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ABSTRACT: The dynamics when a hot many-body quantum system is brought into instan-
taneous contact with a cold many-body quantum system can be understood as a com-
bination of early time quantum correlation (von Neumann entropy) gain and late time
energy relaxation. We show that at the shortest timescales there is an energy increase in
each system linked to the entropy gain, even though equilibrium thermodynamics does not
apply. This energy increase is of quantum origin and results from the collective binding
energy between the two systems. Counter-intuitively, this implies that also the hotter of
the two systems generically experiences an initial energy increase when brought into con-
tact with the other colder system. In the limit where the energy relaxation overwhelms
the (quantum) correlation build-up, classical energy dynamics emerges where the energy
in the hot system decreases immediately upon contact with a cooler system. We use both
strongly correlated SYK systems and weakly correlated mixed field Ising chains to exhibit
these characteristics, and comment on its implications for both black hole evaporation and
quantum thermodynamics.
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1 Introduction

The notion of entropy is more involved in quantum systems than in classical systems as
it also includes the information of potential entanglement with another set of dynamical
degrees of freedom. This can be another system with which it is (weakly) coupled, the en-
vironment, or the measurement apparatus. In classical equilibrium thermodynamics, the
change in the entropy is associated with heat flow according to the Second Law while quan-
tum mechanically the entropy can be changed by the quantum correlations in the system
that may or may not necessarily involve heat flow. The field of quantum thermodynamics
specifically pursues this question how work, heat and entropy are affected by quantum
correlations including entanglement; see e.g. [1, 2] for recent reviews. This field is growing
rapidly, even though these many-body entanglement effects are still less well understood
than entanglement and decoherence in few-qubit systems.

Here we take a quantum thermodynamics point of view on non-equilibrium dynamics in
many-body systems with two theoretical models as example: the Sachdev-Ye-Kitaev (SYK)
model and a mixed field Ising chain. The Sachdev-Ye-Kitaev model has a computable non-
Fermi liquid ground state that is long-range many body entangled [3, 4]. Through the
holographic duality between anti-de-Sitter quantum gravity and matrix large N quantum
systems, such SYK models at finite temperature are also dual descriptions of black holes in
anti-de-Sitter gravity [5]. Using this duality to study the profound question of black hole
evaporation through Hawking radiation and its information flow [6-10], recent studies have
considered the quenched cooling of a hot thermal SYK state (the black hole) suddenly being
able to “evaporate” into a cooler or even T' = 0 SYK state (the container for the evaporated
radiation) [11-13].} A surprising finding from the perspective of classical thermodynamics
has been that these observe an initial energy increase [11-13, 15] in the hot subsystem,
confirming results from preceding black hole evaporation studies [16]. It was argued, using
Schwinger-Keldysh field theory, that many relativistic continuum field theories will exhibit
such an energy increase in the hot system when quench coupling two thermal states [12, 16]

'Early work on SYK quenches is [14]. For other aspects of SYK dynamics, see this and citations thereof.



even though a fundamental proof or understanding was missing. In particular, a quenched
cooling between two two-level systems provides a counterexample [12].2

In a recent article, we showed that quantum thermodynamics [1, 2] provides the uni-
versal explanation for this counterintuitive rise [17]. In a quenched cooling protocol where
a (hot) thermal quantum system with Hamiltonian H 4 is brought into instantaneous con-
tact with a (cooler) thermal reservoir at ¢ = 0 through Hiota1 = Ha + Hp + 0(t) Hing, the
change in the energy of the hot subsystem A equals

ABA(t) = TaASx.A(t) + TaD(pa(0)llor,) - (L1)

Here Syn = —Tr(palnpa) is the von-Neumann entropy of the reduced density matrix
of the subsystem A: p4 = Trpp; the energy of the subsystem E4(t) is the expectation
value of its subsystem Hamiltonian E4 = TrHap(t) = TrHapa(t); and D(pa(t)||lpr,) =
Trpa(t)log (pa(t)/pr,) is the relative entropy between the reduced density matrix of system
A and the initial thermal density matrix of A at ¢ = 0. The change AE(t) = E(t) — E(0)
is with respect to the same quantity at ¢ = 0. By symmetry an analogous relation holds
for subsystem B.

As the relative entropy D(pa(t)||pr,) > 0 is positive semi-definite, one arrives at an
inequality that holds universally for any model Hamiltonian when such a quenched cooling
protocol is considered

AEA(t) > TaASyN a(t) - (1.2)

In a quantum system the von-Neumann entropy can have a significant contribution from
quantum correlations including entanglement over and above the classical thermal entropy.
As the quantum correlations between the system and the reservoir can only increase after a
quench, the quantum thermodynamic inequality eq. (1.2) can therefore force an associated
increase in energy in system A even if its initial energy density was higher. Moreover, in
perturbation theory to leading order the inequality saturates as the contribution of the
relative entropy is subleading and one can use the equality as a way to measure the von
Neumann entropy in a quenched cooling protocol through the energy difference [17].

A common view on non-equilibrium phenomena is that at the shortest time scales the
system is extremely sensitive to microscopic information, details of the quench protocol etc,
and it is only the longest-time-scale-relaxation to equilibrium that is universal. Eq. (1.2)
surprisingly shows that it need not be so: at the shortest possible non-equilibrium time
scale there is still a notion of the first law that entropy is linked to energy, even though the
standard first law in the absence of work dE = T'dS is relating state functions regarding
equilibria.

This positive contribution due to quantum correlations to the von Neumann entropy
is present in any quantum system, but our classical experience is that the energy in the
hot system decreases directly upon contact because heat must flow from hot to cold. What

2The thermal state of a two-level system is defined through its density matrix p = % Zn \n)ef'BE” (n|

with n =], 1 and Z the appropriate normalization such that Trp = 1.



must happen to restore this intuition that the energy in the hot system decreases instan-
taneously is that the positive quantum correlation- and entanglement- contribution can be
overwhelmed by the semi-classical heat and information flow from hot to cold. By studying
quenched cooling in SYK models, where entanglement is very strong, and one-dimensional
mixed field Ising chains, where entanglement can be made very weak, we exhibit this.
Classical experience is restored in a particle-like system at high temperatures where entan-
glement is weak.

2 Energy dynamics in quenched cooling

The setup we study consists of two initially independent quantum subsystems A and B
with Hamiltonians H4 and Hp respectively. Initially (¢ < 0), each subsystem is prepared
in a thermal state at temperature T4 and Tg, so the full system is in an uncorrelated
product state:

PO = PT4 @ PTy
1
T, = — e Ha/Ta o = A B. (2.1)
Za

We will study the behaviour of the subsystems when they are brought into instantaneous
contact at ¢ = 0 through an interaction Hamiltonian Hj,. The complete setup is a closed
system that evolves with the full Hamiltonian:

Htotal = HA + HB + e(t)Hint . (22)

Motivated by current results presented in the introduction, we focus our interest on two
different models:

e Finite N Majorana SYK with each subsystem governed by the Hamiltonian

Nqo
Ho =2 Y J8 0% .. ¢F  a=ADB (2.3)
jlqu:l

where ¢ is same for both dots and can be either ¢ = 2 or ¢ = 4, further labeled as
SYKs and SYK}, respectively. The couplings are drawn from a Gaussian distribution
with the following parameters:

(g —1)1J?

q—1
a

g =0, R g Thg) =

Ji---Jq Ji--Jqg¥J1---Jq

(2.4)

Those two SYK dots are coupled through a two Majorana tunneling interaction which
couplings are also sampled from a Gaussian distribution:?

Hiy =iy Nijto{of, (2.5)
i

o 2y _ A
<)‘ZJ> 07 <)‘1]> NB. (26)

3We have taken a variance in X that is asymmetric in N4 and Np to readily compare with [11, 12].
These authors chose this such that the interaction stays relevant in the large N4 limit.
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Figure 1. Normalized change of the energy of the hotter system A (AE4 = Tr((pa(t) — pry)Ha)
as a function of time. At short times it increases counter to intuition. Majorana SYKy in exact
diagonalization averaged over R = 100 realizations with parameters of both systems on top of the
plot. Red dot marks the bump that is reached at time t,, and has a height F,,, relative to the initial
energy.

This system is analyzed with exact diagonalization and averaged over R = 100 dif-
ferent coupling realizations. To reduce the number of free parameters we take two
equal size dots Ny = Ng = N.

e The 1D mixed field Ising model, also analyzed using exact diagonalization, with a

particle-like contact interaction:

Na
Ho ==Y (JZ}Z%, + X +hZ?), a=ADB (2.7)
HI™ = — NX 4+iY)4 (X —iY)P + hee (2.8)

Dimensionful parameters are expressed in J, which is usually set to J = 1.

Figure 1 shows the classically unexpected rise in energy in system A directly following
the cooling quench with T4 > Tp found in [11, 12]. We shall now show that even though
FE 4 initially increases, there is no energy flux from the cold reservoir to the hot system. The
energy increase instead follows from the energy contribution of the interaction Hamiltonian
solely but it is nevertheless a real modification of energy, as a subsequent decoupling of
A and B shows. At the moment of decoupling work must be performed on the combined
system-reservoir as we shall show.

The above conclusions follows from the following observations in SYK systems:

1. Directly following the quench, the system-energy FE(t) and the reservoir-energy
Ep(t) both grow (figure 2). The fact that there is no net energy flow from cold

to hot means the energy must come from somewhere else.
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Figure 2. Normalized change of energy of the two subsystem A, B, the interaction energy
AFEin = Tr((p(t) — po)Hint) and the total energy Fiotar as a function of time. Directly follow-
ing the quench both the system-energy E4(t) and the reservoir-energy Fp(t) grow, whereas the
interaction energy Fin(t) decreases. The sum vanishes as must be as no energy is put into the
combined system/reservoir. Majorana SYK in exact diagonalization averaged over R = 100 real-
izations with parameters of both systems on top of the plot.

2. The total Hamiltonian Hiota) = Ha + Hp + 6(t)Hing contains a third contribution
Hiyt. Its contribution to the energy is negative (figure 2).

3. The change in the expectation value in the total Hamiltonian is nevertheless readily
computed to vanish.

d .

@<Htotal> = Z<[Ht0ta17 Htotal]> + 5(t) <Hint> (29)
The first term vanishes trivially. When (Hin)(0) = 0 as well, as is the case in all
the systems we study, then (Hioq) is constant in time. The “binding”-energy from
Ebind = —Fint(t) = Tr(Hinp(t)) thus completely accounts for the rise in both E4(t)
and Ep(t).

4. More precisely, for E4(t) to correspond to a measurable energy change (in the sense of
commuting with the Hamiltonian) one should decouple the system from the reservoir
with a second quench at a finite time ¢; later, as in the standard two-point measure-
ment protocol in quantum thermodynamics [1, 2, 18]. Then H4 commutes again with
the full Hamiltonian for ¢ > ¢¢.* In other words, as in our previous article [17], one
considers the two-quench protocol Hyotal = Ha+ Hp+ (6(t) —6(t¢))Hing. Computing

4Formally, if one does not decouple, the eigenstates of Hio; are no longer localized within A or B, and
one cannot really say that the expectation value of H 4 is the energy of the sub-system A. The expectation
value of H 4 nevertheless comes the closest and is therefore what is conveniently called the energy of this
subsystem.
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Figure 3. Normalized change of energy of the two subsystem A, B, the interaction energy AFi,, =
Tr((p(t) — po)Hint) and the total energy Fiota as a function of time in a two-quench protocal with
the interaction turned of at ty = 1. At ¢; the change in total energy shows the energy supplied
to the system which exactly equals Fj,. Majorana SYK in exact diagonalization averaged over
R = 100 realizations with parameters of both systems are on top of the plot.

the change in total energy, one clearly sees that the energy that must now be supplied
equals the binding-energy Fiing = —Fing(t).

d

£<Htotal> = —0(tf)(Hint) - (2.10)

Choosing t; during the initial time period where both £4 and Ep increase, one con-
cludes that for a two-point measurement protocol of such short duration the total
energy in the system has increased. In particular there are initial configurations of
Tx,Tg where the final equilibrium temperature after such a short-time two measure-
ment protocol is larger than both T4 and Tg; see figure 3. The decoupling quench
must therefore perform work on the system.

5. In general, since the whole system AB is closed, the total change in the energy of
each subsystem, A or B, can be due to two components, the contribution from/debit
to the “binding”-energy and the thermal exchange between A and B:

AEs = AEApina + AEB 10 A (2.11a)
AEp = AEB,bind — AFEB 0 A- (2.11b)

We can estimate the binding energy for each subsystem A, B with respective initial
temperatures T4 # Tp separately from the interaction energy of a second quench
experiment with an equal temperature setup Eq pind ~ —%Eint(TA =T =1T,), ie.
we determine 4 ping from a quench set-up where both system and reservoir have
initial temperature T4, and Epgping from a quench set-up where both system and
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Figure 4. Time derivatives of the energy E4 of subsystem A; time derivative of an estimate of
binding energy contribution E4 pinga from considering an equal temperature quench (Ty = Tp =
0.5J), and the resultant thermal flux from cold reservoir B to hot system A. The flux is always
negative and always flows from hot to cold. Majorana SYK in exact diagonalization averaged over

R = 100 realizations with parameters of both systems on top of the plot.

reservoir have initial temperature T5. Using this estimate in the quenched cooling
set-up with different temperatures that are not too different we can numerically
compute the thermal flux from B into A as

d 1/d d 1/d d
Oy=—FEpioa= 3 <E - EB) - = (EA,bind - EB,bind) . (2.12)

Cdt dt dt 2 \dt dt
The flux ®4 is always negative and at early times it is subdominant to the bind-
ing energy figure 4. This proves that even when FE4 increases initially, the energy
flux/heat transport is nevertheless always from the hot system A to the cold reservoir
B and the supplied energy for the increase comes solely from the binding-energy or
the outside when decoupling A and B.

2.1 Energy rise driven by quantum correlations

As previewed in the introduction the quantity that controls this rise in energy E4 from the

contribution of the “binding”-energy to the combined system-reservoir is the von Neumann

entropy of the reduced density matrix of system A: p4(t) = Trpp(t) . To see this, consider

the relative entropy between p4(t) and the initial thermal density matrix

D(pa()llpr,) = Te(pa(t) n pa(t)) — Tr(pa(t) n pr,) - (2.13)

Substituting that pr, = ie*fb‘/ T4 one immediately has

TuD(pa(t)llpry) + TaSx.alt) = Ea(t) - Fa . (2.14)



where Fy = —1InZ4 = E4(0) —T454(0) is the free energy of the initial thermal state. The
time-dependent terms form the definition of the information free energy

f(t : TA) = EA(t) — TASVN7A(75) =Fy+ TAD(,OA(t)H,OTA)- (2.15)

It encodes the energy-available-for-work and its full counting statistics in open quantum
systems that decohere due to their interaction with the environment. The loss of informa-
tion due to decoherence and decorrelation costs work according the Landauer’s principle
and the information free energy accounts for that [1, 2].

The change in energy of system A after the quench directly follows from eq. (2.14) and
immediately brings us to eq. (1.1).

AEA(t) = Ea(t) — Ba(0) = TAAS N A(t) +TaD(pa(t)l|prys ),

and using the semi-positive definiteness of the relative entropy eq. (1.2)
AFEA(t) > TAASVN,A.

Both the equality and the inequality are readily observed in exact diagonalization of Ma-
jorana SYK models, see figure 5.
Two important remarks can be made:

1. As the relative entropy is very small at early times the initial rise in energy is com-
pletely determined by the rise in the von-Neumann entropy.®

2. This rise is even present when the reservoir B is at T = 0, as well as when the system
and reservoir are at equal T' (figure 5). This unambiguously points to the growth
of quantum entanglement as the contributing factor to the rise in the von-Neumann
entropy; (see also [17]).

Given that it is the von Neumann entropy growth that controls the early time dy-
namics between the two subsystem, it is natural to also consider the evolution of mutual
information between the two:°

I(A : B,t) = SVN,A(t) + SVN7B(t) - SVN,AUB(t) , (2.17)

5Strictly speaking fine tuned initial conditions can exist where the von-Neumann entropy decreases, but
decreases so little that the small rise in relative entropy nevertheless results in an energy increase in the
hotter system.

5When the system and the reservoir have equal T, then

AEA(t) + AEg(t) = TAI(A: B) + D(pa(t)llpr) + D(ps(t)llpr)) - (2.16)

since ASauB(t) = ASiotal(t) = 0 due to unitary evolution of the combined system-reservoir combination
as a whole. In the early time regime where the relative entropies are very small, the combined energy
change in A and B, equal to work needed at the moment of a decoupling quench, is then equal to the
mutual information. This was first pointed out in [19] where it was shown that the minimum amount
of noise to decorrelate two systems equals the mutual information. By Landauer’s principle this is then
also the minimal amount of work. Note, however, that the energy increase here is not directly related to
decorrelation between A and B.
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Figure 5. The energy E4 is verified to equal the sum of the von Neumann entropy AS,n, 4 times
the initial temperature T4 and the relative entropy D4 = D(pa(t)||pr,). The initial rise in the
energy in particular is controlled by the initial rise in the von Neumann entropy. This persists when
the reservoir is in the groundstate 7' = 0 and at equal system-and-reservoir temperature Ty = T
pointing to entanglement as cause of the rise in von-Neumann entropy. Data from Majorana SYK
in exact diagonalization averaged over R = 100 realizations with parameters on top of the plot.

where Syn auB = —Tra ppavInpaup with paup being the density matrix of the full
system. It displays two qualitatively distinct regimes: an initial polynomial increase fol-
lowed by an exponentially decaying approach to equilibrium. Qualitatively, the early time
(t < tp) behaviour of the mutual information resembles the results reported in [20, 21]
where mutual information was used as a better measure of quantum scrambling, compared
to the OTOC. In particular these articles prove that I(A : B) bounds the OTOC from
above. This supports our deduction above that the initial energy increase is caused by
quantum correlation- and/or entanglement-growth and scrambling. Note that the OTOC
of operators between two quenched quantum dots depends on the initial state and inter-
action between the two dots, hence the early time polynomial increase in our setup. This
should not be confused with the exponential growth of OTOC within a single SYK dot,
which is driven by strong entanglement. The articles [20, 21] also emphasize the role of
decoherence in addition to scrambling. It would be interesting to dissect and analyze their
interplay further but we leave this for the future.

3 The transition from quantum to classical cooling

At late times after the quench the system behaves fully as expected in that the energy
of the hotter system exponentially decreases until it equilibrates. Given that the initial
rise of energy is controlled by the rise in entanglement driven von-Neumann entropy, there
are two clear regimes: this initial rise and the late time relaxation (figure 7). For the
specific case of the quenched cooling two SYK dots, one can use the fact that large N
SYK is exactly solvable to make analytic estimates for both these regimes as well as the
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Figure 7. The generic contact quench is characterized by an early time regime dominated by a
quantum-correlation increase (red) that transitions to a regime exhibiting conventional classical
relaxation (green). The transitions between these regimes are not sharp, but roughly indicated by
the top of the initial energy bump and the saturation of the relative entropy, where the final density
matrix has become approximately thermal.

intermediate regime and the long time hydrodynamic tails which eventually change the
relaxation to equilibrium from exponential to power law [12].

Here we ask a different question. Having argued that the initial rise is generically
universally controlled by the rising quantum correlation contribution to the von-Neumann
entropy, under what circumstances does the expected classical physics emerge, where heat
immediately flows from hot to cold? The quantum correlation- and/or entanglement-
growth is always present (except if the full system is purely classical where all the terms
in the full Hamiltonian, including the coupling term, commute with each other). This can

~10 -



therefore only happen in circumstances where the “classical” relaxation overwhelms the
quantum growth. Or more precisely, knowing that

AE(t) > TAASN,A(t),

this transition can only happen if the “classical” thermal contribution to the von-Neumann
entropy dominates over the entanglement contribution to the von-Neumann entropy al-
ready at the earliest possible time. From the atomic statistical mechanics underpinning of
classical thermodynamics we know that this must happen when we have a theory with well
defined particles with suppressed quantum correlations. This should be the case at high
temperatures (weak coupling) and low densities.

However, when we study the high T' (T4, T > J? and T4 > Tg) regime in quenched
cooling two SYKy-dots, this disappearance of the initial rise and a transition to immediate
classical energy flow from hot to cold is not seen to emerge. This is even so when we
extrapolate our finite size exact diagonalization result to the thermodynamic limit (N —
o0) (with the assumption that the finite N studies do capture the appropriate large N
behavior). Figure 8 shows the height of the energy bump E,,, = Eyax— E(t = 0) per particle
(Em/N) in the Majorana SYK4 model directly before it starts to decrease as a function
of the temperature T4. Any finite NV system will always contain quantum signatures and
the classical behavior need only emerge in a thermodynamic limit. Numerics directly gives
away that FE,, has a leading scaling with N. Dividing this overall scaling out, a rough
extrapolation to N = oo nevertheless shows that a positive energy bump remains.”

To try to find the crossover to expected classical behavior where the energy rise in the
hot system is absent, we change the quenched cooling set-up from two SYK quantum dots
to two mixed field Ising half-lines eq. (2.7) with a tunneling interaction at the end point
of each line eq. (2.8). Both at the free g = 0,h = 0 [22] and at the conformal fixed point
g = 1,h = 0 in the continuum (thermodynamic) limit one can use conformal field theory
techniques to study this type of quenched cooling [23-25]. Then one indeed finds that there
is no initial energy rise, but the energy starts to flow instantaneously from hot to cold. As
is well known by now, in the regime h = 0 the late time behavior of the two subsystems,
if isolated, is controlled by the large number of conserved charges and an associated gen-
eralized hydrodynamical relaxation towards a generalized Gibbs ensemble [26, 27]. The
presence of the coupling term A makes the full system not integrable.

Indeed for the case ¢ = 0 (h # 0) there is for any system size an immediate energy
decrease in the hot subsystem, as shown in figure 9 (top). This case is classical with only
a small quantum tunneling between the two subsystems. For generic values of g and A, on
the other hand, there is an initial rise in energy in accordance with the universal relation
eq. (1.2). The height of the energy bump (E,,) is now independent of N, due to the more
local point-like interaction compared to the SYK non-local all-to-all tunneling. This sug-
gests that the bump energy per particle (E,,/N) will vanish in the thermodynamic limit
to match our classical intuition. However, instead of such a thermodynamic vanishing, we

"This turns out to also be true for SYK; models. Though within the random ensemble of SYK, couplings,
there are empirically always realizations for which the energy F4 does decrease instantaneously.

- 11 -
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Figure 8. Quenched cooling of two SYK, dots. Top: height E,, of the energy bump (left) and
time t,, of the bump (right) for various initial temperatures T4 = 1/84. Bottom: height E,,
of the energy bump roughly extrapolated to larger N for two different initial temperatures S4.
The height stays finite in this thermodynamic limit, indicated by a > 0. Combining the top and
the bottom, the initial rise in the hotter system energy F 4 seems to persist for any finite T4 and
infinite N.

should expect that also a finite size system exist where semi-classical hot-to-cold energy
dynamics overwhelms the information-driven gain at short times. Indeed for a fixed tem-
perature, we can estimate where the bump disappears, by extrapolating the E,, /N to large
N. Now we see the foretold disappearance of the bump at a fixed finite temperature at a
finite value of N, restoring our classical intuition (figure 9). An explicit finite N example
is given in figure 10. This finite N example shows that it is not simply the fact that the
interaction is local and thus non-extensive in the thermodynamic limit, that causes it to
vanish for higher temperatures.

The most interesting case is the conformal point of the Ising model (figure 9) (see
also [28, 29]). At exactly g = 1,h = 0 the bump only disappears by extrapolation to the
continuum limit, similar to the SYKy results. This is still consistent with the earlier results
on quenched cooling in conformal systems [23-25]. The absence of a bump found there
relies on conformal symmetry which is only a true symmetry in the continuum limit. At
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Figure 9. Quenched cooling in two Ising half lines. Top: height E,, of the energy bump (left)
and time t,, of the bump (right) in for various parameter choices. Bottom: height E,, of the
energy bump extrapolated to larger N for various initial temperatures T4 = 1/84. For each initial
temperature there is a finite extrapolated value of N for which the bump disappears (a < 0) and
the system will cool instantaneously upon contact. The higher the initial temperature, the lower is
this value of N.

the same time for any finite size quantum system at low T, there appears to always be a
small but non-zero counterintuitive initial rise. The bump is a correlation driven effect,
as a simple ballistic collision model based on the Boltzmann equation will never have an
initial energy rise in the hot system [22].8 The correlation can still be either quantum or
classical statistical. In the latter case, this classical statistical two-particle correlation (the
two-particle distribution function) vanishes in the thermodynamic limit in accordance with
the assumption of molecular chaos.

In summary, classical thermodynamics — or rather hydrodynamics as we are studying
time-dependent processes — emerges in the quasi-particle (high temperature low density)

8Perhaps the easiest way to see this is to realize that the quenched cooling protocol is the quantum
version of the Riemann problem in hydrodynamics. In hydrodynamics one assumes local equilibrium and
thus an absence of correlations between different spatial points at distances larger than the local mean free
path.
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Figure 10. Quenched cooling in two Ising half lines. For T' < T, ~ 77.845.J one still observes
the initial rise in the hotter system A, but for T' > T, one transitions to a regime where classical
intuition is restored and the system cools instantaneously upon contact.

limit with a non-extensive interaction between system and reservoir and after taking the
thermodynamic limit. The converse is that in quantum systems the initial rise in energy in
the hot system that undergoes quenched cooling is robust and generic, though not required,
and universally explained by eq. (1.1).

4 Conclusion

In this manuscript we have analyzed the origins of the observed counter-intuitive early time
energy increase in hotter systems quench-coupled to a cooler reservoir in quantum simula-
tions. Our numerical study of Majorana SYK,, using exact diagonalization demonstrates
that the early time energy behaviour is proportional to the increase of the von Neumann
entropy and is not related to a thermal flux from the cold to the hot system, demonstrating
the quantum nature of this phenomenon. The energy increase is counterbalanced by the
negative interaction potential (expectation value of the tunneling term in the Hamiltonian).
In the setup here, the coupling quench does not supply energy into the system and the
total energy is conserved. The same potential sets the amount of work needed to decouple
the systems at given later time.

This peculiar phenomenon is well explained by the quantum non-equilibrium exten-
sion of the first law of thermodynamics eq. (1.1) where the relative entropy D(p(t)||pr)
plays a crucial role. Starting from a thermal state D(p(t = 0)||pr) = 0 and using the
positive semi-definiteness D(p(t)||pr) > 0 the von Neumann entropy, scaled by the initial
temperature, then sets a lower bound on the energy in each subsystem (1.2). This links the
observed energy increase even in the hotter subsystem to an increase of the von Neumann
entropy. Moreover, at sufficiently early times the change of the relative entropy is negli-
gible compared to the energy which has two interesting consequences. Firstly, the early
time evolution of the energy is almost directly proportional to the von Neumann entropy
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as we emphasized in our earlier paper [17]; this provides a way to measure (dynamical)
entanglement between two subsystems.? Secondly, it proves that the initial thermal state
isn’t instantaneously destroyed, hence the initial energy rise is not related to a temperature
increase.

The universality of this bound gives rise to an even more puzzling question: why is
such an energy increase not commonly encountered in our daily life? The reason lies in
the quantum nature of this phenomenon. We show that at high temperatures in weakly
interacting quasi-particle systems the height of the bump is suppressed and the time it crests
gets very short. In the thermodynamic limit it vanishes altogether, making it essentially
unnoticeable at everyday macroscopic scales. As our results for SYK and the conformal
point of the mixed field Ising model show, the more quantum mechanical the system is the
closer one must push to the continuum quasiparticle limit for this bump to disappear and
classical intuition to be restored. By extrapolation of our numerical simulation this is only
ever possible to achieve in the strict thermodynamic limit.

This energy increase of the hotter system defies our intuition and understanding of
classical thermodynamics but, as demonstrated here, it is well in accord with the laws of
quantum thermodynamics.

There are three notable considerations that follow: there has been an substantial
amount of research in the past few years on the out-of-time-ordered correlation function
as a probe of classical and quantum chaos resulting in information exchange, scrambling
and entropy growth (see e.g. [30]). The standard wisdom is that this information flow is
separate and faster than energy flow, because the latter is constrained by a conservation
equation, as recalled for instance in [31]. The result here and particular the inequality
eq. (1.2) shows that this information flow, even though it is faster, must always drag some
energy with it.

Secondly, one of the motivations to study SYK quenched cooling has been the equiv-
alence with black hole evaporation through the holographic AdS/CFT correspondence.
Because the evaporation of the black hole must expose the information behind the hori-
zon, the quench can be modeled in the black hole context by a negative energy shock
wave [16, 32], which shrinks the horizon upon contact. The result here shows that at very
early times (before the shock hits the horizon in global time), there should be an interesting
connection between the Ryu-Takayanagi entanglement surface encoding the von-Neumann
entropy and the dynamics of the energy wavefront that holographically encodes eq. (1.2),
especially since holographically there are bounds on the rate of von-Neumann entropy
growth AS,n(t), see e.g. [33-35].

Finally, as already emphasized in [17], the inequality eq. (1.2) saturates in perturbation
theory and can therefore be used in quenched cooling of weakly coupled systems to probe
the von-Neumann entropy. Moreover, this is a universal result in the short time scale
regime which is normally considered too sensitive to peculiar details of the experimental

9As the relative entropy is a measure of how distinguishable two states are, extremely small relative
entropy means that at early times the subsystem is nearly indistinguishable from its initial thermal state
implying that the energy increase is not related to a temperature rise, contrary to what was suggested in
other papers [11, 12].
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set-up and the system to be of interest. It invites an experimental measurement of this
universal way the von-Neumann entropy determines the energy response.
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