KIT | KIT-Bibliothek | Impressum | Datenschutz

Bridging multiscale interfaces for developing ionically conductive high-voltage iron sulfate-containing sodium-based battery positive electrodes

Zhang, Jiyu; Yan, Yongliang; Wang, Xin; Cui, Yanyan 1; Zhang, Zhengfeng; Wang, Sen; Xie, Zhengkun; Yan, Pengfei; Chen, Weihua
1 Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT)

Abstract:

Non-aqueous sodium-ion batteries (SiBs) are a viable electrochemical energy storage system for grid storage. However, the practical development of SiBs is hindered mainly by the sluggish kinetics and interfacial instability of positive-electrode active materials, such as polyanion-type iron-based sulfates, at high voltage. Here, to circumvent these issues, we proposed the multiscale interface engineering of Na$_{2.26}$Fe$_{1.87}$(SO$_4$)$_3$, where bulk heterostructure and exposed crystal plane were tuned to improve the Na-ion storage performance. Physicochemical characterizations and theoretical calculations suggested that the heterostructure of Na$_6$Fe(SO$_4$)$_4$ phase facilitated ionic kinetics by densifying Na-ion migration channels and lowering energy barriers. The (11-2) plane of Na$_{2.26}$Fe$_{1.87}$(SO$_4$)$_3$ promoted the adsorption of the electrolyte solution ClO4− anions and fluoroethylene carbonate molecules, which formed an inorganic-rich Na-ion conductive interphase at the positive electrode. When tested in combination with a presodiated FeS/carbon-based negative electrode in laboratory- scale single-layer pouch cell configuration, the Na$_{2.26}$Fe$_{1.87}$(SO$_4$)$_3$-based positive electrode enables an initial discharge capacity of about 83.9 mAh g$^{−1}$, an average cell discharge voltage of 2.35 V and a specific capacity retention of around 97% after 40 cycles at 24 mA g$^{−1}$ and 25 °C.


Verlagsausgabe §
DOI: 10.5445/IR/1000163008
Veröffentlicht am 12.10.2023
Originalveröffentlichung
DOI: 10.1038/s41467-023-39384-7
Scopus
Zitationen: 46
Web of Science
Zitationen: 37
Dimensions
Zitationen: 48
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Nanotechnologie (INT)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 22.06.2023
Sprache Englisch
Identifikator ISSN: 2041-1723
KITopen-ID: 1000163008
HGF-Programm 38.02.01 (POF IV, LK 01) Fundamentals and Materials
Erschienen in Nature Communications
Verlag Nature Research
Band 14
Seiten Art.-Nr.: 3701
Schlagwörter Batteries, Energy, Energy storage, Materials for energy and catalysis, Materials science
Nachgewiesen in Scopus
Dimensions
Web of Science
Globale Ziele für nachhaltige Entwicklung Ziel 7 – Bezahlbare und saubere Energie
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page