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A B S T R A C T   

This paper presents Pol-InSAR-Island, the first publicly available multi-frequency Polarimetric Interferometric 
Synthetic Aperture Radar (Pol-InSAR) dataset labeled with detailed land cover classes, which serves as a chal
lenging benchmark dataset for land cover classification. In recent years, machine learning has become a powerful 
tool for remote sensing image analysis. While there are numerous large-scale benchmark datasets for training and 
evaluating machine learning models for the analysis of optical data, the availability of labeled SAR or, more 
specifically, Pol-InSAR data is very limited. The lack of labeled data for training, as well as for testing and 
comparing different approaches, hinders the rapid development of machine learning algorithms for Pol-InSAR 
image analysis. The Pol-InSAR-Island benchmark dataset presented in this paper aims to fill this gap. The 
dataset consists of Pol-InSAR data acquired in S- and L-band by DLR’s airborne F-SAR system over the East 
Frisian island Baltrum. The interferometric image pairs are the result of a repeat-pass measurement with a time 
offset of several minutes. The image data are given as 6 × 6 coherency matrices in ground range on a 1 m × 1m 
grid. Pixel-accurate class labels, consisting of 12 different land cover classes, are generated in a semi-automatic 
process based on an existing biotope type map and visual interpretation of SAR and optical images. Fixed training 
and test subsets are defined to ensure the comparability of different approaches trained and tested prospectively 
on the Pol-InSAR-Island dataset. In addition to the dataset, results of supervised Wishart and Random Forest 
classifiers that achieve mean Intersection-over-Union scores between 24% and 67% are provided to serve as a 
baseline for future work. The dataset is provided via KITopenData: https://doi.org/10.35097/1700.   

1. Introduction 

For the observation of the constantly changing earth surface, Polar
imetric Synthetic Aperture Radar (PolSAR) systems provide an impor
tant contribution. The active sensor technology, in which 
electromagnetic waves of different polarization are transmitted and 
received, enables the recording of information-rich data unaffected by 
cloud cover and daylight. By analyzing the backscattered signal and, in 
particular, its polarimetric properties, conclusions can be drawn about 
the geophysical parameters of observed surfaces and the geometry and 
orientation of objects on the ground. In the current development of 
effective methods for land cover classification of PolSAR images, 
attention is mainly focused on methods from the field of machine 

learning, especially on its subfield deep learning as summarized in (Zhu 
et al., 2021) and (Parikh et al., 2020). This trend is primarily motivated 
by the tremendous success of deep learning methods for the analysis of 
optical image data. While this success has been strongly driven by public 
benchmark datasets such as ImageNet (Deng et al., 2009) and CityScale 
(Cordts et al., 2016), which contain a large number of labeled training 
and test data, comparable datasets for the PolSAR domain are rare. Due 
to the inherent differences in imaging techniques, the use of models 
pre-trained on optical data is inappropriate for the analysis of PolSAR 
data. Therefore, models must be trained from scratch, which requires 
domain-specific datasets. The lack of highly demanded large and 
representative expert-labeled benchmark datasets for the SAR commu
nity is highlighted by Zhu et al. in (Zhu et al., 2021) in their analysis of 
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the current state of deep learning-based SAR image analysis. 
Only few open PolSAR datasets labeled by land cover classes exist 

that are frequently used in the respective literature to evaluate ap
proaches for land cover classification. These are:  

● The Flevoland dataset, which contains a PolSAR image 
(1024 × 1024 pixels) acquired by the NASA/JPL AIRSAR system and 
ground truth data, in the form of 14 crop type classes. The ground 
truth was collected within the 1991 MAC-Europe campaign (Vissers 
and Sanden, 1992).  

● The Oberpfaffenhofen E-SAR dataset,1 which contains a PolSAR 
image (1300 × 1200 pixels) labeled with three land cover classes 
(Built-up Area, Wood Land, and Open Area).  

● The PolSF dataset (Liu et al.), which contains PolSAR images (1024 ×
900 to 2784 × 5056 pixels) from various spaceborne systems (Gao
fen-3, RADARSAT-2, RISAR, ALOS2) and an airborne system (AIR
SAR) over San Francisco alongside with different versions of land 
cover labels.  

● The AIR-PolSAR-Seg (Wang et al., 2022) dataset, which contains a 
PolSAR image (9082 × 9805 pixels) acquired by the Gaofen-3 system 
and labeled by six land cover classes (Natural, Water, Land Use, In
dustrial, Housing, and Others). 

The enumerated datasets, however, have several limitations that 
make them inadequate for evaluating machine learning classifiers. An 
inherent limitation of the Flevoland, Oberpfaffenhofen, and PolSF 
datasets is the absence of predefined training and test areas. This lack of 
standardization poses a significant challenge when attempting to 
compare research results across various studies. Another shortcoming is 
the lack of complexity of the provided classification task. For instance, 
the Oberpfaffenhofen dataset employs merely three easily distinguish
able classes. The Flevoland dataset, on the other hand, consists of 14 
distinct and inherently self-resembling classes. However, they are ar
ranged rectangularly, which greatly simplifies the image segmentation. 
As a result, very high classification performance can already be achieved 
with simple classifiers for these datasets, making it not feasible to 
compare more sophisticated classifiers that are needed for tackling more 
challenging real-world tasks. The recently presented AIR-PolSAR-Seg 
(Wang et al., 2022) dataset represents an attempt to provide an open 
labeled large-scale PolSAR benchmark dataset with high scene 
complexity and, thus a more challenging land cover classification task. 
However, a major drawback of this dataset is that only amplitude images 
are available, and consequently, a significant part of the polarimetric 
information cannot be included in the classification. 

Besides SAR polarimetry, SAR interferometry is a valuable and 
established remote sensing technique that provides complementary in
formation about the surface topography and temporal variability of an 
observed area. The relevant information is contained in the phase dif
ference between two complex-valued SAR images of the same scene 
acquired from slightly different look angles. The combination of polar
imetry and interferometry, known as Pol-InSAR (Cloude and Papatha
nassiou, 1998), results in a powerful observation space that can further 
improve land cover classification as shown in (Lee et al., 2005; Shimoni 
et al., 2009; Schmitz et al., 2020). In addition, current airborne 
Pol-InSAR systems allow simultaneous acquisition in multiple frequency 
bands. This extends the observation space by an additional component 
that is beneficial in distinguishing land cover types, as shown in (Chen 
et al., 1996; Turkar et al., 2012; Schmitz et al., 2022a). The development 
of deep learning methods for single- and multi-frequency PolSAR clas
sification has already achieved success and is actively pursued ((Xie 
et al., 2014; Gao et al., 2017; Zhang et al., 2017; De et al., 2018; Xin 

et al., 2022; Cao et al., 2023)). However, their application to the analysis 
of single- and especially multi-frequency Pol-InSAR data is very limited 
((Mohammadimanesh et al., 2019; Newman et al., 2023; Wang and 
Wang, 2019)). The main reason for the scarce research activity in this 
area is certainly the very limited open access availability of Pol-InSAR 
data and the lack of labeled benchmark datasets for training and 
testing classifiers. To fill this gap and to advance the development of 
learning-based classification, this work presents a dataset called 
Pol-InSAR-Island, which provides multi-frequency Pol-InSAR data along 
with a challenging classification task consisting of 12 land cover classes. 
The difficulty of the classification task is mainly due to the focus on 
natural land cover classes, which are similar in appearance and 
continuously merge into each other. The dataset is intended to enable 
the training and fair comparison of different models for the classification 
of single- or multi-frequency PolSAR and Pol-InSAR data. All in all, the 
Pol-InSAR-Island dataset stands out from existing benchmark datasets 
due to the following advantages:  

1. Open provision of labeled multi-frequency Pol-InSAR data in 
high resolution: Pol-InSAR-Island is the first open benchmark 
dataset for the classification of multi-frequency Pol-InSAR data.  

2. Challenging classification task due to high scene complexity: 
The dataset comprises 12 different natural land cover classes char
acterized by high intra-class variance and inter-class similarity. 
Another challenge arises from the imbalance in the number of sam
ples per class that is typical for real-world data.  

3. Controlled training and test setting: In total, the dataset contains 
more than 5 million labeled pixels, which are equally divided into 
spatially disjoint training and test sets. When partitioning the data
set, care was taken to ensure similar class strengths between the 
training and test sets. For comparison, two common evaluation 
metrics, namely Intersection-over-Union (IoU) and balanced accu
racy, are proposed. 

The following content of this article is divided into four sections. 
First, in Section 2, the Pol-InSAR data, their properties, and their rep
resentation form are described, along with the process of class labeling 
based on reference data. In Section 3, classification results achieved by 
two established classifiers on the dataset are given that serve as base
lines. Subsequently, in Section 4, the advantages and limitations of the 
presented dataset are discussed. Finally, the main components are 
summarized in Section 5. 

2. Data basis and labeling 

2.1. F-SAR data 

The Pol-InSAR data of the Pol-InSAR-Island dataset were acquired 
over the German Wadden Sea in April 2022 on behalf of the Lower 
Saxony Water Management, Coastal Defence and Nature Conservation 
Agency (NLWKN). The measurement campaign was conducted with the 
airborne F-SAR system developed at the German Aerospace Center 
(DLR) (Horn et al., 2009). The captured area covers the islands Nor
derney, Baltrum, and Langeoog, including the surrounding tidal flat 
area. The Pol-InSAR-Island dataset does not contain all the SAR data 
acquired during the campaign but only the data segments covering the 
island of Baltrum. The reason for this is the high time effort required for 
quality-assured labeling of the land cover. The decision to initially focus 
on the island of Baltrum is due to the fact that a high diversity of land 
cover classes is available within a comparatively small area. As shown in 
Fig. 1, the selected data sections, each covering an area of 2.5 km ×
3.6 km, originate from two overlapping flight paths, which were ac
quired in opposite flight directions. The incidence angle interval used to 
capture these sections ranges from 26 ◦ to 58 ◦. As described in (Horn 
et al., 2009), the F-SAR system allows the acquisition of fully polari
metric SAR data (Shh, Svv, Svh, Shv) in five frequency bands: P, L, S, C, and 

1 At the time of publishing this paper, unfortunately, the dataset is no longer 
available through the commonly referenced link: (https://earth.esa.int/web/po 
lsarpro/data-sources/sample-datasets). 
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X. The data considered for the Pol-InSAR-Island dataset were acquired 
simultaneously in S- and L-band, corresponding to frequencies of 3.25 
GHz and 1.325 GHz, respectively. The resulting images have a resolution 
of 0.65 m (S) and 1.29 m (L) in range and 0.5 m (S) and 0.6 m (L) in 
azimuth. The interferometric analysis is enabled by imaging in a 
repeat-pass configuration, where the area was imaged twice with a time 
offset of 12 min, a nominal vertical baseline of 40 m, and a horizontal 
baseline of 0 m. Detailed information about the concepts of data 
acquisition and processing, which have been developed within the 
GeoWAM project (Pinheiro et al., 2021), can be found in (Pinheiro et al., 
2020). Fig. 2 shows the multi-frequency Pol-InSAR imagery included in 
the Pol-InSAR-Island dataset in the form of color-coded images based on 

Pauli decomposition and interferometric coherences. 
Based on co-registered single-look complex interferometric image 

pairs, the hermitian positive semi-definite coherency matrix T6 is 
calculated for each pixel. It is obtained from the scalar product of the 
scattering vectors k1 and k2 in Pauli basis: 

ki =
1̅
̅̅
2

√ [ Shh + Svv, Svv − Shh, 2Shv ]
T (1)  

T6 =

[
k1
k2

]
[

k∗T
1 k∗T

2

]
=

[
T11 Ω12
Ω21 T22

]

. (2) 

Here, * denotes the complex conjugation, and T stands for the matrix 

Fig. 1. Geographic location of the F-SAR measurement campaign 2022 and selected areas for the Pol-InSAR-Island dataset. The flight paths, shown in the right 
figure, were each captured twice using a vertical baseline of 40 m, a horizontal baseline of 0 m, and a time offset of 12 min. 

Fig. 2. Geocoded Pol-InSAR image data of the Pol-InSAR-Island dataset. The image data of both frequency bands are visualized by polarimetric composites (Pauli 
decomposition) and interferometric coherence in VV polarization. 
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transposition. The two matrices T11 and T22 represent the coherency 
matrices of the individual PolSAR images that contain polarimetric in
formation. The interferometric information of all polarimetric channels, 
which is carried particularly in the phase difference between both im
ages, is contained in the matrices Ω12 and Ω21. Spatial filtering, which is 
usually performed to statistically describe distributed scatterers and 
reduce speckle noise, is not performed at this point but is left to the users 
of the dataset. The only postprocessing step performed is the computa
tion and removal of the flat-earth phase from the components in Ω12 and 
Ω21. Subsequently, the resulting representation is projected from the 
slant range to the ground range geometry on a 1 m × 1 m grid. In the 
Pol-InSAR-Island dataset, the geocoded image data, containing the T6 
matrix for each pixel, are provided in S- and L-band. In addition, the 
dataset contains auxiliary files that map the incidence angle as well as 
the vertical wavenumber. 

2.2. Reference data 

The island of Baltrum is 6.5 km2 in size and, thus, the smallest of the 
seven East Frisian Islands of Germany. The island faces the North Sea to 
the north, while to the south, there are tidal flats between the island and 
the mainland. These tidal flats form a unique ecosystem that is regularly 

flooded and drained again. The island itself is home to many different 
types of biotopes typical of North Sea islands. These include salt 
marshes, bogs, and dune valleys. In addition, part of the island is built up 
with settlements. Artificial coastal protection structures can be found in 
the northwestern coastal area. This diverse land cover results in the 
target classes of the demanding Pol-InSAR-Island dataset. To realize 
fine-grained labeling of the land cover with a high degree of semantic 
detail, an existing biotope type map is used, published by the Lower 
Saxon Wadden Sea National Park Authority (NLPV) and provided via the 
geodata portal Marine Dateninfrastruktur Niedersachsen (MDI-NI) 
(https://mdi.niedersachsen.de/). This biotope type map was generated 
in 2013 as part of the Trilateral Monitoring and Assessment Program 
(TMAP), which aims to provide a substantial basis for policy-making on 
the protection of the Wadden Sea ecosystem. In the map, the island of 
Baltrum is divided into 40 biotope types. The biotope type map is 
visualized in Fig. 3. Since the biotope type map was generated several 
years before the F-SAR measurement campaign, significant changes in 
the extent of the different biotopes are to be expected, making the map 
not sufficient for accurate labeling. Therefore, the map is revised within 
a semi-automatic process, which is schematically illustrated in Fig. 4. 

Fig. 3. Biotope type map (2013) of the island of Baltrum provided by MDI-NI.  
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2.2.1. Revised biotope type map 
The biotope type map used as a starting point is given as a vector file, 

where each polygon contains exactly one biotope type attribute. The 
first step of the revision Buffering & Filtering aims at masking out areas 
where the class assignment of the outdated biotope type map is highly 
unlikely to match the land cover at the time of the SAR acquisition. It is 
assumed that this is particularly the case at transition areas of adjacent 
biotope boundaries. Moreover, the boundaries between two biotopes are 
usually fuzzy by nature, so an unambiguous class assignment is not 
possible. Therefore, all polygons of the biotope type map are adjusted 
with a negative buffer operation to shrink their extent and to create an 
empty space without an assigned biotope type between two different 
biotope types. Subsequently, biotope types that collectively cover less 
than 1000 m2 over the complete study area are excluded from the 
dataset. Furthermore, areas that are assigned to the biotope type Coastal 
tidal flat, Pickleweed, or Tidal creek of brackish water are masked out. The 
reason for this approach is that the extent of exposed tidal flats is pri
marily determined by the current tidal phase, i.e., the current water 
level. Thus, the water level at the time of the SAR data acquisition can 
only be identified by interpreting the Pol-InSAR data itself. Therefore, a 
visual analysis of SAR backscatter amplitudes and interferometric co
herences is performed to manually identify tidal flat areas and water 
areas that are added to the map. The resulting map is called the revised 
biotope type map. 

2.2.2. Target class map 
In the following processing step, Merging of classes, the original 

semantically fine-grained biotope types are grouped and assigned to 
generalized land cover classes, which form the final target classes of the 
benchmark dataset. The requirement for these target classes is that class 
separation using the multi-frequency Pol-InSAR data is possible but not 
trivial, so the dataset provides a challenging classification task. To 

determine an appropriate grouping of biotope types, a multi-stage visual 
class separability analysis is performed. This analysis is based on a 
visualization of the data structure of multi-frequency Pol-InSAR fea
tures. For this purpose, a 54-dimensional feature vector is generated for 
each pixel by stacking polarimetric and interferometric features listed in 
Table 1, that are extracted from S- and L-band data. The polarimetric 
features are computed based on the coherency matrix of the reference 
scene (T11). To visualize the high-dimensional feature representation of 
the data, an embedding in a 2-dimensional Euclidean space is computed 
using the dimension reduction method Uniform Manifold 

Fig. 4. Workflow of the semi-automatic process for data labeling.  

Table 1 
List of considered polarimetric and interferometric features.  

Expression Feature description 

T11,ij Magnitude (in dB) and phase of the upper 
triangular elements of polarimetric 
coherency matrix T11 

H, A, α Entropy, anisotropy and mean alpha 
angle derived by eigenvalue 
decomposition (Cloude and Pottier, 
1997) 

p1, p2, p3 Normalized eigenvalues of T11 

λ =
∑3

i=1piλi Weighted mean of eigenvalues 
fodd, fdouble, fvolume Contribution of scattering mechanisms to 

the total backscattered power derived by 
Yamaguchi decomposition (Yamaguchi 
et al., 2006) 

Conformity coefficient Conformity coefficient defined in ( 
Truong-Loi et al., 2009) 

Scattering diversity, scattering 
predominance, depolarization index, 
degree of purity 

Parameters derived from the Frobenius 
Norm of the power-normalized coherency 
matrix (Praks et al., 2009) 

|γxx| Magnitude of interferometric coherence 
in VV, HV and HH polarization  
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Approximation and Projection (UMAP) (McInnes et al.). The UMAP al
gorithm aims at preserving local and global neighborhood relations of 
the data, which in the present application describe the similarity of the 
selected Pol-InSAR features. A resulting embedding of the 
multi-frequency Pol-InSAR data is shown in Fig. 5. Here, data points are 
colored according to their membership in one of six generic classes: Tidal 
flat, Water, Dunes landscape, Salt marshes, Sand, and Settlement. This class 
division was defined manually by grouping the specific biotope types 
based on their semantic meaning. The clustering observed in the scat
terplot suggests a good separability of the six generic classes. While the 
classes Tidal flat, Water, Sand, and Settlement represent only one biotope 
type each, the classes Dunes landscape and Salt marshes are composed of 
many different biotope types, whose separability is further investigated. 
For this purpose, two additional embeddings are computed, in which 
only the pixels of the classes Salt marshes and Dunes landscape are 
included. The resulting embeddings are shown in Fig. 6. In the scatter
plot, data points are colored based on their class as specified by the 
revised biotope type map. Note that reapplying the nondeterministic 
UMAP algorithm to the corresponding data subsets results in slight 
variations in the arrangement of data points in the 2-dimensional feature 
space. From the scatterplot corresponding to the class Salt marshes, 
separability of the biotope types Couch grass (light green) and Upper salt 
marsh (orange) can be derived. Another cluster is formed by the data 
points of the biotope types Slit grass and Lower salt marsh, which overlap 
strongly and are therefore combined into one target class Lower salt 
marsh. The generic class Dunes landscape is composed of 14 biotope types 
whose similarities with respect to their corresponding Pol-InSAR fea
tures are shown in the lower part of Fig. 6. The three biotope types, 
White dune (yellow), Peat bog (violet), and Grey dune (grey) stand out as 
distinct clusters. The remaining biotope types have similar Pol-InSAR 
features and, therefore, partially overlap in the 2-dimensional feature 
space. However, a separation between biotope types that can be 
assigned to the class Dense, high vegetation, and biotope types that can be 
assigned to the class Coastal shrub is possible. The presented analysis 
results in 12 target classes for the Pol-InSAR-Island dataset: Tidal flat, 
Water, Coastal shrub, Dense and high vegetation, White dune, Peat bog, Grey 
dune, Couch grass, Upper salt marsh, Lower salt marsh, Sand and Settlement. 
In Fig. 7, the feature representation of the entire dataset is shown, with 
the data points colored based on these 12 target classes. This figure gives 
a first impression regarding the degree of difficulty of class separation. A 
brief description of each target class is given below.  

● Tidal flats (TF) are sandy, muddy areas that are repeatedly flooded 
and drained. They lie between the island and the mainland, and 

tideways are present during low tide periods. As they are regularly 
flooded, they are characterized by high moisture and little 
vegetation.  

● Water (W) represents the North Sea, tideways running through the 
tidal flats, as well as waterways and small lakes located on the island.  

● Coastal shrub (CS) represents low-growing shrubbery, such as sea- 
buckthorn, creeping willow, and potato rose bushes.  

● Dense, high vegetation (DV) contains all the biotope types covering 
forested areas, as well as dense and high shrubbery.  

● White dune (WD) represents areas with multiple meter-high dunes 
located next to the beach. They are covered by a more or less open 
low-growing vegetation cover of beach grass.  

● Peat bog (PB) is the rarest class in the dataset and occurs as one large 
area in the center of the island Baltrum. It is a moist to swampy area 
covered by vegetation such as floodplains or creeping willow bushes.  

● Grey dune (GD) represents a dune landscape which is covered with 
fireweed, thistles, or rubus.  

● Couch grass (CG) identifies the fallow land of a formerly pastured 
upper salt marsh with couch grass dominance.  

● Upper salt marsh (US) extends to about 70 cm above the high tide line 
and is flooded only 25–70 times per year. It is home to numerous 
plant species, including salt marsh red fescue, milkweed, beach 
mugwort, and beach quackgrass.  

● Lower salt marsh (LS) extends to about 30 cm above the high tide line 
and is flooded 100–300 times per year. Prevalent species are andel
grass, beach aster, beach lilac, beach trident, and purslane 
wedgewort.  

● Sand (S) covers the beach areas, as well as sandy areas without 
vegetation near dunes. Sand is mostly found in the western and 
northern areas of the island, facing the seaside.  

● Settlement (SE) represents the major settlement area in the west of the 
island, as well as isolated buildings and settlements. No individual 
houses are labeled, but rather the whole area of the settlement, 
containing adjacent trees and surrounding meadows. 

The resulting target class map, juxtaposed with the original biotope 
type map, is shown in Fig. 8. 

2.2.3. Pol-InSAR-Island class map 
Finally, the target class map is manually refined to optimally align 

the class labels based on the outdated biotope type map (2013) to reflect 
the current state of the more recent F-SAR acquisition (2022). The 
manual refinement is realized by visual interpretation of Pol-InSAR 
feature images and recent optical data. The optical data consulted for 
this purpose were acquired in an airborne survey one day after the F-SAR 
acquisition and have a ground resolution of 1 cm. Performing the highly 
time-consuming manual revision and validation of the labels is indis
pensable due to the large time difference between the generation of the 
biotope type map and the F-SAR acquisition. Fig. 9 shows the changes 
made to the target class map in this step to obtain the final, quality- 
assured Pol-InSAR-Island class map. For this purpose, both class maps 
are shown side by side (Fig. 9 (a) and (b)). In addition, Fig. 9 (c) and (d) 
highlight areas that have either been removed from the map, added, or 
replaced with another class. As expected, areas of the class Sand, which 
are highly exposed to sea disturbances, have undergone the most sig
nificant changes. A further notable aspect is the removal of several areas 
labeled as Settlement (red) in the target class map. This is due to the fact 
that in the Pol-InSAR-Island class map, only densely developed settle
ment areas were included, and open areas with very sparse built-up 
areas were not taken into account. In the area of Salt marshes, large- 
scale changes occur locally, as the boundary between the Upper and 
Lower salt marsh has changed over the years. For the remaining classes, 
primarily small-scale changes are evident. For example, the extent of 
Coastal shrub on the Grey dune has changed to a certain degree, and the 
area of the class Peat bog visible in the Pol-InSAR data has decreased in 
size due to increased vegetation cover. After the manual revision and 

Fig. 5. UMAP projection of Pol-InSAR features. Projected data points are 
colored according to six generic land cover classes. 
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Fig. 6. Separability analysis of different biotope types, which belong to the generic class Salt marshes (top) and the generic class Dunes landscape (bottom), 
respectively. 

Fig. 7. UMAP projection of Pol-InSAR features. Projected data points are colored according to the 12 target classes of the Pol-InSAR-Island dataset.  
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validation of the labels, the final Pol-InSAR-Island class map is provided 
as part of the open benchmark dataset. 

2.2.4. Training and test data split 
The Pol-InSAR-Island dataset is divided into two spatially disjoint 

subsets for training and testing and, thus, for a fair comparison of 
different classification approaches. A chessboard grid is used for the 
partitioning, which alternately defines rectangular training and test re
gions with an extent of 512 m × 512 m each. This ensures that classes 
that are spatially concentrated on the island are adequately represented 
in both the training and the test set. In addition, this method of data 
splitting has the advantage that training and test samples are taken from 
the entire incidence angle interval ranging from 26 ◦ to 58 ◦. This is 
relevant because the incidence angle strongly influences the polari
metric backscatter signal, especially for surface scatterers such as Sand, 
Water, and Tidal flat ((Schmitz et al., 2022b)). It should be noted that the 
choice of spatially overlapping flight paths (see Fig. 1) results in an area 
that is doubly covered in the dataset. However, since the intersecting 
area was imaged from opposite flight directions, the SAR signatures vary 
between the two image sections. For this reason, both image sections of 
the intersecting area are retained in the dataset. In total, the dataset 
yields 2,677,248 labeled pixels for training and 2,773,559 for testing, 
distributed over the 12 target classes as listed in Table 2. As is typical for 
real-world data, the samples are not evenly distributed across the clas
ses. The class imbalance complicates the task of land cover classification 
and needs to be addressed in the development of classifiers. 

3. Baseline classifiers 

Learning-based land cover classification of PolSAR data is a widely 
studied research topic for which many different approaches have been 
proposed, ranging from statistical methods ((Lee et al., 1994; Anfinsen 
et al., 2007)) to machine learning models based on polarimetric and 
hand-crafted texture features ((Fukuda and Hirosawa, 2001; Du et al., 
2015)), to deep learning models ((Xie et al., 2014; Gao et al., 2017; 
Zhang et al., 2017)). In contrast, the use of multi-frequency Pol-InSAR 
data for land cover classification is significantly less addressed. How
ever, a few studies demonstrate that incorporating interferometric or 
multi-frequency information into land cover classification approaches 
leads to improved classification performance ((Shimoni et al., 2009; 
Chen et al., 1996; Schmitz et al., 2022a; Ferro-Famil et al., 2002; Jin 
et al., 2014; Feng et al., 2017)). In the following, two commonly used 
learning-based models that allow the classification of (multi-frequency) 
Pol-InSAR data, namely a supervised Wishart classifier and a Random 
Forest classifier, are trained and tested on the presented 
Pol-InSAR-Island dataset. The obtained test results are intended to serve 
as minimum baselines for the Pol-InSAR-Island dataset for future work. 

3.1. Supervised Wishart classifier 

The Wishart classifier is one of the most prominent approaches to 
classify PolSAR data. It is a maximum likelihood classifier based on the 
complex Wishart distribution of the polarimetric coherency matrix ((Lee 
et al., 1994)). Since the polarimetric interferometric coherency matrix 
T6 is also Wishart distributed, the Wishart classifier can be adapted to 
Pol-InSAR data, as shown in (Lee et al., 2005). The classification can be 

Fig. 8. Land cover maps for the island Baltrum. (a) shows the original biotope type map composed of 40 classes. (b) shows the target class map composed of 12 
classes, which results after performing the steps Manual Labeling (Water and Tidal flat), Buffering & Filtering, and Merging of classes. Corresponding legends can be 
found in Fig. 3 and 7. 
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performed supervised, i.e., by including ground truth labels, or unsu
pervised by an initial clustering based on interferometric features, as 
proposed in (Ferro-Famil et al., 2006) and (Jager et al., 2007). Since 
ground truth labels are available from the Pol-InSAR-Island dataset, this 
paper only considers the supervised Wishart classification, which is 
performed separately for the L-band and S-band Pol-InSAR data. Prior to 
classification, the image data are spatially averaged using the Refined 
Lee filter with a window size of 9 × 9 pixels. Using all available training 
samples in the dataset, cluster centers, given by the mean coherency 
matrix of pixels labeled with the same target class, are determined. 
Subsequently, each pixel within the test regions is assigned to the target 
class corresponding to the nearest cluster center using a distance func
tion based on the Wishart distribution. 

3.2. Random Forest classifier 

The Random Forest algorithm is a supervised ensemble learning 
method based on the combination of uncorrelated decision trees that has 
been widely used for the classification of PolSAR data ((Du et al., 2015; 

Loosvelt et al., 2012; Wang et al., 2017; Zhang et al., 2021)). Its suc
cessful application for Pol-InSAR classification is shown in (Jin et al., 
2014). In this work, the Random Forest algorithm is applied to classify 
each image pixel of the Pol-InSAR-Island dataset based on feature vec
tors consisting of polarimetric and interferometric features listed in 
Table 1. After spatial averaging using the Refined Lee filter with a 
window size of 9 × 9 pixels, features are extracted from S- and L-band 
data using the PolSARpro software (Pottier et al., 2018). Random Forest 
models are trained using the Pol-InSAR-Island dataset to classify L-band 
and S-band data separately as well as combined. To select suitable 
hyperparameters, a 5-fold cross-validation is performed to estimate and 
compare expected classification performances of the model variations in 
terms of balanced accuracy. The relatively small number of 5 folds is 
assumed to be sufficient for robust estimation of classification perfor
mance due to the size of the dataset. The tested hyperparameters include 
the number of decision trees (100, 200, and 300) and the strategy for 
sample weighting (equal sample weighting and sample weighting 
inversely proportional to class frequencies). For each type of input data 
(S-band, L-band, S- & L-band), the highest estimated classification 

Fig. 9. Changes made to the target class map during manual refinement to obtain the final Pol-InSAR-Island class map. (a) shows the target class map, which serves 
as a starting point for the manual refinement. (b) shows the resulting Pol-InSAR-Island class map. (c) highlights areas that are removed from the map or assigned to a 
different class. These areas are colored according to their labels in the target class map. (d) highlights areas that are added to the map or assigned to a different class. 
These areas are colored according to their labels in the Pol-InSAR-Island class map. 

Table 2 
Percentage of labeled pixels per class contained in the training and the test set.   

TF W CS DV WD PB GD CG US LS S SE 

Training 7.09 17.98 5.29 2.04 6.72 0.87 17.78 8.17 8.01 5.85 14.92 5.28 
Test 8.07 17.31 3.65 1.43 6.44 1.15 19.88 7.56 9.51 4.75 14.62 5.63  
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performances are obtained using 300 decision trees and an equal 
weighting of samples. After fixing the hyperparameters, models are 
trained using the entire training data and tested on the held-out test 
data. For the implementation, the scikit-learn library is used (Pedregosa 
et al., 2011). 

3.3. Results 

Predicted class maps of the entire area of the Pol-InSAR-Island 
dataset, resulting from Wishart and Random Forest classifications, are 
visualized in Fig. 10. For the Wishart classification, where S- and L-band 
data are analyzed separately, many misclassifications are visible. In 
particular, the classes Water and Tidal flat are not correctly identified 
over the entire incidence angle interval. In general, the Random Forest 
classification performs better in this respect and also shows a better 
overall agreement with the Pol-InSAR-Island class map. 

The quantitative results obtained on the held-out test data are sum
marized in Table 3. In order to compare the results in a concise way, two 
metrics that are commonly used for the evaluation of image segmenta
tion are considered. These are mean IoU and balanced accuracy. The 
IoU, also known as Jaccard index (Jaccard, 1901), evaluates the overlap 
between the prediction and ground truth for one class i. It is defined as 
the ratio of the intersected to the combined area of prediction and 
ground truth: 

IoUi =
Area of Intersection

Area of Union
=

pii

pii + pji + pij
with i ∕= j (3)  

Here, pii denotes the number of pixels that are correctly predicted as 
class i, pji denotes the number of pixels that are incorrectly predicted as 
class i, and pij denotes the number of pixels that are part of class i in the 
ground truth mask but are not correctly predicted as class i. The mean 
IoU is given by the mean of all class-specific IoU scores, weighting all 
classes equally regardless of their size. The second metric, balanced 
accuracy, as defined in (Kelleher et al., 2020), is calculated by taking the 
average of recall (also known as sensitivity) for each class: 

balanced accuracy =
1
k
∑k

i=1

pii
∑k

j=1pij
. (4)  

Here, k denotes the number of classes. Balanced accuracy is commonly 
used to evaluate classification results achieved on imbalanced test data 
because each class’s performance equally contributes to the final score, 
irrespective of the class size. 

The results of the Wishart classification with mean IoU scores of only 
24.29 % (S-band) and 32.69 % (L-band) and balanced accuracy scores of 
44.84 % (S-band) and 54.59 % (L-band) are significantly below the re
sults of the Random Forest classification. As expected, the best result 
with a mean IoU of 67.00 % and balanced accuracy of 77.38 % is 

Fig. 10. Classification results of the entire dataset. Areas used for training are marked in green. (a) shows the Pol-InSAR-Island target class map, (b) the Wishart 
classification result based on S-band data, (c) the Wishart classification result based on L-band data, (d) the Random Forest classification based on S- & L-band data, 
(e) the Random Forest classification result based on S-band data and (f) the Random Forest classification result based on L-band data. (For interpretation of the 
references to color in this figure legend, the reader is referred to the Web version of this article.) 
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obtained by considering the S- and L-band together using the Random 
Forest classifier. However, the result still shows considerable room for 
improvement. As already indicated by the feature visualization in Fig. 7, 
the classification of the classes Water, Tidal flat, and Sand succeeds with 
high accuracy, while difficulties are encountered in the separation be
tween Coastal shrub and Dense, high vegetation, which are characterized 
by similar polarimetric features. Since these two classes differ mainly in 
their vertical structure, improvements may be achieved by a more so
phisticated inclusion of the interferometric data component. The class 
that is least recognized by the Random Forest classifier is White dune. 
The first row in Fig. 11 shows the ground truth and predicted class maps 
for a sample area capturing a White dune. It is apparent that particularly 
dense vegetated areas are falsely predicted as Grey dune. Reliable 

differentiation of the classes White dune and Grey dune will require the 
inclusion of spatial context information. Another observation is the 
incorrect prediction of the class Settlement in natural environments. This 
issue is shown exemplarily in Fig. 11 (d)–(f). Incorporating spatial image 
features into the classification could also lead to an improvement in this 
respect. 

4. Discussion 

The presented Pol-InSAR-Island dataset is the first open benchmark 
dataset for land cover classification of multi-frequency Pol-InSAR data, 
which is intended to advance the development of machine learning 
approaches in this field. The novelty lies in the public availability of such 

Table 3 
Classification results given as class-wise IoU and recall as well as mean IoU and balanced accuracy (in %).   

TF W CS DV WD PB GD CG US LS S SE mean 

Wishart, S-band 
IoU 30.42 42.19 16.35 22.31 9.17 26.64 17.16 39.31 7.76 19.50 44.57 16.13 24.29 
recall 63.77 51.42 33.19 54.86 15.65 89.96 22.64 60.68 10.36 30.90 87.30 17.41 44.84 
Wishart, L-band 
IoU 57.28 67.59 21.49 28.12 22.76 51.21 10.92 30.14 4.85 27.71 51.67 18.57 32.69 
recall 81.95 82.02 46.81 63.72 37.12 88.96 12.26 63.98 5.52 61.16 91.73 19.89 54.59 
Random Forest, S-band 
IoU 83.08 98.23 33.34 29.49 23.55 60.11 59.02 61.99 48.56 71.93 88.62 48.04 58.83 
recall 91.64 99.26 56.25 37.29 28.30 66.57 82.71 82.27 56.16 87.37 95.04 60.44 70.28 
Random Forest, L-band 
IoU 89.33 97.43 39.15 40.32 32.68 61.74 55.39 51.45 50.16 62.15 87.61 52.72 60.01 
recall 92.32 98.93 61.25 53.82 43.95 66.81 75.88 70.63 58.68 81.09 94.64 67.19 72.10 
Random Forest, S- and L-band 
IoU 91.13 98.98 42.94 45.13 41.09 68.97 63.37 65.27 59.18 78.26 91.77 57.93 67.00 
recall 93.48 99.58 64.14 56.81 50.59 72.19 83.01 82.92 66.94 90.77 96.95 71.15 77.38  

Fig. 11. Samples for typical classification errors of the Random Forest classification based on S- and L-band data. The first row ((a)–(c)) shows an area covered by the 
White dune class. The second row ((d)–(e)) shows an area covered by the classes High, dense vegetation, Coastal shrub, and Grey dune. Optical images are provided in (a) 
and (d), ground truth maps in (b) and (e), and Random Forest classification results in (c) and (f). 
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information-rich, high-resolution data products, as well as the corre
sponding well-designed class labels, which pose a challenging land cover 
classification task. As can be seen from the results of the two baseline 
approaches, the challenge of this task arises, on the one hand, from the 
low variance between classes, e.g., between Coastal shrub and Dense, high 
vegetation. On the other hand, the dataset contains target classes that are 
composed of different land covers (e.g., White dune and Settlement), thus 
requiring spatial context information to be learned and incorporated for 
correct classification. The first challenge can be tackled through the 
exploration and integration of sophisticated polarimetric and interfer
ometric features. The second challenge can be effectively addressed by 
leveraging deep learning models to learn high-level spatial features. A 
synergistic combination of these approaches, incorporating pixel-based 
polarimetric and interferometric features and learned high-level spatial 
features, holds great promise and presents a highly sought-after research 
direction. The Pol-InSAR-Island benchmark dataset provides reliable 
training and test data that aims to encourage and enable researchers to 
develop and compare different machine learning approaches. The fixed 
definition of the training and test regions given in the dataset and the 
proposed evaluation metrics used in Section 3 ensure direct compara
bility of different approaches. 

A limitation of the Pol-InSAR-Island dataset is the fragmentary la
beling. In general, labeled areas of different target classes are not 
directly adjacent to each other but are separated by an unlabeled area. 
By employing machine learning methods, there is a risk of inaccurately 
detecting class boundaries and facing challenges in evaluating classifiers 
in this regard. Seamless labeling would, therefore, be desirable but is 
difficult or impossible to achieve with the available reference data. A 
further issue is the limited size of the dataset. The Pol-InSAR-Island 
dataset contains image data covering an area of about 15 km2 with a 
ground resolution of 1 m × 1 m and more than 5 million labeled pixels in 
total. This exceeds the size of most existing datasets for PolSAR data 
classification but does not yet reach the size of datasets used in computer 
vision to train large deep learning models. In the future, it is conceivable 
to extend the dataset by incorporating additional data acquired during 
the F-SAR measurement campaign over the neighboring islands of 
Norderney and Langeoog. However, this requires a considerable time 
effort due to the manual improvement and validation of automatically 
generated labels, which is indispensable because of the time difference 
between the reference biotope type map and the SAR data acquisition. 
An extension of the dataset beyond the area of the East Frisian Islands is 
currently not planned. The main reason for this decision is the specific 
focus on typical local land cover classes, such as salt marshes and tidal 
flats, which have unique characteristics specific to the North Sea coast. 
Expanding the dataset with image data acquired from other SAR sensors 
(e.g., TerraSAR-X, RADARSAT-2, or Sentinel-1) also presents challenges. 
One major issue is the difficulty in directly matching the fine-scaled 
labels to lower spatial resolution data. Additionally, reliable adjust
ment and validation of labels become infeasible without additional 
(optical) reference data that have to be captured near the time of the 
SAR data acquisition. The limitation to a single sensor and a single 
location represents a weak point of the Pol-InSAR-Island dataset. As a 
result, classifiers trained on this dataset are unlikely to be transferable to 
other sensors and test sites without further adaptation. Thus, the main 
goal of providing this dataset is not to train universally applicable 
classifiers for practical use but rather to enable the development and 
comparison of novel multi-frequency Pol-InSAR data classification 
methods in a controlled training and test environment. The development 
of specialized classification approaches is crucial groundwork for up
coming spaceborne missions such as Biomass (Sedehi et al., 2021), 
which involves Pol-InSAR data acquisition in P-band, and NISAR (Kel
logg et al., 2020), which will acquire Pol-InSAR data in S- and L-band. 

Convenient access to the data is provided via KITopenData: 
https://doi.org/10.35097/1700. In order to reproduce the results of the 
baseline classifiers presented in this paper, the corresponding code is 
available on https://gitlab.kit.edu/sylvia.hochstuhl/pol_insar_isl 

and-baseline-classifiers.git. Users of this dataset are encouraged to 
evaluate the results of their own approaches with the metrics used in this 
paper. 

5. Conclusion 

In this paper, the first open multi-frequency Pol-InSAR benchmark 
dataset, named Pol-InSAR-Island, is presented to support the future 
development of machine learning methods for classifying land cover. 
The provision of this dataset addresses the urgent need for reliable and 
comprehensive training data, especially for the application and adaption 
of recent machine learning methods to multi-frequency Pol-InSAR data. 
The investigation of such methods in a controlled training and test 
environment plays an important role, especially with respect to future 
multi-frequency Pol-InSAR spaceborne missions. 

In order to provide all users of the dataset with detailed background 
information regarding the generation of class labels, the process of semi- 
automatic generation of class labels was presented in detail in this paper. 
The main focus was on the selection of suitable target classes, which is 
performed by a visual class separability analysis based on polarimetric 
and interferometric features. Additionally, two established classification 
methods – a supervised Wishart classifier and a Random Forest classifier, 
which serve as a minimal baseline, are trained and tested on the Pol- 
InSAR-Island dataset. The obtained mean IoU of a maximum of 67% 
and balanced accuracy of a maximum of 77% indicate the challenge of 
the given task. These values leave room for improvement through the 
implementation of more sophisticated classifiers. Currently, the exten
sion of the dataset with F-SAR data acquired over Norderney and Lan
geoog has not been accomplished due to the substantial time needed for 
manual refinement and label validation. Nevertheless, this remains a 
potential avenue for future endeavors. 
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