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ON THE SOBOLEV STABILITY THRESHOLD FOR

THE 2D MHD EQUATIONS WITH HORIZONTAL

MAGNETIC DISSIPATION

NIKLAS KNOBEL AND CHRISTIAN ZILLINGER

Abstract. In this article we consider the stability threshold of
the 2D magnetohydrodynamics (MHD) equations near a combina-
tion of Couette flow and large constant magnetic field. We study
the partial dissipation regime with full viscous and only horizontal
magnetic dissipation. In particular, we show that this regime be-
haves qualitatively differently than both the fully dissipative and
the non-resistive setting.
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1. Introduction

The equations of magnetohydrodynamics (MHD)

∂tV + V · ∇V + ∇Π = (νx∂2
x + νy∂2

y)V + B · ∇B,

∂tB + V · ∇B = (κx∂2
x + κy∂2

y)B + B · ∇V,

∇ · v = ∇ · b = 0,

(t, x, y) ∈ R
+ × T × R,

(1)

model the evolution of the velocity V of conducting, non-magnetic
fluids interacting with a magnetic field B. The MHD equations are
commonly used in applications ranging from astrophysics and the de-
scription of plasmas to control problems for liquid metals in industrial
applications [Dav16]. Similarly to the Navier-Stokes and Euler equa-
tions, questions of hydrodynamic stability and the behavior for high
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Reynolds numbers (that is, for ν, κ tending to zero) are a very active
area of research both inner-mathematically and in view of applications.

Motivated by stability results for the isotropic full-dissipation case
(νx = νy = κx = κy > 0) and instability results for the non-resistive
case (κx = κy = 0), we are interested in the behavior of the two-
dimensional magnetohydrodynamic (MHD) equations with partial dis-
sipation, where some of the dissipation coefficients

κy, κx, νx, νy ≥ 0,

are allowed to vanish. More specifically, we study the behavior near
the stationary solution given by the combination of Couette flow and
a (large) constant magnetic field

Vs = ye1, Bs = αe1,(2)

for the case of vanishing vertical resistivity, κy = 0. For the related case
of the Navier-Stokes equations (that is, without any magnetic field) the
(in)stability of Couette flow at high Reynolds number is known as the
Sommerfeld paradox [MB01] and is related to nonlinear instability of
the Euler equations [BM15, DM18, DZ21].

However, for the case of sufficiently small data it was proven in
[BVW18] that (mixing enhanced) dissipation can counteract this insta-
bility in the Navier-Stokes equations and that (long time asymptotic)
stability holds in Sobolev spaces for initial data with

‖ω‖HN ≤ ǫ ≪ νγ

with γ ≥ 1
2
. Later in [MZ22] this has been improved to γ = 1

3
. This

is an example of a stability threshold result, which establishes stability
for small data and determines suitable (optimal) exponents γ for given
norms.

Since the addition of the magnetic field is known to possibly desta-
bilize the dynamics (see the following discussion), our main questions
concern the MHD equations (1) in terms of perturbations moving with
the underlying shear flow:

v(x, y, t) = V (x − yt, y, t) − Vs,

b(x, y, t) = B(x − yt, y, t) − Bs.

The corresponding perturbed equations in these new variables read

∂tv + v2e1 − 2∂x∆−1
t ∇tv2 = ν · ∆tv + α∂xb + b∇tb − v∇tv − ∇tπ,

∂tb − b2e1 = κ · ∆tb + α∂xv + b∇tv − v∇tb,

∇t · v = ∇t · b = 0.

(3)

Here, we introduce the time-dependent derivatives ∂t
y = ∂y − t∂x, ∇t =

(∂x, ∂t
y) and ∆t = ∂2

x + (∂t
y)2. Furthermore, we use the following short
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notation for the dissipation operator:

ν · ∆t = νx∂2
x + νy(∂t

y)2,

κ · ∆t = κx∂2
x + κy(∂t

y)2.

In this article we aim to establish a Sobolev stability threshold for
(3) for the specific anisotropic, partial dissipation case

κy = 0, κx = νx = νy > 0.

In particular, we show that this setting exhibits qualitatively different
behavior than the fully dissipative and the non-resistive case.

Following a similar notation as [Lis20] we make the following defini-
tion.

Definition 1.1 (Stability threshold). Consider the MHD equations (1)
with anisotropic dissipation 0 < νx = νy = κx =: µ ≪ 1 and κy = 0
and let X be a Banach space with norm ‖(v, b)‖X. We then say that

the exponent γ = γ(X) is a stability threshold for the space X if for

initial data with

‖(vin, bin)‖X ≤ ǫ ≪ µγ ,

the corresponding solution of (3) remains uniformly bounded for all

future times with a quantitative control

sup
t>0

‖(v, b)‖X . ǫ.

We remark that this definition does not require optimality (that is,
instability for smaller choices of γ). Optimal stability thresholds quan-
tify the appearance of instability in the large Reynolds number limit
and are an active area of research for many fluid systems. In view
of the large literature, the interested reader is referred to the follow-
ing articles for the Navier-Stokes equations [BVW18, BGM17] and the
Boussinesq equations [ZZ23a, LWX+21, TWZZ20] for a discussion and
further references.

For the (isotropic) MHD equations (ν := νx = νy and κ := κx = κy),
there exists several results for non-vanishing magnetic dissipation.

• When considering full isotropic dissipation ν = κ > 0, Liss
[Lis20] established a Sobolev threshold in the 3D case. Under
a Diophantine condition on the magnetic field, he establishes
stability for ‖(v, b)‖HN with γ = 1. For the 2D case an improve-
ment to γ = 2

3
is expected due to the lack of lift-up instability.

Indeed, in a very recent paper, [Dol23], Dolce establishes such
a threshold for the regime 0 < Cκ3 ≤ ν ≤ κ.

• In the 2D inviscid case with isotropic magnetic dissipation,
ν = 0 and κ > 0, in [KZ23] the authors established linear insta-
bility of nearby (in analytic regularity) so-called traveling wave
type solutions in Gevrey 2 regularity. As an (almost) matching
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nonlinear result, [ZZ23b] established a stability threshold γ ≥ 1
for Gevrey 2 − δ regularity for any 0 < δ < 1.

• The setting with only an underlying magnetic field but with-
out shear flow exhibits qualitatively different behavior and was
studied for the case of the whole space in [BSS88, RWXZ14]
in the full dissipation case and in [CRW13, JLWY19] for the
partially dissipative case.

To the authors’ knowledge there are no such results in the literature
for the non-resistive case κ = 0 with Couette flow, both for the viscous
or inviscid regime ν = 0 or ν > 0, and neither for partial dissipation
regimes. In view of linear instability results [HHKL18] (see also Propo-
sition 1), for these equations any stability threshold results would need
to consider unknowns different from (v, b).

As a step towards understanding this non-resistive regime, in this
article we consider the 2D MHD equations with isotropic viscosity but
only horizontal resistivity (while [Lis20, Dol23] consider full dissipa-
tion). In particular, we ask to which extent, as quantified by Sobolev
stability thresholds, this partial dissipation regime behaves or does not
behave like these extremal cases.

In the (ideal) MHD equations (ν = κ = 0) the interaction of shear
flows and the magnetic field has been shown to possibly cause instabil-
ities, with arguments both on physical [CM91, HTY05] and mathemat-
ical grounds [HT01, ZZZ21].

As our first result, we show that this instability also persists in the
viscous but non-resistive MHD. These equations exhibit norm inflation
in HN for all choices of ν > 0.

Proposition 1 (Instability for the non-resistive MHD equations). Con-

sider the isotropic equation with ν > 0 and κ = 0 and N ≥ 3, then the

stationary solution (2) is linearly unstable in HN . More precisely, there

exists initial data (v, b)in ∈ HN such that the solution to the linearized

problem satisfies

‖(v, b)‖HN ≈ ν
α2 t‖(v, b)in‖HN

as t → ∞.

As a consequence, the nonlinear equations also exhibit arbitrarily

large norm inflation in HN . That is, for any C = C(ν) > 0 there

exists an ε0 > 0 such that for all ε < ε0 there exists initial data (v, b)in

and a time T such that

‖(v, b)in‖HN = ε,

‖(v, b)|t=T ‖HN ≥ C‖(v, b)in‖HN .

In particular, there cannot exist a Sobolev threshold for ‖(v, b)‖HN .

We remark that following the same argument also instability in suit-
able Gevrey spaces can be established.
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As mentioned above, the isotropic fully dissipative case is known
to be stable in Sobolev regularity [Lis20, Dol23]. For the associated
partial dissipation regimes, in view of the underlying shear dynamics
the associated vertical dissipation case is expected to behave similarly
as the full dissipation case. The effects of partial dissipation are a
very actively studied field of research in other fluid systems, such as
the Boussinesq equations [DWZ21, CW13, ABSPW22]), but, to the
authors’ knowledge, is largely open in the MHD equations near Couette
flow.

In the present case of horizontal resistivity, κy = 0 and νx = νy = κx,
the lack of vertical dissipation leads to stronger instabilities, requiring
finer control and use of the coupling by a strong magnetic field. Our
main results are summarized in the following theorem.

Theorem 2. Consider the MHD equations with horizontal resistivity,

µ := νx = νy = κx > 0 and κy = 0, near the stationary solution (2)
with α > 1

2
and let N ≥ 6 be given.

Then there exist constants c0 = c(α) > 0, such that for all initial

data (v, b)in which satisfy

‖(v, b)in‖HN = ε ≤ c0µ
3

2

the corresponding solution (v, b) of (4) satisfies the estimates

‖v‖L∞HN + µ
1

2 ‖∇tv‖L2HN . ε,

‖b‖L∞HN + µ
1

2 ‖∂xb‖L2HN . ε.

Let us comment on these results:

• Proposition 1 shows instability in terms of (v, b) for the non-
resistive case. Hence, the (horizontal) magnetic dissipation is
shown to be necessary for long-time stability results for (v, b).

However, similarly as in the Boussinesq equations [BBCZD21,
Zil21a], in principle stability results in terms of other unknowns
such as the magnetic potential φ = (−∆t)

−1∇⊥
t b could hold for

longer or even infinite times, which remains an exciting question
for future research.

• Theorem 2 establishes a stability threshold γ = 3
2
. In particular,

we stress that the lack of vertical magnetic dissipation not only
poses a key challenge of our analysis but results in a different
threshold value than the fully dissipative setting [Lis20, Dol23].

Indeed, the main constraint on our stability threshold is given
by the control of the nonlinearity v · ∇tb and the reduced decay
rates already at the linearized level (see Section 2). As we show
in Section 3.3, our estimates of the so-called reaction terms (23)
and (27) require a lower bound on the threshold by 3

2
and are

expected to be optimal for this partial dissipation case.
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• For simplicity of notation, in Theorem 2 we have stated our
result for the case µ := νx = νy = κx. As we discuss in Sections
2 and 3, more generally, instead of equality it suffices to require

that 1
2α

νy ≤ κx ≤ Cν
1

3
y , similarly as in the full dissipation case

studied in [Dol23]. Furthermore, we expect that results can be
be extended to the case of purely vertical viscous dissipation
with additional technical effort.

• Due to missing vertical dissipation, we obtain no decay of the
x-averaged magnetic field b= which is forced by the nonlinearity.

To prove our results, it is convenient to work with the unknowns

p1 = Λ−1
t ∇⊥

t · v, p2 = Λ−1
t ∇⊥

t · b; Λt :=
√

−∆t.

Similarly to the vorticity and current, the curl operator ∇⊥
t eliminates

the pressure and yields a scalar quantity, while the operator Λ−1
t ∇⊥

t ·
is of order 0. Moreover, since v and b are divergence-free, similarly
to viscosity formulations of the 2D Navier-Stokes equations, it can be
shown by integration by parts that

‖Av‖L2 = ‖Ap1‖L2,

‖Ab‖L2 = ‖Ap2‖L2,

for all Fourier multiplier A which commute with ∇t and Λt. This,
in particular, includes 〈∇〉N which corresponds to the Sobolev norm
‖ · ‖HN .

In terms of these unknowns our equations read

∂tp1 − ∂x∂t
x∆−1

t p1 − α∂xp2 = ν · ∆tp1 + Λ−1
t ∇⊥

t (b∇tb − v∇tv),

∂tp2 + ∂x∂t
x∆−1

t p2 − α∂xp1 = κ · ∆tp2 + Λ−1
t ∇⊥

t (b∇tv − v∇tb),

ν = (µ, µ), κ = (µ, 0).

(4)

The remainder of the article is structured as follows:

• In Section 2, as a first step we establish linear stability of the
equations (4). In view of the lack of vertical resistivity we here
crucially rely on the interaction of p1 and p2 due the the under-
lying constant magnetic field. Moreover, we discuss the effects
of partial dissipation and the resulting limited (optimal) decay
rates in time.

• In Section 3, we introduce a bootstrap method for the proof of
Theorem 2. Decomposing into low and high frequency contri-
butions here yields several error terms, which are handled in
different subsections. In particular, we need to distinguish be-
tween the evolution of the x-average (which does not experience
enhanced dissipation due to the shear) and its L2-orthogonal
complement, as well as different frequency decompositions of
the nonlinear terms (called reaction and transport terms in the
literature).
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• More precisely, in Subsection 3.2 we collect all nonlinear terms
which can be estimated in a straightforward way. In view of
partial magnetic dissipation a main challenge is given by the
effect of v∇tb on p2 at high frequencies. Here, we distinguish
between terms without x-average in Subsection 3.3 and with
average in Subsection 3.4 and perform a decomposition into a
transport and a reaction term. The low frequency regime is
discussed in Subsection 3.5 and does not require a very precise
analysis.

• As a complementary result, in Section 4 we establish instability
of the non-resistive, viscous MHD equations and prove Proposi-
tion 1. Here we first prove linear algebraic instability and then
deduce a nonlinear norm inflation result as a corollary.

1.1. Notations and conventions. For two real numbers a, b ∈ R we
denote the minimum and maximum as

min(a, b) = a ∧ b,

max(a, b) = a ∨ b.

We use the notation f . g if there exists a constant C independent of
all relevant parameters such that |f | ≤ C|g|. Furthermore, we write
f ≈ g if f . g and g . f .

Moreover, for any vector or scalar v we define

〈v〉 = (1 + |v|2) 1

2 .

For a function f(x, y) ∈ L2(T × R) we denote the x-average and its
L2-orthogonal complement as

f=(y) =
∫

T

f(x, y)dx,

f6= = f − f0.

Throughout this text, unless noted otherwise, the spatial variables
(x, y) ∈ T×R are periodic in the horizontal direction and the respective
Fourier variables are denoted as

(k, ξ) ∈ (Z,R)

or (l, η). The norms ‖·‖Lp and ‖·‖HN refer to the standard Lebesgue and
Sobolev norms for functions on T × R. For time-dependent functions
we denote LpHs = L

p
t Hs as the space with the norm

‖f‖LpHs =
∥

∥

∥‖f‖Hs(T×R)

∥

∥

∥

Lp(0,T )
.

We define the weight AN and AN ′

µ by the Fourier multipliers

AN = M〈∇〉N ,

AN ′

µ = M〈∇〉N ′

ecµt1k 6=0,
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for 3 < N ′ ≤ N − 2 and 0 < c < 1
2
(1 −

√

2
3
). With slight abuse of

notation we identify the multiplier operators with their Fourier symbols.
The operator M is a time dependent Fourier multiplier, introduced in
[BVW18], and is defined to satisfy the following equation:

−Ṁ
M

= |k|
k2+|ξ−kt|2

,

M(0, k, ξ) = 1.

That is, M is given as

M(t, k, ξ) = exp
(

−
∫ t

0
dτ |k|

k2+(ξ−kτ)2

)

.

In particular, the operator M is comparable to the identity in the sense
that

1 ≥ M(t, k, ξ) ≥ c

for some constant c and all k 6= 0 (and M(t, 0, ξ) := 1 for k = 0).
The operators A thus define energies comparable to Sobolev (semi)norms:

‖AN · ‖L2 ≈ ‖ · ‖HN ,

‖AN ′

µ · ‖L2 ≈ ‖ecµt1k 6=0 · ‖HN .

In particular, since N is sufficiently large, the norm defined by AN

satisfies an algebra property.

2. Linear stability

In this section we study the stability of the linearized version of the
equations (4):

∂tp1 − ∂x∂t
x∆−1

t p1 − α∂xp2 = ν · ∆tp1,

∂tp2 + ∂x∂t
x∆−1

t p2 − α∂xp1 = κ · ∆tp2,

ν = (µ, µ), κ = (µ, 0).

(5)

The ode tools to establish stability of such systems are well-known in
related systems such as the Boussinesq equations [LWX+21, BBCZD21,
BZD20, MZZ23, Zil21b].

Our main results are summarized in the following proposition.

Proposition 2.1 (Linear stability). Let µ > 0, α > 1
2

and N ≥ 6 be

as in Theorem 2. Then the equations (5) are stable in HN in the sense

that for any choice of initial data pin ∈ HN the corresponding solution

satisfies

‖p‖L∞HN + µ1/2‖∇tp1‖L2HN + µ1/2‖∂xp2‖L2HN . e−Cµt‖pin‖HN .

As we discuss in the proof, in the case ν ≤ κ ≤ ν3 the optimal decay
rate for large times is given by µ = min(ν1/3, κ). In particular, the cou-
pling induced by the underlying magnetic field cannot yield enhanced
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dissipation rates for both components once the viscous dissipation be-
comes too large.

Proof of Proposition 2.1. We note that in this linear evolution equation
(5) all coefficient functions are independent of both x and y. Therefore
the equations decouple after a Fourier transform and we may equiva-
lently consider the ode system

∂tp̂1 − k(ξ−kt)
k2+(ξ−kt)2 p̂1 − αikp̂2 = −ν(k2 + (ξ − kt)2)p̂1,

∂tp̂2 + k(ξ−kt)
k2+(ξ−kt)2 p̂2 − αikp̂1 = −κk2p̂2,

(6)

for an arbitrary but fixed frequency (k, η) ∈ Z × R. Since the equa-
tions are trivial for k = 0, in the following we further without loss of
generality may assume that k 6= 0. Furthermore, after shifting t by ξ

k
,

we may assume that ξ = 0 and thus obtain a system of the form

∂t

(

p1

p2

)

=

(

− t
1+t2 − νk2(1 + t2) iαk

iαk t
1+t2 − κk2

)(

p1

p2

)

,(7)

where we dropped the hats for simplicity of notation.
In a first naive estimate, we can test this equations with (p1, p2) and

obtain that

∂t(|p1|2 + |p2|2) ≤ (
|t|

1 + t2
− µk2)(|p1|2 + |p2|2),

which already yields the desired decay for times |t| ≫ (µk2)−1. How-
ever, a Gronwall-type estimate on the remaining interval would only
yield a very rough upper bound on the possible growth by

exp

(

∫

|t|.(µk2)−1

|t|
1 + t2

dt

)

. (1 + µk2)2.

In order to improve this estimate, a common trick is to make use of
the fact that |α| is relatively large and to consider

E = |p1|2 + |p2|2 +
t

1 + t2
ℜ
(

1

iα
p1p2

)

.

Since |α| > 1
2

this energy is positive definite and comparable to |p1|2 +

|p2|2, with a constant which degenerates as |α| ↓ 1
2
.
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Computing the time derivative of the last term, we note that

t

1 + t2
∂tℜ

(

1

iα
p1p2

)

≤ t

1 + t2
(|p1|2 − |p2|2)

+
|t|

1 + t2

1

|α|νk2(1 + t2)|p1||p2|

+
|t|

1 + t2

1

|α|κk2|p1||p2|

+ O(t−2)|p1||p2|.
The first term exactly cancels out the possibly large contribution in
∂t(|p1|2 + |p2|2). For the second and third term we use that fact that
1
α

< 2 and that these terms can hence be absorbed into the dissipation
terms at the cost of a slight loss of constants, provided that

1

2α
ν ≤ κ ≤ ν1/3.

Noting that ∂t
|t|

1+t2 = O(t−2) is integrable in time, we thus arrive at

∂tE . O(t−2)E − νk2(1 + t2)|p1|2 − κk2|p2|2.
Further defining

Ẽ = E exp(
∫ t

O(τ−2)dτ),

it follows that Ẽ ≈ E decays exponentially in time and that the damp-
ing terms are integrable in time, which yields the desired result.

We further remark that for t (corresponding to times t + ξ
k
) such

that |t| . (µk2)−1/3 the system (7) exhibits mixing enhanced dissipa-
tion, even though the dissipation for the magnetic component is only
horizontal. Indeed, after relabeling p1 7→ ip1 and introducing the en-
ergy E to control contributions by t

1+t2 , this follows from the fact that
the eigenvalues of the matrix

(

−µk2(1 + t2) −α

α −µk2

)

are given by

λ1,2 = −µk2(2 + t2)

2
±
√

1

4
(µk2t2)2 − α2.

Since |α| > 1
2

by our assumption on t the square root is purely imagi-
nary and hence ℜ(λ1) = ℜ(λ2) is comparable to the enhanced dissipa-
tion term

−µk2(1 + t2).
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However, for times much larger than this (that is, far away from ξ
k
),

the same eigenvalue computation shows that

λ1 ≈ −µk2〈t〉2, λ2 ≈ −µk2

and hence enhanced dissipation can only be expected for one of the
eigenvalues. �

This linear result highlights the effects of the coupling induced by
the underlying constant magnetic field and shows which optimal decay
estimates can be expected. In particular, it clearly illustrates that
the loss of vertical magnetic dissipation incurs a change of decay rate
compared to the fully dissipative case.

3. Bootstrap hypotheses and outline of proof

We next turn to the full nonlinear problem (4), where we intend to
treat the nonlinear contributions as errors and make use of the small-
ness of our initial data.

Our approach here follows a bootstrap argument, which is by now
standard in the field (see, for instance, [BVW18]). In the notation of
Section 1.1 we assume that at the initial time

‖ANp‖2
L2 + ‖AN ′

µ p‖2
L2 ≤ c0ǫ

2(8)

for 3 < N ′ ≤ N − 2. The constant c0 = c0(α) > 0 will later be chosen
small enough and tends to 0 as α → 1

2
. Given this estimate at the

initial time, our aim in the remainder of this section is to establish the
following estimates for the corresponding solution:

• High frequency estimates

‖AN p1‖2
L∞L2 + µ‖AN∇tp1‖2

L2L2 + ‖
√

−Ṁ
M

ANp1‖2
L2L2 < ε2,

‖ANp2‖2
L∞L2 + µ‖AN∂xp2‖2

L2L2 + ‖
√

−Ṁ
M

ANp2‖2
L2L2 < ε2.

(9)

• Low frequency estimates

‖AN ′

µ p1‖2
L∞L2 + µ‖AN ′

µ ∇tp1‖2
L2L2 + ‖

√

−Ṁ
M

AN ′

µ p1‖2
L2L2 < ε2,

‖AN ′

µ p2‖2
L∞L2 + µ‖AN ′

µ ∂xp2‖2
L2L2 + ‖

√

−Ṁ
M

AN ′

µ p2‖2
L2L2 < ε2.

(10)

By local well-posedness and our assumptions on the initial data, these
estimates are satisfied at least on some (small) time interval (0, T ). In
our bootstrap approach we assume for the sake of contradiction that the
maximal time T with this property is finite. We then show that on that
same time interval all estimates hold with improved bounds instead,
which however would imply that the estimates could be extended for a
small additional time, contradicting the maximality of T .

With this understanding, we suppress T in our notation (see Section
1.1) and all Lp norms in time are understood to be norms on Lp(0, T ).
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The splitting into high and low frequencies is essential to close the
estimates in Subsection 3.3 and Subsection 3.4. In particular, we need
the e−cµt decay to bound the so-called reaction error. Moreover, we
require strong control of commutators involving A in order to control
the so-called transport error. Both error terms impose strong restric-
tions on the energies and do not allow to close estimates in an easy
way. We overcome this difficulty by linking separate energy estimates
in the high frequency part and the low frequency part. On the one
hand, we can use the additional e−cµt in the low frequency part to our
benefit in the analysis of the high frequency part. On the other hand,
the difference in regularity allows us to control derivatives in the low
frequency estimate by the using high frequency estimate.

Given a solution (p1, p2) of (4) and letting A = AN , AN ′

µ , computing
time derivatives we need to control

∂t‖Ap1‖2
L2 + 2(1 − c)µ‖A∇tp1‖2

L2 + 2‖
√

−Ṁ
M

Ap1‖2
L2

≤ 2〈A2p1, ∂x∂t
x∆−1

t p1 + Λ−1
t ∇⊥

t (b∇tb − v∇tv)〉 =: L[p1] + NL[p1],

∂t‖Ap2‖2
L2 + 2(1 − c)µ‖A∂xp2‖2

L2 + 2‖
√

−Ṁ
M

Ap2‖2
L2

≤ 2〈A2p2, −∂x∂t
x∆−1

t p2 + Λ−1
t ∇⊥

t (b∇tv − v∇tb)〉 =: L[p2] + NL[p2].

Here we have split contributions into linear (that is, quadratic integrals)
and nonlinear terms (that is, trilinear integrals). Note that the choice

of 0 < c < 1
2
(1 −

√

2
3
) is made such that 1 − c is not too small to absorb

linear effects for α close to 1
2
. For later reference, we note the following

estimates:

‖∂2
xΛ−1

t Λ−1p‖HN . 1
t
‖p 6=‖HN(11)

and for A = AN , AN ′

µ

‖Ap1, 6=‖L2L2 . µ− 1

2 ε,

‖Ap2, 6=‖L2L2 . µ− 1

2 ε.
(12)

Furthermore, for the nonlinear terms we will often use the equality

‖Av‖L2 = ‖Ap1‖L2,

‖Ab‖L2 = ‖Ap2‖L2.

Throughout the following sections, we aim to establish smallness of
the contributions by the linear terms L[·] and nonlinear terms NL[·].
More precisely, we establish the following proposition.

Proposition 3.1 (Control of errors). Under the assumptions of Theo-

rem 2 suppose that the initial data satisfies the smallness condition (8)
and let T > 0 be such the high and low frequency estimates (9), (10)
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are satisfied. Then on the same time interval it holds that
∫ T

0
L[p1] + L[p2]dt ≤ 1

2α
(c0 + 1)ε2 + O(µ−1ε3),

∫ T

0
NL[p1] + NL[p2]dt ≤ µ− 3

2 ε3.

As a consequence, supposing that α > 1
2

and ǫ ≪ µ3/2, this implies
that both the high frequency and low frequency estimates (9), (10)
improve and thus T can only have been maximal if T = ∞, which
proves Theorem 2. Thus proving Proposition 3.1 is our main concern
in this section and our proof is split over the following subsections. The
most important estimates, highlighting the effects of partial dissipation,
are established in Subsections 3.1, 3.3 and 3.4.

We note that the nonlinear terms

〈Ap1, Λ−1
t ∇⊥

t A(b∇tb − v∇tv)〉 = −〈Av, A(b∇tb − v∇tv)〉,
〈Ap2, Λ−1

t ∇⊥
t A(b∇tv − v∇tb)〉 = −〈Ab, A(b∇tv − v∇tb)〉,

for A = AN , AN ′

µ are all trilinear products involving

a1a2a3 ∈ {vvv, vbb, bbv, bvb}
and we will use this notation to refer to the specific terms. Since the
x-averages do not experience fast (mixing enhanced) decay under the
dissipation, we split these products as

〈Aa1, A(a2∇ta
3)〉 = 〈Aa1

6=, A(a2
6=∇ta

3
6=) 6=〉

+ 〈Aa1
6=, A(a2

=∇ta
3
6=)〉

+ 〈Aa1
6=, A(a2

6=∇ta
3
=)〉

+ 〈Aa1
=, A(a2

6=∇ta
3
6=)=,

where the full splitting is only used for the bvb term.

3.1. Estimate of the linear error. In this subsection we establish
the estimate of the linear terms in Proposition 3.1. Here, we use some
of the same techniques as in the proof of linear stability in Section
2, but instead focus on establishing quantitative bounds on the time
integral.

Taking a Fourier transform of (4) yields

∂tp̂1 − k(ξ−kt)
k2+(ξ−kt)2 p̂1 − αikp̂2 = −µ(k2 + (ξ − kt)2)p̂1 + F [NL[p1]],

∂tp̂2 + k(ξ−kt)
k2+(ξ−kt)2 p̂2 − αikp̂1 = −µk2p̂2 + F [NL[p2]].

(13)

Recalling the various contributions, we aim to estimate

〈A2p2, −∂x∂t
y∆−1

t p2〉 + 〈A2p1, ∂x∂t
y∆−1

t p1〉

=
∑

k

∫

dξA2 k(ξ−kt)
k2+(ξ−kt)2 (|p̂1|2 − |p̂2|2).
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In the following, with slight abuse of notation, we omit the hat denoting
the Fourier transform and only consider k 6= 0, since for k = 0 this term
vanishes.

Similarly as in the linear stability results of Section 2, we note that
the Fourier multiplier a priori is not integrable in time and cannot easily
be estimated by the partial dissipation. Hence, we rely on the coupling
induced by the underlying magnetic field to eliminate some of this
contribution and to provide better decay. More precisely, multiplying
the equations (13) with p̂2, p̂1 and omitting the hats for simplicity of
notation, we obtain the following identity:

|p1(k)|2 − |p2(k)|2

= − 1
iαk

(p1iαkp1 + iαkp2p2)

= − 1
iαk

p1(∂tp2 + k(ξ−kt)
k2+(ξ−kt)2 p2 + µk2p2 − F [NL[p2]]))

− 1
iαk

p2(∂tp1 − k(ξ−kt)
k2+(ξ−kt)2 p1 + (µk2 + µ(ξ − kt)2)p1 − F [NL[p1]]

= −1
iαk

(∂t(p1p2) + µ(k2 + (ξ − kt)2)p1p2 + µk2p1p2)

− 1
αik

(p1, p2) · F [Λ−1
t ∇⊥

t (b∇tb − v∇tv, b∇tv − v∇tb)].

Thus we split L into two linear terms and one nonlinear term:

L = 2
∑

k

∫

dξA2 k(ξ−kt)
k2+(ξ−kt)2

−1
iαk

∂t(p1p2)

+ 2
∑

k

∫

dξA2 k(ξ−kt)
k2+(ξ−kt)2

−1
iαk

(2µk2 + µ(ξ − kt)2)p1p2

− 2
α
〈A∂t

y∆−1
t (p1, p2) 6=, AΛ−1

t ∇⊥
t (b∇tb − v∇tv, b∇tv − v∇tb) 6=〉

= L1 + Lµ + ONL.

(14)

We estimate Lµ by

Lµ = 2
α

µ
∑

k 6=0

∫

dξA2 (2k2+(ξ−kt)2)(ξ−kt)
k2+(ξ−kt)2 p1p2

= 2
α

µ
∑

k 6=0

∫

dξA2 (2k2+(ξ−kt)2)(ξ−kt)

(k2+(ξ−kt)2)
3

2

p1(k
2 + (ξ − kt)2)

1

2 p2

≤ 2
α
µ sup

s

(

(2+s2)s

(1+s2)
3

2

)

‖A∂xp2‖L2‖A∇tp1‖L2

≤
√

2
3

1
α
µ(‖A∂xp2‖2

L2 + ‖A∇tp1‖2
L2),



MHD STABILITY THRESHOLD 15

where we used that
∣

∣

∣

∣

(2k2+(ξ−kt)2)(ξ−kt)

(k2+(ξ−kt)2)
3

2

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

(2+( ξ

k
−t)2)( ξ

k
−t)

(1+( ξ

k
−t)2)

3

2

∣

∣

∣

∣

∣

≤ sup
s

(

(2+s2)s

(1+s2)
3

2

)

≤
√

2
3
.

To estimate L1, we integrate in time and integrate by parts in space
to deduce that

∫

dτ
∑

k

∫

dξA2 k(ξ−kt)
k2+(ξ−kt)2

−1
iαk

∂t(p1p2)

=

[

−1
iα

∑

k

∫

dξA2 (ξ−kt)
k2+(ξ−kt)2 p1p2

]t

0

+
∫

dτ 1
iα

∑

k

∫

dξp1p2∂t(A
2 (ξ−kt)

k2+(ξ−kt)2 )

=

[

−1
iα

∑

k

∫

dξA2 (ξ−kt)
k2+(ξ−kt)2 p1p2

]t

0

+
∫

dτ 2
iα

∑

k

∫

dξp1p2
Ṁ
M

A2 (ξ−kt)
k2+(ξ−kt)2

+ cµ1A=AN′
µ

∫

dτ 2
iα

∑

k

∫

dξp1p2A
2 (ξ−kt)

k2+(ξ−kt)2

+
∫

dτ 1
iα

∑

k

∫

dξp1p2A
2 k(k2−(kt−ξ)2)

(k2+(ξ−kt)2)2 .

So we infer by Hölder’s inequality that
∫

dτ
∑

k

∫

dξA2 k(ξ−kt)
k2+(ξ−kt)2

−1
iαk

∂t(p1p2)

≤ 1
α
(‖Ap1(0)‖L2‖Ap2(0)‖L2 + ‖Ap1(t)‖L2‖Ap2(t)‖L2)

+ µ‖A∂xp1‖L2L2‖A

√

−Ṁ
M

p2‖L2L2

+ 1
α

‖A

√

−Ṁ
M

p1‖L2L2‖A

√

−Ṁ
M

p2‖L2L2

and thus
∫

Ldτ −
∫

ONLdτ

≤ 1
2α

(‖Ap1(0)‖2
L2 + ‖Ap2(0)‖2

L2)

+ 1
2α

(‖Ap1‖2
L∞L2 + ‖Ap2(t)‖2

L∞L2)

+ 1
α

(µ(1 − c)‖∂xAp‖2
L2 + µ(1 − c)‖∂t

yAp‖2
L2 + ‖

√

−Ṁ
M

Ap‖2
L2).
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Using the dissipation estimates (12), we therefore obtain
∫

Ldτ ≤ 1
2α

(c0 + 1)ε2 +
∫

ONLdτ,(15)

where the ONL part will be estimated at the beginning of the next
subsection.

3.2. Immediate nonlinear estimates for AN . In this subsection,
we collect some estimates which can be obtained in a straight forward
approach using standard techniques (e.g. see [BVW18]). In particular,
for these terms we are not constrained by the lack of vertical resistiv-
ity. For most estimates we do not aim to establish optimal (mixing
enhanced) bounds, since these bounds are in any case better than the
ones involving horizontal resistivity and hence do not affect the over
all stability threshold. In the following we write A = AN .

ONL estimate: Using integration by parts in space and Hölder’s
inequality, the nonlinear contribution in (14) can be estimated by

ONL = 2
α
〈A∂t

y∆−1
t v6=, A(b∇tb − v∇tv) 6=〉

+ 2
α
〈A∂t

y∆−1
t b6=, A(b∇tv − v∇tb) 6=〉

= 2
α
〈A∂t

y∆−1
t (∇⊥

t ⊗ v6=), A(b ⊗ b − v ⊗ v) 6=〉
+ 2

α
〈A∂t

y∆−1
t (∇⊥

t ⊗ b6=), A(b ⊗ v − v ⊗ b) 6=〉
. 2

α
‖A(v, b) 6=‖2

L2‖A(v, b)‖L2.

Recalling the bounds (12) and integrating in time we thus obtain that
∫

ONLdτ . µ−1ε3.(16)

Estimates with an x-average in the second component: Let
a1a2a3 ∈ {vvv, vbb, bbv, bvb}, then we need to estimate the trilinear
products

〈Aa1
6=, A(a2

=∇ta
3
6=)〉 = 〈Aa1

6=, A(a2
=,1∂xa3

6=)〉
. ‖Aa1

6=‖L2‖Aa2
=,1‖L2‖A∂xa3

6=‖L2.

Integrating in time and again using the bound (12) yields a control by
∫

dτ〈Aa1, A(a2
=∇ta

3)〉 . µ−1ε3.(17)

The influence of the underlying x-averaged velocity and magnetic field
on the average-less parts can thus be easily controlled by the dissipation,
provided ǫ ≪ µ. In the following we focus on terms involving a2

6=.
vvv estimate: We first discuss the velocity non-linearity and use

the algebra property of HN and the bounds on A to estimate

〈Av, Av6=∇tv〉 ≤ ‖Av‖L2‖Av6=‖L2‖A∇tv‖L2.

Here, the contribution by ‖A∇tv‖L2 is square integrable in time due
to the dissipation (12), while ‖Av6=‖L2 is square integrable in time by
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the inviscid damping estimates (11). Integrating in time thus yields a
bound by

∫

dτ〈Av, A(v6=∇tv)〉 . µ−1ε3.(18)

vbb estimate: For the contributions by the vbb nonlinearity we
intend to argue similarly, but have to account for the lack of vertical
magnetic dissipation (which we compensate for by using the full fluid
dissipation). We may split the integral as

〈Av, A(b6=∇tb)〉 =
∫

Av1A(b1, 6=∂x + b2, 6=∂t
y)b1

+
∫

Av2A(b1, 6=∂x + b2, 6=∂t
y)b2.

For the second term we integrate by parts to obtain
∫

Av1A(b2, 6=∂t
yb1) = −

∫

A∂t
yv1A(b2, 6=b1) −

∫

Av1A(∂t
yb2, 6=b1).

Furthermore, since b is divergence-free, it holds that ∂t
yb2 = −∂xb1 and

hence

〈Av, A(b6=∇tb)〉 ≤ ‖Av‖L2‖Ab6=‖L2‖A∂xb‖L2 + ‖∂t
yv‖L2‖Ab6=‖L2‖Ab2‖L2 .

We may therefore estimate this term using the full fluid and horizontal
magnetic dissipation (12) and integrating in time yields a bound by

∫

dτ〈Av, A(b6=∇tb)〉 . µ−1ε3.(19)

bbv estimate: Finally, for the bbv contribution, we may again use the
full fluid dissipation and the algebra property of A (and HN) to obtain
a bound

〈Ab, A(b6=∇tv)〉 . ‖Ab‖L2‖Ab6=‖L2‖A∇tv‖L2.

Integrating in time and using (12) we thus obtain a bound by
∫

dτ〈Ab, A(b6=∇tv)〉 . µ−1ε3.(20)

3.3. High frequency bvb term without x-average. Having estab-
lished several straightforward estimates using the full fluid dissipation,
in this and the following subsections we establish bounds for the high
frequency (that is, AN terms as in (9)) terms involving bvb. For sim-
plicity, we write A = AN and aim to establish the estimate

〈Ab, A(v6=∇tb)〉 . µ− 3

2 ε3.

We split the bvb term according to (non)vanishing x-averages:

〈Ab, A(v6=∇tb)〉 = 〈Ab6=, A(v6=∇tb6=) 6=〉
+ 〈Ab6=, A(v6=∇tb=) 6=〉
+ 〈Ab=, A(v6=∇tb6=)=〉.
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Let us first consider the term without any x-averages, which can be
written as

〈Ab6=, A(v6=∇tb6=)〉 =
∫

Ab1, 6=A((v1, 6=∂x + v2, 6=∂t
y)b1, 6=)

+
∫

Ab2, 6=A((v1, 6=∂x + v2, 6=∂t
y)b2, 6=).

We estimate the second contribution using the algebra property of HN

and that ∂t
yb2 = −∂xb1, since b is divergence-free:

∫

dτ

∫

Ab2, 6=A(v1, 6=∂x + v2, 6=∂t
y)b2, 6=

≤
∫

dτ‖Ab2, 6=‖L2(‖Av1, 6=‖L2‖A∂xb2, 6=‖L2 + ‖Av2, 6=‖L2‖A∂t
yb2, 6=‖L2)

≤
∫

dτ‖Ab2, 6=‖L2(‖Av1, 6=‖L2‖∂xb2, 6=‖L2 + ‖Av2, 6=‖L2‖A∂xb1, 6=‖L2).

Employing Hölder’s inequality this contribution can thus be estimated
as

∫

dτ

∫

Ab2, 6=A((v1, 6=∂x + v2, 6=∂t
y)b2, 6=)

≤
∫

dτ‖Ab2, 6=‖L2‖Av6=‖L2‖A∂xb6=‖L2

≤ ‖Ab2, 6=‖L2L2‖Av6=‖L∞L2‖A∂xb6=‖L2L2

. µ−1ε3.

(21)

It remains to control the contribution by b1, 6=, which in view to the lack
of vertical resistivity is the hardest term to control. Since the velocity
field v is divergence-free, we observe that

∫

Ab1, 6=(v6=∇tAb1, 6=) = 0.

Therefore, we obtain the following cancellations and introduce a split-
ting in Fourier space:
∫

Ab1, 6=A(v6=∇tb1, 6=) =
∫

Ab1, 6=(A(v∇tb1, 6=) − (v6=∇tAb1, 6=))

=
∑

k,l,k−l 6=0

∫∫

d(ξ, η)A(k, ξ)b1(k, ξ) (A(k,ξ)−A(l,η))(ξl−ηk)√
(k−l)2+(ξ−η−(k−l)t)2

p1(k − l, ξ − η)b1(l, η)

= T + R + R.

Here, the Fourier regions

ΩT = {|k − l, ξ − η| ≤ 1
8
|l, η|},

ΩR = {|l, η| ≤ 1
8
|k − l, ξ − η|},

ΩR = {1
8
|l, η| ≤ |k − l, ξ − η| ≤ 8|l, η|},
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correspond to the the transport (T ) or low-high term, reaction (R)
or high-low term and the remainder (R) or high-high term. In the
following we omit the 6= subscripts.

Transport term: Since |k − l, ξ −η| ≤ 1
8
|l, η| we obtain that |l, η| ≈

|k, ξ|. Without loss of generality we assume that ξ ≤ η, since we can
use either of the following splittings

ξl − kη = (ξ − η)l − (k − l)η

= (ξ − η)k − ξ(k − l).

Thus using the second equality we estimate

T ≤ ‖∂yΛ−1
t p1‖L∞‖Ab1‖L2‖∂xAb1‖L2

+
∑

k,l 6=0

∫∫

d(ξ, η)1ΩT
(12〈t〉(k∨l)≥ξ + 12〈t〉(k∨l)≤ξ)

· A(k, ξ)b1(k, ξ) (A(k,ξ)−A(l,η))ξ(l−k)√
(k−l)2+(ξ−η−(k−l)t)2

p1(k − l, ξ − η)b1(l, η),

where we distinguished between 2〈t〉(k ∨ l) ≥ ξ and 2〈t〉(k ∨ l) ≤ ξ.
The first case is estimated by using the dissipation and (11):

∑

k,l 6=0

∫∫

d(ξ, η)1ΩT
1ξ≤2(k∨l)〈t〉A(k, ξ)b1(k, ξ)

· (A(k,ξ)−A(l,η))ξ(l−k)√
(k−l)2+(ξ−η−(k−l)t)2

p1(k − l, ξ − η)b1(l, η)

. 〈t〉‖Ab1‖L2‖Λ−1
t ∂xp1‖L∞‖∂xAb1‖L2

. ‖Ab1‖L2‖Λ∂xp1‖L∞‖∂xAb1‖L2

. ‖Ab1‖L2‖Ap1‖L2‖∂xAb1‖L2 .

For the second case, 2〈t〉(k ∨ l) ≤ ξ, we need to estimate

(AN(k, ξ) − AN(l, η)) = (M(k, ξ)|k, ξ|N − M(l, η)|l, η|N)

= M(k, ξ)(|k, ξ|N − |l, η|N)

+ M(l, η)(M(k,ξ)
M(l,η)

− 1)|l, η|N .

By the mean value theorem, we obtain

|k, ξ|N − |l, η|N ≤ N |k − θl, ξ − θη|N−1|k − l, ξ − η|
. |k − l, ξ − η|(|l, η|N−1 + |k − l, ξ − η|N−1)

. |k − l, ξ − η||l, η|N−1.

For the differences in M we use that for a, b > 0 it holds that |ea−b−1| ≤
ea+b − 1 and hence

|M1(k,ξ)
M1(l,η)

− 1| = | exp
(
∫ t

0

|l|
l2+(η−ls)2 − |k|

k2+(ξ−ks)2 ds

)

− 1|

≤ | exp
(
∫ t

0

|l|
l2+(η−ls)2 + |k|

k2+(ξ−ks)2 ds

)

− 1|.
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Thus for η ≥ ξ ≥ 2t(k ∨ l) by integrating we obtain that

|M1(k,ξ)
M1(l,η)

− 1| ≤ exp
(

1
|l|

∫ t

0

1
1+( η

l
−s)2 ds + 1

|k|

∫ t

0

1

1+( ξ

k
−s)2

ds

)

− 1

≤ exp( 1
η

+ 1
ξ
) − 1

. 1
η

+ 1
ξ
.

Therefore, we deduce that

∑

k,l,k−l 6=0

∫∫

d(ξ, η)1ΩT
1ξ≥2(k∨l)tA(k, ξ)b1(k, ξ) (A(k,ξ)−A(l,η))ξ(l−k)√

(k−l)2+(ξ−η−(k−l)t)2

p1(k − l, ξ − η)b1(l, η)

. ‖Ab1‖L2‖Λ−1
t ∂xp1‖L∞‖Ab1‖L2

. 〈t〉−1‖Ab1‖L2‖Λ∂xp1‖L∞‖Ab1‖L2

. 〈t〉−1‖Ab1‖L2‖Ap1‖L2‖Ab1‖L2 ,

where we used the estimate (11). Combining all estimates, we have
derived the following estimate of the transport term:

∫

Tdτ . ‖Ab1‖L∞L2‖Ap1‖L∞L2‖Ab1‖L2L2

. µ− 1

2 ε3.

(22)

Reaction term: Since |l, η| ≤ 1
8
|k−l, ξ−η| we obtain |k−l, ξ−η| ≈

|k, ξ|. With the identity

ξl − kη = l(ξ − η − (k − l)t) − (k − l)(η − lt)

and A(k, ξ) − A(l, η) . A(k − l, ξ − η) we infer

R =
∑

k,l,k−l 6=0

∫∫

d(ξ, η)1ΩR
A(k, ξ)b1(k, ξ) (A(k,ξ)−A(l,η))(l(ξ−η−(k−l)t)−(k−l)(η−lt))√

(k−l)2+(ξ−η−(k−l)t)2

· p1(k − l, ξ − η)b1(l, η)

≤ ‖Ab1‖L2‖A∂t
yΛ−1

t p1‖L2‖∂xb1‖L∞

+ ‖Ab1‖L2‖AΛ−1
t p1‖L2‖∂t

y∂2
xb1‖L∞

+ ‖∂xAb1‖L2‖AΛ−1
t p1‖L2‖∂t

y∂xb1‖L∞.

We split ∂t
y = ∂y − t∂x and use the definition of the low-frequency

multiplier AN ′

µ to estimate

‖〈∂x〉2∂t
yb1‖L∞ ≤ ‖〈∂x〉2∂yb1‖L∞ + ‖〈∂x〉2t∂xb1‖L∞

≤ t‖ΛN ′

b1‖L2

. te−cµt‖AN ′

µ b1‖L2

. µ−1‖AN ′

µ b1‖L2.
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Therefore, integrating in time yields the estimate

∫

Rdτ . ‖Ab1‖L2L2

(

‖A∂t
yΛ−1

t p1‖L2L2‖Ab1‖L∞L2

)

+ µ−1‖A∂xb1‖L2L2‖AΛ−1
t p1‖L2L2‖AN ′

µ b1‖L∞L2

. ε3µ− 3

2 .

(23)

R term: We consider the Fourier region where 1
8
|l, η| ≤ |k−l, ξ−η| ≤

8|l, η|. Thus, we have the bounds |k, ξ| . |l, η| and A(k, ξ) . A(l, η) ≈
A(k − l, ξ − η). Furthermore, we note that

ξl − ηk ≤ |l, η|2,

and thus estimate the remainder terms as

R =
∑

k,l,k−l 6=0

∫∫

d(ξ, η)1ΩR
A(k, ξ)b1(k, ξ)

(A(k,ξ)−A(l,η))(ξl−ηk)√
(k−l)2+(ξ−η−(k−l)t)2

p1(k − l, ξ − η)b1(l, η)

. ‖Ab1‖L2‖AΛ−1
t p1‖L2‖Λ2b1‖L∞

. ‖Ab1‖L2‖AΛ−1
t p1‖L2‖Ab1‖L2 .

Hence after integrating in time, we deduce that

∫

R . ‖Ab1‖L2L2‖
√

−Ṁ
M

Ap1‖L2L2‖Ab1‖L∞L2 . µ− 1

2 ε3.(24)

Combining the estimates (21), (22), (23) and (24), we finally con-
clude that

〈Ab6=, A(v6=∇tb6=) 6=〉 . µ− 3

2 ε3.(25)

3.4. High frequency estimates for bvb terms with x-averages.

In this subsection we aim to estimate the remaining terms in the bvb

integrals, which involve x-averages. We consider the two terms

〈Ab6=, A(v6=∇tb=) 6=〉 + 〈Ab=, A(v6=∇tb6=)=〉
= 〈Ab1, 6=, A(v6=∇tb1,=) 6=〉 + 〈Ab1,=, A(v6=∇tb1, 6=)=〉,

where we used that b2,= = 0, since b is divergence-free. Using integra-
tion by parts and the fact that v is divergence-free, we obtain that

〈Ab1, 6=, v6=∇tAb1,=〉 + 〈Ab1,=, v6=∇tAb1, 6=〉
= 〈v6=, ∇t(Ab1,=Ab1, 6=)〉 = 0,
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and thus

〈Ab1, 6=, A(v6=∇tb1,=)〉 + 〈Ab1,=, A(v6=∇tb1, 6=)〉
= 〈Ab1, 6=, A(v6=∇tb1,=) − v6=∇tAb1,=〉 + 〈Ab1,=, A(v6=∇tb1, 6=) − v6=∇tAb1, 6=〉

=
∑

k 6=0

∫∫

d(ξ, η)A(k, ξ)b1(k, ξ) (A(k,ξ)−A(0,η))(−kη)√
k2+(ξ−η−kt)2

p1(k, ξ − η)b1(0, η)

+
∑

k 6=0

∫∫

d(ξ, η)A(0, ξ)b1(0, ξ) (A(0,ξ)−A(k,η))(−kξ)√
k2+(ξ−η−kt)2

p1(k, ξ − η)b1(−k, η).

Again we split this integrals into the transport T , reaction R and re-
mainder terms R with the same definition of sets in Fourier space:

ΩT = {|ξ − η| ≤ 1
8
|η|},

ΩR = {|η| ≤ 1
8
|ξ − η|},

ΩR = {1
8
|η| ≤ |ξ − η| ≤ 8|η|}.

Transport term: Since |ξ − η| ≤ 1
8
|η| we obtain that |η| ≈ |ξ|.

In our estimates, we distinguish the cases ξ ∨ η ≤ 2k〈t〉 and ξ ∨ η ≥
2k〈t〉. In the first case, ξ ∨ η ≤ 2k〈t〉 we obtain a bound by

∑

k 6=0

∫∫

d(ξ, η)1ΩT
1ξ∨η≤k〈t〉A(k, ξ)b1(k, ξ) (A(k,ξ)−A(0,η))kη√

k2+(ξ−η−kt)2
p1(k, ξ − η)b1(0, η)

+
∑

k 6=0

∫∫

d(ξ, η)1ΩT
1ξ∨η≤k〈t〉A(0, ξ)b1(0, ξ) (A(0,ξ)−A(k,η))kξ√

k2+(ξ−η−kt)2
p1(k, ξ − η)b1(−k, η)

≤ t‖Ab=‖L2‖∂2
xΛ−1

t p1, 6=‖L∞‖Ab1, 6=‖L2

. ‖Ab=‖L2‖Ap1, 6=‖L2‖Ab1, 6=‖L2.

In the case ξ ∨ η ≥ 2k〈t〉, we instead estimate

A(k, ξ) − A(0, η) ≤ M(k, ξ)(ξ2 + k2)
N
2 − ηN

= (M(k, ξ) − 1)(ξ2 + k2)
N
2 + ((ξ2 + k2)

N
2 − ηN).

Since ξ ≥ 2k〈t〉, in the first summand we may bound

M(k, ξ) − 1 = exp
(

−
∫ t

0

|k|
k2+(ξ−ks)2 ds

)

− 1

. 1
ξ
. 1

η
.

By the mean value theorem we further infer

(ξ2 + k2)
N
2 − ηN ≤ ((ξ − θη)2 + k2)

N−1

2 |k, ξ − η| . |k, ξ − η|(ξ2 + k2)
N−1

2 .

Thus, using that k ≤ ξ . η, we deduce that

A(k, ξ) − A(0, η) . |k, ξ − η|ηN−1,

A(k, η) − A(0, ξ) . |k, ξ − η|ηN−1,
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where the proof for A(k, η) − A(0, ξ) is analogous. Finally, we obtain

〈Ab6=, 1ΩT
1η≥ktA(v6=∇tb=)〉 + 〈Ab=, 1ΩT

1η≥ktA(v6=∇tb6=)〉

.
∑

k 6=0

∫∫

d(ξ, η)A(k, ξ)b1(k, ξ) |k,ξ−η|ηN−1√
k2+(ξ−η−kt)2

p1(k, ξ − η)b1(0, η)

+
∑

k 6=0

∫∫

d(ξ, η)A(0, ξ)b1(0, ξ) |k,ξ−η|ηN−1√
k2+(ξ−η−kt)2

p1(k, ξ − η)b1(k, η)

. ‖Ab=‖L∞‖AΛ−1
t p1, 6=‖L2‖Ab1, 6=‖L2

. ‖Ab=‖L∞‖AΛ−1
t p1, 6=‖L2‖Ab1, 6=‖L2 ,

and integrating in time yields the desired bound:
∫

〈Ab6=, 1ΩT
A(v6=∇tb=)〉 + 〈Ab=, 1ΩT

A(v6=∇tb6=)〉dτ

. µ−1ε3.
(26)

Reaction term: Since |η| ≤ 1
8
|ξ − η| we obtain |ξ − η| ≈ |ξ| and

thus

R = 〈Ab6=, 1ΩR
A((v6=∇tb=) − v6=∇tAb=)〉 + 〈Ab=, 1ΩR

(A(v6=∇tb6=) − v6=∇tAb6=)=〉

≤
∑

k 6=0

∫∫

d(ξ, η)1ΩR
A(k, ξ)b1(k, ξ) (A(k,ξ)−A(0,η))kη√

k2+(ξ−η−kt)2
p1(k, ξ − η)b1(0, η)

+
∑

k 6=0

∫∫

d(ξ, η)1ΩR
A(0, ξ)b1(0, ξ) (A(0,ξ)−A(−k,η))kξ√

k2+(ξ−η−kt)2
p1(k, ξ − η)b1(−k, η)

. ‖Ab1, 6=‖L2‖A∂xΛ−1
t p1, 6=‖L2‖∂yb1,=‖L∞

+ ‖Ab1,=‖L2‖A∂y∂−1
x Λ−1

t p1, 6=‖L2‖∂2
xb1, 6=‖L∞.

Expressing ∂y = ∂t
y + t∂x in terms of the time-dependent derivatives, at

this point we require the splitting into high and low frequency estimates.
More precisely, using the additional time decay of the low-frequency
part, we estimate

‖A∂y∂−1
x Λ−1

t p1, 6=‖L2 ≤ ‖A∂t
y∂−1

x Λ−1
t p1, 6=‖L2 + t‖AΛ−1

t p1, 6=‖L2

. ‖Ap1, 6=‖L2 + t‖AΛ−1
t p1, 6=‖L2

and using the definition of AN ′

µ we can absorb the growth of the factor
t at the cost of a power of µ:

‖∂2
xb1, 6=‖L∞ ≤ ‖ΛN ′

b1, 6=‖L2

. e−cµt‖AN ′

µ b1, 6=‖L2

. µ−1〈t〉−1‖AN ′

µ b1, 6=‖L2 .

Thus we obtain

R . ‖ANp1, 6=‖L2‖ANb1,=‖L2‖ANb1, 6=‖L2

+ µ−1‖ANb1,=‖L2‖AΛ−1
t p1, 6=‖L2‖AN ′

µ b1, 6=‖L2.
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Integrating in time then yields the estimate

∫

Rdτ . µ− 3

2 ε3.(27)

R term: The remainder term R can be estimated by the same
argument as in the case without x-averages in Subsection 3.3.

Combining the estimates (26), (27) and (25), we conclude that the
bvb term can be controlled as

〈Ab, A(v6=∇tb)〉 . µ− 3

2 ε3.(28)

3.5. Low frequency estimates. In this subsection we establish the
estimates on the low frequency errors. For simplicity of presentation
we present the proof of these estimates for the bvb nonlinearity. The
estimates with an x-average in the second component are analogous
to the ones in Subsection 3.2. The arguments for the vvv, vbb, bbv or
ONL trilinear terms are also analogous.

We aim to establish the bound

〈AN ′

µ b, AN ′

µ (v6=∇tb)〉 . µ− 1

2 ε3,

and, as in the previous section, separately discuss the transport, reac-
tion and remainder term.

For the transport term, we note that

v6=∇t = ∇⊥
t Λ−1

t p1∇t

= ∇⊥Λ−1
t p1∇.

Hence, we may rewrite

〈AN ′

µ b, AN ′

µ (v6=∇tb)〉 = 〈AN ′

µ b, AN ′

µ (∇⊥Λ−1
t p1, 6=∇b)〉.

In a first step, we estimate the b6= term by using the algebra property
of AN ′

:

〈AN ′

µ b, AN ′

µ (∇⊥Λ−1
t p1, 6=∇b6=)〉

≤ ‖AN ′

µ b‖L2ecµxt
(

‖AN ′∇⊥Λ−1
t p1, 6=‖L2‖∇b6=‖L∞+

‖∇⊥Λ−1
t p1, 6=‖L∞‖AN ′∇b6=‖L2

)

≤ ‖AN ′

µ b‖L2

(

‖ANΛ−1
t p1, 6=‖L2‖AN ′

µ b6=‖L2 + ‖AN ′

µ Λ−1
t p1, 6=‖L2‖ANb6=‖L2

)

.

Integrating in time then yields the estimate

∫

dτ〈AN ′

µ b, AN ′

µ (v6=∇tb6=)〉 . µ− 1

2 ε3.(29)
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Furthermore, we estimate the b= term by partial integration and the
algebra property of AN ′

〈AN ′

µ b, AN ′

µ (∇⊥Λ−1
t p1, 6=∇b=)〉

= −〈AN ′

µ b1, 6=, AN ′

µ (∂xΛ−1
t p1, 6=∂yb1,=)〉

= 〈∂xAN ′

µ b1, 6=, AN ′

µ (Λ−1
t p1, 6=∂yb1,=)〉

≤ ‖∂xAN ′

µ b1, 6=‖L2ecµt
(

‖AN ′

Λ−1
t p1, 6=‖L2‖∂yb1,=‖L∞

+ ‖Λ−1
t p1, 6=‖L∞‖∂N ′+1

y b1,=‖L2

)

. ‖∂xAN ′

µ b1, 6=‖L2

(

‖AN ′

µ Λ−1
t p1, 6=‖L2‖AN ′

b1,=‖L2

+ ‖AN ′

µ Λ−1
t p1, 6=‖L2‖ANb1,=‖L2

)

.

Integrating in time then yields that
∫

dτ〈AN ′

µ b6=, AN ′

µ (v6=∇tb=)〉 . µ− 1

2 ε3.(30)

This concludes our proof of Proposition 3.1 and hence of Theorem
2. More precisely, the claimed estimates for both AN and AN ′

µ are
obtained by combining the respective linear estimate (15), the high
frequency nonlinear estimates (16), (17), (18), (19), (20), (28), and the
low frequency estimates given in (29) and (30).

We emphasize that the stability threshold of 3
2

is determined by the
estimates for the action of the v · ∇tb nonlinearity in the estimate (28)
and, in particular, by the estimates of the reaction terms (23) and
(27). These estimates are expected to be optimal and together with
the linear estimates of Section 2 highlight the effects of the lack of
vertical resistivity.

The partial dissipation case considered in this article

κy = 0, νx = νy = κx > 0,

shows the large impact of (partial) magnetic resistivity on the behavior
of the MHD equations and the (de)stabilizing role of the magnetic field.
As mentioned following Theorem 2, more generally our methods of
proof extend to the case where κx is bounded below in terms of ν:

ν1/3
y ≥ κx ≥ 1

2α
νy.

The complementary regime, where κx tends to zero quicker than νy

remains an interesting topic for future work. The limiting case, κx = 0,
and the associated instability is discussed in the following section.

4. Instability of the non-resistive MHD system

As a complementary result, in this section we consider the non-
resistive MHD equations and establish the instability estimates of Propo-
sition 1.
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4.1. Linear instability. We begin by studying the linearized MHD
equations with isotropic viscosity and vanishing resistivity:

∂tp1 − ∂x∂t
x∆−1

t p1 − α∂xp2 = ν∆tp1,

∂tp2 + ∂x∂t
x∆−1

t p2 − α∂xp1 = 0.
(31)

Lemma 3 (Quantitative linear instability of the non-resistive MHD
equations). For the linearized equations (31) there exists initial data

pin such that

‖p(t)‖HN ≥ t ν
8α2 ‖pin‖HN ,

‖p(t)‖HN−1 ≥ t ν2

32α4 ‖pin‖HN .
(32)

Furthermore, for all solutions such that at time τ it holds p(τ) ∈ HN ,

then we obtain

‖p‖HN ≤ 〈t〉2‖p(τ)‖HN .(33)

Proof of Lemma 3. After a Fourier transform (31) yields

∂tp1(k) = − t− ξ

k

1+(t− ξ

k
)2

p1(k) + αkp2(k) − ν(k2 + (ξ − kt)2)p1(k),

∂tp2(k) =
t− ξ

k

1+(t− ξ

k
)2

p1(k) − αkp1(k).
(34)

We assume that p1(0, k, ξ) = 0 and consider variables k = −1 and

ξ ≥ 2α2

ν

p1 = −α

∫ t

0
dτ

√

1+(τ1+ξ)2

1+(t+ξ)2 exp(−ν(t − τ + 1
3
((t + ξ)3 − (τ1 + ξ)3)))p2(τ1)

thus we can estimate p2 by

p2 −
√

1+(t+ξ)2

1+ξ2 p2,in(k)

= −αk

∫ t

0
dτ2

√

1+(t+ξ)2

1+(τ2+ξ)2 p1(τ2, −1)

= −α2
∫ t

0
dτ2

∫ τ1

0
dτ1

√
1+(t+ξ)2

√
1+(τ1+ξ)2

1+(τ2+ξ)2 p2(τ1)

· exp(−ν(τ2 − τ1 + 1
3
((τ2 + ξ)3 − (τ1 + ξ)3)))

≤ α2|p2|∞
∫ t

0
dτ1

∫ t

τ2

dτ2 exp(−ν(τ2 − τ1 + 1
3
((τ2 + ξ)3 − (τ1 + ξ)3))).
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We estimate the last integral by

∫ t

0
dτ1

∫ t

τ2

dτ2 exp(−ν(τ2 − τ1 + 1
3
((τ2 + ξ)3 − (τ1 + ξ)3)))

=
∫ t

0
dτ1

∫ t

τ2

dτ2
1+(τ2+ξ)2

1+(τ2+ξ)2 exp(−ν(τ2 − τ1 + 1
3
((τ2 + ξ)3 − (τ1 + ξ)3)))

≤
∫ t

0
dτ1

∫ t

τ2

dτ2
1+(τ2+ξ)2

1+(τ1+ξ)2 exp(−ν(τ2 − τ1 + 1
3
((τ2 + ξ)3 − (τ1 + ξ)3)))

≤ 1
ν

∫ t

0
dτ1

1
1+(τ1+ξ)2 [exp(−ν(τ2 − τ1 + 1

3
((τ2 + ξ)3 − (τ1 + ξ)3)))]τ2=t

τ2=τ1

≤ 1
νξ

and thus

|p2 −
√

1+(t+ξ)2

1+ξ2 p2,in(k)| ≤ α2

νξ
|p2|∞.

Since ξ ≥ 2α2

ν
we obtain

p2(−1) ≥ 1
2

√

1+(t+ξ)2

1+ξ2 p2,in(−1) ≥ t
2ξ

p2,in(−1).

Let a(ξ) be such that suppξ(a(ξ)) ⊂ [2α2

ν
, 4α2

ν
] and

∫

(2 + ξ2)
N
2 a2(ξ) = 1

then we deduce that for the initial data

pin(k, ξ) = 1k=−1a(ξ)

it holds that

‖pin‖HN = 1,

‖p(t)‖HN ≥ t ν
8α2 ,

‖p(t)‖HN−1 ≥ t ν2

32α4 ,

which proves (32). Furthermore, for all solutions such that p(τ) ∈ HN

we estimate

∂t|p|2(k, ξ, t) ≤ 2
|t− ξ

k
|

1+|t− ξ

k
|2

|p|2(k, ξ, t)

and so

|p|2(k, ξ, t) ≤ exp(2
∫ t

τ

|s− ξ

k
|

1+|s− ξ

k
|2

ds)|pin|2(k, ξ)

≤ exp(
∫ t

0

2s̃
1+s̃2 ds̃)|pin|2(k, ξ)

≤ 〈t〉4|pin|2(k, ξ)

which proves (33). �
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4.2. Nonlinear norm inflation. We next consider the nonlinear non-
resistive MHD equations in their perturbative form around the station-
ary solution (2):

∂tp1 − ∂x∂t
x∆−1

t p1 − α∂xp2 = ν∆tp1 + ∇⊥
t Λ−1

t (b∇tb − v∇tv),

∂tp2 + ∂x∂t
x∆−1

t p2 − α∂xp1 = ∇⊥
t Λ−1

t (b∇tv − v∇tb).
(35)

The following lemma establishes the norm inflation result of Proposi-
tion 1.

Lemma 4 (Nonlinear norm inflation for the non-resistive MHD equa-
tions). Consider the non-resistive nonlinear MHD equations (35). Then

for all C = C(ν) > 1 there exists ε0 > 0 such that for all 0 < ε < ε0

there exists initial data pin such that

‖pin‖HN = ε

and

‖p‖L∞HN ≥ εC.

Proof. For the sake of contradiction we assume that there exists ε0 > 0
such that for all 0 < ε ≤ ε0 and for any choice of initial data with
‖pin‖HN = ǫ it holds that

‖p‖L∞HN ≤ εC.

Our plan is to choose initial data such that for a choice of ε and t we
obtain a contradiction to this bound. In particular, we choose pin as the
data of the linear instability result, Lemma 3, such that the associated
linear solution plin satisfies

‖pin‖HN = ε,

‖plin(t)‖HN−1 ≥ t ν2

32α4 .

Let S(τ, t) be the solution operator for the linearized system. Then
in view of (33) we have the estimate

‖S(τ, t)‖HN →HN ≤ 〈t〉2.(36)

Thus we deduce that

∂t(p − plin) ≤ L(p − plin) + NL[p]

and therefore

‖p − plin‖2
HN−1 ≤

∫ τ

0
‖S(τ, t)‖HN →HN ‖p − plin‖HN−1‖p‖HN−1‖∇tp‖HN−1

. ‖p − plin‖L∞HN−1‖p‖L∞HN−1‖p‖L∞HN 2
∫ t

0
t〈t〉2

. t2〈t〉2ε2C2‖p − plin‖HN−1 .
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Finally, we obtain

‖p‖HN−1 ≥ ‖plin‖HN−1 − t2〈t〉2ε2C2

= tε( ν2

32α4 − t〈t〉2εC2).

This completes our proof by contradiction provided this term is large
enough for a given small ε and suitable time. Indeed for the choice
ε ≤ ν8

108C5α16 we obtain that at the time t = 102C α4

ν2 it holds that

‖p‖HN−1 ≥ t ν2

103α4 ε ≥ Cε.

This concludes our proof of the nonlinear norm inflation and hence
completes our proof of Proposition 1. �

The behavior of the MHD equations and, in particular, the interac-
tion of shear flows, the magnetic field and dissipation are an area of
current active research [Lis20, Dol23, ZZ23b, KZ23]. However, prior
works have focused on cases where the resistivity is at least as strong
as the fluid viscosity and where thus the behavior is closely related
to that of the Navier-Stokes equations. In contrast, the non-resistive
MHD equations exhibit additional instability, as for instance shown in
Proposition 1.

Motivated by this dichotomy, in this article we have studied the
anisotropic, partial dissipation regime

κy = 0, κx = νx = νy

and the associated stability threshold in the inviscid limit. As shown in
Theorem 2 and highlighted in the estimates of Sections 2, 3.4 and 3.3,
this partial dissipation regime behaves qualitatively differently than
both the fully dissipative case and the non-resistive case. Moreover, our
analysis crucially used the coupling of the velocity field and magnetic
field induced by the underlying magnetic field, which allowed us to
obtain improved estimates for the magnetic field despite the lack of
the symmetry of the dissipation.

Partial, anisotropic dissipation in the MHD equations is thus shown
to give rise to distinct regimes with different (in)stability properties
and demonstrates an intricate interplay of shear dynamics, magnetic
interaction and anisotropic dissipation. A more complete understand-
ing of all these regimes, the case of resistivity vanishing faster than
viscosity and a characterization of the (in)stability properties of the
ideal MHD equations remain exciting questions for future research.
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