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Abstract
Regardingmicrostructuredmaterials, a quantitative prediction of phase transfor-
mation processes is highly desirable for awide range of applications.With respect
to polycrstalline materials, the plastic material behavior is commonly investi-
gated using a crystal plasticity (CP) theory, since it accounts for the underlying
microstructure, that is, slip systems of the crystal lattice. In classical continuum
mechanics, grain boundaries (GBs) are commonly modeled as material singular
surfaces.However, the tracking ofmovingGBs, present during phase transforma-
tion processes, is numerically challenging and costly. This can be circumvented
by the use of a multiphase-field method (MPFM), which provides a numerically
highly efficient method for the treatment of moving interfaces, considered as dif-
fuse interfaces of finite thickness. In this work, the microstructural evolution is
investigated within the MPFM accounting for CP. The implementation of the
constitutive material behavior within the diffuse interface region accounts for
phase-specific plastic fields and the jump condition approach. To improve the
understanding of the impact of plastic deformation on the phase evolution, a
single inclusion problem is analyzed. Within a plastically deformed matrix, the
shape evolution of a purely elastic inclusion with a different Young’s modulus,
referred to as inhomogeneity, is investigated. It is shown, how the anisotropic
plastic behavior affects the phase evolution. The resulting equilibrium shapes
are illustrated and examined.

1 INTRODUCTION

The investigation of microstructural evolution of crystalline materials is an important objective in materials science. Sim-
ulations of the evolution help to gain insights into material behavior and underlying mechanisms. For a wide range of
applications, a quantitative prediction of phase transformation processes in microstructured materials is highly desirable.
In classical continuummechanics, grain boundaries (GBs) are commonlymodeled asmaterial singular surfaces [1], repre-
senting sharp interfaces. The tracking of these sharp interfaces during amicrostructure evolution is associated with a high
numerical expense. Themultiphase-fieldmethod (MPFM) provides a numerically efficient treatment of evolving surfaces,
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F IGURE 1 Schematic illustration of a material volume  , which is divided by a material singular surface  into two subvolumes +
and −.

since these are considered as diffuse interfaces of finite thickness and their position is given implicitly by the contour of the
phase-field order parameters, compare, for example, Refs. [2–4]. The plastic material behavior of polycrystalline materials
at the micrometer scale is commonly investigated using a crystal plasticity (CP) theory, compare Asaro [5]. It accounts for
the underlyingmicrostructure, that is, slip systems of the crystal lattice. With the incorporation of CP theory in anMPFM,
new possibilities arise in the quantitative modeling of solid–solid phase transformation processes that involve plasticity.
Different approaches on how to deal with mechanical fields in the diffuse interface have been developed, for example,
interpolation approaches, homogenization approaches, and a jump condition approach, compare Refs. [6, 7].
The implementation of the constitutive material behavior within the diffuse interface region, as used in the work

at hand, accounts for phase-specific plastic fields, compare, for example, Herrmann et al. [8] and the jump condition
approach, compare, for example, Refs. [9–11]. The corresponding implementation of the CP theory within the MPFM
approach is introduced and discussed by Prahs et al. [12]. The coupling between the multiphase-field evolution equa-
tion and the balance of linear momentum is realized with a staggered scheme. The balance of linear momentum is solved
by means of the finite element analysis. In order to investigate the possibilities of the staggered coupling regarding the
modeling of GB migration, the shape evolution of an elastic inhomogeneity within a plastically deformed matrix under
the influence of an external load is investigated.

2 BALANCE LAWS AND CONSTITUTIVE EQUATIONS

Balance laws
Subsequently, a Cauchy–Boltzmann continuum is considered, which is divided into the subvolumes+ and− by amate-
rial singular surface  , as illustrated in Figure 1. The subvolumes are bounded against the surroundings by + and −.
The normal vector 𝒏 on  points from − to + and the outward normal vectors on + and − are written as 𝒏+
and 𝒏− , respectively.
The validity of the relation between the normal vectors 𝒏 = 𝒏+ = −𝒏− is given by the pill box theorem, compare, for

example, Liu [13]. A jump across  of a quantity 𝜓 is defined as [𝜓] = 𝜓+ − 𝜓−, where 𝜓+ and 𝜓− denote the correspond-
ing limits in + and −, respectively. For the above described continuum, it can be shown that the balance equations at
the singular surface and in regular points are derived by exploiting the invariance of the balance of total energy with
respect to a change of observer. Moreover, the existence of the stress tensor 𝝈, the Cauchy stress, with 𝝈𝒏 = 𝒕 is obtained
by exploiting invariance considerations. The traction force is referred to as 𝒕. A detailed discussion on the derivation for
regular points is provided, for example, by Svendsen [14] and Prahs and Böhlke [1], and by Prahs and Böhlke [15] for singu-
lar points. In this work, a small deformation framework is considered, implying a constant mass density. Moreover, body
forces are neglected, and the quasi static case is considered. With these assumptions at hand, regarding regular points,
the balance of linear momentum is given by div(𝝈) = 𝟎. The symmetry of the Cauchy stress tensor follows the balance
of angular momentum in regular points, 𝝈 = 𝝈𝖳. The continuity of the stress tensor across  in the normal direction is
defined by the simplified balance of linear momentum on  , reading [𝒕] = 𝟎.
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Hadamard conditions
For a jump across a singular surface  additional conditions hold, for example, the Hadamard jump condition [𝑭] =
𝒂⊗ 𝒏 , compare, for example, Liu [13]. Herein, 𝒂 denotes an unknown jump vector and the deformation gradient is
written as 𝑭. While the balance of linear momentum at the singular surface states the continuity of the stress tensor in the
normal direction of  , the Hadamard condition states the continuity of the deformation gradient tangential to  . Taking
into account the definition of 𝑭 in terms of the displacement gradient 𝑯 and the second-order identity tensor 𝑰, that is,
𝑭 = 𝑯 − 𝑰, the Hadamard condition is reformulated as [𝑯] = 𝒂⊗ 𝒏 .

Constitutive equations of CP
The classical CP theory, compare, for example, Asaro [5], describes the plastic deformation entirely in terms of the plastic
slips and, thus, represents a phenomenological plasticity theory. It accounts for the underlying crystalline microstructure,
the crystal lattice, and its slip systems. Since a small deformation framework is considered, it is assumed that the total
strain 𝜺 can be additively composed of an elastic 𝜺e and a plastic contribution 𝜺p. The relation between the elastic strain 𝜺e
and the Cauchy stress 𝝈 is given by Hookes law, that is,

𝜺 = 𝜺e + 𝜺p, 𝝈 = ℂ[𝜺e] = ℂ[𝜺 − 𝜺p]. (1)

The deformation of a crystal corresponds to the stretching and rotation of the lattice vectors, compare, for example, [5].
Defining a slip system, the slip direction 𝒅𝜉 and a normal vector 𝒏𝜉 to the slip plane can be considered as lattice vectors.
Face-centered cubic (FCC) crystals exhibit twelve slip systems, compare, for example, Hull [16]. The plastic strain 𝜺p is
related to the plastic slips 𝛾𝜉 and is assumed to be expressed by

𝜺p =

𝑁∑
𝜉=1

𝛾𝜉
1

2
(𝒅𝜉 ⊗ 𝒏𝜉 + 𝒏𝜉 ⊗ 𝒅𝜉) =

𝑁∑
𝜉=1

𝛾𝜉𝑴𝜉, (2)

compare, for example, [17]. The plastic slip 𝛾𝜉 is defined for 𝜉 = 1,… ,𝑁 active slip systems. Here,𝑴𝜉 denotes the Schmid
tensor of slip system 𝜉. The accumulated plastic slip 𝛾ac is defined by its rate as the sum of the plastic slip rate in each
slip system 𝛾̇ac =

∑𝑁

𝜉=1
|𝛾̇𝜉|, compare, for example, [17]. For a slip system 𝜉, the projection of the Cauchy stress and the

Schmid tensor yields the resolved shear stress 𝜏𝜉 with 𝜏𝜉 = 𝝈 ⋅ 𝑴𝜉 . The initial value of the critical resolved shear stress 𝜏C
can be regarded as a fixed material property. However, the critical yield stress increases due to hardening, compare, for
example, Kocks and Mecking [18]. The considered flow rule for the individual plastic slips, and the critical resolved shear
stress 𝜏C, describing an isotropic hardening of Voce type, reads

𝛾̇𝜉 = 𝛾̇0sgn
(
𝜏𝜉
)⟨|𝜏𝜉| − 𝜏C

𝜏D

⟩𝑚
, 𝜏C(𝛾ac) = 𝜏∞ − (𝜏∞ − 𝜏0) exp

(
−Θ0
𝜏∞ − 𝜏0

𝛾ac

)
, (3)

compare, for example, Wulfinghoff [19] and Bayerschen [20], respectively. Herein, 𝜏D denotes a positive drag stress, the
strain rate sensitivity is defined as 𝑚, and the referential shear rate is given by 𝛾̇0. The Macauley brackets are defined as⟨𝑎⟩ = max (𝑎, 0), that is, an argument of non-negativity is ensured. The initial yield stress is referred to as 𝜏0, whereas
the saturation yield stress is denoted by 𝜏∞, and Θ0 represents the initial hardening modulus. The framework presented
constitutes a thermomechanically weakly coupled theory, compare the discussion by Prahs et al. [21].

3 MULTIPHASE-FIELDMETHOD

Free energy functional
The free energy functional  , as used in the work at hand, depends on an 𝑁∗-tuple of order parameters 𝝓 = {𝜙1, … , 𝜙𝑁∗}
with 𝛼 = 1,… ,𝑁∗ phases, its gradients ∇𝝓 = {∇𝜙1, … ,∇𝜙𝑁∗}, and the displacement 𝒖, and reads

[𝝓, ∇𝝓, 𝒖] = ∫ 𝑓 d𝑣 = ∫ 𝑓grad + 𝑓pot + 𝑓bulk d𝑣, with 𝑓bulk = 𝑓e + 𝑓p (4)
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compare, for example, Nestler et al. [22]. Here, the interface contribution consists of the gradient and potential energy
density 𝑓grad and 𝑓pot, respectively. The contributions from the bulk are denoted by 𝑓bulk and are given by an elastic 𝑓e
and a plastic energy density 𝑓p. The gradient energy density 𝑓grad and the multi-obstacle potential 𝑓pot are written as

𝑓grad(𝝓, ∇𝝓) = 𝜖

𝑁∗∑
𝛼,𝛽>𝛼

𝛾𝛼𝛽|𝜙𝛼∇𝜙𝛽 − 𝜙𝛽∇𝜙𝛼|2, 𝑓pot(𝝓) =
16

𝜖𝜋2

𝑁∗∑
𝛼<𝛽

𝛾𝛼𝛽𝜙𝛼𝜙𝛽 +
1

𝜖

𝑁∗∑
𝛼<𝛽<𝛿

𝛾𝛼𝛽𝛿𝜙𝛼𝜙𝛽𝜙𝛿, (5)

compare, for example,Nestler et al. [22]. If the𝑁∗-tuple𝝓 is notwithin theGibbs-simplex, given by = [𝝓|∑𝑁∗

𝛼=1
𝜙𝛼(𝒙, 𝑡) =

1, 𝜙𝛼 ≥ 0 ∀𝛼], compare, for example, Schneider et al. [23], 𝑓pot = ∞ is enforced. The interfacial energy between phases 𝛼
and 𝛽 is denoted by 𝛾𝛼𝛽 and is for simplicity assumed to be isotropic, that is, not dependent on the crystal orientation.
Formation of third phases in a two-phase region are prevented using the term related to 𝛾𝛼𝛽𝛿, compare, for example,
Nestler et al. [22]. The parameter 𝜖 is related to the width of the interface 𝑙. The width of an interface in equilibrium 𝑙eq
is given by 𝑙eq = 𝜖𝜋2∕4. Each component of the tuple of order parameters 𝜙𝛼 is assigned to a phase in the sense of a
subregion 𝛼 of region  . The interpretation of the order parameters as volume fractions yields the summation constraint∑𝑁∗

𝛼=1
𝜙𝛼(𝒙, 𝑡) = 1, ∀𝒙 ∈  , 𝑡 ≥ 0, compare, for example, Nestler et al. [22].

Phase-specific bulk energy densities
In the work at hand, the implementation of CP within the diffuse interface is based on the jump condition approach,
compare, for example, Refs. [9–11], as introduced and described in detail by Prahs et al. [12]. Thereby, the balance of linear
momentum at a singular surface and theHadamard jump condition are satisfied at each point within the diffuse interface.
Each phase can be associated with its own constitutive behavior and specific grain orientation, in the context of crystalline
microstructures. The phase-specific elastic free energy density 𝑓𝛼e is formulated as

𝑓𝛼e
(
𝜺𝛼(𝝓) − 𝜺𝛼p

)
=
1

2

(
𝜺𝛼(𝝓) − 𝜺𝛼p

)
⋅
(
ℂ𝛼[𝜺𝛼(𝝓) − 𝜺𝛼p]

)
, (6)

compare, for example, Herrmann et al. [8]. Herein, ℂ𝛼 denotes the phase-specific stiffness tensor. The interpolation of
the phase-specific elastic free energies 𝑓𝛼e yields the elastic free energy density 𝑓e =

∑
𝛼
𝜙𝛼𝑓

𝛼
e , compare, for example,

Herrmann et al. [8]. The balance of linear momentum is formulated in the terms of the interpolated stress tensor 𝝈̄. It can
be derived by minimizing the free energy functional  , compare Equation (4), with respect to the displacement 𝒖 reading
div(𝝈̄) = 𝟎, with 𝝈̄ =

∑𝑁∗

𝛼=1
𝜙𝛼𝝈

𝛼, compare, for example, Prahs et al. [12]. Within the phase-specific plastic field approach,
the plastic energy density 𝑓p is given by the interpolation of the phase-specific plastic fields 𝑓𝛼p , reading 𝑓p =

∑𝑁∗

𝛼=1
𝜙𝛼𝑓

𝛼
p ,

compare, for example, Prahs et al. [12]. As pointed out above, each phase can be associatedwith specificmaterial properties
and specific grain orientations. Therefore, a phase-specific plastic energy density can be derived from 𝜏𝛼C = 𝜕𝑓

𝛼
p∕𝜕𝛾

𝛼
ac + 𝜏

𝛼
0 ,

compare, for example, Prahs et al. [12], reading

𝑓𝛼p (𝛾
𝛼
ac) = (𝜏

𝛼
∞ − 𝜏

𝛼
0 )𝛾

𝛼
ac +

(𝜏𝛼∞ − 𝜏
𝛼
0 )
2

Θ𝛼0
exp

(
−Θ𝛼0
𝜏𝛼∞ − 𝜏

𝛼
0

𝛾𝛼ac

)
−
(𝜏𝛼∞ − 𝜏

𝛼
0 )
2

Θ𝛼0
(7)

which applies for the bulk and the diffuse interfaces, compare, for example, Prahs et al. [12]. The condition𝑓𝛼p (𝛾𝛼ac = 0) = 0
is met, by introducing an integration constant 𝐶𝛼 = −(𝜏𝛼∞ − 𝜏𝛼0 )

2∕Θ𝛼0 . Thus, a nonvanishing plastic energy density arises
only for 𝛾𝛼ac > 0.

Evolution equation of order parameters
The free energy functional, compare Equation (4), isminimized by the evolution of the phases. Amongst other approaches,
the evolution can be derived using a superposition of pairwise interactions of 𝑁̃ locally present phases, compare [24]. The
evolution equation of order parameters, as used in the work at hand, reads

𝜕𝜙𝛼
𝜕𝑡

= −
1

𝑁̃𝜖

𝑁̃∑
𝛽≠𝛼

[
𝑀𝛼𝛽

(
8
√
𝜙𝛼𝜙𝛽

𝜋
Δ
𝛼𝛽

bulk
+ Δ

𝛼𝛽

intf
+ Δ

𝛼𝛽
acurv

)]
, (8)
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F IGURE 2 Schematic representation of the quasi two-dimensional simulation domain with a cylindrical inclusion, the inhomogeneity,
and the corresponding geometrical dimensions.

compare Schoof et al. [25]. Here, 𝑀𝛼𝛽 denotes the mobility of the interface between phases 𝛼 and 𝛽. The bulk driving
force, given as Δ𝛼𝛽

bulk
∶= 𝜕𝑓bulk∕𝜕𝜙𝛼 − 𝜕𝑓bulk∕𝜕𝜙𝛽 , simplifies to

Δ
𝛼𝛽

bulk
= [𝑓e] 𝛼𝛽 + [𝑓p] 𝛼𝛽 − 𝝈̄ ⋅

(
[𝑯] 1𝛽 − [𝑯] 1𝛼

)
, (9)

as derived in detail by Prahs et al. [12]. Herein, the jump of a quantity 𝜓 across a diffuse interface between two phases 𝛼
and 𝛽 is expressed by [𝜓] 𝛼𝛽 = 𝜓𝛼 − 𝜓𝛽 . The surface driving force Δ𝛼𝛽

intf
yields

Δ
𝛼𝛽

intf
∶=

𝜕𝑓grad + 𝑓pot

𝜕𝜙𝛼
−
𝜕𝑓grad + 𝑓pot

𝜕𝜙𝛽
−

(
div

(
𝜕𝑓grad

𝜕∇𝜙𝛼

)
− div

(
𝜕𝑓grad

𝜕∇𝜙𝛽

))
, (10)

compare Prahs et al.[12]. The termΔ𝛼𝛽acurv is similar to the surface driving forceΔ
𝛼𝛽

intf
, but it is formulated in normal direction

of the interface only. Moreover, it is not associated with the surface energy 𝛾𝛼𝛽 and instead dependent on a numerical
parameter 𝛾𝑐, compare, for example, Schoof et al. [26]. The formulation of Equation (10) in normal direction yields Δ𝛼𝛽acurv ,
which induces no curvature minimization. The combination of the interface terms, compare, for example, Schoof et al.
[26], allows to create a stable interface, where Δ𝛼𝛽acurv does not contribute to curvature minimization, while Δ

𝛼𝛽

intf
accounts

for a surface energy 𝛾𝛼𝛽 inducing curvature minimization. The stability of the interface is affected by the ratio of interface
energy densities and surface energy densities and can be adjusted bymeans of the numerical parameter 𝛾𝑐 and the surface
energy 𝛾𝛼𝛽 as well as the amount of curvature minimization.

4 RESULTS

Simulation setup and boundary conditions
For the simulations, a quasi two-dimensional setup is considered with a quadratic domain and an inclusion, called inho-
mogeneity, in its center, as illustrated in Figure 2. The domain is discretized by 600×600×1 cells, regarding the 𝒆𝑥-, 𝒆𝑦-,
and 𝒆𝑧-direction using an equidistant, Cartesian grid. The domain depth corresponds to the spatial discretization, that
is,𝑊 ≡ Δ𝑧. The Dirichlet boundary conditions

𝑢𝑥(0, 𝑦, 𝑧) = −𝑢𝑥(𝐿, 𝑦, 𝑧) = −𝑢0, and 𝑢𝑦(𝑥, 0, 𝑧) = 𝑢𝑦(𝑥, 𝐿, 𝑧) = 𝑢𝑧(𝑥, 𝑦, 0) = 𝑢𝑧(𝑥, 𝑦, 𝐿) = 0 (11)
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TABLE 1 Material parameters are chosen corresponding to aluminum as an example for an FCC material, compare, for example,
Bertram and Glüge [27]. The indices (⋅)M and (⋅)I correspond to the matrix and inhomogeneity, respectively. Parameters without index apply
to both.

Parameter Symbol Value Unit

Young’s modulus 𝐸M 78.311 GPa
Poisson’s ratio 𝜈 0.336 -
Initial yield stress 𝜏M0 20.0 MPa

𝜏I0 80.0 MPa
Saturation yield stress 𝜏M∞ 25.0 MPa

𝜏I∞ 88.0 MPa
Initial hardening modulus ΘM0 3.24 GPa

ΘI0 5.52 GPa
Drag stress 𝜏D 1.0 MPa
Sensitivity exponent 𝑚 8.0 -
Reference shear rate 𝛾̇0 0.001 s−1

TABLE 2 Numerical and geometrical parameters are adjusted in a parameter study to minimize their impact on the phase evolution. It
is pointed out, that in the present work the surface energy 𝛾𝛼𝛽 functions as a numerical parameter.

Parameter Symbol Value Unit

Width of the domain 𝐿 300.0 µm
Initial inclusion diameter 𝐷 12.0 µm
Cells in the interface 𝑛intf 8 -
Spacial discretization Δ𝑥 0.5 µm
Surface energy 𝛾𝛼𝛽 1.3 mJ m−2

Time discretization Δ𝑡 0.5 s

apply. Here, the Dirichlet boundary condition 𝑢0 is chosen such that 𝜀xx = 0.07% holds true at the left and right bound-
ary. No further conditions regarding the displacement field are imposed on the boundary. Regarding the field of order
parameters, Neumann boundary conditions apply on all six sides, that is, 𝜕𝜙𝛼∕𝜕𝑥𝑖 = 0 ∀𝑥𝑖 ∈ 𝜕𝑖 . Here, 𝜕𝑖 represents
the boundarywith the corresponding normal direction 𝑖. The initial diameter of the inhomogeneity𝐷 is chosen sufficiently
small relative to the domain width 𝐿, such that the shape of the growing inhomogeneity exhibits an equilibrium, before
boundary effects are present. Thematrix is considered to exhibit an elasto-plastic behavior and subject to hardening ofVoce
type, as described above. The inhomogeneity has a smaller Young’smodulus than thematrix, that is, 𝐸I < 𝐸M, and ismod-
eled as elastic, by increasing its initial yield stress 𝜏I0 sufficiently high. Thematerial parameters, summarized in Table 1, are
chosen as an example for an FCCmaterial,mimicking aluminum. The numerical, and geometrical parameters, as summa-
rized in Table 2, are adjusted within a parameter study in order to keep their effect on the phase evolution to a minimum.
The interface parameter 𝜖 is computed based on thewidth of an interface 𝑙eq in equilibrium. Themobility𝑀𝛼𝛽 is computed
dependent on the spatial and time discretization, as well as on surface energy terms, via 1∕𝑀𝛼𝛽 = (4Δ𝑡(𝛾𝛼𝛽 + 𝛾

𝑐))∕(Δ𝑥)2,
ensuring numerical stability of the interface, compare, for example, Schoof [28]. The simulations are carried out using
dimensionless parameters.

Shape evolution
In the context of quartz and sand, methods to measure and quantify the shape of particles are derived. By Wadell [29],
the degree of sphericity is described as the ratio of the surface area of a sphere of the same volume and the actual mea-
sured surface area (denoted by subscriptO). In the quasi two-dimensional simulations in the work at hand, the circularity
Ψ2D =

√
4𝜋𝐴O∕𝑈O, with the circumference of a circle 𝑈(𝑟) = 2𝜋𝑟 and the radius 𝑟 =

√
𝐴O∕𝜋 derived from the actual

measured surface area𝐴O, is used to evaluate the shape of the inhomogeneity. Triggered by the external load, the inhomo-
geneity starts to grow and simultaneously its shape evolves. In order to compare shapes of different volumes independent
of the growth rate, the radius of a circle with an equivalent surface area, referred to as the equivalent radius, is introduced.
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KANNENBERG et al. 7 of 9

F IGURE 3 Impact of ratio 𝐸I∕𝐸M on the shape of the inhomogeneity. The circularity Ψ2D is plotted against the radius 𝑟 of a circle with
an equivalent surface area (A). In (B–D), the corresponding shapes of the inhomogeneity are illustrated using the corresponding sharp
interface for the initial inhomogeneity (𝑟 = 6µm) and in equilibrium with approximately 𝑟 ∈ [40, 70, 100]µm, which are highlighted by the
vertical stripes in A.

F IGURE 4 Mises stress 𝜎vM =
√
3∕2‖𝝈′‖2 (in A) and accumulated plastic slip 𝛾ac = ∑𝑁

𝛼=1
𝜙𝛼𝛾

𝛼
ac (in B) of an inhomogeneity with a ratio

of the Young’s moduli 𝐸I∕𝐸M = 0.7. On the left and right side in each subfigure, the initial state and an equilibrium state with 𝑟 ≈ 70 µm is
displayed, respectively. The black line illustrates the location of the corresponding sharp interface.

An equilibrium shape of the growing inhomogeneity can be identified by a constant circularity Ψ2D over an increasing
equivalent radius 𝑟. The influence of the Young’smoduli related to the inhomogeneity and thematrix is investigated by the
ratio 𝐸I∕𝐸M. The Young’smodulus of the inhomogeneity is varied with 𝐸I = 𝛼𝐸M with 𝛼 ∈ [0.7, 0.6, 0.5]. In Figure 3A, the
circularity of the growing inhomogeneity is plotted against the equivalent radius. Following the initial shape evolution,
the circularity of the inhomogeneity reaches a plateau, that is, an equilibrium shape, before it decreases further due to
boundary effects. It is pointed out, that for small inclusion diameters at the simulation start, the resolution is too coarse
to compute the circumference 𝑈 accurately, as a circularity Ψ2D > 1 indicates. However, the inhomogeneity grows and
reaches equilibrium for much larger radii, where the resolution is sufficient and the circularity can be determined accu-
rately. A greater difference of the Young’s moduli results in a smaller circularity in equilibrium, that is, in a greater extent
of shape evolution. Thus, it can be concluded, that the difference of the Young’s moduli coincides with the deviation of
the shape from the initial circular shape. The corresponding shapes of four different time steps and three different ratios
of the Young’s moduli are illustrated in Figure 3B–D. Depicted are the shape of the initial inhomogeneity (𝑟 = 6 µm),
and the shapes of the inhomogeneity in equilibrium at three different time steps, as highlighted by the vertical stripes in
Figure 3A, that is, shapes with approximately equivalent circularity. Again, it can be seen that the equilibrium shape of
an inhomogeneity with a greater difference of the Young’s moduli is less circular, compare Figure 3D, than with a smaller
difference, compare Figure 3B.
The corresponding stress fields for the case of a ratio of 𝐸I∕𝐸M = 0.7 are displayed in Figure 4A, on the left representing

the beginning of phase evolution and on the right for an inhomogeneity with an equivalent radius of 𝑟 ≈ 70 µm. The
stress within the inhomogeneity is approximately constant and smaller with respect to the matrix. The corresponding
accumulated plastic slip fields are depicted in Figure 4B. It can be seen, that plastic slip occurs in the matrix close to the
top and bottom of the inhomogeneity. The bulk driving force acting on the interface is affected by the accumulated plastic
slip, explaining the flattened shape.
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5 CONCLUSION

Prahs et al. [12] presented an implementation of a small strain CP theory regarding the diffuse interface region and the
bulk material accounting for phase-specific fields and the mechanical jump condition. In the work at hand, their model
is applied to investigate the phase evolution of an elastic inclusion, referred to as inhomogeneity, within an elasto-plastic
matrix. The shape of the inhomogeneity is significantly influenced by the distribution of the plastic slip. The difference of
the elastic properties, that is, the Young’s moduli, has a direct influence on the shape of the inhomogeneity in equilibrium.
A greater difference of Young’s moduli results in a smaller circularity of the inhomogeneity, that is, a greater deviation
of the shape from the initial circular shape, and vice versa. Equilibrium shapes can be identified for inclusions with
varying volume. Here, the volume of the inclusion increases. The steady growth is induced by elastic fields, that is, due
to the nonvanishing Dirichlet boundary conditions at the left and right boundary. In an equilibrium state, two inclusions
of different equivalent radius are similar, that is, they have the same shape. If a growing inclusion exhibits a constant
circularity, its shape is called equilibrium shape.
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