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Abstract

We consider the (in)stability problem of the inviscid 2D Boussinesq equations near
a combination of a shear flow v = (y, 0) and a stratified temperature 6 = «y with
o > %. We show that for any € > 0 there exist non-trivial explicit solutions, which
are initially perturbations of size €, and grow to size 1 on a time scale € ~2. Moreover,
the (simplified) linearized problem around these non-trivial states exhibits improved
upper bounds on the possible size of norm inflation for frequencies larger and smaller

than e .
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1 Introduction and Main Results

In this article we consider the stability of the incompressible, inviscid Boussinesq
equations in a two-dimensional periodic channel

v +v-Vv+ Vp =fe,

00 +v-Vo =0,
e M
div(v) =0,
(t,x,y) e Rt x T x R,
near the stationary solution
v=(y,0), 6 =ay, )
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where o > 4—1‘ is a constant.

The Boussinesq equations are a common model of the evolution of a heat conduct-
ing fluid in terms of its velocity v and temperature 6 and may additionally incorporate
viscosity or thermal dissipation. In particular, questions of well-posedness and asymp-
totic behavior in regimes with partial dissipation (Tao et al., 2020; Masmoudi et al.,
2022; Dengetal.,2021; Jiahonget al., 2019; Doering etal., 2018; Li and Titi, 2016; Cao
and Jiahong, 2013) or the inviscid problem (Elgindi and Widmayer, 2015; Widmayer,
2018) have been an area with strong research activity in recent years.

The term

Oey

models buoyancy and causes hotter fluid to rise above colder fluid, where —e» is the
direction of gravity. It is well known that, in the case without shear (v = 0), this
buoyancy might lead to the so-called Rayleigh-Bénard instability, if hotter fluid is
below colder fluid, « < 0.

In contrast, if « > 0 is sufficiently large then the Miles—Howard criterion (Howard,
1961) rules out spectral instability, which is the setting considered in this article. As we
state in Lemma 1.2 and recall in Sect. 2 the linearized equations around the stationary
solution (2) are stable in arbitrary Sobolev regularity globally in time. However, for
the nonlinear equations we construct explicit solutions growing as (1 + 2)1/4 as
increases, which hence are only small on a time scale ¢ < € ~2. Moreover, even when
restricting to this time scale, higher, Gevrey regularity is required in order to establish
stability (Bedrossian et al., 2021; Tao and Jiahong, 2019). In the corresponding viscous
problem instead Sobolev regularity is required, however with a smallness condition
depending on the size of the viscosity (Zhai and Zhao, 2023).

The aims of the present article are twofold:

e For related equations such as the Euler equations (Deng and Masmoudi, 2018;
Deng and Zillinger, 2021), Vlasov—Poisson equations (Mouhot and Villani, 2011;
Bedrossian, 2020) or partially viscous Boussinesq equations (Zillinger, 2021) it is
known that the norm inflation of the nonlinear dynamics is tied to the interaction
of non-trivial low frequency solutions, which we call traveling waves, and their
interaction with high frequency perturbations. We thus construct these traveling
waves for the present problem and discuss for which choices of perturbations and
parameters one might expect the largest possible norm inflation.

e For these linearized equations we identify multiple frequency regimes depending
on the initial size € > 0 of the waves and the time interval under consideration. For
frequencies |£| < e * we establish an upper bound for perturbations concentrated
at frequency £ by exp((e£)?/3). In particular, if |£] < €% with 1 < « < 4 this
factor is bounded by exp(£2/3(0~1/®)) This bound hence matches the control by
exp(v/€), that is Gevrey 2 regularity, as in the nonlinear problem (Bedrossian
et al., 2021) for & = €%, but exhibits improved bounds if £ is smaller. As a
complementary result, if £ > Ce~* with a sufficiently large r constant C > 1, we
instead obtain an upper bound which is uniform in £ and € on the time scale under
consideration.
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We remark that for technical reasons we consider a simplified model, which fixes the
underlying shear flow. As we discuss in Sect.4 this simplification can be removed in
time intervals where the main norm inflation takes place and for large times. For small
times we provide a rough bound for the non-simplified model, but expect that it can
be improved to a uniform bound with substantial additional technical effort.

Before stating our main results, we recall that the linearized problem around the
stationary solution (2) is stable, when working in coordinates moving with the shear
and choosing suitable unknowns. The following lemma is adapted from Bedrossian et
al. (2021); Tao et al. (2020).

Lemma 1.1 Let o > le' Then the linearized Boussinesq equations around the sta-

tionary solution (2) are stable in the sense that for any initial data w,0 with
[ wdx = [0dx = 0 the energy

| (02 A) M w)(t, x — ty, )72 + 10072 8)40) (¢, x — ty, Y17,

is bounded above and below for all times, uniformly in terms of its initial value, with
a constant depending only on «.

As we discuss in Sect. 2.1 the choice of unknowns moving with the underlying shear
flow

Z(t, x,y) = Ja ((8;2A)_1/4a)) (t,x —ty,y),

(3)
0, x, v i= (0728 49:6) 1, x = 17, )
is natural. These unknowns have previously been used in Bedrossian et al. (2021)
and we use the same notation. We remark that in the (partially) viscous setting other
choices of unknowns are natural (Adhikari et al., 2022; Adhikari et al., 2010; Lai et al.,
2021; Tao et al., 2020; Tao and Jiahong, 2019; Doering et al., 2018; Cao and Jiahong,
2013; Zhai and Zhao, 2023).
We further observe that the linearized problem around the stationary solution (2)
in terms of (Z, Q) reads

1 0x(3y—tdy) 5 yin
0y <Z) = 7"%“’(;}——“302 “/&8X(ax +3(8; _;ax) ) / <Z)
Q — Va3, (32 + (3y — 13)>) 712 1O (y—19y) 0

T 20924 (dy—18,)?

+(2)

Since the operator on the right-hand side is a (time-dependent) constant coefficient
Fourier multiplier the evolution of (Z, Q) decouples in Fourier space with respect to
both x and y. Therefore all stability estimates hold frequency-wise and hence extend to
arbitrary Sobolev, Besov or Gevrey spaces. However, this stability can be understood
as an artifact of the fact that the stationary solution (2) is independent of x and that
perturbations therefore decouple in frequency and cannot propagate along chains of
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resonances. For this reason, in order to capture instabilities of the nonlinear problem,
instead of a stationary solution we consider nearby x-dependent explicit solutions.

Lemma 1.2 (compare Proposition 2.1 in Zillinger (2021) and Bedrossian et al. (2021))
Let a > 0 be given, then there exist non-trivial functions f(t) and g(t) such that

w(t,x,y) = —1+ f(1) cos(x — 1y),
O(t,x,y) =ay+ g)sin(x —ty), @)

v+ cos(x — ty),

v(t,x,y) = (y,0) + 52

are a solution of the nonlinear inviscid Boussinesq equations for all times. We call
these solutions traveling waves. Moreover, if @ > ‘l‘ it holds that

o lex| 2 2
E(t) = ﬁlf(r)l +V1+12g®)]

satisfies
cE(0) < E(t) = CE(0)

for some constants 0 < ¢ < C < 00 depending on «.

We remark that in terms of the unknowns (3) these traveling waves read
Y
1+ )1/
Q(t.x.y) = g)(1 + 15 sin(x).

Z(t,x,y) = cos(x),

They are global in time, low-frequency solutions and remain uniformly bounded in
any suitable Sobolev or Gevrey space for all times.

The functions f(¢) and g(¢) can be computed explicitly in terms of hypergeometric
functions and the above results can hence be obtained by explicit computation (as was
done in Zillinger (2021)). Furthermore, as shown in Lemma 1.1 the stability can also
be obtained as a special case of an energy estimate similar to the one of Bedrossian et
al. (2021).

In the following we will consider a simplified version of the linearization of the
Boussinesq equations in terms of (Z, Q) around these traveling waves and establish
upper bounds on the possible norm inflation. The reduction of the non-simplified
linearized Boussinesq equations is discussed in Sect. 4.

We note that for the traveling waves of Lemma 1.2 for large times the vorticity
grows as

lo®)|Lx ~ f(0)V1.
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Therefore if the traveling wave is initially of size € > 0 it will remain a small
perturbation of the stationary state (2) only on time scales

t < 826_2,

where 0 < § < 0.1 is a constant. Hence, similarly as in Bedrossian et al. (2021) we
restrict to studying stability and norm inflation on that time interval.

Theorem 1.3 (Stability and upper bounds on norm inflation) Let 0 < § < 0.1 and
0 < € < 0.1 be given and consider the simplified linearized Boussinesq equations
around the traveling waves

_f0
(LA
0 = g1+ *sin(x),

cos(x),

with f(0) = g(0) = €. That is, consider the linear problem

, (z) +A<z> _ (1001287 0 T2 AT Z v £ () cos(a))
"o 0 0,712 A (V9 2 A 2 g0 cosa)) )
Ap =97+ 3y — 130)™

Then there exists C > 0 and |y| < § such that for any initial data (Zo, Qo) whose
Fourier transform satisfies

) / exp (2C min((elg|'*) 7 7)) |F(Zo, Q)(k, )[2dg < 1
k

the corresponding solution remains regular up to a loss in the constant C. That is, for
all times t > 0 it holds that

2

. _ _ €
3 / exp (c min((el&] 47232 ¢ 2)) (+ GIFZ Ok, £)2ds < 1.
k
(%)
Here k € 7 denotes the frequency with respect to x and & € R denotes the frequency
with respect to y.
Moreover, there exists a constant ¢ = c(«) such that if the Fourier transform of the

initial data is supported in the region || > ce~* then the stability estimate improves
to a uniform estimate

1(Z, Q)2 = 211(Zo, Qo)D) .2- 6)

Let us comment on these results:
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e Since the traveling waves are independent of y, these equations decouple with
respect to the Fourier frequency £ € R corresponding to y. We may hence interpret
(5) as an upper bound on the possible norm inflation factor for frequency-localized
initial data by

. 14y\2/3=2yy 2 e’
exp(len((e|§| ) ), € >(1+E)'

In particular, we emphasize that this multiplier strongly differs from the Euler case.
As we discuss in Sect. 3.1 we expect that this bound is optimal in the sense that
this norm inflation is attained (possibly with slightly smaller constant C) for all
frequencies € ~! < |&] < e~*. However, since estimates in certain time regimes
are technically very involved (in particular for the non-simplified problem) in this
article we only establish upper bounds.

e A corresponding nonlinear result has been established in Bedrossian et al. (2021)
using different methods with an upper bound on the norm inflation by exp(C&?)
with o0 > % The present result recovers this bound with o = Lforg =e*in
the linearized problem around traveling waves. As major novelties, in this article
we prove that for the present model:

— The upper bound on the norm inflation factor is different and, in particular,
much smaller when || is much smaller than € ~%.
— For large frequencies |£| > ce* the norm inflation is bounded by a constant

factor instead (see Proposition 3.7 for a more detailed statement).

Compared to the estimates of Bedrossian et al. (2021) we further exploit that the
underlying traveling wave is much smaller for small times and that the time cut-off
imposes an upper bound on the frequencies of resonances.

e In our simplified equations we omit the term

1+ 22\ F() A (cos(x)dy A4 Q)

1 (f(t)At1/4(cos(x)8yA,1/4Z)>

from the linearized Boussinesq equations. As we discuss in Sect.4 in the main
time regime r > £2/3¢71/3, where the resonance mechanism takes place, this
simplification can be removed. For the regime of small times, for the non-simplified
problem we instead obtain a rough growth bound by exp(c+/€). However, we
expect that this bound can be improved to a uniform bound (as for the simplified
model) with more technical effort.

The remainder of the article is structured as follows:

e In Sect.2 we discuss the linearized problem around a ground state (2) as formulated
in Lemma 1.1. In particular, we introduce the unknowns and system formulation
used throughout the article.

e In Sect.3.1 we discuss the underlying resonance mechanism for a toy model. In
particular, this allows us to clearly present the norm inflation mechanism and
compare it with the Euler equations or the partially viscous problem.
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e Based on the insights derived from this model we show in Sects.3.2.1 and 3.2.2
that norm inflation cannot happen outside a specific time interval depending on
the size of £ and €.

e The main result of the paper is established in Sect. 3.2.3, where we establish bounds
on the norm inflation achieved.

e Finally, in Sect.4 we show that the previously derived norm inflation estimates
also extend to the non-simplified model. In particular, the omitted terms are only
non-negligible perturbations for small times, where they can be absorbed by a loss
of Gevrey regularity. As we discuss, we do not expect this loss to be attained.
Howeyver, since the main focus of this article lies in the resonance mechanism for
large times, we do not pursue this further.

Notation

In this section we collect some notation used throughout the article for easier reference.
Our main object of interest are the (simplified) linearized Boussinesq equations
around the traveling waves of Lemma 1.2 which we write in the form

3, (é) +A (é) = RIS (1), g(1). Z. Q1.

where

(@) < Cey/1+t],

g(t) < Ce(1 + [t])~1/?

are the coefficients of the traveling waves of Lemma 1.2. These equations decou-
ple after a Fourier transform in y. Hence we view these equations as equations for
(FyZ)(t,x,8), (Fy0)(t, x, &) for any fixed frequency & € R and with slight abuse
of notation write Z(¢, x), Q(¢, x) again.

These equations may equivalently be expressed as coupled system for Fourier
modes Zy, Qy as stated in Definition 3.3:

(é’;) (12) = S (b2, 1) (fﬁ) (1)

o} + -
¢ Zkw1 + ¢ Zk—1
+ Se(t, ) [ K k )dt,
/tl k(22 )<dk+zk+1+dk Zi

with the coefficient functions stated in (12) (for k £ 1 # 0):

f = i%f(t)é(l +E/h =) TVHA &/ 1) — DT

1 k
df = teWE (1 + k= DHVAA+ E/ k£ 1) — 0?4
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Here c,ﬁc is used as shorthand notation for c,:r or ¢, . Similarly, we use ckﬂ | to refer to
ey and 6.

As noted after Lemma 1.1 for simplicity of notation the estimates of this article are
stated for L%(dxdy) or £2(Z) (with respect to k). However, since the above system
includes only nearest neighbor interaction all estimates extend to the case of weighted
€2 spaces, provided the weight A (k) is such that |A(k)/A(k & 1) — 1] is small enough.
In particular, this allows for A(k) = 1 + c|k|N for any N € N and A(k) = exp(c|k|®)
for any 0 < s < 1 and hence to establish stability in Sobolev or Gevrey spaces.

Throughout this article in several estimates it suffices to control quantities only in
terms of upper and lower bounds within a constant factor. Hence, in order to simplify
notation, we sometimes approximate values. For instance, we write

1 I
kK k+1 kk+1) &2

to denote that for any k € N, k 7 0 the last two terms are comparable within a factor
at most 10.

2 The Homogeneous Problem, Waves and Good Unknowns

As remarked following Lemma 1.1 the explicit solutions of the Boussinesq equations
of the form

o(t,x +1ty,y) =—1+ f(t)cos(x),

0, x +1ty,y) =ay+ g(t)sin(x),
may be found by inserting this ansatz into the Boussinesq equations, which reduce to
an ODE for the coefficient functions f, g.

In the following we provide a different perspective on these solutions as low
frequency waves. Thus consider the perturbations

Wi, x,y) =, x+1ty,y)+1,
F(t,x,y) =00, x+1ty,y) —ay,

in coordinates moving with the affine flow. Then the full nonlinear Boussinesq
equations are given by

W +V+d.VW = o, F,
% F+Vid. .VF = —0d,®, 7
(02 + 8y —13))D = W,

where we used the cancellation of V' - V. In particular, the left-hand side has a very
similar structure as the Boussinesq equations in vorticity formulation except that the
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equation satisfied by the stream function perturbation ® now is time-dependent. With
respect to these unknowns the traveling waves of Lemma 1.2 take the form

W = f(1) cos(x),
F = g(t) sin(x).

They are explicit non-trivial solutions of the nonlinear problem, which are smooth,
low frequency and initially are small perturbations of (0, 0).

In the following subsection we discuss the linearized equation around (0, 0) and
introduce the associated (frequency-localized) solution operators. In particular, we
show that the linearized problem around (0, 0) (which we call the homogeneous prob-
lem) is stable in arbitrary regularity. In contrast, as we sketch in Sect.3.1 for a toy
model the norm inflation of the corresponding non-linear problem is closely linked to
the interaction of high and low frequencies by means of the nonlinearity

vLcl)high - VWiou.

In particular, this mechanism is not present in the linearized problem around (0, 0)
but is present in the linearized problem around traveling waves. The main aim of the
remainder of this article is to show that this linearized problem around such waves
indeed captures this norm inflation mechanism and to identify the sharp regularity
classes corresponding to this norm inflation.

2.1 Stability of the Homogeneous Problem

A natural first step towards understanding the nonlinear behavior of initially small
solutions of (7) is to study the linearized problem

Z)tW == axF,
O F = —ad, ®,
(02 + (8 — 18)2)® = W.

Given this form, we symmetrize the problem by introducing the good unknowns (3)
(as in Bedrossian et al. (2021)):

Z(t,x,y) = Va(@;28)" o)t x + 1y, y),

Q. x,y) = (B M) 49:0) (1, x + 1, y),

O, x,y) = (A @)t x + 1y, y).
We remark that the problem decouples after a Fourier transform in x and hence in our
definition of Z, Q we may choose any power of 9 instead of |d,|'/2. This particular
choice is made to simplify calculations for 9, 2A and to exploit slightly improved

cancellation properties in Proposition 4.4. For the x-average we omit the |, |'/? and
define
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/Z(z,x, y)dx = ﬁw‘”/wdx,

fQ(t,x,y)dx = |$|1/2/9dx.

The following proposition states the stability result of Lemma 1.1 in terms of
these unknowns. We again emphasize that this linear stability result is known in the
literature (Bedrossian et al., 2021; Zillinger, 2021; Doering et al., 2018; Tao et al.,
2020; Bianchini et al., 2022). In the interest of a self-contained presentation and in
order to highlight the effects of (missing) traveling waves, we include a statement in
our notation and a full proof.

Proposition 2.1 (see (Bianchini et al., 2022)) Let ¢ > ‘—IL and consider the linear
system

~12
3 (Z) + —iL Jwdar! (Z) =0
o) "\—vaaa"? 1L, 0

Ap =3 + 3y — 13,)*
Ly = 8,(dy — 1) AL

Then the energy

E@®) = |Z|? 2 VA lLaA*W*1
) =1ZlI7. + 12172 +( m 1 (Ox ) 0)p2

is approximately constant in the sense that there exist constants 0 < ¢ < C < 09,
depending only on «, such that

cE) < E(t) < CE(0).

We remark that all operators involved are constant coefficient Fourier multipliers. The
problem hence decouples in frequency and we may therefore replace the L? space in
the definition of E(¢) by any Fourier-based Hilbert space such Sobolev spaces H,
Besov spaces or Gevrey spaces and obtain the same result. We further remark that, as
a decoupled ODE system in Fourier space, the solution operator could be computed
explicitly. However, in view to later perturbed estimates, where upper bounds are
sufficient, we instead employ an energy estimate approach as for instance used in
Bedrossian et al. (2021).

Proof of Proposition 2.1 We observe that the operator on the right-hand side of the

equation
; <Z> 3 L, Jaaea (z)
"\o ST VR Y 0
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has anti-symmetric off-diagonal entries. It thus follows that

d
E(uzu2 +101%/2 = —(L/Z, JaZ) + (L, Q, Q).

Since L; is a bounded operator one may already obtain a rough upper bound by
employing Gronwall’s lemma (we remark that at this point we do not yet require
a > %). In order to improve this estimate we further use that also the diagonal entries
are symmetric. Therefore we may compute that

d 1 _ B
TAZ o L0, V2102

=(L:Z,JaZ) — (L Q, Q)

1 _
+{Z, 0 (G L0, -1 0).

Here the first two terms exactly cancel with the ones above and thus

L E (2. 0,L0.07) 0.

dt 2

Similarly as in Bedrossian et al. (2021); Zillinger (2021); Doering et al. (2018) we
observe that the operator norm of

1 —1/2._1
L0, A
Va (0 A7)

is strictly smaller than 2 if (and only if) & > 4—1‘. Therefore, in that case E(¢) is a positive
definite bilinear form in (Z, Q) and it follows that

—1/2

d 1 1
EESC 3t(§Lt(3xAz ) )| E.

The result hence follows by Gronwall’s lemma and noting that the problem decouples
in frequency. More precisely, instead of controlling the time integral of the operator
norm of 8t(%Lt(8xA_1/ 2y=1) it suffices to control the time integral of the Fourier
symbol for each fixed frequency:

1 / 5 (& —knk (K + (& —kn?)!/? dt
2va )] |72+ —ki)? ik ’
which is uniformly bounded. O

Having established stability of the linearized problem around (Z, Q) = (0, 0) in the
following we study the linearization around traveling waves.
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3 Echo Chains and Gevrey Regularity

While the results of Sect.2.1 establish linear stability of (Z, Q) = (0, 0), nonlinear
stability (see (Bedrossian et al., 2021)) and asymptotic behavior for large times are very
challenging problems. As a first step towards understanding the (optimal) long time
behavior of the nonlinear Boussinesq equation (7) near a shear and hydrostatic balance,
in the following we consider a toy model highlighting the role of the nonlinearity and
of traveling waves.

3.1 AToy Model and Optimal Gevrey Classes

Resonance chains in phase-mixing problems often manifest as a low frequency part of
the solution interacting with the high frequency part by means of the nonlinearity (see
for instance (Deng and Masmoudi, 2018; Bedrossian et al., 2016; Deng and Zillinger,
2021; Zillinger, 2021)). Based on this heuristic in this section we introduce a toy model
capturing this mechanism, which allows us to identify an expected optimal regularity
class. The main aim of the remainder of the paper then is to show that the linearized
equations around a traveling wave indeed exhibit this growth.
We recall that the nonlinear Boussinesq equations near a traveling wave read

z ~ir, Jaaa'? <z>
0y <Q> + (—ﬁaxA]/z 1L, 0

FO10: 112074 sin(x)d, 8, |~ 2A 4 2)
2O~V A (sin(x)d, 10,126, 2)

FOA+)7a, |1/2A*1‘/j(sin<x>ay|ax|—1/2A1,‘/:Z>
g (141713, |7 2A (sin(x)dy 0, /2A; 4 0)

—1/4 _ —3/4 _ 1/4
ENERYS /<VL|a| AT 7 V10,712 7)
10,1712 A4 (v Lo, |~ 1/ZA‘”“Z~V|ax|1/2A:”“Q>

Here we consider Z and Q to be at high frequency and thus the right-hand side can be
seen as paraproduct decomposition into low-high, high-low and high-high frequency
products.

In order to derive our toy model in a first step we ignore all terms except the low-high
term, which drives the resonance mechanism and arrive at

’ (Z> FO18: 2 A7 sin()aylax =126, 7)
"\o 200,72 A A (sin(x)dy |0, |7 V2A, 2 2y |

We observe that in this model the evolution for Z decouples and, since the coefficient
functions do not depend on y the equations further decouples after a Fourier transform
in y (which is also true for the linearized problem around a wave, but not for the
nonlinear problem). Let thus £ > 1000 be a given frequency in y and suppose that Z
is localized at frequency k in x and & in y. Then the multiplier
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AT s )T+ - gi)z)*/“

is small unless ¢ ~ % As in Bedrossian et al. (2021) for the toy model we thus
consider a two-dimensional system, which is supposed to approximate the evolution
of F(Z)(k, &) and F(Z)(k—1, &) on atime interval, where t &~ % More precisely, we
replace powers of A; by its Fourler symbol and for simplicity of the model approximate

‘- k% ~ - k% ~ 5—2 and - k+1 ~ 1. Then the toy model reads:
£ 1 § 234
WZr=f(t)S5——F— (5 z
i ZR f()k2(1+(t_§)2)1/4((k2)) N
§ & 01 1
0 ZNrR = f(t W7
i ZNR = f(1)— ((kz)) (1+(t—%)2)3/4 R

In Bedrossian et al. (2021) the authors construct a toy model in the same way, but
further estimate f(¢) < 1 from above. Recalling from Lemma 1.2 that

[f@)| < Cev14t

uniformly in time, this upper bound is achieved for 7 being comparable to € ~2. How-
ever, for smaller times this upper bound is a (potentially large) overestimate, leading
to a larger growth bound on the chain of resonances.

More precisely, we observe that by our choice of time interval ¢ ~ % This toy
model thus suggests a growth by

= E
kY k2 —V k2’

which is potentially much smaller:
Lemma 3.1 Letr & > 100 and k € N be given and define
to = ZE
§ §

_E(m-l‘ =).

Then on the time interval I = (tx, ty—1) we consider the simplified toy model
8; ZR - 0,

_ 2 1/45 § 2y-1/4 !
HZnr =€l +17) 7" = (( 2) ) (1+(t_%)2)3/4ZR

Then if Zn g (tx) = O there exists a constant 1 < C < 10 such that

1

_ 2 1/45 § 2 a___ -
ZNR(tg—1) = ZR(lk)/G(l + 17977 = 2) )" 1+t — %)2)3/4[1[
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where we use = to denote upper and lower bounds within a factor 10.

e We remark that here we neglected the evolution of Zg, which in turn effects the
evolution of Zyg. As we discuss in Sect. 3.2.3 taking this coupling into account
results in a slightly modified growth bound by

ofi(2)

e By the restriction on the time scale it holds that 6\/% ~ €4/t < 1. Thus the amount

with [y — 1| < & instead.

of growth may be estimated from above by uniformly in £. However, this is

k2 ’
an over estimate for most values of k and &.

e As we discuss following the proof of this lemma, the dependence on € and k here
strongly differs from the one of the Euler equations.

Proof of Lemma 3.1 The integral formula is immediate. We further observe that

EE L\ E\2 [ £\ £
cardi ()~ (G) (&) =m

and that

1
/ ! dt = VAT @) ~52#0.
R

a+a—%¥“t_ ré)

The result hence follows by observing that 1f > is sufficiently large the integral over
I is comparable to the integral over all of R O

Iterating this heuristic growth bound we may conjecture a total growth of
1 2
/3
fﬂpﬂw@WﬁM@>> ®)
by choosing ko & (¢£)?/3 and using Stirling’s approximation. Thus at first sight this
toy model suggests stability for Gevrey 3 /2 regular initial data, uniformlyin0 < € < 1

and for all times. However, since our evolution is restricted to the time interval

(0, 8¢72)
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this is an overestimate for large values of £. Indeed, for a resonance to happen the time
t = % needs to have passed. Thus if £ is very large then in the above product we may
only consider those k for which

%56‘2©k2§62,

while by the above consideration our cascade should start at ky to maximize the product
and we thus arrive at an estimate of the possible norm inflation by

&
[ &= ©)

Ee2<k<(e§)?/3

4

Lemma3.2 For0 <e < 0.1 and 0 < & < €™ " consider the function

€&
Ge.o)= ] e
E2<k<(e£)2/?
Then it holds that
G(£, €) < Cexp(3/2(e€)*?).

Moreover, this bound is attained in the sense that for any 1 < o < 4 we may consider
& = €77 and there exists €, > 0 such that for 0 < € < €,

G(e7, €) > Cexp(0.1(ce9)*/3)
We note that

ge? < (e&)*3

<:>$§e_4

and that the product is empty if & is larger than this. In particular, for £ > ¢~* we

may expect to obtain a uniform bound instead of norm inflation (this is shown in
Proposition 3.6).

Proof of Lemma 3.2 For simplicity of notation let ko = [ (¢£)%/3]. Then for the upper
bound we may replace the starting point of the product by 1 to obtain

Geo= I 5

1<k<kg

_ ((55)2/3]‘0/](0!)3/2 .
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For kg < 100 we may control this quantity by a constant uniformly in € and &, since
(eé)z/ 3 < ko + 1. It hence suffices to discuss the case when kp is large, where by
Stirling’s approximation formula it holds that

ko! ~ v/2mkokide k0.

We may therefore further estimate

G(&.e) < e Mo mko) > (€6 ko)

which yields the desired upper bound by noting that the last factor is controlled by
((ko + 1)/kg)* and hence uniformly bounded.

For the lower bound we argue similarly, but now have to take into account that the
product starts at k; := [€2£ | and hence

GGe.e) = ((e)” 3"°//<o!)3/2 (ke 3’“)3/2 .

We thus need to show that the second factor is not too small and hence cannot cancel
the growth. Here we again may restrict to the case when k| is large and use Stirling’s
approximation to compute

kil(eg) 23 ~ (ki (&) e M 2k,
~ (55 e oy
= (geH Bk Jank
= exp(—ki (1 + log(&e*)))y/2mky.

It thus suffices to estimate
exp (3/2k0 — 32k (1 + log(§64))) .
Here we observe that for £ = €~ it holds that

ko ~ 6(1%)%’

kl ~ 62_0,

log(£e*) ~ (4 — o) log(e).

Since o > 1 the power of € in the formula for k is negative and for o < 4 it holds
that

¢ )2 2
—o0)-<2-—o.
3
Hence for 0 < € < ¢, sufficiently small 3/2ko dominates. O
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Thus on this time interval the total growth is limited in terms of € (by a frequency
cut-off) and letting € tend to zero the optimal Gevrey regularity class is expected to
be given by 2.

Conjucture Let 0 < € < 0.1 and consider the nonlinear Boussinesq equations per-
turbed around traveling waves of size €. Then on the time interval (0, € ~2) the optimal
space for stability is given by the Fourier weight

exp((€&)¥?) ife™! <& <1004,
1 else.

We remark that stability in Gevrey 2, thatis abound by exp(C /&), has been established
in Bedrossian et al. (2021), which coincides with the above weight for & = €% The
conjecture suggests an improvement to these estimates when £ is much smaller or
much larger than € ~* and that for £ < € ~* the exponent of growth

() <!

is attained. As first step towards proving this conjecture in this article we show that this
statement is true for the (simplified) linearized Boussinesq equations around traveling
waves. We remark that the above heuristic also suggests growth bounds for 1 > €2
for data in higher regularity classes (e.g. global in time for Gevrey %). However, at
that point the toy model simplification

8[ZR ~ 0

ceases to be justified and the toy model has to be replaced. The question of stability
on larger time scales than (0, e ~2) for more regular data thus remains an interesting
problem for future research.

For comparison we also note that for the Euler equations and a wave initially of
size € the growth of the vorticity w (instead of Z) is bounded by

exp(y/€£)

and thus stability in Gevrey 2 regularity holds when considering arbitrarily large times
(Deng and Masmoudi, 2018; Deng and Zillinger, 2021; Bedrossian and Masmoudi,
2015). When also restricting to the time interval 1 < € ~2 we require that & is such that

6_2

IA

673

3

IA

and thus

exp(\/%) < exp(min(§1/3, 6_1).
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From this heuristic model we can thus already see that the hydrostatic balance for
o > % yields a strong change of the stability and norm inflation behavior of the
Boussinesq equations compared to the Euler equations: The growth of the underlying
traveling wave results in larger norm inflation.

3.2 The Inhomogeneous Problem and Upper Bounds

Building on the heuristic of the previous model in the following we consider the
simplified linearized Boussinesq equations around a traveling wave

z z L1274 0,10, 1712 A7 Z cos(x))
0 A = 1
’(Q>+ (Q) (g<r>|ax|—1/2A,‘/“<ay|ax|-l/2At”“Zcos(x)) U

where we omitted the low frequency velocity contribution

1412 Cl4

L r@19:0"287  cos(n)dylay | 24, Z)
L1720 (cos(x)ay o712 A, Q) )

As we discuss in Sect. 4 this term does not qualitatively change the dynamics at large
times, but is technically challenging to control for small times.

As suggested by the notation we consider this problem as a (possibly large)
perturbation of the inhomogeneous problem of Sect.2. In particular, if we denote
by

S(t2,11)

the solution operator of the homogeneous problem, then we may equivalently express
the above differential equation as the integral equation

(é) (12) = S(t2. 11) (g) (1)

. FOI A @y 0028 Z cos(x))
+ S(12,1) 172 A 1/4 —1/2 A—3/4 d
3 8(B)[0x |7/ A;" 7 (y| 0| A, Z cos(x))

We next recall that the solution operator S(-, -) is given by a Fourier multiplier and
decouples in frequency. Hence, taking a Fourier transform in both x and y we arrive
at a system with nearest neighbor interaction.

Definition 3.3 (Inhomogeneous system) The simplified linearized Boussinesq equa-
tions around a traveling waves for a perturbation frequency localized at £ € R
read
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(gi) (t2) = Sk(t2, 11) (3}2) (t1)

1%) + —
¢y Zik+1 + ¢ Zi—1

+ Sk(ta, t (k Kk )dt
/,1 k(2. 1) df Zis1 + di Zi—

Y

where we introduced the coefficient functions

1
G =+ (”(kf—nz“ @k = 0D AU E k£ 1) — ),
di = j:lg(t)LL(l +Eh =D A+ E/E 1) — )P4

2 k£ D2k £1
(12)

and denote by Zy, Qy the Fourier modes at frequency k € Z in x and frequency £ € R
in y. As the system decouples in £ we treat it as a fixed parameter and suppress it in
our notation.

The toy model of Sect. 3.1 here omitted all terms except the main resonance mechanism
due to c,j_l. Our main aim in the following is to show that this model indeed provides
an accurate heuristic and that all other contributions can be controlled.

e The main time regime of interest is given by time intervals [, where ¢ ~ %, for
which c,:l is comparatively large. This regime is studied in Sect. 3.2.3. Here the
coupling of modes leads to a modified growth behavior as compared to the toy
model of Sect.3.1.

e In Sects.3.2.1 and 3.2.2 we show that in the remaining time intervals resonances
are too small to have a large effect on the dynamics and the evolution is at most
algebraically unstable.

3.2.1 The Long Time Regime
In this section we consider the regime of “large” times, where
26 <t < de 2.

As suggested by the heuristic model of Sect.3.1 for such large times there are no
resonances and hence the evolution is at most algebraically unstable.

Proposition 3.4 let 0 < & < 28¢ 2 be given and consider the time interval
I = (2&,8¢72).

Then on I the solution to the system (11) grows at most algebraically in any Sobolev
or suitable Gevrey space in the sense that the Fourier projections away from and onto
the modes k = —1, 1 satisfy

ILix£1(Z, QYD = Co eXp(IO)\/gll(Z, Q)28
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14
ITik=1(Z, Q)| = Ca.y (é) eXp(lo)\/?II(Z, Q)28

foranyt e I andany 1/2 <y < 1.

This proposition implies a bound on the norm inflation on this time interval by #3/% <
€3, which is much smaller than the exponential growth bound expected on earlier
time intervals. We further remark that this time interval is empty if £ > € 2 and that
this proposition is hence only concerned with “small” frequencies.

Proof We recall from Proposition 2.1 of Sect.2.1 that the solution operators
Sk(-, ) C? > C?

are bounded by a constant Cy, uniformly in k.
It thus suffices to control the corrections of (11)

5] + -
¢ Zi+1 +¢ Zk—l)
Se(t2, 1) | K k. dt
/25 k(t2, 1) (d]j_Zk-H +d; Zp

in a suitable way to invoke Gronwall’s lemma, where we will distinguish between the
case where |k| > 2 and the cases k = —1,0, 1.

For simplicity of presentation in the following we establish estimates in the
unweighted space £2. The case of weighted spaces with a weight A; can be reduced
to this case by considering modified coefficient functions of the form )‘ﬁ—f'c,:{t More
precisely, for instance for Sobolev spaces we may choose Ay = 1+ c|k|®, where c is a
small constant and hence deduce that % is bounded above and below by constants
close to 1. Hence all estimates below extend to this case with possibly a small loss of
constants.

In the following we estimate the coefficient functions. We observe that for t > 2&

all frequencies k # 0 are non-resonant in the sense that

1
|& — kt| > Et > €.

In particular, recalling the definition of the coefficient functions (12) as long as none
ofk,k — 1, k + 1 are zero, we may bound

§

lcE+ 1| < Cr®5,

for some universal constant C, where we with slight abuse of notation estimated
g(t) < f(t)/t. We further recall that by our choice of time interval

fn<Vs<1
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is small and note that

e 122

Hence, for these coefficient functions we obtain uniform L! estimate in time (more
precisely, the supremum in & is still in L).

It hence only remains to discuss the cases k € {—1, 0, 1}.

Here we observe that while

05

is uniformly integrable,

. ()

€1 = £1/2,1/2

is not.
Therefore, we cannot hope for better growth estimates than for the simple ODE

system
§
/()= (%))
b Tidi 0/J\b

for t > &. Note that after rescaling we may without loss of generality set £ = 1. We
may then introduce 1/2 < y < 1 and consider

a 0 £ a
0 ((L)Vb) = 1 tz*)f <(L)yb> :
§ v /2ty Tt §

We observe that the anti-diagonal entries are integrable in time by our choice of y,
while the bottom right-entry is negative. Hence, by Gronwall’s lemma

2 Loy 2
+1(2)7b
|al KE) |

remains uniformly bounded, which implies that |a| remains bounded while |»| might
grow algebraically.

The claimed estimate then follows with b = |[(Z1, Z_1)| and a = [|(Zy)rg¢{—1,1} -

O
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3.2.2 The Small Time or High Frequency Regime

By the results of the preceding Sect.3.2.1 any possible norm inflation has to happen
for times

0<t <2t

Thus similarly to the setting of the Euler or Vlasov—Poisson equations we partition
this time interval into regions in which ¢ is comparable to % for some k € N.

Definition 3.5 Let & > 0 be given. Then for any k € N we define

PO S
_2(k+1+k)’
to_zév

and the associated time intervals
Iy = (&, tr—1).
We further define

ko = L(elED?3].

We recall from the toy model of Sect.3.1 and from the structure of the coefficient
functions c,f, d,f stated in (12) that on a given time interval [; the main resonance
mechanism is expected to be determined by

€ 3pe_ip
/Cl?il’\’_kyz”“/g 2,
I

In particular, this value is bigger than 1 for k < ko and smaller than 1 if k > ko + 1.
We further remark that, if £ is much bigger than e ~* or if 7 is small, then we expect
resonances to only result in small perturbation of the dynamics, as we prove in the
following propositions. The main resonance mechanism in the remaining time interval
is then studied in Sect.3.2.3. As a first result we note that if & > e~ is very large
all permissible choices of k (that is, with #; < €~2) are non-resonant and stability
estimates can be obtained by a simple ode-type estimate.

Proposition 3.6 (High frequency I) Let § > € —4, then there exists as constant C
depending only on a such that for any choice of initial data it holds that

I(Z, Q)(1)I| < exp(C min(t, (€£)*3, e *NI(Z, Q)(O)].
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Proof (Proof of Proposition 3.6) We recall that by Definition 3.3 we may equivalently
consider a system of integral equations

Z . Zy
(Qk) () = S(,0) <Qk) 0

t + -
¢ Zkv1 + ¢ Zk—1
+ | S,k k ) 7)dT.
/0 k(1,7 <d,jZk+1 +d, Zp (®)

In particular, using the bounds on Sj of Sect.2.1 it follows that the solution satisfies
the integral inequality

t
1(Z, OO = ClIZ, DO +/0 ClIl(Z, ) (Dl Slllp(lcli(f)l +1d;" (T))dx,

where C is a constant which may depend on «. The claimed bound hence follows by
an application of Gronwall’s inequality provided

sup (I (D) + [diF (D)) < 100. (13)
1,7€(0,672)

Indeed, we observe that for ¢ € I; it holds that

5 ifl>k+1,

£ ~ _
<t |V ek L,
(k‘%)—l/2 ifl =k,
S4e! ifl<k-2

Here we estimated

£

2

= | v
~ v

| =

=~

for [ # k and observed that since & > e4 > 2 2fork ¢ {—1,0, 1} we estimate
& — kt| > %S . It thus only remains to observe that

2
£=<§> £l A 2671 <

is uniformly bounded by assumption on £ and that f(#) < 1 by our choice of time
interval. The estimates on dljE follow analogously by noting that g()+/1 + ¢ is uni-
formly bounded by our choice of time interval. Thus the estimate (13) holds, which
concludes the proof. O

We remark that this bound is very rough and not expected to be sharp for most choices
of £. Indeed as suggested by the model of Sect.3.1 if £ is much larger than ¢ ~* we

obtain no norm inflation at all.
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Proposition 3.7 Let C, denote the operator norm of semi-group of the homogeneous
problem, that is

Co= sup [S(1,9)l.
leZ,t,seR

Then for all § > ZCO,G_4 and all t € (0, €~2) it holds that

I1(Z, D)D) = CCull(Z, D

The evolution is uniformly bounded.

Proof of Proposition 3.7 We claim that for this choice of & it holds that

1
sup/ lcFldr < —C " (14)
1 J0.5¢-2) 4

Recalling the integral equation

Z _ Z ! + 4 [ Zix
(Qz) ) = S(t,0) <Q1) (0)+/0 S, ), q )<Q1i1)’

we thus deduce that

1
[(Z1, ODI(@) < Col(Z1, ONI0) + 5 (SOUI; [(Zix1, Q1)
"t

In particular, we may consider the supremum in # < t on both sides and consider
(suitably weighted) £ norms to obtain that

1(Z, Dl = | Slilt3|(Zl» oD@l 2
satisfies
1
1(Z, D2, < Call(Z, Q)OO 2 + EII(Z, Dlle2 ;-

Since the factor % on the right-hand side is smaller than 1 we may subtract it from
both sides and obtain that

1(Z, Dz, =2Cal(Z, QYO 2.

Finally we observe that

sup [[(Z1, QN ()lle2 = [I(Z, D2,

T<t
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and that for a time independent function (such as (Z, Q)(0)) equality holds.
It thus only remains to establish the estimates (14). Indeed we observe that if
Ii+1 C (0, 8€2) then

+ § 3/20—1/2 _ _—2¢-2 1
cldt < ft) =5 <e)’7& SeETT S —
f,,il lerldt < F ) 4C,

On the remaining interval and for all other [ we may estimate f(#) < é and observe
that

1 1
< 10.
/(0,55—%\1, : CHE =DV A2+ E - £ D)2~
and that for [ # 0
£ 1 1
o PHE=HAHAE D>+ (E - £ D234
& _ 1
<5l 1/2/ TTUE oun
! n(1+G =02l
§ _ipé
<257 I <2,
The case [ = 0 is estimated analogously. O

The same method of proof can also be applied for general & when restricting to
suitably small times.

Proposition 3.8 (The small time regime) Let € < € ~* and define T < €2 such that

eT32e~1/2 = 1

4C,°

Further suppose that § < C_la with Cy as in Proposition 3.7.
Then for all 0 < t < min(T, 8¢ 2) it holds that

1(Z, Q)2 = CI(Z, Q)ll2-

Proof of Proposition 3.8 We claim that for this choice of T it holds that

T 1
/ el < —,
0 4C,
T 1
/ dF| < —.
0 4Cot

The result then follows by the same argument as in the proof of Proposition 3.7.
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Indeed, we observe that for k such that #; < T (that is for all k larger than k| with
ty, ~ T) it holds that

§ 32,10 _ |
Icf| < e=m <e)/ 7712 < —.
/Izil ! k3/2 k 4Cq

If instead k is such that #; < T (or if we integrate over (0, T') \ I;+1) then integral is
not (yet) resonant and hence

O

For times larger than T resonances are possibly very large and thus the preceding
argument does not work anymore, since estimates of the form

I(Z, Dllez,; = C+21(Z, Dlle2;

do not control the norm. In the following Sect. 3.2.3 we thus instead establish growth
bounds on each interval I; which mimic the growth of the toy model of Sect. 3.1 with
slight changes to the exponent.

3.2.3 Main Echo Chains

In this section we consider the main norm inflation mechanism of the (simplified)
linearized Boussinesq equations as compared to the toy model of Sect. 3.1. Here, sim-
ilarly to the Euler setting (Deng and Zillinger, 2021), it turns out for large frequencies
the back-coupling between resonant and non-resonant modes results in correction of
the growth bounds, which has to be taken into account. As we discuss in Sect.4 the
following results remain valid for the non-simplified linearized Boussinesq equations
as well.

As a preliminary step we consider a more accurate toy model and establish more
accurate bounds. Similar bounds have previously been established in (Bedrossian et
al. 2021, Proposition 4.1). We additionally highlight the time-dependence of f (¢).

Lemma 3.9 Let 5—2 > 100 be given, let 0 < f(t) < & and consider the differential
inequalities

§

[0: ZNR| < f(2) RN

|ZR],
£\ |
[0: ZR| < f(2) <k_2> WMNRL
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on the interval (—]f—z, f—z). Then there exists a constant 0 < y < 2§ such that
£ £ £\ ¢ £
IZNR(+k7) - ZNR(—kj)l < Iflizee <kj) |ZR(—k7)| + ||f||L°°|ZNR(—k7)|) ,

1/2+y
|ZR(+k%) - ZR(—]%)I < I fllree <k%> <|ZNR(_I%)| + ||f||L°°|ZR(—k%)|> .

That is, we obtain an upper bound on the norm inflation by || f| Lo (5—2)1/2+V.

We remark that if f(¢) is replaced by a constant and if we consider a differential
equation instead of an inequality, then the ODE system

5 () — 0 P\ (u
"\ v =f (i)—1/2+ 0 v
k2 (]+,2)1/4

can be solved explicitly by noting that u solves
1
(14934, + Y4 u = (1 +12)02u + S0 = fu.

This is the defining equation of Legendre functions and the above estimates hence
follow from the known asymptotics of these functions.

The main aim of this lemma is thus to provide a more robust energy-based proof,
which also extends to differential inequalities with time-dependent coefficients.

Proof of Lemma 3.9 We consider the following energy:

2\1/4 .
‘o |%ZNR|2+|ZR|2 ifr <0,
t) ==
|\/;/?ZNR|2+|(1+1‘2)_1/4ZR|2 ifr > 0.

We note that £(¢) is continuous and that both (1+¢%)!/? and (1+£2)~!/? are decreasing
on the respective time intervals. Hence by direct computation

#EW) < fFO(1+1H)72E).

§ £

Integrating this inequality on (—k—z, ﬁ) we obtain that

T
E(T) = exp (/E f(t)(1+t2)1/2> 5<—f—2>-
T2

forall T € [— 5 f—z]. In particular, it holds that

k_27
Y
e C5)
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and by construction

§ §

&
& _k_z) A |ZNR(—ﬁ

)2+ |ZR<—p>|2.

We have thus established upper bounds for general initial data.

We next consider the differences compared to the initial data. By the fundamental
theorem of calculus for any —5—2 <t< ks—z it holds that

T

|ZNR<r)—zNR(—,f—2)| < [, FOU+7Zg)
T2

=~

T

< |, FOA+AT P+ 0+ 0 VEWdr
T2

< If Ol + Y VE (—5)

=~

k2 k2
£, 3 3
= 1Ol (1 + G (Zr (=) + | Zwr(=5)D-

This is almost the desired bound except that we are still missing one factor of || f|| poo.
It is however already sufficient to estimate Zg as

|Zr(7) — ZR(—,f—zn <IF@Ollpe /_%(1 + )74 Zyr () — ZNR(—k%n + |ZNR<]f—2)|>dz

£\'"? 3 £
< f®llLe (ﬁ) (I1Zyr(@) — ZNR(—kj)I + |ZNR(k7)|)-

Finally we may return to the bound for Zy g and split

|ZNR<r>—ZNR<—f—2)| 5/ . f(t)(1+t2)*3/4(|ZR<t)—ZR(—f—2)|+|ZR(,f—2)|
Tz

and insert the just derived bound. O

Having established this improved model we next show that also the (simplified)
linearized Boussinesq equations exhibit this modified growth (as compared to the toy
model of Sect.3.1; the non-simplified equations are studied in Proposition 4.2). Here
in addition to the above growth bounds we have to take into account the evolution by
the homogeneous semigroup (see Sect.2.1). We further recall that for the linearized

Boussinesq system
/§
Dl ~e,/-.
[f()] ~ e k
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Proposition3.10 Let0 < & < et a> 4_1‘ and 0 < € < § and consider the linearized
Boussinesq equations (11) on the time interval

Iy = (%, te—1)

with 1 < k < ko and ti, ty—1 as in Definition 3.5. Then there exiits C = C(a) and
0 < y < 8 such that for all choices of data at time t;, and all t € I} it holds that

N
k) (

2 IZ, 9@l -

I1(Z, Q)2 = Ce(
Corollary 3.11 Under the same assumptions as in Proposition 3.10 for any | < kg it
holds that

' eV
MZmeMzSMZADWthII<%(z> (ﬁ)

I<k=ko

Thus the total possible norm inflation on (iy,, 8e~2) is bounded by the exponential
factor stated in Theorem 1.3.

Proof of Corollary 3.11 The result follows by repeated application of the estimate of
Proposition 3.10. In particular, choosing #; maximal we obtain the products discussed
in Sect. 3.1 with an additional correction in the exponent. O

Proof of Proposition 3.10 Based on the structure of the homogeneous problem as
studied in Sect.2.1 we consider

1 -1

Et) =Z1(0)]* + 24 RZ,0,.
10 = 1ZOF 4100 + 572 e 210

Then by the estimates of Proposition 2.1 it holds that

8 Et) < Co, [ ¢ - E
(Ei(t) < Co; 2a PGl (1)

+2Zi(c] Zig1 + ¢ Zi—1)
+20:(d;" Qry1 +d; Q1-1)

1 —1 _

lz(j- 7 t—)lt)2 Z/d;" Q111 +d; Q1-1)
1 —1 _

kz(i T ?lt)Q Oi(c) Ziy1 + ¢; Z1-).

In order to remove the first term we introduce

) 1 € 1)
Ei(t) = E;(t) exp /3’ 2/ JI2+ (& —11)? “
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and observe that

WE; < C\E(Ic] | +1d, Dy Eigr + Cy Er(e | + 1d Dy Ei-1.

Recalling that

E/DV2A+ @ = DD i =,

+
le < 1f (@] {(E/k)—l/Z(l F=5HHT else.

we are thus in the framework of Lemma 3.9. More precisely, we may define
Znr =\ EL + B

2
> B
I¢{k—1,k+1}

Then by the above estimates these functions satisfy the assumptions of Lemma 3.9
with

Zr

0<|f() <eyE&/k <.
In particular, it follows that
IZ, Q)2 ~ |1 ZrI* + | Znr)?

grows at most by a factor

£ 1/2+y
L+ f@)llLee (ﬁ) .

Since we are in the regime where the latter factor is bounded below, we may omit the
1 at the cost of a constant factor, which proves the result. O

4 On the Model Reduction
In this section we discuss the non-simplified linearized Boussinesq equations
Z Z FOAT 0,07 Z cos(x))
o 0 +A o)~ 1/4 0 A —3/4
gMA, (0yA; 7" Z cos(x))
1 (f(t)A,‘/4(cos(x)ayA}/4Z))

1+ 22\ f()A (cos(x)a, A4 0)

15)
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which we may also express in an integral system as in Definition (11) by introducing
the coefficients

t
P = if(—)"i(kz +E - kD) (£ 1)+ ¢ — k£ DnHVH,
2(1 +12) (16)
f0§ 20174 2 2,1
hE=+——"(k — k)" (k£ 1 — (k£ DHHV4
k 2(1+t2)( + (¢ ) )"+ (E—( ))7)
We observe that by our choice of time interval
f@ LW/t 1
- < - §—
Y I EeAR pred
is small and integrable and that
)
1—|——t2 COS(X)ay
is a transport operator which corresponds to a change of variables
(x,y) = (x, y — F(1) sin(x)),
' f@ (17)
F(t) = &dr < 2e,
o 1+12

which is an analytic change of variables and a small perturbation of the identity (for
€ small).

In view of this smallness and in order to simplify the analysis of the model and the
presentation of the resonance mechanism, throughout this article we have considered
the simplified linearized Boussinesq equations which omitted these terms.

In the following we show that this simplification indeed does not change the results
of the long-time regime of Sect.3.2.1 and the echo chains of Sect.3.2.3. For the
small time regime of Sect.3.2.2 we obtain (much) rougher bounds for the full model.
We expect that with (considerable) technical effort it should be possible to improve
these bounds after incorporating an additional change of variables (see the discussion
following Proposition 4.2).

We begin by discussing the “large time” regime of Sect.3.2.1:

26 <t < de 2.
Proposition 4.1 Let €, 8, f(t), y(¢) be as in Proposition 3.4. Then the solution of the
linearized Boussinesq equations (15) exhibits at most algebraic growth on the time

interval (2&, 8¢ ~2). More precisely, for all t € (2&, 8¢ 2) the projections onto and
away from the Fourier modes k = —1, 1 satisfy:

ILix£1(Z, QYD = Co eXp(IO)\/gII(Z, Q)28
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t t
1jk=1(Z, Q)| = Cot,y(g)y exp(lo)\/gll(l, 0)(29)I,
where 1/2 < y < 1 is a constant.
Proof of Proposition 4.1 We observe that for all k ¢ —1, 0, 1 for ¢ > 2& the fractions
(K + E k) (k£ D? + ¢ = k£ DD~

are uniformly bounded. Hence, for these values of k we may bound

| < L.
“ 1412

o0
1)
/ —é2dt528
2% 141t

is integrable. The result hence follows by the same proof as for Proposition 3.4 by
noting that in the remaining cases

lgif| + 1hT] <

We further observe that

8¢

lgif| + 1hT] < o (r/é)”2

O

‘We next turn to the resonant regime of Sect. 3.2.3 which consists of the time intervals

I, = (t, ty—1) for which
eVE/k\[E/k?

is large.

Proposition 4.2 (Bound on norminflation) Under the assumptions of Proposition 3.10
also for the linearized Boussinesq equations the possible norm inflation is controlled
in the sense that for all t € Iy it holds that

IZ, Q)2 < Ce(%)“z(f—z)y IZ, Q) () l2

where C = C(a) and 0 < y < § are constants

Proof of Proposition 4.2 We consider the same energies and unknowns as in the proof
of Proposition 3.10, where in the computation of d;E; we obtain additional terms
controlled by

(R + 18D Ersr.
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We now observe that for [ ¢ {k — 1, k, k + 1} it holds that

+ Q)
(Ihf 1+ g/ D) < 1+t2€
and for ¢ € I} we may further bound
f(t) 1 20 —1
f = Ot = O/

sw@m%””a+a—%ﬁ”“.

Forl € {k — 1, k, k + 1} we argue similarly and control

f@
1+(§//’<)25(1

< FOER A+ E/k— DV EHY?
< FOEID2A + gk —nH~A

+ &k =DV A+ E/k+ 1) =D

Thus for all / we may control
(R + gD Erer < cf OE/RD V20 + E/k— )TV E L

in the same way as a non-resonant contribution cli # C/Til' The result hence follows
by the same argument as in Proposition 3.10. O

It hence only remains to discuss the “small time” regime of Sect.3.2.2. Here we
observe that

f@
1+t2E /1+t2§_ €

in general is not small enough to employ the contraction argument of Proposition 3.8
unless & is smaller than €~ ! Indeed also for the change of variables (17) we cannot
expect good bounds in high Sobolev or Gevrey norms for frequencies larger than € !
In order to obtain better bounds we thus have to take these changes into account.

One option here is to consider the unknowns (Z, Q) in the coordinates (17). How-
ever, here F (¢) sin(x) introduces further nearest neighbor coupling in x, which makes
terms such as A, /4 very technically challenging to study. A second option, which
sidesteps this issue, is to restrict to studying stability estimates in £2(Z) (that is, with
respect to Fourier modes in x for a fixed frequency in y), following the argument of
Bedrossian et al. (2021). Since f(¢)/(1 + %) cos(x)dy is an anti-symmetric operator
in L2, this space allows us to exploit cancellation and hence to estimate

pt_ SO

! 2(1+t2>é

instead.
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As a first preliminary result we consider an adaptation of the “intermediate time”
estimate of (Bedrossian et al. 2021, Section 6.3.2), which allows for loss of regularity
in Gevrey o with o < 2 in the time interval where ¢ > /.

Lemma4.3 Let & and T be as in Proposition 3.8 and suppose that /€ < T. Then on
the time interval (&, T) the maximal possible norm inflation is bounded by

exp(8cy &%)

forany o > %

Proof Arguing similarly as in the proof of Proposition 3.8 we consider the energy
exp(A(DEN(Z, Q)17

with A(t) decreasing in time and bounded below, still to be determined. Computing
the time derivative it then suffices to show that A(¢) can be chosen such that

ADET + |g7| + AT
Indeed, we claim that
g7+ 1hf] < £()

and observe that since t < T and ¢t > /£ it holds that

f)Ek <1,
& f@) <g'? )< g7 ROl

The result then follows by noting that r ~1+2~1/2) s integrable and hence
T
A(T) == A(\/g) + / 1201/ 4,
VE

yields the desired result.
It remains to prove the claim. For this purpose we observe that away from resonant
frequencies, that is for ¢ {k — 1, k, k + 1} it holds that

CHE-IH* AL +E-1x D) V<2

is bounded and hence

f@
1+1¢2

lgiF| + 1h| < £< (),

where we used ¢ > +/Z in the last step.
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For the resonant frequency we estimate

C+E-IHM D+ E-CxDH M <200+ f—2>.
Then since ¢ > /£ it holds that.
£(1 i< E+1%)
1412 K277 1412
< 212 < 2.
1+1¢2
This concludes the proof of the claim. O

We next need to consider the “small time regime” where ¢t < min(+/€, T), where
we adapt the argument of Section 6.3.1 in Bedrossian et al. (2021) ( in their notation
we estimate a term similar to 7, A’,’ ’]). On that time interval the bound by /& /¢ is not
sufficient. We thus need to exploit the L? cancellation, which involves

SR SN
(1+(l 1)7) (1+(HEI 1)7) 1.

Lemma4d.4 Let £, T and 0 > % be as in Proposition 3.8. Then for all 0 < t <
min(v/€, T) it holds that

1 _1/4 _
(. |1+—t2<f(r>|ax|‘/2A, Y4 (cos(x)ay 10,1728, Z) 2

_ 4 _
(0, FO18:172A  (cos(x)ay 10,2 A7 0) 12

is bounded by
exp(cs&”)(Z, @)(O0)]I}

We remark that for this estimate we only establish stability in the unweighted £Z space,
since the proof exploit that the shear f(¢) cos(x)dy is anti-symmetric on L2

Proof We observe that fort — oo orl — oo
ARV}

We may hence exploit the fact that the operator f () cos(x)dy is anti-symmetric and
thus have to estimate

FO/A+EQ+E/—H* A+ E/a£D -0~ 1),
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We claim that this term can be estimated from above:

FO/A+EA+EN—DH* A+ E/A£D -0DH D < f( (18)

This is sufficient to conclude since f(¢) < § by assumption and for 1 + ¢ < /€ we
may insert a factor

1=04+07040)7 <&1+17%°
and (1 + )72 is integrable since ¢ > 1/2.

It thus remains to prove the claim (18). We may rewrite the last factor in the term
to be estimated as

I+ EN—DH*A+E/aE£D) —nH V4 -1
=1+ E/ED =) A+ G/ =) = A+ E/CED =D,

We first discuss the case when / and /=1 do not equal k. In this case by the intermediate
value theorem there exists

E__ &
1T
such that
PN NV _ n2y1/4 _ 273/4L
I+ E/1=1)7) I+E/AEDH =) <A+Mm—1)) I£1)

Since both / and / & 1 are non-resonant it follows that [ — ¢| > l(le) and |§ —t| >

TiESN (lfl:l) . Summarizing for this case we obtain that

E(L+E/—H* A+ @/ - -y <c

and thus obtain a bound by f(¢)/(1 + ) < f@.
For the remaining resonant cases the potentially largest one is given by I = k. In
that case we may estimate

E(L+E/—0DH A+ /a1 =)V —1
£

DN+ C =i,

<( %

We thus obtain a bound of the total contribution by

£+ (% S 1)

which concludes the proof. O
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