KIT | KIT-Bibliothek | Impressum | Datenschutz

An Efficient Approach for Quantifying the Mechanical Degradation of Ni‐Rich NMC‐based Cathodes for Lithium‐Ion Batteries using Nano‐XCT Analysis

Goldbach, Daniel 1; Gluch, Jürgen; Graf, Tanja; Gaus, Michael; Käbitz, Stefan; Zillmer, Michael; Krewer, Ulrike ORCID iD icon 1
1 Institut für Angewandte Materialien – Elektrochemische Technologien (IAM-ET1), Karlsruher Institut für Technologie (KIT)

Abstract:

LiNi$_{0.8}$Co$_{0.1}$Mn$_{0.1}$O$_2$ has emerged as a promising electrode material for automotive lithium-ion batteries due to its high specific discharge capacity, cost-effectiveness, and reduced cobalt content. However, despite all mentioned beneficial attributes, the widespread adoption of this material class is impeded by active material degradation during cycling operation, which is linked to performance loss. This study compares scanning electron microscopy images and nano X-ray computed tomography scans with a 3D reconstruction of pristine and cycle-aged battery electrodes to determine structural changes over cycle life. Although a very moderate current rate was chosen for the cycle test, which suggests a homogeneous load across the entire electrode, particle fracture varied across electrode thickness and particle size. A quantitative analysis of the active material‘s gray scale value distribution reveals severe degradation near the separator interface with a reciprocal relationship to particle radius. Remarkably, particle shape and size remain relatively unchanged despite cracking, eliminating the need to adjust these parameters in aging simulations. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000162984
Veröffentlicht am 11.10.2023
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte Materialien – Elektrochemische Technologien (IAM-ET1)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2023
Sprache Englisch
Identifikator ISSN: 2196-0216
KITopen-ID: 1000162984
Erschienen in ChemElectroChem
Verlag John Wiley and Sons
Band 10
Heft 20
Seiten Art.-Nr.: e202300353
Bemerkung zur Veröffentlichung Gefördert durch den KIT-Publikationsfonds
Vorab online veröffentlicht am 26.09.2023
Schlagwörter Aging, Particle cracking, 3D reconstruction, Spatial resolution of morphological changes, Graphical evaluation
Nachgewiesen in Web of Science
Scopus
Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page