ti) ∈ {mut, capsule} then sec(Ti) ≥ sec(T0).

With the method call rule, an abstract expression is refined to a call to method
m. The method has a receiver eA0, a list of parameters eA1 . . . eAn, and a return
value. A method with matching definition must exist in the class of receiver eA0.
This method definition is returned by the methTypes function. The function
class returns the class of a type T . The security level of the return type has to
be greater than or equal to the security level of the receiver. This condition is
needed because through dynamic dispatch information of the receiver may be
leaked if its security level is higher than the security level of the return type.
The same applies for mut and capsule parameters. The security level of these
parameters must also be greater than or equal to the security level of the receiver.
As the method call replaces an abstract expression eA, the return value must
have the same type (security level, type modifier, and class name) as the refined
expression. In the technical report [24], we introduce multiple methods types [27]
to reduce writing effort and increase the flexibility of IFbCOO. A method can be
declared with specific types for receiver, parameters and return value, and other
signatures of this method are deduced by applying the transformations from the
multiple method types definition, where security level and type modifiers are
altered. All these deduced method declarations can be used in the method call
refinement rule.

Refinement Rule 5 (Constructor)
eA is refinable to new s C(eA1 . . . eAn) if eA : [Γ ; s mdf C] and fields(C) =
T1 f1 . . . Tn fn and eA1 : [Γ ;T1[s]] . . . eAn : [Γ ;Tn[s]].

The constructor rule is a special method call. We can refine an abstract expres-
sion to a constructor call, where a mutable object of class C is constructed

Information Flow Control-by-Construction for an Object-Oriented Language 219

with a security level s. The parameter list eA1 . . . eAn must match the list of
declared fields f1 . . . fn in class C. Each parameter eAi is assigned to field fi.
This assignment is allowed if the type of parameter eAi is (a subtype of) Ti[s].
T [s] is a helper function which returns a new type whose security level is the
least upper bound of sec(T) and s. It is defined as: T [s] = lub(s, s ′) mdf C ,
where T = s ′ mdf C , defined only if s′ ≤ s or s ≤ s′. By calling a constructor,
the security level s can be freely chosen to use parameters with security levels
that are higher than originally declared for the fields. In other words, a security
level s is used to initialize lower security fields with parameters of higher security
level s. This results in a newly created object with the security level s [27]. As
the newly created object replaces an abstract expression eA, the object must
have the same type as the abstract expression. If the modifier promotion rule is
used (i.e., no mutable input value exist), the object can be assigned to a capsule
or imm reference.

Refinement Rule 6 (Composition)
eA is refinable to eA0; eA1 if eA : [Γ ;T] and eA0 : [Γ ;T0] and eA1 : [Γ ;T].

With the composition rule, an abstract expression eA is refined to two subsequent
abstract expression eA0 and eA1. The second abstract expression must have the
same type T as the refined expression.

Refinement Rule 7 (Selection)
eA is refinable to if eA0 then eA1 else eA2 if eA : [Γ ;T] and eA0 : [Γ ; s imm
Boolean] and eA1 : [Γ [mut(s)];T] and eA2 : [Γ [mut(s)];T].

The selection rule refines an abstract expression to a conditional if-then-else-
expression. Secure information can be leaked indirectly as the selected branch
may reveal the value of the guard. In the branches, the typing context is
restricted. The restricted typing context prevents updating mutable objects with
a security level lower than s. The security level s is determined by the Boolean
guard eA0. When we add updatable local variables to our language, the selection
rule must also prevent the update of local variables that have a security level
lower than s.

Refinement Rule 8 (Repetition)
eA is refinable to while eA0 do eA1 if eA : [Γ ;T] and eA0 : [Γ ; s imm Boolean]
and eA1 : [Γ [mut(s)];T].

The repetition rule refines an abstract expression to a while-loop. The repetition
rule is similar to the selection rule. For the loop body, the typing context is
restricted to prevent indirect leaks of the guard in the loop body. The security
level s is determined by the Boolean guard eA0.

Refinement Rule 9 (Context Rule)
E [eA] is refinable to E [e] if eA is refinable to e.

The context rule replaces in a context E an abstract expression with a concrete
expression, if the abstract expression is refinable to the concrete expression.

220 T. Runge et al.

Refinement Rule 10 (Subsumption Rule)
eA : [Γ ;T] is refinable to eA1 : [Γ ;T ′] if T ′ ≤ T .

The subsumption rule can alter the type of expressions. An abstract expression
that requires a type T can be weakened to require a type T ′ if the type T ′ is a
subtype of T .

Refinement Rule 11 (Security Promotion)
eA : [Γ ; s mdf C] is refinable to eA1 : [Γ ; s′ mdf C] if mdf ∈ {capsule, imm}
and s′ ≤ s.

The security promotion rule can alter the security level of expressions. An
abstract expression that requires a security level s can be weakened to require
a security level s′ if the expression is capsule or imm. Other expressions (mut
or read) cannot be altered because potentially existing aliases are a security
hazard.

Refinement Rule 12 (Modifier Promotion)
eA : [Γ ; s capsule C] is refinable to eA1 : [Γ [mut\read]; s mut C].

The modifier promotion rule can alter the type modifier of an expression eA.
An abstract expression that requires a capsule type modifier can be weakened
to require a mut type modifier if all mut references are only seen as read in
the typing context. That means, that the mutable objects in the ROG of the
expression cannot be accessed by other references. Thus, manipulation of the
object is only possible through the reference on eA.

Refinement Rule 13 (Declassification)
eA : [Γ ;⊥ mdf C] is refinable to declassify(eA1) : [Γ ; s mdf C] if mdf ∈
{capsule, imm}.
In our information flow policy, we can never assign an expression with a higher
security level to a variable with a lower security level. To allow this assignment
in appropriate cases, the declassify rule is used. An expression eA is altered
to a declassify-expression with an abstract expression eA1 that has a security
level s if the type modifier is capsule or imm. A mut or read expression can-
not be declassified as existing aliases are a security hazard. Since we have the
security promotion rule, the declassified capsule or imm expression can directly
be promoted to any higher security level. Therefore, it is sufficient to use the
bottom security level in this rule without restricting the expressiveness. For
example, the rule can be used to assign a hashed password to a public variable.
The programmer has the responsibility to ensure that the use of declassify is
secure.

4.3 Proof of Soundness

In the technical report, we prove that programs constructed with the IFbCOO
refinement rules are secure according to the defined information flow policy. We

Information Flow Control-by-Construction for an Object-Oriented Language 221

prove this by showing that programs constructed with IFbCOO are well typed
in SIFO (Theorem 1). SIFO itself is proven to be secure [27]. In the technical
report [24], we prove this property for the core language of SIFO, which does
not contain composition, selection, and repetition expressions. The SIFO core
language is minimal, but using well-known encodings, it can support compo-
sition, selection, and repetition (encodings of the Smalltalk [14] style support
control structures). We also exclude the declassify operation because this rule is
an explicit mechanism to break security in a controlled way.

Theorem 1 (Soundness of IFbCOO)
An expression e constructed with IFbCOO is well typed in SIFO.

5 CorC Tool Support and Evaluation

IFbCOO is implemented in the tool CorC [12,26]. CorC itself is a hybrid tex-
tual and graphical editor to develop programs with correctness-by-construction.
IFbC [25] is already implemented as extension of CorC, but to support object-
orientation with IFbCOO a redesign was necessary. Source code and case studies
are available at: https://github.com/TUBS-ISF/CorC/tree/CCorCOO.

5.1 CorC for IFbCOO

For space reasons, we cannot introduce CorC comprehensively. We just summa-
rize the features of CorC to check IFbCOO information flow policies:

– Programs are written in a tree structure of refining IFbCOO tuples (see
Fig. 1). Besides the functional specification, variables are labeled with a type
T in the tuples.

– Each IFbCOO refinement rule is implemented in CorC. Consequently, func-
tional correctness and security can be constructed simultaneously.

– The information flow checks according to the refinement rules are executed
automatically after each refinement.

– Each CorC-program is uniquely mapped to a method in a SIFO class. A SIFO
class contains methods and fields that are annotated with security labels and
type modifiers.

– A properties view shows the type T of each used variable in an IFbCOO
tuple. Violations of the information flow policy are explained in the view.

5.2 Case Studies and Discussion

The implementation of IFbCOO in the tool CorC enables us to evaluate the
feasibility of the security mechanism by successfully implementing three case
studies [16,32] from the literature and a novel one in CorC. The case studies
are also implemented and type-checked in SIFO to confirm that the case studies
are secure. The newly developed Database case study represents a secure system

222 T. Runge et al.

Table 1. Metrics of the case studies

Name #Security levels # Classes # Lines of code # Methods in CorC

Database 4 6 156 2

Email [16] 2 9 807 15

Banking [32] 2 3 243 6

Paycard 2 3 244 5

that strictly separates databases of different security levels. Email [16] ensures
that encrypted emails cannot be decrypted by recipients without the matching
key. Paycard (http://spl2go.cs.ovgu.de/projects/57) and Banking [32] simulate
secure money transfer without leaking customer data. The Database case study
uses four security levels, while the others (Email, Banking, and Paycard) use
two.

As shown in Table 1, the cases studies comprise three to nine classes with
156 to 807 lines of code each. 28 Methods that exceed the complexity of getter
and setter are implemented in CorC. It should be noted that we do not have
to implement every method in CorC. If only low input data is used to compute
low output, the method is intrinsically secure. For example, three classes in the
Database case study are implemented with only low security levels. Only the
class GUI and the main method of the case study, which calls the low methods
with higher security levels (using multiple method types) is then correctly imple-
mented in CorC. The correct and secure promotion of security levels of methods
called in the main method is confirmed by CorC.

Discussion and Applicability of IFbCOO. We emphasize that CbC and also
IFbCOO should be used to implement correctness- and security-critical pro-
grams [18]. The scope of this work is to demonstrate the feasibility of the incre-
mental construction of correctness- and security-critical programs. We argue that
we achieve this goal by implementing four case studies in CorC.

The constructive nature of IFbCOO is an advantage in the secure creation
of programs. Instead of writing complete methods to allow a static analyzer to
accept/reject the method, with IFbCOO, we directly design and construct secure
methods. We get feedback during each refinement step, and we can observe the
status of all accessible variables at any time of the method. For example, we
received direct feedback when we manipulated a low object in the body of a high
then-branch. With this information, we could adjust the code to ensure security.
As IFbCOO extends CorC, functional correctness is also guaranteed at the same
time. This is beneficial as a program, which is security-critical, should also be
functionally correct. As IFbCOO is based on SIFO, programs written with any
of the two approaches can be used interchangeably. This allows developers to use
their preferred environment to develop new systems, re-engineer their systems,
or integrate secure software into existing systems. These benefits of IFbCOO
are of course connected with functional and security specification effort, and the
strict refinement-based construction of programs.

Information Flow Control-by-Construction for an Object-Oriented Language 223

6 Related Work

In this section, we compare IFbCOO to IFbC [25,29] and other Hoare-style logics
for information flow control. We also discuss information flow type systems and
correctness-by-construction [18] for functional correctness.

IFbCOO extends IFbC [25] by introducing object-orientation and type mod-
ifiers. IFbC is based on a simple while language. As explained in Sect. 4, the
language of IFbCOO includes objects and type modifiers. Therefore, the refine-
ment rules of IFbC are revised to handle secure information flow with objects.
The object-orientation complicates the reasoning of secure assignments because
objects could be altered through references with different security levels. If pri-
vate information is introduced, an already public reference could read this infor-
mation. SIFO and therefore IFbCOO consider these cases and prevent infor-
mation leaks by considering immutability and encapsulation and only allowing
secure aliases.

Previous work using Hoare-style program logics with information flow control
analyzes programs after construction, rather than guaranteeing security during
construction. Andrews and Reitman [5] encode information flow directly in a
logical form. They also support parallel programs. Amtoft and Banerjee [3] use
Hoare-style program logics and abstract interpretations to detect information
flow leaks. They can give error explanations based on strongest postcondition
calculation. The work of Amtoft and Banerjee [3] is used in SPARK Ada [4] to
specify and check the information flow.

Type system for information flow control are widely used, we refer to
Sabelfeld and Myers [28] for a comprehensive overview. We only discuss closely
related type systems for object-oriented languages [9–11,20,30,31]. Banerjee et
al. [9] introduced a type system for a Java-like language with only two security
levels. We extend this by operating on any lattice of security levels. We also
introduce type modifiers to simplify reasoning in cases where objects cannot be
mutated or are encapsulated. Jif [20] is a type system to check information flow
in Java. One main difference is in the treatment of aliases: Jif does not have
an alias analysis to reason about limited side effects. Therefore, Jif pessimisti-
cally discards programs that introduce aliases because Jif has no option to state
immutable or encapsulated objects. IFbCOO allows the introduction of secure
aliases.

In the area of correctness-by-construction, Morgan [19] and Back [8] pro-
pose refinement-based approaches which refine functional specifications to con-
crete implementations. Beside of pre-/postcondition specification, Back also uses
invariants as starting point. Morgan’s calculus is implemented in ArcAngel [22]
with the verifier ProofPower [33], and SOCOS [6,7] implements Back’s app-
roach. In comparison to IFbCOO, those approaches do not reason about infor-
mation flow security. Other refinement-based approaches are Event-B [1,2] for
automata-based systems and Circus [21,23] for state-rich reactive systems. These
approaches have a higher abstraction level, as they operate on abstract machines
instead of source code. Hall and Chapman [15] introduced with CbyC another
related approach that uses formal modeling techniques to analyze the develop-

224 T. Runge et al.

ment during all stages (architectural design, detailed design, code) to eliminate
defects early. IFbCOO is tailored to source code and does not consider other
development phases.

7 Conclusion

In this paper, we present IFbCOO, which establishes an incremental refinement-
based approach for functionally correct and secure programs. With IFbCOO
programs are constructed stepwise to comply at all time with the security pol-
icy. The local check of each refinement can reduce debugging effort, since the user
is not warned only after the implementation of a whole method. We formalized
IFbCOO by introducing 13 refinement rules and proved soundness by showing
that constructed programs are well-typed in SIFO. We also implemented IFb-
COO in CorC and evaluated our implementation with a feasibility study. One
future direction is the conduction of comprehensive user studies for user-friendly
improvements which is only now possible due to our sophisticated tool CorC.

Acknowledgments. This work was supported by KASTEL Security Research Labs.

References

1. Abrial, J.: Modeling in Event-B - System and Software Engineering. Cambridge
University Press, Cambridge (2010)

2. Abrial, J.R., Butler, M., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin, L.: Rodin:
an open toolset for modelling and reasoning in Event-B. Int. J. Softw. Tools Tech-
nol. Transfer 12(6), 447–466 (2010)

3. Amtoft, T., Banerjee, A.: Information flow analysis in logical form. In: Giacobazzi,
R. (ed.) SAS 2004. LNCS, vol. 3148, pp. 100–115. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-27864-1 10

4. Amtoft, T., Hatcliff, J., Rodŕıguez, E.: Specification and checking of software con-
tracts for conditional information flow. In: Cuellar, J., Maibaum, T., Sere, K. (eds.)
FM 2008. LNCS, vol. 5014, pp. 229–245. Springer, Heidelberg (2008). https://doi.
org/10.1007/978-3-540-68237-0 17

5. Andrews, G.R., Reitman, R.P.: An axiomatic approach to information flow in
programs. ACM Trans. Program. Langu. Syst. (TOPLAS) 2(1), 56–76 (1980)

6. Back, R.J.: Invariant based programming: basic approach and teaching experiences.
Formal Aspects Comput. 21(3), 227–244 (2009)

7. Back, R.-J., Eriksson, J., Myreen, M.: Testing and verifying invariant based pro-
grams in the SOCOS environment. In: Gurevich, Y., Meyer, B. (eds.) TAP 2007.
LNCS, vol. 4454, pp. 61–78. Springer, Heidelberg (2007). https://doi.org/10.1007/
978-3-540-73770-4 4

8. Back, R.J., Wright, J.: Refinement Calculus: A Systematic Introduction. Springer,
Heidelberg (2012)

9. Banerjee, A., Naumann, D.A.: Secure information flow and pointer confinement in
a Java-like language. In: Computer Security Foundations Workshop, vol. 2, p. 253
(2002)

Information Flow Control-by-Construction for an Object-Oriented Language 225

10. Barthe, G., Pichardie, D., Rezk, T.: A certified lightweight non-interference Java
bytecode verifier. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 125–140.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71316-6 10

11. Barthe, G., Serpette, B.P.: Partial evaluation and non-interference for object cal-
culi. In: Middeldorp, A., Sato, T. (eds.) FLOPS 1999. LNCS, vol. 1722, pp. 53–67.
Springer, Heidelberg (1999). https://doi.org/10.1007/10705424 4

12. Bordis, T., Cleophas, L., Kittelmann, A., Runge, T., Schaefer, I., Watson, B.W.:
Re-CorC-ing KeY: correct-by-construction software development based on KeY. In:
Ahrendt, W., Beckert, B., Bubel, R., Johnsen, E.B. (eds.) The Logic of Software. A
Tasting Menu of Formal Methods. LNCS, vol. 13360, pp. 80–104. Springer, Cham
(2022). https://doi.org/10.1007/978-3-031-08166-8 5

13. Giannini, P., Servetto, M., Zucca, E., Cone, J.: Flexible recovery of uniqueness and
immutability. Theor. Comput. Sci. 764, 145–172 (2019)

14. Goldberg, A., Robson, D.: Smalltalk-80: The Language and its Implementation.
Addison-Wesley Longman Publishing Co., Inc. (1983)

15. Hall, A., Chapman, R.: Correctness by construction: developing a commercial
secure system. IEEE Softw. 19(1), 18–25 (2002)

16. Hall, R.J.: Fundamental nonmodularity in electronic mail. Autom. Softw. Eng.
12(1), 41–79 (2005)

17. Igarashi, A., Pierce, B.C., Wadler, P.: Featherweight Java: a minimal core calculus
for Java and GJ. ACM Trans. Program. Lang. Syst. (TOPLAS) 23(3), 396–450
(2001)

18. Kourie, D.G., Watson, B.W.: The Correctness-by-Construction Approach to Pro-
gramming. Springer, Heidelberg (2012)

19. Morgan, C.: Programming from Specifications, 2nd edn. Prentice Hall, Hoboken
(1994)

20. Myers, A.C.: JFlow: practical mostly-static information flow control. In: Proceed-
ings of the 26th ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, pp. 228–241. ACM (1999)

21. Oliveira, M., Cavalcanti, A., Woodcock, J.: A UTP semantics for circus. Formal
Aspects Comput. 21(1), 3–32 (2009)

22. Oliveira, M.V.M., Cavalcanti, A., Woodcock, J.: ArcAngel: a tactic language for
refinement. Formal Aspects Comput. 15(1), 28–47 (2003)

23. Oliveira, M.V.M., Gurgel, A.C., Castro, C.G.: CRefine: support for the circus
refinement calculus. In: 2008 Sixth IEEE International Conference on Software
Engineering and Formal Methods, pp. 281–290. IEEE (2008)

24. Runge, T., Kittelmann, A., Servetto, M., Potanin, A., Schaefer, I.: Information
flow control-by-construction for an object-oriented language using type modifiers
(2022). https://arxiv.org/abs/2208.02672

25. Runge, T., Knüppel, A., Thüm, T., Schaefer, I.: Lattice-based information flow
control-by-construction for security-by-design. In: Proceedings of the 8th Interna-
tional Conference on Formal Methods in Software Engineering (2020)

26. Runge, T., Schaefer, I., Cleophas, L., Thüm, T., Kourie, D., Watson, B.W.: Tool
support for correctness-by-construction. In: Hähnle, R., van der Aalst, W. (eds.)
FASE 2019. LNCS, vol. 11424, pp. 25–42. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-16722-6 2

27. Runge, T., Servetto, M., Potanin, A., Schaefer, I.: Immutability and Encapsulation
for Sound OO Information Flow Control (2022, under review)

28. Sabelfeld, A., Myers, A.C.: Language-based information-flow security. IEEE J. Sel.
Areas Commun. 21(1), 5–19 (2003)

226 T. Runge et al.

29. Schaefer, I., Runge, T., Knüppel, A., Cleophas, L., Kourie, D., Watson, B.W.:
Towards confidentiality-by-construction. In: Margaria, T., Steffen, B. (eds.) ISoLA
2018. LNCS, vol. 11244, pp. 502–515. Springer, Cham (2018). https://doi.org/10.
1007/978-3-030-03418-4 30

30. Strecker, M.: Formal analysis of an information flow type system for MicroJava.
Technische Universität München, Technical report (2003)

31. Sun, Q., Banerjee, A., Naumann, D.A.: Modular and constraint-based information
flow inference for an object-oriented language. In: Giacobazzi, R. (ed.) SAS 2004.
LNCS, vol. 3148, pp. 84–99. Springer, Heidelberg (2004). https://doi.org/10.1007/
978-3-540-27864-1 9

32. Thüm, T., Schaefer, I., Apel, S., Hentschel, M.: Family-based deductive verification
of software product lines. In: Proceedings of the 11th International Conference on
Generative Programming and Component Engineering, pp. 11–20 (2012)

33. Zeyda, F., Oliveira, M., Cavalcanti, A.: Supporting ArcAngel in ProofPower. Elec-
tron. Notes Theor. Comput. Sci. 259, 225–243 (2009)

Technische Universität Carolo-Wilhelmina Braunschweig
Institut für Softwaretechnik und Fahrzeuginformatik

Mühlenpfordtstr. 23
D-38106 Braunschweig

	Abstract
	Zusammenfassung
	Danksagung
	Publications
	Contents
	List of Figures
	List of Tables
	List of Code Listings
	Introduction
	Challenges for Correct-by-Construction Program Development
	Research Questions
	Contributions
	Reader's Guide

	Background
	Contracts and Contract-based Verification
	Method Contracts
	Program Verification

	Correctness-by-Construction
	Information Flow Control

	Contributions
	CorC Tool Support for Functional Correct-by-Construction Program Development
	A Usability Evaluation of the CbC Approach as Implemented in CorC
	Alternative Correct-by-Construction Program Development Approaches
	A Uniform Correct-by-Construction Program Development Approach for Functional Correctness and Security

	Conclusion
	Discussion of Research Questions
	Discussion of the Main Research Question
	Ongoing and Future Work

	Bibliography
	Papers of the Thesis
	Tool Support for Correctness-by-Construction
	Comparing Correctness-by-Construction with Post-Hoc Verification — A Qualitative User Study
	Teaching Correctness-by-Construction and Post-hoc Verification — The Online Experience
	Traits: Correctness-by-Construction for Free
	Flexible Correct-by-Construction Programming
	Immutability and Encapsulation for Sound OO Information Flow Control
	Lattice-Based Information Flow Control-by-Construction for Security-by-Design
	Information Flow Control-by-Construction for an Object-Oriented Language

