Static Capability-based Security for Smart Contracts

1 Given Name Surname
dept. name of organization (of Aff.)
name of organization (of Aff.)
City, Country
email address or ORCID

Abstract—Smart contracts manage resources on a blockchain
platform. These resources exist in the form of cryptocurrency,
but also, more generally, in the form of data that is stored on the
ledger. Due to the peculiarities of blockchain networks, changing
smart contracts after deployment is hard or even impossible.
This means that smart contracts must be correct and secure
upon deployment. However, frequent exploits show that smart
contract security is still difficult to achieve.

To address this problem, we propose a static approach for
capability-based smart contract security. We identify three cen-
tral capabilities: calling functions, modifying state, and transfer-
ring currency. The entities to which these capabilities are attached
are accounts (organized in roles) and smart contract functions.

In our approach, a developer, given a security policy for a
smart contract application, first designs a model of the applica-
tion. The model consists of state variables, functions, roles and
capabilities. We provide a definition of when the created model
is consistent, and develop a formal analysis of model consistency.
Furthermore, we provide a definition of what constitutes a secure
implementation w.r.t. this model, and describe how to achieve an
implementation which fulfills this notion of security.

Index Terms—Smart contracts, Security, Model-driven devel-
opment, Formal analysis

I. INTRODUCTION

Smart contracts are programs which run in a blockchain
network. They grant access to resources that are stored on the
blockchain, such as cryptocurrencies or tokens representing
real-world assets. Smart contracts are unique in that they allow
anyone to run a program on a different computer, while still
being certain about the execution semantics, and about what
source code is being executed.

Another characteristic of smart contract applications is their
reactive-system-like interface: They expose public functions
which can be called by everyone in the network, including
other functions. Smart contract applications live in an open
world — as a matter of principle, any agent on the network can
see and call any public function. Limiting access to resources,
therefore, is a responsibility of the functions themselves.
Furthermore, calling a function is the only way to transfer
funds or change the state of an application.

The unique traits of smart contract applications come at
the price of immutability: Once deployed, the source code
smart contracts generally cannot be changed. Furthermore, the
source code, including possible programming errors, is usually
publically available. This means that any vulnerability has a
large probability of being exploited, and since smart contracts

2"d Given Name Surname
dept. name of organization (of Aff.)
name of organization (of Aff.)
City, Country
email address or ORCID

37 Given Name Surname
dept. name of organization (of Aff.)
name of organization (of Aff.)
City, Country
email address or ORCID

cannot be patched, it is very important that smart contracts are
secure upon deployment. However, a long and ongoing history
of vulnerabilities and exploits of smart contract applications
(cf. [?]) shows that security in this field is very much a pressing
issue.

In this work, we take a view of smart contract security
that is based on resources, and who can access them. We
identify three main resources: the state of an application, its
public functions, and cryptocurrency. Inspired by the influen-
tial capability-based security model [11], we define capabilities
as access to resources (calling functions, changing state, and
transferring currency) in the context of smart contracts.

Typically, capability-based security is implemented for op-
erating systems, where capabilities are determined at run-time.
We argue that in the open, highly adversarial environment
of smart contract platforms, all relevant capabilities for an
application should be determined at design time, based on the
security policy given in the requirements specification.

Experience shows that building security mechanisms in
source code is complex and error-prone. Directly implement-
ing a security policy in a smart contract programming language
poses a serious risk of exploits. This risk is exacerbated by the
fact that smart contracts cannot easily be patched. Therefore,
we argue that a suitable abstraction is needed, which helps
a smart contract application developer focus on the relevant
aspects. Thus, in this work, we develop a metamodel of smart
contract applications, enriched with capabilities.

After designing an application by instantiating this meta-
model, a developer must have a way to decide whether their
model is consistent and precise. Therefore, we develop a
formal definition of consistency and precision based on set-
theoretic semantics of our metamodel. Then, we develop
analysis techniques which enable a developer to detect whether
their model contains contradictions, or whether the specified
capabilities can be more restricitve.

Given a satisfactory model of an application, the next task
is to develop an implementation that is correct w.r.t. the
model. For this, we propose an approach for implementing an
application for the Ethereum platform written in Solidity. Our
approach is based on a combination of code generation and
formal analysis. Since our metamodel is platform-independent,
the approach can be used for other platforms in principle, but
needs to be adapted accordingly.

In summary, our contribution is three-fold:

o« A metamodel for smart contract applications with a
capability-based security model

e A definition of consistency and precision of a given
model, and analysis techniques for proving consistency
and precision

o A partly automatic process for developing a platform-
specific implementation which is secure in the sense of
the model

Overall, we hope that this work enables a developer to
turn the security policy of a requirements specification into
an implementation which respects this security policy at all
times.

The rest of this paper is organized as follows: Sec-
tion II surveys the current state of research in the field of
smart contract security. Section III gives an overview of the
characteristics of smart contract platforms, and the implied
consequences for designing secure applications. Section IV
introduces our metamodel for smart contract applications
and capabilities. Section V gives a formal semantics to the
capability definition. Section VI gives a definition of what
constitutes a consistent and precise model, and our approach to
analyse these model properties. Section VII describes how to
turn a model into a conformant implementation. Section VIII
gives an overview of the process of developing a secure
implementation from an initial security policy. Section IX
concludes.

II. RELATED WORK

Smart contract security has been quite an active research
field over the last years, in part owning to a number of
high-profile exploits. Much effort was invested in developing
static analysis tools for smart contracts on the Ethereum
platform. These target either EVM bytecode (e.g., Mythril
[12] and Securify [16]) or source code in the most common
high-level Ethereum programming language Solidity (e.g.,
[S]). By conducting symbolic execution or related analysis
techniques, these tools can detect the presence of predefined
vulnerabilities. They often work on an abstract representation
of a programm, e.g., a call graph, which can be useful for the
analysis of an implementation in the scope of this work (cf.
Section VII).

Furthermore, several tools for formal verification of smart
contracts have been developed. These allow specifying the
intended behaviour of a programm in formal logic, and con-
ducting a proof of correctness of an implementation against
this specification. Examples for formal verification tools are
SOLC-VERIFY [7] and Celestial [4], which allow specification
of contract-level invariants and function contracts written in
first-order logic. Other tools such as VerX [13] and SmartPulse
[15] can be used to specify and verify temporal as well as
safety and liveness properties. As with static analysis tools,
we use formal verification as one method for achieving an
implementation which conforms to a given model.

The 2vyper verification tool [2] works on smart contracts
written in the Vyper programming language. Apart from
invariants and history constraints, 2vyper also has a concept

of resources and ownership: It distinguishes between having
and owning a resource (e.g., cryptocurrency, or a token). This
is related to the notion of transfer capabilities of this work.

As opposed to all the works above, we approach smart con-
tract security from a modelling perspective, where the devel-
oper first designs an abstract representation of the application.
Modeling smart contract applications is also an active research
field. Early approaches envisioned to automatically generate
smart contracts from natural language [6]. DasContract [14]
is a visual language for modelling smart contract applications
with code generation capabilities. There is also recent work
designing model-driven architecture-based development for
smart contracts [8]. While we draw inspiration from these
works, we focus on one particular set of properties of smart
contracts, and strives to design a process which ensures these
properties in a rigorous way.

There are also works where smart contract applications
are modelled in system specification languages. One such
approach uses Event-B as a modelling language and verifies
safety properties on the model before manually implementing
it [19]. Another approach [18] specifies applications and
models participant behaviors in TLA+ [10]. On this model,
known security vulnerabilities can then be detected by the
TLA model checker.

An approach which is comparable to ours is Quartz [9],
where developers can design an application in a domain-
specific modelling language. The model is then translated to
TLA+, and any specification of the intended behaviour can
be given to a model checker. When a satisfying model has
been found, Quartz also enables code generation of correct-
by-construction smart contracts. While the overall process is
similar, our work focuses on security instead of safety, and
our metamodel explicitly includes security-relevant aspects.
Implementation-wise, the Quartz model also requires extensive
specification of function behaviour. In our approach, the imple-
mentation of functions is done by the developer and checked
for conformance afterwards, since we judged that otherwise
the metamodel will either become very complex, or have to
be overly restrictive.

III. SMART CONTRACT CHARACTERISTICS

For the purpose of modelling smart contract applications,
we do not consider a specific platform. However, in this
section, we will give a brief overview of our notion of
smart contracts and what we consider to be their defining
characteristics. These are reflected in our metamodel of smart
contract applications and in our definition of capabilities.

Smart contracts, for our purposes, are characterized by:

a) An open world: Everyone can participate in smart
contract platforms, in particular by calling publically exposed
smart contract functions. Access to these functions cannot be
limited except within the functions themselves. All security
policies, therefore, must be implemented on the source code
level.

b) Centralized view of state: Smart contract platforms
create a unified view of state through some consensus mech-
anism. This state is public as a matter of principle. Therefore,
we do not consider read access a relevant question in the
context of smart contracts.

c) State change through functions: Calling a function
is the only way to change the state. The overall state is
partitioned into namespaces: Each contract defines its own
namespace, which can only be modified by the contract’s own
functions.

d) Transactionality: Smart contract functions are trans-
actional, i.e., they either terminate successfully, or revert
without changing the state at all. The revert mechanism can
be used to implement access control: A function call which
reverts is guaranteed to leave the state unchanged, and can
therefore, in the absence of a mechanism to prevent the call
itself, be used to signal that access has been denied.

e) Built-in Currency: Most smart contract platforms de-
fine tokens, referred to as cryptocurrency, that can be trans-
ferred using built-in mechanisms. Cryptocurrency plays an
essential role in smart contract applications and ecosystems.

IV. MODELLING APPLICATIONS AND CAPABILITIES

This section describes our metamodel of smart contract
applications and roles, and a simple grammar for expressing
capabilities.

A. Smart Contract Applications

We developed a metamodel of smart contract applications
that developers can instantiate with a model of an actual
application. The metamodel is shown in Figure 1.

Application
name: String
¢
Contract
1.7
name: String
Account
StateVariable Function
name: String name: String
type: Type params: List<name, Type> Role
returns: Type name: String
T A
Capability * Any
TransferCapability ModifiesCapability CallCapability

Figure 1. Smart Contract Application Metamodel

a) Applications and contracts: For our purposes, a smart
contract application is a set of smart contracts which are
implemented to serve a specific purpose. Each contract in
an application is either newly developed for the application,
or it already exists and its implementation is known to the
developer. This makes it possible to include existing library
contracts in an application.

Thus, in our metamodel, an application is the top-level
model element. It has a name and consists of one or more
individual contracts. These, in turn, are named and consist of
state variables and functions.

We call the set of contracts of an application CS.

b) State variables: State variables consist of a name
and a type; for this, we define a type system (cf. Figure 2).
In order to allow modelling realistic and useful applications,
our type system includes not only primitive types but also
composite types which are commonly found in smart contract
programming languages: arrays and mappings, as well as user-
defined types, i.e., structs.

Type

| —

SN N

Bool Int String CompositeType

palli

Array Mapping Struct

t: Type to: Type fields: List<(Type, String)>

from: Primitive Type

Figure 2. Type System

Array state variables consist of a name and the type of
the array elements. Structs are defined by a list of tuples
(name, type) which define the struct’s fields. Mappings have
a key type and a value type. While the latter can be any type,
the former must be a primitive type (cf. the implementation of
mappings in Solidity, the most-used smart contract program-
ming language).

The description of contracts and state variables gives rise to
the set £ of locations of an application. Intuitively, a location
is either a variable or an element of a composite data type,
i.e., an array element, a value in a mapping, or a struct field.

Formally, the set of locations of a smart contract application
is

L == CS x (primitiveVarName U
arrName U (arrName x N) U
mapName U (mapName x mapKey) U
structName U (structName x fieldName))
where

o CS is the set of contracts of an application (cf. above),

o primitiveVarName is the set of names of all primitive state
variables,

o arrName is the set of all array variable names,

o mapName is the set of all mapping variable names,

o mapKey is the set of all possible mapping keys,

o structName is the set of all struct variables, and

o fieldName is the set of all struct field names.

With this, we can also define the state of an application.

Definition 1 (State): The state of an application S : L — V
is a function that assigns values to locations, where the set V
contains all primitive types as well as references (i.e., variable
names).

c) Functions: Functions enable a user’s interaction with
a smart contract application. For the purpose of this work, we
say that functions consist of a name, a set of parameters, and
a set of (named) return types. Functions can also be annotated
with capabilities (see Section IV-C).

We say that F is the set of all functions of an application.
Each element f in F is of the form (contractName, funldenti-
fier), i.e., it consists of the name of the contract and the name
of the function.

B. Actors

Going forward, our model provides elements to describe and
summarize the entities in a smart contract application which
possess agency, i.e., which are able to call functions. We call
such an entity an actor, and call the set of all actors .A.

In smart contract platforms, the entities that can call func-
tions are usually called accounts. They are uniquely identified
by an accountID, e.g., the address on the Ethereum platform.
Whether an account represents a program or a person is not
relevant for our purposes.

The set of all accounts is called ACC.

In order to make modelling accounts feasible, we allow
summarizing them in the form of roles. In our metamodel,
a set of roles can be attached to an application. In this
paper, we do not go into the details of role-based access
control (some approaches have been proposed by Chatterjee
et al. [3] and Toberg et al. [17]). We simply assume that the
implementation of the application contains a boolean function
hasRole(Account a, Role r) which returns true iff Account a
indeed has role 7.

In order to allow functions which are not access controlled
at all, we define a role any which exists in every application.

The set of roles of an application is R. Each r € R defines
a set R, C ACC := {a € ACC | hasRole(a,r)}.

Apart from accounts, functions themselves can also call
other functions. Therefore, we include them in the set of
actors, which is defined as A := ACC U F.

C. Resources and Capabilities

Motivated by our perspective of smart contracts described
in Section III, we identify three important resources on smart
contract platforms: The state, which represents assets on the
ledger; functions, which manage and grant access to the state;

Table 1
CAPABILITIES SYNTAX

CallCapability =
funIDList =

calls funIDList | any | external
funID [, funID]J*

ModifyCapability = modifies Locset

Locset = LocExpr [, LocExpr]*
LocExpr = contractName . LocalLocExpr
LocalLocExpr = primitiveVarName |
CompositeVarName
[arraySuffix | mapSuffix | structSuffix]?
arraySuffix = lintExpr] | [intExpr .. intExpr] | [x]
mapSuffix = [mapKey] | [*]
structSuffix u= . structMember | . *

TransferCapability ::= transfers transfer [, transfer[*

transfer = (recipientSet , limitExpr)

recipientSet = self | any | accountID | rolelD

and cryptocurrency, which has a role similar to actual currency
and can be transferred via built-in primitives.

From this, we identified three types of capabilities: Chang-
ing state, calling functions, and transferring currency. In our
model, capabilities are assigned to actors, i.e., to roles and to
functions. In this section, we introduce a grammar for defining
capabilities. It is shown in Table I.

a) Calling functions: Roles and functions can be an-
notated with a list of functions they are allowed to call,
following the calls keyword. There are two special values:
external for declaring that the function may make external
calls to functions that are not known at design time, and
any for stating that a function may call any other function,
including external functions.

b) Modifying State: The capability to modify state is
described after the modifies keyword, which is followed
by a list of location sets. These include variables of prim-
itive type, but also composite variables and their elements,
e.g., individual struct fields and array or mapping elements.
Furthermore, array ranges can be specified, and the developer
can also express that all elements of a composite type variable
can be changed (but not the reference to the variable itself).

c) Transferring Currency: Transfer capabilities are ini-
tialized with the transfers keyword. They consist of two
parts: A set of allowed recipients, and an expression that limits
the amount of currency being sent. The recipients can be a
specific account, but also the special value self, describing the
caller of the function. This enables a developer to specify a
recurring pattern of smart contract applications: A caller may
initiate a transfer to themselves (e.g., by withdrawing money
they deposited earlier), but not to anyone else. Furthermore,
the set of allowed recipients can be described by a role. Finally,
the any keyword expresses that there is no limitation as to
the recipient of the money.

The limit is specified as a general integer expression. It

can be an integer literal, but it can also contain arithmetic or
make reference to the state of the application, or to the value
of function parameters at call-time. This enables the developer
to specify limits that depend on the current state, e.g., limiting
a withdrawal to the deposited amount.

d) Example: We provide a simple running example to
illustrate the presented concepts. Our example application
is a bank, where customers can deposit cryptocurrency and
withdraw it at a later point. Furthermore, the owner of the
bank can close it, thereby sending all withdrawable funds to
the customers.

The example application is presented in Listing 1 in a simple
XML-like syntax. Model elements from the overall smart
contract application metamodel (Section IV) are in italics.
Capability keywords are written in bold font.

The application consists of only one contract, which has
two state variables (the balances mapping storing the
customer balances, and totBal storing the overall balance
of the contract) and three functions (close (), deposit,
and withdraw). Furthermore, the application has two roles:
An owner, and customers.! Roles and customers are annotated
with capabilities, according to the grammar defined in Table I.
The owner may call the close function and transfer currency
to other accounts if they have the customer role. They may also
modify all elements of the balances mapping as well as the
totBal value. Customers, in turn, can call the withdraw
function and access the value of the balances mapping,
but only at their own address. They can also only initiate
transfers to themselves, capped at their current balance. The
application’s functions are also given capabilities: close may
transfer money to all customers, limited only by the contract’s
total balance, and it may modify all state variables of the
application. The deposit function is marked as callable
by everyone. The withdraw function can transfer currency,
but only to the caller of the function (denoted by the self)
keyword).

V. SEMANTICS OF CAPABILITIES

In this section, we give a formal meaning to the capability
syntax given in Table L.

For each kind of capability, we define an evaluation function
which maps syntactical elements to an abstract set of capabil-
ities.

For this, we define an auxiliary function get: String =
CSF UV U ACC, which maps function identifiers, variable
names and account identifiers to the corresponding elements
in the sets F, V and ACC.

Furthermore, some capability descriptions may contain ref-
erences to the state of an application, or to function parameters.
Also, the identity of the caller may be significant to evaluate
a capability description. All of these depend on the context
of a function call. Therefore, we define a function ctx which
evaluates a given expression in the context of a function call.

!'A suitable implementation of the hasRole () function for this application
is as follows: An account has the owner role if it is the one which created
the contract. An account has role customer if balances (a) > 0.

application: bank
roles:
role: any
calls Bank.deposit ()
role: owner
calls Bank.close
transfers (customer,
modifies Bank.balances[*],
role: customer
calls Bank.withdraw
transfers (self, Bank.balances[self]
modifies Bank.balances[self], Bank.totBal
contracts:
Bank:
stateVariables:
balances: mapping(account => int)
totBal: int
functions:
close () returns ()
transfers (customer,
modifies Bank.balances([*],
deposit (int amt) returns ()
callableByAny
modifies Bank.balances([self],
withdraw (int amt) returns ()
transfers (self, Bank.balances[self]
modifies Bank.balances[self], Bank.totBal

Bank.totBal)
Bank.totBal

Bank.totBal)
Bank.totBal

Bank.totBal

Listing 1. Example: A simple bank application

Table 11
CALL CAPABILITY EVALUATION

[[Cl'fly weey Cn~fn]]C

[external]c n=

[anylc -

{(get(c1), get(f1)), -, (get(cn), get(fn))}
external
F U external

A. Call Capability

Definition 2 (Call Capability Evaluation): The call capabil-
ity evaluation

[-lc : Functionldentifiers = F

is defined by the rules shown in Table II.

A given list of functions simply evaluates to the set of corre-
sponding functions in F. The external keyword evaluates
to the corresponding set external of all functions which are not
described in the application. While nothing is known about
the behaviour of these functions, it is sensible to make the
developer explicitly model external calls. Furthermore, if a
function should be unrestricted, the developer can use the any
keyword to signal this.

B. Modification Capability

Definition 3 (Modification Capability Evaluation): The
modification capability evaluation [-Jas : LocSer = L is
defined by the rules shown in Table III.

A list of location expressions is evaluated to the disjunction
of the location sets described by each expression. Variable
names evaluate to the locations of these variables. For arrays,
specifications of single indices or index ranges can contain
integer expressions. These are evaluated under the context of
the function call. For mappings and structs, the * operator

evaluates to all possible mapping keys or struct fields, respec-
tively.

C. Transfer Capability

Definition 4 (Transfer Capability Evaluation): The transfer
capability evaluation [-]$* : transfer = (ACCxN)? is defined
by the rules shown in Table IV.

Transfer capabilities consist of two parts, with the first
specifying the set of allowed recipients, and the second setting
an upper bound for the amount of transferred currency. For
the recipients, the self keyword evaluates to the caller of
the function (retrieved by the get helper function). A specific
account identifier evaluates to that account, and any evaluates
to the set of all accounts. A role identifier evaluates to the set
of all accounts who, in the current context, have the indicated
role.

VI. ANALYSING MODEL CONSISTENCY

In this section, we define what constitutes a consistent
model. Intuitively, a consistent model is one where capabilities
cannot be violated. A violation on the model level occurs, e.g.,
if a function has a less restrictive capability than an account
which is allowed to call that function. In this section, we
develop an analysis to decide whether a model is consistent.
Additionally, we want to ensure that the specified privileges
are tight in comparison to the required capabilities.

Due to our semantics definition, the model consistency is a
simple subset relationship of the capabilities. Let R be the set
of roles, F the set of functions and A = R U F the set of all
actors defined for an application (as above).

Definition 5 (Model consistency): A model is consistent iff

Vae A:VfecCs

cal

WVetx : [C(HIFT € [Ca)l

ol

where C¢;, denotes the set of functions specified as callable
by arole a, v € {C, T, M} is the domain of call, transfer, or
modification capabilities, and ctx an arbitrary context for the
evaluation of expressions.

Note that the consistency notion is also transitive, in the
sense that if a function f; transitively calls f5 via fo, the
specified capabilities of f; need to be a superset of the
specified capabilities of f3:

[C(f3)]y S IC(f2)]y S [C(f1)]4

The call capabilities are directly checkable, since they are
a set of symbols. In contrast, the modification and transfer
capabilities contain symbolic integer expressions over the
set of states and parameters. Therefore, further reasoning is
needed to decide whether a set of modification capabilities is
more restrictive than another. The same is true for transfer
capabilities.

For both kinds of capabilities, we derive proof obligations
in the following definitions which are automatically checkable
with SMT solvers, e.g. Z3 [?], due to their support of integer
theory.

Definition 6: Given two sets M7, Ms of modify capabilities,
we say M; is a subset of My (My Cuoary M) iff the
following formula is valid

/\ \/ myp < mgy

m1 €My mo€ Moy

where m; < ms is defined as

true : if m1 = mo

VT, Tn Y1, oo, Yn
—_——— —_—
z; €FV (e1) Y €EFV(e2)

6120A€220—>€1:€2

:if my = ale1] and my = ales]

false : otherwise

The expressions e; and es are the integer expressions describ-
ing the set of allowed indices.

F'V(e) denotes the free variable of an expression e. These
arise from the context of a call, i.e., the state and the
parameters of the function. Since this context is not known
on the model level, we abstract from the free variables in an
over-approximated manner. The definition m; < ms evaluates
to true for symbolically identical capabilities, e.g., if both
capabilities allow the modification of the same state variables.

For accesses of array indices, e.g., m[4 x z] < m[2*z], we
need to compare the described set of indices for all possible
positive indices: every index of the more or equally restrictive
expression must be possible in the other expression. In the
example the expression 4 x x is more restrictive than 2 x x as
it describes fewer indices, but not vice versa.

For transfer capabilities, the consistency definition is as
follows:

Definition 7: Given two transfer capabilities t; =
(reci,amy) and to = (rece,ams), we say t1 is more
restrictive than to (denoted t; < to) iff

e receiver set rec; is a subset of recs, and

o the value of am; is lower than ams under all interpreta-

tions of the free variables in amy and ams:

v Tl1y---

z; EFV (am1)UFV (am2)

reci C reco Aamq < ams

For a two sets 11, T» of transfer capabilities, we say 7j is
a subset of Ty iff

Vi, €Ty : Fto €Ty t1 <ty .

The current consistency definitions only specify that the
permissions of an actor must not be stricter than those of the
functions they are allowed to invoke. Moreover, we might want
to ensure that an actor only has the necessary the capabilities
to work properly. This principle of least privilege is similar
to consistency but investigates the opposite direction. For an
actor a € A, we say it fulfills its principle of least privilege
iff

vee [Ca)ly: 3f € Coun : c € [C(N]y
is valid. The definition requires that every capability of the
actor a is required for at least one specified callable function.

Table IIT
MODIFY CAPABILITY EVALUATION

1,12, ... =
[¢Name, locExpr] as

[primitiveVarName]| py

[ArrayVarName] pr
[ArrayVarName arraySuffix] pr

[MappingVarName]| pr

[MappingVarNamemappingSuffix] nr
[StructVarName]| p
[StructVarNamestructSuffix]| pr
[[intExpr]]am =

[tlar U l]a U ..
{get(cName)} x [[locExpr] ps
{get(primitiveVarName) }
{get(ArrayVarName) }

{get
{get
{get
{get
{get(StructVarName)} X [structSuffix] as
{ctx(intExpr)}

~

ArrayVarName)} X [arraySuffix] pr
MappingVarName)}

MappingVarName)} X [mappingSuffix] ar
StructVarName) }

~ = =

[lintExprl .. intExpr2]]a == {i € Int | cx(intExprl) < i Ai < ctx(intExpr2)}
(010 = IntU MapKeySet

[0.*1]m := StructFieldSet

[mapKey] m = {mapKey}

[- structMember] pr u= {structMember}

Table IV
TRANSFER CAPABILITY EVALUATION

ﬂtl,tg...}]%z =

[rec, limif] §* =

[[tl]]%&z U [[tQ]]%vtI u...
[rec]ét x {n € N | n < [limif]<*®}

Tec

[ser£]ctz u= {cmx(self)}

[any]ct® w= ACC

[accountID]L% = {get(accountID)}

[roleID] St x= {a € ACC | ctx(hasRole(a, get(roleID)))}

As this notion also relies on the model-level specification of
the callable functions, it might also be an over-approximation
in contrast to the actual called function of the implementation.

VII. A SECURE SOLIDITY IMPLEMENTATION

While Section VI describes how to achieve a consistent
model of a smart contract application with a formally spec-
ified security policy, this section gives a definition of what
properties an implementation needs to fulfill to be considered
conformant. Based on this definition, we sketch how to arrive
at an implementation in the Solidity programming language
that is conformant w.r.t. the model according to the definition.

For this, we define that an implementation is conformant to
its model iff

Definition 8 (Implementation conformance): We say that an
implementation is conformant to its model iff

1) for each function f € F, an account a € ACC only has
access to f if a hasarole r € Rs.t. f€Cl,,
2) each function f conforms to its capability specification,
ie.
a) f calls only functions g where g € Cga”
b) during any execution of f, any location [where
f .
1 ¢ Cl 41 remains unchanged

¢) f only makes transfers (to,amt) € c/

transfer
Whether an implementation conforms to its model depends
on the platform where it is implemented. Therefore, we

sketch a process for the Solidity programming language of the
Ethereum platform, although the general ideas might apply for
any platform.

Solidity has several characteristics and mechanisms relevant
to developing a secure application in our proposed process.
First, in Ethereum, accounts are identified by addresses in
the form of 160-bit integers. Second, Solidity provides the
requires keyword, which checks a boolean condition at
runtime and reverts if the condition is not met. Furthermore,
Solidity has modifiers, which wrap functionality (e.g., param-
eter checks) and can be added as a keyword to a function
header. Both the requires mechanism and modifiers can
be applied to implement access control.

As a basis for generating the proof obligations described
in Section VI and the source code stubs as described below,
we developed a Scala implementation of our metamodel and
the capability grammar. After arriving at a consistent model
(cf. Section VI), a smart contract application developer can
achieve a conformant implementation via a combination of
code and annotation generation on the one hand, and formal
methods and static analysis on the other.

A. Code Generation

From the model, our code generator generates source code
stubs as follows: First, we generate a contract file for
each contract in CS. The file contains a variable declaration
for each state variable, and a function header consisting of
name, parameters and return type for every function. Then,
we generate a smart contract which is responsible for access
control to functions. It contains an enum of the roles specified
in the model, and a function hasRole (Role r, address
a), which can be called to check at runtime whether a given
address has a certain role.

Furthermore, we generate access control modifiers: For each
function f € F, we compute the set 7y C R of roles that may
access f. Then we generate a modifier which checks whether
a given account with address a has any of the roles in ry.

modifier onlyOwner ({

require (hasRole (msg.sender, Roles.OWNER));

—

}

function close () onlyOwner {

}

Listing 2. Example access control modifier

function wrappedTfWithdraw (address a, uint amt)
internal {
require (a == msg.sender);
require (amt <= Bank.balances[msg.sender])
a.transfer (amt) ;

}
Listing 3. Example Wrapped Transfer Function

Of course, if the access sets of two functions are equal, the
corresponding modifier only needs to be generated once. An
example is shown in Listing 2, where a modifier is defined
to check that the caller has the Owner role, and the close
function is generated with this modifier in the header.

Furthermore, for each transfer capability ¢ € anans fer Of
a function f, we generate a wrapped transfer function which
ensures at runtime that the function adheres to its capabilities.
The function is internal (i.e., it can only be called from within
the contract) and takes an address addr and an amount amt
as a parameter. For a capability 7 consisting of a recipient
set expression rs-exp and a limit expression limit-expr, the
wrapped function is implemented as follows: At first, it checks
whether the address parameter matches the recipient set. This
is done by a require statement, with a condition depending
on rs-expr: If rs-expr is an address, it must be equal to addr.
If it is self, addr must be equal to msg.sender.? If rs-
expr is a role r, it is checked whether hasRole (addr, r)
returns true. Finally, if rs-expr is any, the check is omitted.
Afterwards, it is checked whether amt is less than or equal to
limit-expr.

We give an example in Listing 3. The function
withdraw () of our running bank example has a capability
of sending currency, but only to the caller, and the amount
of currency is limited by the balance of the caller. By using
the generated function wrappedTfWithdraw, the developer
can be sure that the implementation adheres to the model.

B. Formal Analysis

While transfers and access of accounts to functions can
be handled by code generation in a correct-by-construction
manner, this is not possible for ensuring that a function only
calls the functions it is allowed to call, and only modifies
those parts of the application’s state specified in the model.
Checking these properties is only possible on the finished

2Note that because the wrapped function is marked as internal, the
msg.sender variable is passed on to it from the calling function.

implementation. It can be done using static analysis and formal
verification tools.

For analysing whether all functions conform to their call
capabilities, we developed a simple static source code anal-
ysis based on a publically available Solidity grammar.> For
every function f, our analysis collects all function calls that
occur explicitly, as well as all occurrences of the call and
callcode keywords and their parameters. It then compares
the names of the called functions to the functions in C/ . If

call*
¢’ contains the external value, then only functions within the

aggfication itself are forbidden. If the capability specification
contains the any keyword, the analysis is skipped.

If the analysis finds a function call that is not allowed
per capability specification, it fails. This is a deliberate over-
approximation, as our analysis will flag some legitimate calls
as not allowed (for example, in Solidity, functions can be
passed as parameters and assigned to variables and then
called). However, it is easy to write the implementation in
a way that satisfies the analysis, and we think application
developers will benefit from the increased clarity.

For analysing whether all functions adhere to their modifi-
cation capabilities, we have to prove that a function modifies
only those locations specified in its capabilities. Formally, we
need to prove that

VfeF: viec

state * S;TE(Z) = S})OSt(l)
where S7"° and SJIZOSt are the states before and after the
execution of f.

For this, we employ automated generation of formal spec-
ification in combination with the SOLC-VERIFY formal ver-
ification tool [7]. SOLC-VERIFY takes as an input solidity
source code that is annotated with formal specification, such
as invariants and function contracts. Function contracts consist
of a pre- and postcondition, but can also include a frame
condition, i.e., a statement about what parts of the state a
funtion is allowed to modify.

We utilize SOLC-VERIFY as follows: During code gener-
ation (cf. Section VII-A), we annotate every function with
one frame condition per LocExpr in its modification capa-
bility specification. The annotations are in SOLC-VERIFY’S
annotation language. An example is shown in Listing 4: The
withdraw () function is annotated with frame conditions
which state that the function may only modify the caller’s own
balances mapping element and the overall balance of the
contract. This corresponds to the modification capabilities de-
fined for the function in the example (Listing 1). If the SOLC-
VERIFY tool successfully proves that a given implementation
adheres to this specification, then it follows that the function
adheres to its capability specification.

After the implementation is finished, the developer conducts
a formal proof of correctness with SOLC-VERIFY. If the
proof succeeds, this means that all functions adhere to their
modification capabilities.

3https://github.com/solidityj/solidity-antlr4/blob/master/Solidity.g4

refine until consistent

Application Model

stateVariables
functions
roles

Requirement
specification

Capabilities

Figure 3.

5 [msg.sender]

/// Q@notice r ifies totBa

function withdraw (uint amt) onlyCustomer {

}

Listing 4. Example SOLC-VERIFY Frame Condition

Note that, again, this is an over-approximation: It is possible
that the proof of correctness of the frame conditions does
not succeed although the implementation is actually correct
w.r.t. the modification capabilities. This can happen, e.g., if
auxiliary specification such as loop invariants are missing or
not sufficient.

As an alternative to our over-approximating approach, a
developer could also conduct a different static analysis, such
as an information flow analysis. SLITHER [5] is one of
several tools which have been developed for this purpose. It
automatically analyses a given application statically and can
be configured to output the call graph and all variables written
by a certain entry point (e.g., a function). An alternative to our
approach would be to run SLITHER in this way and inspect its
output. If the callgraph for a function contains functions that
are not contained in Ccfa”, or if a function writes a variable
which is not in Cftate, then the function does not adhere the
capabilities specified in the model, and its implementation
needs to be corrected.

One drawback of using SLITHER or comparable static
analysis tools is the possibility of false positives and false neg-
atives. With our analysis and SOLC-VERIFY’s proof of frame
conditions, a developer can be sure that an implementation
is correct; SLITHER gives no such guarantee. On the other
hand, a formal proof of correctness can require developer
involvement. For example, it can be necessary to provide
auxiliary specification, e.g., loop invariants, for an automated
proof to succeed. The decision for a specific analysis tool
depends on the specifics of the application (or even individual
functions) and has to be made on a case-by-case basis.

C. Correctness

At the beginning of this section, we gave a definition of
when we consider an implementation to be conformant to a
model. We argue that the process sketched in this section leads
to an implementation which is correct in that sense, if the
following assumptions hold: The developer does not change

refine until call analysis succeeds

|
|

refine until modifies analysis succeeds

code generation

and implementation Deployment

The overall development process of a secure smart contract application

the generated code, but only adds the function bodies; they
only use the auto-generated wrapped transfer methods instead
of Solidity’s built-in transfer methods; and all source code
analyses (cf. above) correctly return a successful result (e.g.,
a proof that the implementation adheres to the generated frame
annotations).

If these assumptions hold, condition 1) is guaranteed by the
access control modifiers. Condition 2a) and 2b) are guaranteed
by our static call analysis and by SOLC-VERIFY’s proof that
all the generated frame conditions hold. Finally, condition 2c)
holds because the generated transfer funtions ensure at runtime
that all functions adhere to their specified transfer capabilities.

VIII. DEVELOPMENT PROCESS OVERVIEW

In this final section, we give an overview of the intended
process that a developer is supposed to follow in our approach.
Figure 3 illustrates this process.

At the beginning, there is a requirement specification which
contains a security policy. From this specifcation, a model -
an instantiation of the metamodel developed in this work - is
derived, with capabilities according to the security policy. The
developer then performs analyses as described in Section VI
on the model, refining it until it is consistent (and, ideally, the
capabilities are precise, i.e., no actor has greater capabilities
than it needs).

From this model, the developer uses the code generator
provided by us to generate the code skeleton and the access
control smart contract (Section VII-A). They implement the
access control contract according to the role model specified in
the security policy. Furthermore, they implement all functions
(using the generated wrapper transfers for currency transac-
tions). Then, the implementation is analysed with our static
call analysis, and SOLC-VERIFY is employed to find a proof
that the generated frame conditions hold (Section VII-B). The
implementation is refined until these analyses succeed. When
that is the case, the application can be deployed.

IX. CONCLUSION AND FUTURE WORK

In this work, we propose a solution for developing se-
cure smart contract applications from existing requirements
specifications. We argue that implementing a security policy
directly in source code is error-prone and likely leading
to vulnerabilities. Therefore, we develop a metamodel of
smart contract applications with an attached capability-based

security specification. This makes it very easy for smart
contract developers to abstract away from the complexity of
the source code and focus on the security-relevant aspects of
an application.

Going forward, we define a notion of consistency and
precision on our model, based on set-theoretic semantics.
We also develop analyses to check whether a given model
conforms to these notions. Furthermore, we describe how to
turn a model into a conformant implementation. This is done
by a combination of code generation and simple static analysis
that we implemented on the one hand, and existing formal
verification tools on the other hand.

A natural way of extending our methodology is integrating
analysis tool results into the model automatically. We are
currently working on a method to parse custom output of
the Slither tool. This will not only enable direct and helpful
feedback in case of non-conformant implementation, but might
also help automating the entire development process while
retaining the security guarantees.

Furthermore, we plan on extending our capability model by
adding conditional capabilities, i.e., capabilities that are only
in effect if some condition, such as a time constraint, is met.

Our metamodel is platform-independent, and our method-
ology can easily be adapted for other platforms or other
programming languages. In particular, our approach may be
used for programming languages which have built-in concepts
of access control and/or resource management, or tooling
which supports these concepts. As an example, it would be
possible to derive an implementation in the Vyper language,
and ensure conformance to transfer capabilities with support
of the 2vyper verification tool.

So-called permission-based blockchain platforms like Hy-
perledger Fabric [1] do not fully match our notion of smart
contracts, since they enforce a closed world in which all
participants are known and identifiable. This allows defining
role models and security policies which can be implemented
above the source code level, partly negating the advantage
that our modelling approach brings. However, the methods
we developed for analysing a given model can still be used to
detect inconsistency or imprecision in the capability definitions
of a Fabric application. This raises the confidence in the
security of the application, and may shift the detection of
errors from runtime to design time, thereby lowering the cost
of fixing them.

REFERENCES

[1] Androulaki, E., Barger, A., Bortnikov, V., Cachin, C., Christidis, K.,
De Caro, A., Enyeart, D., Ferris, C., Laventman, G., Manevich, Y., Mu-
ralidharan, S., Murthy, C., Nguyen, B., Sethi, M., Singh, G., Smith, K.,
Sorniotti, A., Stathakopoulou, C., Vukoli¢, M., Cocco, S.W., Yellick, J.:
Hyperledger Fabric: A Distributed Operating System for Permissioned
Blockchains. In: Proceedings of the Thirteenth EuroSys Conference. pp.
30:1-30:15. EuroSys 18, ACM, http://doi.acm.org/10.1145/3190508.
3190538

[2] Briam, C., Eilers, M., Miiller, P., Sierra, R., Summers, A.J.: Modular
verification of collaborating smart contracts abs/2104.10274

[3]

[4]

[5]

[6]

[7]

[8]

[9]
[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

Chatterjee, A., Pitroda, Y., Parmar, M.: Dynamic Role-Based Ac-
cess Control for Decentralized Applications. In: Chen, Z., Cui, L.,
Palanisamy, B., Zhang, L.J. (eds.) Blockchain — ICBC 2020. pp. 185-
197. Lecture Notes in Computer Science, Springer International Pub-
lishing

Dharanikota, S., Mukherjee, S., Bhardwaj, C., Rastogi, A., Lal, A.:
Celestial: A Smart Contracts Verification Framework. In: 2021 Formal
Methods in Computer Aided Design (FMCAD). pp. 133-142

Feist, J., Grieco, G., Groce, A.: Slither: A Static Analysis Framework for
Smart Contracts. In: 2019 IEEE/ACM 2nd International Workshop on
Emerging Trends in Software Engineering for Blockchain (WETSEB).
pp. 8-15

Frantz, C.K., Nowostawski, M.: From Institutions to Code: Towards Au-
tomated Generation of Smart Contracts. In: 2016 IEEE 1st International
Workshops on Foundations and Applications of Self* Systems (FAS*W).
pp- 210-215

Hajdu, A., Jovanovic, D.: Solc-verify: A modular verifier for solidity
smart contracts. In: Chakraborty, S., Navas, J.A. (eds.) Verified Software.
Theories, Tools, and Experiments. pp. 161-179. Springer International
Publishing

Jurgelaitis, M., Ceponiené, L., Butkus, K., Butkien¢, R., Drungilas,
V.: MDA-Based Approach for Blockchain Smart Contract Development
13(1), 487, https://www.mdpi.com/2076-3417/13/1/487

Kolb, J., Yang, J., Katz, R.H., Culler, D.E.: Quartz: A framework for
engineering secure smart contracts

Lamport, L.: Specifying Systems: The TLA+ Language and Tools for
Hardware and Software Engineers. Addison-Wesley Longman Publish-
ing Co., Inc.

Levy, H.M.: Capability-Based Computer
Heinemann

Mueller, B.: Smashing Ethereum Smart Contracts for Fun and Real
Profit, https://github.com/muellerberndt/smashing- smart-contracts/
blob/0663ad015b0a6ce08053d4873 1cdeele7bcde726/
smashing-smart-contracts- 1of 1.pdf

Permenev, A., Dimitrov, D., Tsankov, P., Drachsler-Cohen, D., Vechev,
M.: VerX: Safety Verification of Smart Contracts. In: 2020 IEEE
Symposium on Security and Privacy (SP). pp. 1661-1677

Skotnica, M., Pergl, R.: Das Contract - A Visual Domain Specific
Language for Modeling Blockchain Smart Contracts. In: Aveiro, D.,
Guizzardi, G., Borbinha, J. (eds.) Advances in Enterprise Engineering
XIII. pp. 149-166. Lecture Notes in Business Information Processing,
Springer International Publishing

Stephens, J., Ferles, K., Mariano, B., Lahiri, S., Dillig, I.: SmartPulse:
Automated Checking of Temporal Properties in Smart Contracts. In:
2021 IEEE Symposium on Security and Privacy (SP). pp. 555-571
Tsankov, P., Dan, A., Drachsler-Cohen, D., Gervais, A., Biinzli, F,
Vechev, M.: Securify: Practical Security Analysis of Smart Contracts.
In: Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security. pp. 67-82. CCS ’18, Association for
Computing Machinery, https://doi.org/10.1145/3243734.3243780
Toberg, J.P., Schiffl, J., Reiche, F., Beckert, B., Heinrich, R., Reuss-
ner, R.: Modeling and Enforcing Access Control Policies for Smart
Contracts. In: 2022 IEEE International Conference on Decentralized
Applications and Infrastructures (DAPPS). pp. 38—47

Xu, W., Fink, G.A.: Building Executable Secure Design Models for
Smart Contracts with Formal Methods. In: Bracciali, A., Clark, J.,
Pintore, F., Rgnne, P.B., Sala, M. (eds.) Financial Cryptography and Data
Security. pp. 154-169. Lecture Notes in Computer Science, Springer
International Publishing

Zhu, J., Hu, K., Filali, M., Bodeveix, J.P., Talpin, J.P., Cao, H.: Formal
Simulation and Verification of Solidity contracts in Event-B. In: 2021
IEEE 45th Annual Computers, Software, and Applications Conference
(COMPSAC). pp. 1309-1314

Systems. Butterworth-

