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Abstract
This study delves into the critical aspect of accurately estimating single stock vola-
tility surfaces, a task indispensable for option pricing, risk management, and empiri-
cal asset pricing. Utilizing a comprehensive dataset consisting of half a billion 
daily price observations for options on 499 US individual stocks and the S&P 500, 
the research investigates the accuracy of diverse methods for constructing volatil-
ity surfaces. The comparative evaluation of the three-dimensional kernel smoother 
by OptionMetrics (IvyDB US file and data reference manual, version 5.2, Rev. 
01/27/2022, Computer software manual, New York, 2022), the semi-parametric 
spline by Figlewski (in: Robert F. Engle (ed) Estimating the implied risk neutral 
density. Volatility and time series econometrics: Essays in honor, Oxford Univer-
sity Press, Oxford, 2008), and a refined one-dimensional kernel smoother reveals the 
distinct superiority of the latter. This method consistently outperforms its counter-
parts across all moneyness, maturity, and liquidity categories, with markedly lower 
error metrics. The study further uncovers significant distortions in the extraction of 
Bakshi et al. (Rev Financ Stud 16:101–143, 2003) moments and skewness spanning 
induced by the noise-infused three-dimensional kernel smoother, which could poten-
tially mislead derivative pricing and trading decisions. The findings offer valuable 
insights to traders, risk managers, investors, and researchers, suggesting a robust, 
one-size-fits-all method for crafting more accurate and less noisy volatility predic-
tions. The research advances our understanding of option-implied information, its 
extraction, and broader implications for financial markets.
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1 Introduction

The accurate estimation of the implied volatility surface of stock options is para-
mount for option pricing, risk management, and financial research. Existing meth-
ods, often tested on highly liquid index options, demonstrate limitations when 
applied to single stock options. To address this, our study utilizes an extensive data-
set of half a billion daily price observations for options on 499 US individual stocks 
and the S&P 500. Our analysis identifies the one-dimensional kernel smoother as 
the most reliable and accurate method for constructing daily volatility surfaces.

These findings bear significant implications for a spectrum of stakeholders, 
including traders, risk managers, investors, and academics. By adopting the one-
dimensional kernel smoother, they can estimate volatility surfaces with higher preci-
sion, leading to improved decision-making and analysis. This research accentuates 
the importance of a robust method that delivers accurate predictions across diverse 
options, regardless of their maturity, moneyness, and liquidity variations.

The research contrasts the one-dimensional kernel smoother with the three-
dimensional kernel smoother by OptionMetrics (2022) and the spline method by 
Figlewski (2008). The one-dimensional kernel smoother consistently outshines 
the other methods, delivering the lowest leave-one-out cross-validation root-mean-
squared errors (RMSE) across different volume buckets, maturity, and moneyness 
categories.

Moreover, our research uncovers the disruptive effects of noise in the volatil-
ity surface construction, particularly from the three-dimensional kernel smoother. 
Such distortions profoundly impact the Bakshi et al. (2003) moments and skewness 
spanning regressions, especially for short-term options and during extreme volatil-
ity events. These distortions potentially mislead derivative pricing and trading deci-
sions, emphasizing the urgency for a more reliable volatility surface construction 
method.1

This study significantly enhances the existing literature in several ways. Firstly, 
we extend the investigation of volatility surface construction methods to include 
single stock options of varied liquidity, moving beyond the typically studied liquid 
index options.2 This extension gains relevance in the current era of big data and 
machine learning, where single stock options offer forward-looking insights into 
firm-specific information.

1 For studies that have explored the usefulness of the options-implied volatility surface in addressing 
fundamental asset pricing questions, considering the interpolated volatility surface provided by Option-
Metrics (2016) and OptionMetrics (2022) as the gold standard, refer to An et  al. (2014), Bali et  al. 
(2023), Kelly et al. (2016b), Kelly et al. (2016a), Buss and Vilkov (2012), Chang et al. (2012), Christof-
fersen et al. (2017), Du and Kapadia (2012), Hofmann and Uhrig-Homburg (2018), among others.
2 Refer to Ulrich and Walther (2020) for a recent comparative study of volatility construction method-
ologies specifically for liquid index options.
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Secondly, we substantially broaden the scope and depth of the data used in this 
research field.3 Our work incorporates almost half a billion daily option prices from 
500 distinct underlying assets, marking a significant advancement in both dataset 
volume and investigative depth.

Moreover, we challenge the prevailing perception of the three-dimensional kernel 
smoother as the ’gold standard,’ advocating for the more precise and robust refined 
one-dimensional kernel smoother. This methodology allows for constructing a dense 
volatility surface for both single stock and index options, enabling more accurate 
and reliable inferences in applied empirical research studies.

Lastly, our research uncovers significant issues with the spline method, particu-
larly for short-term out-of-the-money single stock options used in studies like Dries-
sen et  al. (2009) and Bollerslev and Todorov (2011), shedding light on areas that 
require improvement in existing literature.

The rest of the paper is structured as follows. Section 2 provides a detailed expo-
sition of the methodology employed by each state-of-the-art method. In Sect. 3, we 
elaborate on our evaluation methodology for comparing the predictive accuracy of 
each method. Section 4 presents a brief overview of the data. We summarize our key 
findings in Sect. 5. Finally, Sect. 6 provides concluding remarks.

2  Constructing single stock volatility surfaces

In this section, we present the methodology for constructing single stock volatility 
surfaces by comparing three methods that have been established to be accurate in 
prior research: (i) the spline method proposed by Figlewski (2008), (ii) the three-
dimensional kernel smoother of OptionMetrics (2022), and (iii) the one-dimensional 
kernel smoother of Ulrich and Walther (2020). We exclude the parametric Gram-
Charlier expansion method, as it has been identified as the least accurate method 
for constructing volatility surfaces of European-style index options by Ulrich and 
Walther (2020).

While the literature has highlighted the superior performance of the one-dimen-
sional kernel smoother for most moneyness and maturity combinations in the con-
text of European-style index options, our study focuses on American single-stock 
options that are influenced by firm-specific information, creating additional vari-
ance in option prices. Our analysis is unique in several ways. First, we use a much 
larger dataset consisting of nearly half a billion end-of-day option prices, compared 
to the 9 million S&P 500 option prices used by Ulrich and Walther (2020). Sec-
ond, OptionMetrics (2022) has updated its methodology in response to Ulrich and 
Walther (2020), prompting us to investigate whether the one-dimensional kernel 
smoother still outperforms OptionMetrics’ approach. Lastly, previous studies have 
primarily focused on S&P 500 index options, while our research specifically targets 
single-stock American options.

3 See Jackwerth (1999), Jondeau and Rockinger (2000), Bliss and Panigirtzoglou (2002), and Bahaludin 
and Abdullah (2017) for more traditional dataset applications.
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It is important to note that all of the methods examined are agnostic to both the 
time and the specific firm under consideration. As such, we omit a firm and time 
index in the following formulas, which are generalizable to different times and sin-
gle firm combinations.

2.1  One‑dimensional kernel smoother

In this section, a description of the one-dimensional kernel smoother employed in 
our approach is provided.

We consider the input volatility surface for a firm and day, denoted by 
{�i,�}i∈[1,N

�
],�∈T  . Here, N

�
 denotes the total number of observed option-implied 

moneyness levels for a � maturity option and T  stands for the set of observed 
maturities. We denote with mi,� ∈ {mi,�}i∈[1,N

�
],�∈T  an ascendingly ordered set of 

observed option-implied moneyness levels for a specific observed option maturity �.4 
Moneyness mi,� is defined as

where K and F stand for the strike and the single stock’s forward price, respectively. 
We denote the observed option-implied volatility for mi,� as �i,�.

We let Kmin
�

 and Kmax
�

 denote the smallest and largest observed strike of a �-matu-
rity option, i.e.

Our goal is to generate a volatility surface for normalized moneyness levels rang-
ing from [−10, 4] . Specifically, we express the normalized moneyness m̄i,𝜏 as a func-
tion of both the moneyness mi,� and the at-the-money implied volatility �ATM

�
 for the 

observed option panel at a given maturity � . Mathematically, this reads:

Initially, we employ Ulrich and Walther (2020)’s one-dimensional kernel 
smoother to compute �i,� i∈[1,N�] with a target moneyness step size of 0.01. Next, 
we utilize linear regressions to estimate the missing implied volatility-normalized 
moneyness pairs for our target interval of m̄i,𝜏 ∈ [−10, 4] based on the three left and 
rightmost implied volatility-moneyness pairs. Lastly, we smooth the resulting vola-
tility surface using the same one-dimensional kernel smoother. The one-dimensional 
kernel smoother takes the following form:

(1)mi,� ∶=
Ki,�

F
�

(2)Kmin
�

∶= min
i∈[1,N

�
]
Ki,� , and Kmax

�
∶= max

i∈[1,N
�
]
Ki,� .

(3)m̄i,𝜏 (mi,𝜏 , 𝜎
ATM
𝜏

) ∶=
lnmi,𝜏√
𝜏𝜎ATM

𝜏

.

4 Ulrich and Walther (2020) implement a (one-dimensional) kernel smoother that is executed individu-
ally for each observed maturity. This reduces the dimension of the kernel and was shown to be one rea-
son for the superior forecasting ability relative to higher dimensional kernel smoothers.
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where �1d
�
(mj) is the smoothed �-period implied volatility for a target moneyness mj , 

mi,� and �i,� are observed (and linearly extrapolated) moneyness and option-implied 
volatility pairs, N

�
 represents the total number of input implied volatilities and k

�
(x) 

is an unnormalized Gaussian kernel function, defined as

where h
�
 is a maturity-specific bandwidth parameter, defined as

where S is the price of the underlying stock.

2.2  Three‑dimensional kernel smoother

In estimating single firm volatility surfaces, OptionMetrics (2022) employs a three-
dimensional kernel smoother which includes a maturity dimension � , Put/Call flag 
Ij ∈ {0, 1} , and option delta Δj , with the moneyness dimension being replaced by Δj . 
OptionMetrics (2022) uses options with vegas of � ≥ 0.5 as input to the three-dimen-
sional kernel smoother, producing an implied volatility surface with option deltas in 
the range of [0.1, 0.9]. This range of deltas has been extended compared to Option-
Metrics (2016) to address the finding in Ulrich and Walther (2020) that a delta range of 
[0.2, 0.8] is insufficient for accurately capturing left tail risk in index options.

The three-dimensional kernel smoother takes the form

where �3d is the implied volatility smoothed using the three-dimensional kernel 
smoother, � and Δ represent the option’s vega and delta, respectively, and � is the 
observed implied volatility with a specific delta, maturity, and call or put flag. The 
three-dimensional Gaussian kernel takes the form

with the respective bandwidth parameters h1 ∶= 0.05, h2 ∶= 0.005, h3 ∶= 0.001.

(4)�
1d
�
(mj) =

N
��

i=1

k
�
(mj − mi,� )∑N

�

i=1
k
�
(mj − mi,�)

× �i,�

(5)k
�
(x) = e

−

(
x2

2∗h�

)
, x ∈ ℝ,

(6)h
�
=

(
0.75

1

(N
�
− 1)S

× (Kmax
�

− Kmin
�

)

)2

,

(7)
�
3d(Δj, �j, Ij) =

N�
i=1

�ik(Δi − Δj, log(�i) − log(�j), Ii − Ij)∑N

i=1
�ik(Δi − Δj, log(�i) − log(�j), Ii − Ij)

× �(Δi, �i, Ii)

(8)k(x, y, z) =
1√
2�

e
−

�
x2

2h1
+

y2

2h2
+

z2

2h3

�
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2.3  Spline

The final method we examine is the smoothing spline developed by Figlewski 
(2008). This semi-parametric approach smoothes the observed implied volatility-
moneyness pairs using an nth-order polynomial with one knot point located at a 
moneyness of one.

To enhance flexibility, we adopt an adaptive approach by setting the order of the 
smoothing spline n

�
 to vary with N

�
 . Specifically, we set the order to increase gradu-

ally as the number of observations increases, in order to mitigate overfitting. Con-
cretely, we set the order as follows:

The data pre-processing method employed is based on Figlewski (2008). Specifi-
cally, the spline is fitted to out-of-the-money call and put options, while smoothing 
is applied to at-the-money volatilities in order to mitigate noise. The smoothing is 
performed using the following method:

with

where �∗
�
(Ki,� ) stands for the smoothed implied volatility of observed at-the-money 

options that is later used in the spline smoothing. We address the potential impact of 
the minimum amount of input data on the model’s performance by reporting results 
separately for days with a minimum number of inputs of 4 and 5, corresponding to 
N
�
≥ 4 and N

�
≥ 5 , respectively.

The parameters of the spline are estimated by minimizing the least squares of 
the non in-the-money subset of observed implied volatilities {�i,�}i∈[1,N�] . As with 
the one-dimensional kernel, the spline is fitted for each maturity � separately. The 
resulting smoothed volatilities of the spline are denoted as �spline

i,�
.

3  Validation

We employ the leave-one-out cross-validation technique to validate the accuracy 
of the three state-of-the-art implied volatility surfaces. This technique is a standard 
tool in machine learning for assessing the generalization performance of predictive 
models on unseen data (Geisser, 1993; Kohavi, 1995). Our cross-validation proce-
dure involves sequentially leaving out one observation from a day’s option price 

(9)n
𝜏
=

⎧
⎪⎨⎪⎩

2, N
𝜏
< 8

3, N
𝜏
< 15

4, N
𝜏
≥ 15.

(10)�
∗
�
(Ki,�) ∶= w(Ki,� ) × �

�,Put(Ki,� ) + (1 − w(Ki,� )) × �
�,call(Ki,� )

(11)w(Ki,� ) ∶=
Kmax
�

− Ki,�

Kmax
�

− Kmin
�

, ∀Ki,� ∈ [0.98F
�
, 1.02F

�
]
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observations and using the remaining data to predict its value, conditional on one of 
the three methodologies. The iterative nature of this procedure enables us to evalu-
ate the forecast accuracy of each method when predicting the left-out price, based 
on the information contained in the other prices. We perform two prediction tasks: 
one that excludes the leftmost and rightmost points and another that includes all 
observations. This enables us to evaluate the sensitivity of each method to extrapola-
tion-induced overfitting.

Consistent with the literature, we examine implied volatilities rather than prices 
to evaluate the predictive performance of the three state-of-the-art methods. For 
each method M ∈ {1d, 3d, splineN�≥4} and observed option panel, we calculate the 
root-mean-squared error (RMSE) and the mean absolute error (MAE),

and

(12)RMSEM ∶=

√√√√√ 1

N
�
× NT × NT × 500

∑
j∈[1,500]

∑
t

∑
�∈T

N
j
�∑

i=1

(
�j,t,i,� − �

M
j,t,i,�

)2

(13)MAEM ∶=
1

N
�
× NT × NT × 500

∑
j∈[1,500]

∑
t

∑
�∈T

N
j
�∑

i=1

|�j,t,i,� − �
M
j,t,i,�

|,

Table 1  Summary statistics of data for cross-validating volatility surface construction methods

This table presents a summary of the data used for cross-validating different methods to construct a vola-
tility surface, covering the period from January 2004 to July 2019. The data is categorized into short-, 
medium-, and long-term based on the remaining time to maturity: 1 to 29, 30 to 365 days, and longer, 
respectively. Moneyness is classified as at-the-money (ATM), left-tail, and right-tail if their moneyness 
is between 0.95 and 1.05, below 0.95, and above 1.05, respectively. The table provides summary statis-
tics for the total number of price observations, the average number of maturities per day, and the aver-
age number of strikes per maturity. Additionally, it includes a breakdown of the total number of short-, 
medium-, and long-term options, as well as whether the options have strikes below, close to, or above the 
current futures prices. All statistics pertain to options on the S&P 500 and single stock options

S&P 500 Single stock

Number of underlyings 1 499
Total number of price observations 14,267,068 373,825,605
Avg. number of maturities per day 19.53 6.23
Avg. number of strikes per maturity 185.61 31.96
Total number of short-term ATM prices 164,756 28,095,578
Total number of short-term Left Tail prices 913,908 41,359,827
Total number of short-term Right Tail prices 389,705 32,507,416
Total number of medium-term ATM prices 1,912,580 35,874,503
Total number of medium-term Left Tail prices 5,142,258 106,902,827
Total number of medium-term Right Tail prices 1,482,504 79,423,161
Total number of long-term ATM prices 1,455,950 4,834,453
Total number of long-term Left Tail prices 2,284,378 24,655,963
Total number of long-term Right Tail prices 521,029 20,171,877
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where in order to highlight that the error statistics are calculated across all time 
periods and all firms, we explicitly incorporate the time index t and a firm index 
j ∈ [1, 500] . Here, NT represents the total number of time points. As we have 499 
firms and the S&P 500, we consider j ∈ [1, 500] . To report the RMSE and MAE for 
different moneyness and maturity combinations, we adjust the formulas by consider-
ing the relevant subsets.

4  Data

In this section, we describe the data used in our analysis and explain how we calcu-
late single firm dividend yields and the risk-free rate.

Fig. 1  Boxplots for cross-validation squared prediction errors for S&P 500 options. This figure displays 
Boxplots of the cross-validation squared errors with inter- and extrapolation for S&P 500 options. The 
maturity section categorizes options based on remaining maturities, with short maturity options having 
less than 30 days, medium maturity options having 30 to 365 days, and long maturity options having 
more than 365 days. The moneyness buckets, color-coded in the plot, are represented by m =

K

F
 , and 

divides the volatility smile into left, center, and right sections, with the dividing lines at 0.95 and 1.05. 
The volume buckets 0.25, 0.5, 0.75 stand for low, medium and high volume trading days. The Spline plot 
reports the results for spline with N

�
≥ 4 data points per fitted line. The data covers the period from Jan 

2004 to Jul 2019
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4.1  Option prices

In this section, we provide an overview of the option price data used in our anal-
ysis, consisting of 373,825,605 daily option prices for 499  S&P 500 constituents 
and 14,267,068 prices for options on the  S&P 500 between January 2004 and July 
2019, sourced from CBOE. For our analysis, we use daily quote data and consider 
the mid price. Table  1 summarizes the input data broken down into moneyness 
and maturity buckets. The data is categorized into short-, medium-, and long-term 
based on the remaining time to maturity: 1 to 29, 30 to 365 days, and longer, respec-
tively. Moneyness is classified as at-the-money (ATM), left-tail, and right-tail if the 
moneyness is between 0.95 and 1.05, below 0.95, and above 1.05, respectively. On 
average, there were 31.96 strikes and 6.23 maturities traded per day and single firm, 

Table 2  Cross-validation prediction errors for implied volatilities of S&P 500 options

This table presents the cross-validation MAE and RMSE for S&P 500 options across various maturity 
and moneyness combinations. The maturity section categorizes options based on remaining maturities, 
with short maturity options having less than 30 days, medium maturity options having 30 to 365 days, 
and long maturity options having more than 365 days. The moneyness axis, represented by m =

K

F
 , is 

divided into left, center, and right sections, with the dividing lines at 0.95 and 1.05. The error figures 
are given in annualized implied volatility units. The Spline* column reports the results for spline with 
N
�
≥ 5 data points per fitted line instead of N

�
≥ 4 . Cells in bold highlight the best performing method 

per maturity-moneyness bucket. The data covers the period from Jan 2004 to Jul 2019

Maturity Moneyness Mean absolute error Root mean squared error

1d 3d Spline Spline* 1d 3d Spline Spline*

(a) Extrapolation and interpolation
Long Center 0.0007 0.0084 0.0003 0.0003 0.0016 0.0108 0.0006 0.0007

Left 0.0043 0.0364 0.0008 0.0008 0.0157 0.0427 0.0016 0.0016
Right 0.0019 0.0327 0.0015 0.0015 0.0044 0.0486 0.0133 0.0133

Medium Center 0.0006 0.0161 0.0006 0.0006 0.0016 0.0282 0.0140 0.0141
Left 0.0031 0.0633 0.0148 0.0148 0.0114 0.1002 0.4087 0.4094
Right 0.0017 0.0475 0.0015 0.0015 0.0043 0.0674 0.0142 0.0142

Short Center 0.0009 0.0355 0.0014 0.0012 0.0029 0.1181 0.0489 0.0143
Left 0.0034 0.2264 1.6616 1.6616 0.0090 0.5566 3.7805 3.7805
Right 0.0028 0.0765 0.0050 0.0049 0.0075 0.2690 0.4600 0.4604

(b) Interpolation only
Long Center 0.0006 0.0084 0.0003 0.0003 0.0015 0.0108 0.0005 0.0005

Left 0.0028 0.0365 0.0004 0.0004 0.0092 0.0425 0.0007 0.0007
Right 0.0014 0.0330 0.0007 0.0007 0.0025 0.0489 0.0015 0.0015

Medium Center 0.0006 0.0161 0.0005 0.0005 0.0016 0.0282 0.0144 0.0144
Left 0.0023 0.0616 0.0044 0.0044 0.0065 0.0938 0.0598 0.0598
Right 0.0013 0.0478 0.0010 0.0010 0.0027 0.0677 0.0043 0.0043

Short Center 0.0008 0.0354 0.0012 0.0011 0.0025 0.1168 0.0184 0.0147
Left 0.0028 0.2162 1.1094 1.1094 0.0066 0.5257 1.8050 1.8050
Right 0.0024 0.0727 0.0023 0.0023 0.0063 0.2493 0.0295 0.0295
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compared to 185.61 traded strikes and 19.53 maturities for a typical day in the index 
option market.

The moneyness breakdown in Table 1 shows that the majority of the input data 
concentrates in the left tail, with approximately 58% (8,340,544 observations) 
for index options and 46% (172,918,617 observations) for single firm options. 
The disparity in the relative proportion of call options between the index and sin-
gle firm option markets is significant, with right tail options representing only 

Fig. 2  Boxplots for cross-validation squared prediction errors for single stock options. This figure dis-
plays Boxplots of the average cross-validation squared errors with inter- and extrapolation across single 
stock options. The maturity section categorizes options based on remaining maturities, with short matu-
rity options having less than 30 days, medium maturity options having 30 to 365 days, and long maturity 
options having more than 365 days. The moneyness buckets, color-coded in the plot, are represented 
by m =

K

F
 , and divides the volatility smile into left, center, and right sections, with the dividing lines at 

0.95 and 1.05. The volume buckets 0.25, 0.5, 0.75 stand for low, medium and high volume trading days. 
The Spline plot reports the results for spline with N

�
≥ 4 data points per fitted line. The data covers the 

period from Jan 2004 to Jul 2019
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17% (2,393,238 observations) of quoted S&P 500 options, but constituting 35% 
(132,102,454 observations) of quoted single firm options. At-the-money options 
constitute 25% (3,533,286 observations) of index options and 18% (68,804,534 
observations) of single firm options.

The maturity breakdown in Table 1 shows that medium-term options make up the 
majority of quoted prices, comprising approximately 60% for both index and single 
firm options. However, there is a notable difference in the proportion of short-term 
options, with only 10% classified as short-term for index options, while for single 
stock options, this figure rises to 27%.

Our option panel data analysis reveals that for index options, the majority of 
quoted prices are medium to long-term at-the-money (ATM) and out-of-the-money 
(OTM) put options, while for single stock options, the largest share of quoted prices 
are short to medium-term OTM put and call options. We apply standard filters to 
remove duplicates and option prices that do not fulfill basic no-arbitrage restrictions 
and drop options for which implied volatility did not converge.

4.2  Risk‑free rate, dividend yields and implied volatility

In this section, we provide a description of how we calculate the risk-free rate, 
dividend yields, and implied volatilities. We follow the methodology suggested by 
van Binsbergen et al. (2021) to extract the risk-free rate term structure from index 
options. This approach utilizes the put-call parity relationship for index options with 
the same maturity and has become the standard in option pricing research. Similar 
approaches have also been employed by Ulrich et al. (2023), Golez and Jackwerth 
(2022), and OptionMetrics (2022) to compute the risk-free rate.

Calculating the dividend yield is a challenging task, and no one-size-fits-all solu-
tion exists. We choose to work with one at-the-money call and put price pair for 
each traded maturity to derive the dividend yield (Hull, 2018). Any measurement 
error in the dividend yield is equally reflected in all the methods and does not intro-
duce any bias in our comparative analysis.

Lastly, we utilize the approach proposed by Barone-Adesi and Whaley (1987) to 
convert option prices with early exercise features into implied volatilities. Barone-
Adesi and Whaley (1987) extends the Black-Scholes model for an early exercise pre-
mium and is known for its favorable trade-off of computation speed and accuracy. 

Fig. 3  Boxplots for cross-validation squared prediction errors for single stock options, one-dimensional 
kernel smoother, by industry sector. This figure displays Boxplots of the average cross-validation 
squared errors with inter- and extrapolation across single stock options by GICS industry sector for the 
one-dimensional kernel smoother method. The maturity section categorizes options based on remaining 
maturities, with short maturity options having less than 30 days, medium maturity options having 30 to 
365 days, and long maturity options having more than 365 days. The moneyness buckets, color-coded in 
the plot, are represented by m =

K

F
 , and divides the volatility smile into left, center, and right sections, 

with the dividing lines at 0.95 and 1.05. The volume buckets 0.25, 0.5, 0.75 stand for low, medium and 
high volume trading days. The data covers the period from Jan 2004 to Jul 2019

▸
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Similar to the dividend yield calculation, any measurement error in the inversion 
process is evenly spread across all methods.5

Fig. 3  (continued)

5 We have conducted robustness tests on a subset of the data and found that our results are not sensitive 
to the choice of pricing model. Other approaches commonly employed in the literature include different 
variations of Binomial trees as well as Ju and Zhong (1999), Geske and Johnson (1984), Kim (1990), 
Bunch and Johnson (1992), Barone-Adesi (2005), Zhu (2006), among many others.



1 3

Implied volatility surfaces: a comprehensive analysis using…

5  Findings

In this section, we present the findings of our analysis. We begin by summarizing 
the cross-validation error statistics for different specifications, including one where 
we do not evaluate extrapolation to the left and right most observations. To better 
understand the cross-validation errors, we record the maximum, standard deviation, 
95% quantiles, and the entire error distribution using boxplots. We disaggregate the 
results for different moneyness, maturity, and volume buckets.

To study the relationship between accuracy and trading volume, we introduce 
volume buckets. We collect all single stock option volumes for each day and calcu-
late the 0.25 ( q0.25 ) and 0.75 ( q0.75 ) volume quantiles. For each day t and single firm 
i, we classify its daily volume into a low, medium, or high volume bucket, depend-
ing on whether the actual volume is (i) below q0.25 , (ii) between q0.25 and q0.75 , or 
(iii) larger than q0.75.

We then present the results for S&P 500 options and compare them to Ulrich and 
Walther (2020). This is followed by an analysis of single stock options.

5.1  S&P 500

In this section, we present our analysis of three methods used to construct implied 
volatility surfaces for S&P 500 index options. Our focus is on the short-, medium-, 
and long-term options, and we report our results using leave-one-out cross-valida-
tion root-mean-squared errors (RMSE) and mean absolute errors (MAE) in panel (a) 
of Table 2.

Our findings indicate that the one-dimensional kernel smoother is the only 
method that produces acceptable, small prediction errors across all moneyness and 
maturity buckets for S&P 500 index options. Specifically, its short-term RMSE for 
left, center, and right tail options are 0.0090, 0.0029, and 0.0075, respectively. In 
contrast, the three-dimensional kernel smoother of OptionMetrics (2022) and the 
spline exhibit strong evidence of overfitting and noise in their smoothed volatility 
surfaces. Specifically, their respective RMSEs for the same maturity and moneyness 
buckets are 0.5566, 0.1181, 0.2690, and 3.7805, 0.0489, and 0.4600.

Moreover, we find that the three-dimensional kernel smoother and the spline 
exhibit a concerning level of noise in their smoothed implied volatilities for short-
term options. For instance, for the class of short-term out-of-the-money put options, 
both methods produce noise in implied volatility forecasts that is 61.84 and 420 
times larger than prediction noise arising from the one-dimensional kernel smoother.

Our results hold true for medium and long-term options as well, as indicated by 
the RMSE of predicted versus realized implied volatility. Specifically, the three-
dimensional kernel smoother of OptionMetrics (2022) and the semi-parametric 
spline exhibit RMSEs that are approximately ten times larger than those of the one-
dimensional kernel smoother. Our findings are consistent with previous research by 
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Ulrich and Walther (2020) on the RMSEs of index options in terms of the magni-
tude of errors and the relative ranking of RMSEs.

Panel (b) of Table 2 confirms that our performance measures are not affected by 
extrapolation into the left and right tails of the observed implied volatility distribu-
tion. The results from both the RMSE and MAE in panels (a) and (b) of Table 2 
confirm the superiority of the one-dimensional kernel smoother, which exhibits the 
smallest prediction errors for S&P 500 index options.

Boxplots for the RMSE of all methods and moneyness/maturity buckets are dis-
played in Fig.  1, with the results indicating that at-the-money options have the 
lowest RMSE across all methods. However, the semi-parametric spline exhibits 
severe difficulties in accurately predicting implied volatility for short-term left tail 
options.

In conclusion, we strongly advise against using the semi-parametric spline and 
the three-dimensional kernel smoother of OptionMetrics (2022) for constructing 
implied volatility surfaces of index options. The one-dimensional kernel smoother 
emerges as the superior choice, producing negligible noise that falls comfortably 
within typical bid-ask price bounds.

In the following analysis, we turn our attention to assessing the efficacy of the 
examined methods in predicting implied volatility for stock options.

5.2  Single firms

In this section, we focus on evaluating the performance of each method in predict-
ing implied volatility for single stock options. To our knowledge, there is a gap 
in the literature in terms of examining the quality of implied volatility surfaces 
for individual stock options. Therefore, we break down the RMSE results for sin-
gle stock options into three-dimensional volume/maturity/moneyness buckets to 
further assess the performance of each method for high and low volume option 
contracts.

Panel (a) of Table  3 shows the average RMSEs and MAEs for single stock 
options. The results indicate that even the best-performing method incurs twice 
as high RMSEs when applied to single stock options on low volume days. For 
short maturity options in high volume days, the average RMSE for left, center, 
and right-tail options is 0.0329, 0.0152, and 0.0350, respectively. These respec-
tive RMSEs increase to 0.0612, 0.0380, and 0.0879 when looking at low vol-
ume single stock options while keeping all else equal. Furthermore, the RMSE 

Fig. 4  Boxplots for cross-validation squared prediction errors for single stock options, three-dimen-
sional kernel regression, by industry sector. This figure displays Boxplots of the average cross-validation 
squared errors with inter- and extrapolation across single stock options by GICS industry sector for the 
three-dimensional kernel smoother method. The maturity section categorizes options based on remaining 
maturities, with short maturity options having less than 30 days, medium maturity options having 30 to 
365 days, and long maturity options having more than 365 days. The moneyness buckets, color-coded in 
the plot, are represented by m =

K

F
 , and divides the volatility smile into left, center, and right sections, 

with the dividing lines at 0.95 and 1.05. The volume buckets 0.25, 0.5, 0.75 stand for low, medium and 
high volume trading days. The data covers the period from Jan 2004 to Jul 2019

▸
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of even the highest volume bucket is roughly four times larger than the overall 
RMSE of index options, indicating that illiquidity is a significant concern for 
single stock options and introduces significant noise into their implied volatility 
surfaces.

Fig. 4  (continued)
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We then compare how different methods perform in coping with the noise 
induced by illiquidity in single stock implied volatilities. The semi-parametric spline 
exhibits catastrophic RMSEs for short-dated options, with RMSEs for high volume 
left-tail, center, and right-tail options being 0.1787, 15.4456, and 36.8436, respec-
tively. These RMSEs are five, one thousand, and one thousand times higher than 
those of the best-performing one-dimensional kernel method. The OptionMetrics 
(2022) three-dimensional kernel smoother performs better than the semi-parametric 
spline, but its RMSE for high volume short-dated options (left, center, right) is still 
13, 20, and 12 times higher than those of the one-dimensional kernel smoother. This 
result highlights that building option-implied volatility surfaces using the three-
dimensional kernel smoother cannot be recommended.

Figure 2 indicates that the squared prediction error diminishes as the volume of 
traded options increases. In particular, the one-dimensional kernel smoother exhib-
its an exponential decrease in error as volume increases, suggesting that the ben-
efits of additional information from option trading volumes are large. In contrast, 
the semi-parametric spline performs poorly for low volume short-maturity left-tail 
single stock options, indicating that the spline is less effective in incorporating infor-
mation on low volume days into the volatility surface. The three-dimensional ker-
nel smoother aligns with the trend of the one-dimensional smoother, but its forecast 
errors are significantly larger.

In summary, we find that the one-dimensional kernel smoother outperforms the 
other two methods examined in this study, across all different volume/maturity/
moneyness buckets, in terms of accuracy in computing implied volatility surfaces 
for both index and single stock options. Our recommendation is to use the one-
dimensional kernel smoother in future research that requires low RMSE volatility 
surfaces. Our findings support the notion that simplicity often pays off in terms of 
prediction accuracy and generalizability to unseen data.

5.3  Industry clusters

In a final step, we group single stocks into industries based on the Global Industry 
Classification Standard (GICS), which includes eleven sectors: Energy, Materials, 
Industrials, Consumer Discretionary, Consumer Staples, Health Care, Financials, 
Information Technology, Communication Services, Utilities, and Real Estate. To 
explore the industry-specific effects on our findings, we examine the Boxplots for 
the one-dimensional (Fig. 3), three-dimensional (Fig. 4), and spline methodologies 
(Fig.  5) across the 11 industries. The results in Fig.  3 reveal that the one-dimen-
sional kernel smoother’s performance remains unaltered by industry, exemplifying 
its robustness across various sectors. Conversely, Fig.  4 highlights that the three-
dimensional kernel smoother persistently generates larger errors in comparison to 
the one-dimensional smoother throughout all 11 industries, further supporting our 
conclusion that the one-dimensional kernel smoother is the superior method for 
computing volatility surfaces.

We also observe in Fig. 5 that the spline method produces varying results for dif-
ferent industries. Some industries exhibit small errors similar to the one-dimensional 
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kernel smoother, while others have significantly larger errors. These industry-spe-
cific differences suggest that the semi-parametric spline method may not be reli-
able for single stock options analysis, particularly in certain industries. As such, 
we advise caution when using the spline method and recommend that researchers 
benchmark their results against those obtained using the one-dimensional kernel 
smoother.

5.4  Lessons from the tails

To complete the analysis, we have a closer look at the (i) standard deviation of 
the prediction error, (ii) the 95% quantile of the absolute prediction error and (iii) 
the maximum absolute prediction error. These values are displayed in Table 4. As 
previously, we aggregate prediction errors across all 499 firms and display results 
for different volume/maturity/moneyness buckets.

The standard deviation of the prediction error, which can be viewed as the vol-
atility of the distribution of prediction errors, is lower for the one-dimensional 
kernel smoother than for the three-dimensional kernel smoother or spline. In 
the high volume and short maturity options bucket, the prediction error volatil-
ity for the left-tail region is 0.0229, 0.3515, and 0.0999 for the one-dimensional 
kernel smoother, three-dimensional kernel smoother, and spline, respectively. 
The one-dimensional kernel smoother performs well regardless of which part 
of the implied volatility surface is predicted, while the three-dimensional kernel 
smoother and spline have difficulties predicting the tails. In summary, the realized 
standard deviation of single stock implied volatility prediction errors is excessive 
for all methods except the one-dimensional kernel smoother.

In terms of the 95% quantile of the absolute prediction error, the one-dimen-
sional kernel smoother outperforms the other two methods, with respective val-
ues of 0.0370, 0.6297, and 0.2359 for high volume short maturity left-tail implied 
volatilities. This implies that the worst 5% of mispricing for a short maturity 
out-of-the-money put option is around 4% (implied volatility units) for the one-
dimensional kernel smoother, while it is 63% for the three-dimensional kernel 
smoother of OptionMetrics (2022) and 24% for the spline. The three-dimensional 
kernel smoother performs significantly worse on days when trading reveals more 
information, while both the one-dimensional kernel smoother and spline tend to 
exhibit lower 95% error quantiles as volume increases.

Fig. 5  Boxplots for cross-validation squared prediction errors for single stock options, Spline
N
�
≥4 , by 

industry sector. This figure displays Boxplots of the average cross-validation squared errors with inter- and 
extrapolation across single stock options by GICS industry sector for the spline method. The maturity sec-
tion categorizes options based on remaining maturities, with short maturity options having less than 30 
days, medium maturity options having 30 to 365 days, and long maturity options having more than 365 
days. The moneyness buckets, color-coded in the plot, are represented by m =

K

F
 , and divides the volatil-

ity smile into left, center, and right sections, with the dividing lines at 0.95 and 1.05. The volume buckets 
0.25, 0.5, 0.75 stand for low, medium and high volume trading days. The plot reports the results for spline 
with N

�
≥ 4 data points per fitted line. The data covers the period from Jan 2004 to Jul 2019

▸
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The average maximum absolute prediction error across all single stock options 
shows that the one-dimensional kernel smoother outperforms the other two meth-
ods by several magnitudes. The maximum absolute implied volatility prediction 
error for the one-dimensional kernel smoother ranges from 0.7004 to 2.7663, 

Fig. 5  (continued)
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while the respective values for the three-dimensional kernel smoother are 3.1467 
to 52.1571 and 0.2746 to 109.5617 for the spline.

In summary, the one-dimensional kernel smoother is the most reliable method 
for constructing single stock implied volatility surfaces. The three-dimensional 
kernel smoother of OptionMetrics (2022) and the semi-parametric spline of 
Figlewski (2008) are both prone to prediction errors with large second and higher 
moments, suggesting that they may be too complex or unrealistic. We there-
fore recommend academics and practitioners to use the one-dimensional kernel 
smoother for constructing end-of-day volatility surfaces.

5.5  Further implications for single stock option‑implied information

The extraction of meaningful economic insights from implied volatility surfaces 
can be compromised by the presence of uninformative noise. This is particularly 
relevant when evaluating the efficacy of option-implied risk measures. In this sec-
tion, we investigate Bakshi et al. (2003)’s implied moments within the cross-section 
of implied volatility. Additionally, we extend our analysis to replicate the skewness 
spanning regressions presented in Bakshi et al. (2003) Table 6, utilizing an expanded 
dataset that includes a larger number of firms and a longer time span compared to 
Bakshi et al. (2003). Through these exercises, we aim to demonstrate the potential 
effects that different methods for constructing volatility surfaces could have on the 
extraction of information implied by options.

5.5.1  Impact of method selection on Bakshi et al. (2003) moments

Our analysis, as visualized in Fig. 6, underscores the importance of the methodol-
ogy adopted for constructing the volatility surface. Both the three-dimensional ker-
nel smoother and the spline method inject substantial uninformative noise, result-
ing in significant distortions in the Bakshi et al. (2003) moments. These distortions 
are particularly acute for short-term options and in instances of extreme market 
situations.

For short-term options across varying liquidity days, the distortions become even 
more pronounced for options-implied skewness and kurtosis, with the three-dimen-
sional kernel smoother drastically underpredicting kurtosis and depicting skew-
ness close to zero. This infers that the implied risk-neutral density for this method 
resembles a Gaussian distribution, a misleading interpretation when compared to the 

Fig. 6  Single stock (Bakshi et  al., 2003) moments for different volatility surfaces. This figure displays 
Boxplots of model-free option-implied (Bakshi et  al., 2003) moments for the one-dimensional kernel 
smoother method, the three-dimensional kernel smoother method and spline with N

�
≥ 3 data points per 

fitted line. The volume buckets stand for low, medium and high volume trading days. All options are of 
short maturity with less than 30 days to expiration. The data covers the period from Jan 2004 to Jul 2019

▸
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non-Gaussian return densities implied by the more accurate one-dimensional kernel 
smoother and, to some extent, the spline method.

This discrepancy raises concerns about the efficacy of the three-dimensional ker-
nel smoother in accurately reflecting the properties of the implied volatility surface. 
This misrepresentation could lead to significant misconceptions about risk, thus 
affecting derivative pricing and trading decisions. Our results strongly suggest that, 
in the context of the Bakshi et al. (2003) moments, the spline method and the one-
dimensional kernel smoother provide more reliable insights compared to the three-
dimensional kernel smoother, further emphasizing the need for accurate methodol-
ogy selection in volatility surface construction.

5.5.2  Noise in skewness spanning

Our skewness spanning regressions (depicted in Fig. 7) corroborate the findings of 
Bakshi et al. (2003) Table 6: the skewness of the index is more pronounced than that 
of single stocks. Nonetheless, our results also highlight that the choice of method to 
construct the volatility surface dramatically affects these observations.

Employing the one-dimensional kernel smoother, we are able to accurately detect 
significant mapping coefficients, aligning with Bakshi et al. (2003)’s original results. 
However, when the three-dimensional kernel smoother is applied, the added noise 
drastically diminishes the spanning R2 and spanning t-statistics, effectively render-
ing them close to zero across firms (see Fig. 8). Such a result conceals the inherent 
patterns within the data, thus impairing the accurate extraction of option-implied 
information.

More worryingly, this discrepancy underlines the risk of potential misinterpreta-
tions in derivative pricing and trading decisions, which could be led astray by the 
distortions introduced by the three-dimensional kernel smoother. In this context, our 
findings argue powerfully for the adoption of more accurate methodologies, like the 
one-dimensional kernel smoother, for robust volatility surface construction and reli-
able skewness spanning regressions.

Fig. 7  Statistics of skewness spanning regressions for one-dimensional kernel smoother. 
This figure displays Histogram plots for statistics of skewness spanning regressions, given by 
SKEW

n
(t) = �0 + �1 × SKEW

m
(t) + �

n
(t) , where SKEW

n
 and SKEW

m
 denote the risk-neutral skewness of 

a single stock n and the market, for the one-dimensional kernel smoother method. All options are of short 
maturity with less than 30 days to expiration. The data covers the period from Jan 2004 to Jul 2019

▸
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6  Conclusion

Our research underscores the robust superiority of the one-dimensional kernel 
smoother in constructing accurate volatility surfaces, outperforming both the widely 
utilized three-dimensional kernel smoother of OptionMetrics (2022) and the semi-
parametric spline of Figlewski (2008) across all tested error metrics. The difference 
becomes particularly stark when considering the worst 5% absolute implied volatil-
ity prediction error for short-maturity out-of-the-money put options: less than 4% 
for the one-dimensional kernel smoother, compared to 24% and 63% for the spline 
and three-dimensional kernel smoother, respectively.

This study also reveals the profound impact of method choice on the extraction 
of option-implied information. The use of the three-dimensional kernel smoother 
introduces significant distortions in Bakshi et  al. (2003) moments, particularly for 
short-term options and during extreme volatility events. These distortions can poten-
tially mislead derivative pricing and trading decisions, underscoring the urgency of 
adopting a more accurate and reliable method for constructing daily implied volatil-
ity surfaces across all moneyness and maturity ranges.

Further, by extending our investigation to single stock options and incorporating 
a considerably larger dataset than earlier studies, our research provides a compre-
hensive evaluation of methodologies for constructing accurate volatility surfaces in 
the era of abundant data. This contribution deepens our understanding of option-
implied information, its extraction process, and the far-reaching implications for 
broader financial markets, offering valuable insights for practitioners and academ-
ics alike.

Fig. 8  Statistics of skewness spanning regressions by methodology. This figure displays Histogram plots 
for statistics of skewness spanning regressions, given by SKEW

n
(t) = �0 + �1 × SKEW

m
(t) + �

n
(t) , where 

SKEW
n
 and SKEW

m
 denote the risk-neutral skewness of a single stock n and the market, for the one-

dimensional kernel smoother method, the three-dimensional kernel smoother method and spline with 
N
�
≥ 3 data points per fitted line. All options are of short maturity with less than 30 days to expiration. 

The data covers the period from Jan 2004 to Jul 2019

▸
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