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Abstract 

Mo6S8 in the Chevrel Phase (CP) and 14-polyanthraquinone (14PAQ) cathode materials-

based coin cells were assembled against Mg-foil as an anode by using 0.3 M magnesium 

tetrakis (hexafluoroisopropyloxy) borate Mg[B(hfip)4]2/dimethoxyethane (DME), 0.5 M 

Mg[B(hfip)4]2/DME and 0.5 M Mg[B(hfip)4]2/tetraglyme (G4) electrolytes. The heat generation 

of those three variants was compared using a sensitive MS80 Tian-Calvet calorimeter. The 

Chevrel Phase Mo6S8 was found to generate less heat than the organic 14PAQ. However, its 

specific capacity was also comparatively lower than for the organic cathode material. It is 

equally important for battery kinetics to have a well-designed electrolyte, therefore different 

solvents with the same electrolyte salt were utilized. Noticeable differences were observed and 

in tetraglyme solvent stable cycling and fewer self-discharge phenomena were detected. 

However, the activation process needs more cycles to achieve the required capacity in the 

case of the Chevrel Phase. The generated heat during cycling indicated the high resistances, 

swelling/contraction in organic cathodes leading to higher heat generation, and poor capacity 

retention. To overcome self-discharging in Mg batteries, side reactions/dissolution of cathode 

materials, electrolyte saturation and the formed interfaces on the anode side must be 

considered. 

Keywords: Cell formation/activation, heat generation, electrolyte, self-discharging, 

impedance. 

 

Introduction 

The development of multivalent metal batteries has long been coveted as the next generation 

of sustainable batteries. Rock-forming elements such as magnesium, calcium, and aluminium 
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are geographically evenly distributed and in abundance. On account of increasing market 

demand, contemporary Li-ion batteries face material availability and sustainability concerns [1]. 

By doubling the number of electrons that are transferred per ion, divalent Mg-ion technologies 

can provide higher theoretical capacity and energy density than monovalent Li-ion batteries. A 

cell’s theoretical voltage depends on the chemical potential difference between its anode and 

cathode [2]. The optimal anode material for Mg batteries is Mg metal, which has a low electrode 

potential (-2.4 V vs. SHE) and a high volumetric capacity of 3833 mAh.mL-1. The Mg deposition 

also tends to form uniform structures and smooth surfaces [3] instead of highly dendritic 

structures as seen in the lithium and sodium depositions [4] [5]. However, the search for a 

suitable cathode material is more difficult due to the two steps involved in ion intercalation: ion 

diffusion and redistribution of divalent working ions [6] [7] . A primary limitation of high-voltage 

cathode materials is their low ionic diffusivity, caused by the strong electrostatic forces between 

the magnesium-ion and the cathode crystal matrix [8]. The need for energy storage systems 

that can meet the demands for safety, sustainability, high energy density, and high power has 

urged an increased interest in rechargeable Mg batteries. However, verification of their 

potential remains hindered by the availability of cathode material [9]. Despite tremendous efforts 

made towards the cathode development only very few of the proposed host structures are 

practically performing well and the benchmark in terms of ion mobility and cyclability,  the 

Chevrel Phase Mo6S8 (CP), was reported more than 2 decades ago [10]. Mo6M8 phase (M = S, 

Se, Te) is an anionic phase that accommodates multivalent cations within the Mo6 framework 

[11]. At room temperature, CPs provide relatively fast and easy intercalation of Mg2+ ions, 

making them a popular cathode choice for magnesium batteries. Since Mo6S8 is a metastable 

phase at room temperature, it is indirectly stabilized by leaching the metal from the 

thermodynamically stable ternary Chevrel phase compounds, MgMo6M8 (M = S, Se, Te) [12]. 

Nevertheless, Mo6S8 has a theoretical capacity of 129 mAh g-1 and operates at less than 1.3 

V vs. Mg2+/Mg which is not appropriate for high-energy density energy storage systems. 

Consequently, magnesium-ion batteries need to focus on higher voltage and high-capacity 

cathode materials for the future. Therefore, organic-based cathodes have been considered as 

practicable alternatives to achieve high-energy, high-power Mg batteries because of their 

intrinsic high operating voltage and specific capacities [13] [14]. While inorganic crystal structures 

are generally dense and bonded by strong intermolecular forces, organic materials are loosely 

packed and provide energetically more favourable ionic pathways. These intrinsic properties 

draw the attention of scientists despite of their low electronic conductivity. There has been a 

great deal of interest in quinone-based compounds as they are thermodynamically 

advantageous in enolization reactions [13]. One example is polyanthraquinone sulfide (PAQS), 

but as a result of the high-capacity decay, PAQS cannot provide sustainable and long-term 

cycling performance. It is, however, still possible to improve the capacity retention of this type 
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of materials to make it an even more promising material for developing high-performance 

magnesium-ion batteries, especially by modification of the molecule and electrode structures. 

In the evaluation of three polyanthraquinone (PAQ) materials, namely 26PAQ, 15PAQ, and 

14PAQ material for the magnesium batteries, it was found that rechargeable magnesium-ion 

batteries perform best with 14PAQ [15].  

The safety measurements on magnesium batteries are currently missing in literature, because 

Mg-batteries are still at early stage i.e., at laboratory research level. In fact, safety data are a 

prerequisite for upscaling and for market acceptance; therefore, in this regard, thermal data 

based on CP and polyanthraquinone cathode materials were measured at coin cell level. In 

addition to being of scientific interest, it is also useful for commercial purposes to explore 

immoderate heat generation during electrochemical cycling. Heat generated during charging 

or discharging can accumulate inside the battery, affecting its performance and ageing, and 

causing unfavourable exothermal reactions, which can lead to thermal runaway [16] [17] . The 

MS80 Tian-Calvet calorimeter allows the direct measurement of heat flow in order to determine 

their heat generation during cycling. Using a 3D Tian-Calvet Sensor arrangement, hundreds 

of thermocouples form thermopiles around the sample and reference vessel, which determines 

heat flow. Consequently, heat flow values as low as 0.01 mW can be recorded [18]. The 

comparison was made on the activation process, cyclability, self-discharging and heat 

generation during the cycling procedure. The CR2032 coin cells were assembled based on 

Mo6S8, and 14PAQ as cathode vs Mg-foil as anode in the presence of 0.3 M magnesium 

tetrakis (hexafluoroisopropyloxy) borate Mg[B(hfip)4]2/dimethoxyethane (DME), 0.5 M 

Mg[B(hfip)4]2 /DME and 0.5 M Mg[B(hfip)4]2/tetraglyme(G4) electrolytes. The difference in 

electrochemical performance based on the different solvents for the electrolyte were 

investigated, and the corresponding heat generation was measured by a 3D-Calvet 

calorimeter.  

 

 

Experimental: 

Electrochemical studies: 

The cathode slurry was a mixture of 90 wt. % commercial Mo6S8 (NEI Corp. USA), 5 wt.-% 

polyvinylidene fluoride binder (PVDF Solef 5130), 5 wt. % carbon black (C-NERGY Super C65) 

in N-methyl-2-pyrrolidon (NMP) solvent, which was mixed using a Speedmixer (Hauschild 

SpeedMixer® DAC 150). The slurry was coated with a doctor-blade on an aluminum current 

collector (20 µm) followed by drying (70 °C and 130 °C) and calendaring. Self-synthesis 

14PAQ@Ketjenblack (14PAQ@KB) composite cathode [19] was prepared by mixing 95 wt. % 
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composite (mass ratio, 14PAQ : Ketjenblack = 2 : 1) plus 5 wt.% sodium alginate in water and 

coated on an aluminum foil following by drying at 60°C overnight under vacuum (10-3 bar). The 

obtained coated electrode sheet had an active mass loading (14PAQ) of 1.5 mg.cm-². This cell 

is later named as 14PAQ-coated cells throughout the manuscript. The 14PAQ cell in reference 

[16] is named as 14-PAQ-pressed material cell, as the author investigated a cathode which 

was pressed onto an aluminium mesh in the cell casing and not in the form of a coated sheet.    

The prepared Mo6S8 cathode sheet had an active mass loading of 3.64 mg/cm². The reason to 

have a bit higher active material powder loading is to assemble a CR2032 coin cell with 

sufficient capacity that can produce a detectable heat flow signal in the calorimeter. The 

positive electrode Mo6S8 of 15 mm diameter and pure polished-Mg metal (15 mm diameter 

disc) as anode were implemented in CR2032 coin cells by adding 150 µl of 0.3 M Mg[B(hfip)4]2 

/dimethoxyethane (DME), 0.5 M Mg[B(hfip)4]2/DME and 0.5 M Mg[B(hfip)4]2/tetraglyme(G4) 

electrolyte solutions and two glass fiber separators (Whatman GF/A). The cells were cycled in 

a battery tester (Biologic EC-Lab, MPG 2) at 25 °C (Binder incubator) within the operating 

voltage window of 0.5 – 1.8 V. The cycling stability tests were performed at a C-rate of 0.2 C 

(charge / discharge) with a constant current profile with respect to the cathode mass loading. 

The same procedure was repeated for 14PAQ coin cells (14 mm diameter cathode and 14 mm 

Mg metal anode). Table 1 summarizes the electrolytes and electrodes combination used in the 

current investigation of coin cells. 

Table 1: The combinations of the coin cells ingredients  

Cathode Electrolyte Anode 

Mo6S8 0.3 M Mg[B(hfip)4]2 /dimethoxyethane (DME) Mg foil 

Mo6S8 0.5 M Mg[B(hfip)4]2/tetraglyme(G4) Mg foil 

14PAQ (pressed material) 0.5 M Mg[B(hfip)4]2/DME Mg foil 

14PAQ (coated material) 0.5 M Mg[B(hfip)4]2/tetraglyme(G4) Mg foil 

 

Using the Biologic EC-Lab (MPG 2) cycler, EIS measurements were made on the coin cells at 

state of charge (SOC) 100% with sequential relaxation time of 1h with the following test 

parameters: frequency range = 20 kHz – 10 mHz, single sine mode, potential perturbation / 

sinus amplitude = 10 mV, points per decade = 6 at a temperature of 25 °C. 

Thermal characterization: 

The pristine formatted CR2032 coin cells from Mo6S8 with ~0.3 mAh and 14PAQ (coated) with 

~0.26 mAh capacity were mounted in the coin cell holders and isolated with ceramic tape to 

inhibit a short circuit. The coin cell holders were attached to the cycler (BioLogic BCS) with 

wires outside the MS80 Tian-Calvet calorimeter. There are four channels in the MS80 

calorimeter, two sample channels and two reference channels, each measuring 32 mm in 
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diameter. It is possible to perform two coin cell tests in parallel in that type of calorimeter. The 

complete experimental set-up was already mentioned in a previous paper [20]. For equalizing 

the mass in the reference and sample chambers, dummy coin cells with the same geometry 

and weight were placed into each reference channel. The related cycling data during the 

calorimetric experiment were recorded via a BioLogic instrument (BCS) with the constant 

current (CC) test profile both in charging (1.8 V) and discharging (0.5 V) with a rate of 0.17 C 

in case of CP and 0.2C at 25 °C with charging/discharge voltage window of 2.5-0.5 V in case 

of 14PAQ. Each charge and discharge cycle were separated by a 10 h relaxation time to 

acquire thermal equilibrium. 

Post-mortem investigation 

After 200 cycles the cycle-aged electrodes have been taken out from the coin cells at full 

discharge state (SOC 0%) and rinsed with DME and tetraglyme (G4) solvents, respectively. 

After drying at 60 °C for 48 h under vacuum (10-3 mbar), scanning electron microscopy SEM 

(Thermo Fischer Phenom XL) and Energy-dispersive X-ray spectroscopy (EDX) were made at 

these electrodes to investigate the changes in surface morphology and interfaces in 

comparison to the pristine electrodes.  

 

Results and discussions: 

Formation/activation process 

The formation/activation of freshly assembled coin cells was conducted with 0.1 C rate (with 

respect to cathode mass loading) by constant current and constant voltage (CCCV) profile. 

The large overpotential in the first cycle could be originating from the electrochemically inactive 

species adsorbed on the Mg surface [21] and  is probably due to the elimination of a thin MgO 

oxide layer on the Mg anode (although Mg metal was scratched to remove the oxide layer) or 

the reduction of some impurities during the initial cycles. In subsequent cycles, CP in DME 

shows some humps which are indicating the formation of some interphases on the Mg metal 

anode or-/and on the cathode (Figure 1a). According to Tutusaus et al., [21] and Zhao Karger 

et al., [22]  the initial Mg plating process exhibits a high impedance as a result of an 

electrochemically inactive adsorption layer on the electrode surface. Our analysis also 

suggests that Mg surface oxides (impurities) may also contribute to overpotentials. The stable 

reversible storage for CP in DME of Mg2+ is achieved with a capacity of 50 mAh.g-1 after 10 

activation cycles with a Coulombic efficiency of (CE) of 95%. Irreversible capacity refers to the 

reduction of impurities and trace moisture in electrolytes, or other side reactions in cells 

components. On the contrary, in the solvent G4, due to its increased viscosity, which may 

reduce the mobility of the ions during the initial 10 cycles as for the DME solvent, less activation 

on the anode side is observed (figure 1b). Thus, further cycles (e.g., 20 more cycles (figure 
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1C)) are required to achieve a complete activation. Remarkable differences that are observed 

are i) that there is no humps formation and ii) cycles with a Coulombic efficiency of almost 

100% (Figure 1c) are obtained. High reversible plating/stripping of the Mg anode is an essential 

factor for evaluation of the electrolyte performance especially in metal anode batteries.  

 

Figure 1: Comparison of the voltage vs. capacity curves during formation/activation of coin 

cells (a) first 10 cycles for Mo6S8 in DME solvent, (b) first 10 cycles for Mo6S8 in G4 solvent, 

(c) additional 20 cycles for Mo6S8 in G4 solvent. 

 

The Chevrel phase (CP) is a standard intercalation cathode material used in Mg batteries to 

benchmark performance. The electrochemical performance of Mg[B(hfip)4]2 was compared 

both in DME and G4 solvents (figure 2a and b). Mg||Chevrel phase cells containing the 

Mg[B(hfip)4]2/G4 electrolyte demonstrate a better Coulombic efficiency and lower 

overpotentials. After 30 activation cycles, the capacity of this cell stabilizes at around 

50 mAhg–1, which is similar as for the cell containing the Mg[B(hfip)4]2/DME electrolyte. A 

distinct difference is observed in the shape of the discharge voltage plateau. An observable 

voltage plateau at 1.18 V indicates a reduced trapping of Mg2+ ions inside Mo6S8 and better 

utilization of the second site for Mg2+ ion insertion inside the structure. Both coin cells 

containing DME and G4 are cycled up to 200 cycles with a charge/discharge rate of 0.2 C and 
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are presented up to state of health (SOH) 80% in figure 2c. In comparison to DME, G4-

containing cells show more stable cycling. However, due the viscous solvent, G4 shows poor 

rate capability and exhibits ~40 mAhg–1 capacity initially and until 200 cycles manifests 20% 

of capacity fading. Conversely, cells containing DME solvent exhibit ~46 mAhg–1 of initial 

capacity and deplete to SOH of 80% within 100 cycles. The Coulombic efficiency (CE) for both 

systems stayed stable throughout the cycling and is given in figure 2c.  With 98.3%, G4 shows 

a higher Coulombic efficiency than the DME containing solvent cell, which reaches 95.5%. 

Since the initial 10 cycles are executed in heat generation test, cyclability tests started from 

cycle number 10 (figure 2c). In cyclability test, the Mg plating/stripping overpotentials were 

reduced and were well maintained near approx. 0.2 V for 200 cycles. 

 

 

Figure 2: comparison of Mo6S8 in DME and G4 electrolyte solvents; (a) last 5 formation-cycles 

of Mo6S8 in different electrolytes, (b) comparison of 5th cycles of Mo6S8, (c) cyclability test of 

Mo6S8 in DME and G4. 

In the next step, the electrochemical performance of Mg[B(hfip)4]2 electrolyte in G4 solvent with 

14PAQ cathode was tested (figure 3). These cathode materials undergo different 
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electrochemical reactions with Mg2+ ions through different mechanisms of reversible 

enolization reaction of carbonyl functional groups [23] rather than intercalation as in case of CP. 

As a model system among the anthraquinone categories, 14-polyanthraquinone (theoretical 

capacity of 260 mAhg–1) cathodes exhibit reasonable reversibility and initially show medium-

capacity in Mg cells of around 100 mAhg–1 (with 0.1C rate) after activation/formation of ~20 

cycles (figure 3a), followed by a stable cycling with 0.2C rate (figure 3b). Xiu et al.[19] have 

evaluated the electrochemical performance of the 14PAQ-pressed cathode in DME electrolyte 

solvent using coin cells with voltages between 0.5 and 2.5 V. The formation/activation process 

needed more cycles to achieve the required specific capacity than for the G4 based system in 

the current scenario. In their studies, in the initial cycling stability test, DME based electrolyte 

showed unsatisfactory capacity retention, with a sharp discharge capacity drop from 240 to150 

mAhg–1 within 100 cycles. In the subsequent 400 cycles, it exhibited a less pronounced 

capacity fading, i.e., 150 to 78 mAhg–1.  In the present work, the performance of Mg cells using 

14 PAQ cathode employing Mg[B(hfip)4]2/G4 electrolytes is very similar to CP in G4 in terms 

of Coulombic efficiency (Figure 3 a,b). However, the initial capacity in G4 solvent is half of the 

DME based electrolyte. This leads to the possible explanation that the two adjacent carbonyl 

groups could only accommodate one inserted magnesium cation species due to steric 

hinderance resulting from the chelating interaction [15] during the activation process on the 

14PAQ cathode. Hence, the stabilized capacity of 14PAQ is only half of its theoretical capacity, 

which agrees with experimental observation. However, with regard to the capacity decay in the 

cyclability test, the 14PAQ cell with G4 overperforms DME, reaching still around 60 mAhg–1 

after 200 cycles. A clear difference can be observed in terms of cell’s overpotential, where 

again Mg[B(hfip)4]2/G4 exhibits slightly lower overpotential throughout the cycling procedure. 

Overall, the reversibility of 14PAQ-coated electrodes in Mg cells is good. However, 14PAQ-

pressed suffers from larger capacity decay, which could be explained by polymer swelling and 

partial dissolution of the active mass in cells containing non-concentrated/unsaturated 

electrolyte [19]. 
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Figure 3: (a) activation / formation cycles of 14PAQ-coated in G4, (b) cyclability test of 14PAQ 

in G4 

As reported in literature, impurities including water, dissolved gases, and solvent stabilizers 

can adversely affect the electrochemical performance of electrolytes for Mg batteries in terms 

of plating/stripping efficiency and cell’s overpotential [24]. The cyclability test of 14PAQ-coated 

cathode material in G4 shows excellent electrochemical performance and a capacity fading of 

around 10% until 200 charge/discharge cycles with 0.2C rate (figure 3b). The related coulombic 

efficiency is below 90% at the start, gets better with subsequent cycling (sub-figure 3b) and 

exhibits a low-voltage polarization as well. Thus, the 14PAQ-coated in G4 outperforms the 

14PAQ- pressed in DME, even if the initial capacity of the latter is significantly higher. The 

reactivity of the metal surface could be reduced by using additives during plating and stripping 

on magnesium metal [25]. 

Heat generation 

The voltage, current and heat flow rate curves of Mo6S8 in DME and G4 that have been 

recorded during the calorimetric experiment with a current rate of C/7 at 25 °C are presented 

in figure 4a and 4b for two representative cycles. The blue curves show the cell voltage, the 

current is represented by the red curves and the corresponding heat flow signal is given by the 

green curves. Figure 4c shows the generated heat per capacity (JmA-1h-1) that has been 

determined by integration over the heat flow curves. There is a clear increase in heat flow rate 

throughout discharge at increased rates of discharge due to the higher irreversible heat 

generation, since the internal resistances for both systems also increase with the increase in 

the state of the charge as has been found out during the EIS measurements. Nevertheless, 

for SOC 50% lower values have been determined, as depicted in figure 4d. The iR drop at 

various SOCs levels, e.g., SOC0%, SOC50% and SOC100% is measured and internal 

resistances are calculated (figure 4d). SOC has been found to affect the internal resistance of 
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cells and is associated with heat generation. As SOC decreases, diffusion resistance and 

charge transfer increase. Since entropy heat is reversible and diffusion rate mechanism is 

limiting in de-magnesiated state, it is highly dependent on SOC. The internal resistance of the 

DME system is higher at SOC0% which also corresponds to the total generated heat. i.e., at 

the start of charging, the heat flow rate is higher in DME than in G4. However, a sharp increase 

in heat flow rate is observed at SOC 100% which can be attributed to an increase in the internal 

resistance to 7 kΩ in DME and 6 kΩ in case of G4 which results in an increase in the heat flow 

rate near the end of discharge/charge [26]. The heat generation at different C-rates was also 

measured and is presented in the supplementary figures S1 and S2. As the rate capability of 

the system in G4 is not as high as in DME, low specific capacities for faster 

charging/discharging rates have been measured due to the high viscosity of G4 (figure S1 & 

S2).  

 

 

Figure 4: (a) voltage, current and heat flow rate curves of Mo6S8 in DME, (b) voltage, current 

and heat flow rate curves of Mo6S8 in G4, (c) corresponding capacity-normalized generated 

heat for both systems for C/7 charge/discharge rate, d) Dependence of internal resistance on 

SOC for Mo6S8 in G4 and DME. 
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The complex impedance of these two systems at SOC100% was also measured by 

electrochemical impedance spectroscopy and was fitted by an equivalent circuit model (ECM) 

to obtain the different resistances as shown in figure 5. In Figure 5a and figure 5b illustrate the 

variations in charge transfer resistance caused by the solid interfacial layer (R3) and adsorption 

layer (R2) respectively. In the Nyquist plots in figure 5a and 5b, the shape of the fitted semi-

circles is different and a distinctly pronounced semi-circle is observed in the G4 solvent, which 

reveals the formation of a stable solid electrolyte interphase (SEI). In addition, electrochemical 

impedance spectroscopy (EIS) observed the growth of impedance values for both electrolytes 

during the rest time (figure 6).  An increase in the resistance of the solid electrolyte interphase 

(SEI) layer indicates that the layer has been stabilized (figure 6a). This is one of the reasons 

for the observation that less self-discharging occurs in G4 containing electrolyte (figure 8b, 

which will be discussed later in the section 3.3 self-discharge). After each 1 h rest time, R2 and 

R3 in G4 solvent contributed more to the total impedance than CP in DME solvent (figure 6a 

and 6b). However, R3 decreases slightly first and then later during a rest time of 5 h back to 

26 kΩ which is almost equal to the initial value after 1 h relaxation, suggesting a growth of the 

adsorption layer under static conditions. R2 (in figure 6b) which represents the charge-transfer 

resistance due to the solid electrolyte interphase (SEI) increases gradually from 12 Ω to 16 Ω 

in DME solvent, although the comparative resistances R2 and R3 over relaxation time are very 

small in DME solvent. In comparison, the change in R3 over relaxation time was negligible, 

indicating a good chemical compatibility between both electrolytes and the Mg anode in G4 

solvent. On the other hand, the R3 value for DME based electrolyte is comparatively 10 times 

lower, showing an unstable system, which also can be seen in the self-discharging behavior 

of the DME based system (figure 7a). As the layer grows, self-discharge will decrease 

correspondingly with increasing interphase thickness [27]. The self-discharging phenomenon is 

indicating the dissolution of interphases while resting [28] [29]. Although the addition of the 

Mg(BH4)2 additive to the electrolyte decreases significantly the R3 value as reported in [30], by 

removing the thin oxide layer on the fresh Mg anode. The migration barrier is higher and the 

Mg-ion mobility becomes rather difficult in the presence of MgO and MgF2 interfaces on the 

anode (Mg-foil) [31]. These interfaces are observed more frequently in the DME based system, 

as is shown and discussed in the section 3.4 on post-mortem analysis. The ohmic heat is 

related to long range interactions, i.e., Joule heating from electron and ionic flow resistance 

within the electrodes and the electrolyte, contact resistance and solid electrolyte interphase 

(SEI) resistance. The kinetic heat is related to the charge-transfer reactions at the interphase. 

The mass transport heat refers to mass transport limitations in the electrodes or the electrolyte. 
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Figure 5: Nyquist plots of Mo6S8 at SOC100%: (a) in DME, (b) in G4 

 

 

Figure 6: Equivalent circuit model parameters derived from the fitting of the EIS results; (a) 

solid interfacial passivation layer (R3), (b) adsorption layer (R2) over the relaxation time. 

 

In similar manner, the heat generation is determined both on 14PAQ-coated cells with G4 

solvent in the electrolyte and 14PAQ-pressed cells from the previous study [19] with DME 

solvent. The voltage, current and heat flow rate curves of the two systems are presented in 

figure 7a and 7b for two representative cycles. The blue curves show the cell voltage, the 

current is represented by the red curves and the corresponding heat flow signal is given by the 

green curves. Figure 7c shows the generated heat per capacity (JmA-1h-1) that has been 

determined by integration over the heat flow curves for a 0.2 C rate at 25°C. The generated 

heat in these organic based 14PAQ cells is found surprisingly distinct for the pressed-14PAQ 

cell (figure 7c). A notable fact is that it exhibits a negative heat flow signal during charging 

(figure 7b), indicating that the cell absorbed heat (endothermic reaction) during the magnesium 

extraction. The take-up heat occurs by entropy change during de-magnesiation, and entropy 

changes are responsible for the heat absorption associated with material phase changes in 
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the cell. Based on generated heat results, it is evident that pressed 14PAQ cell containing 

DME solvent electrolyte shows significantly reduced heat generation as compared to coated-

14PAQ cell containing G4 solvent. However, it is challenging to upscale the pressed material 

methodology to the commercial level. The galvanostatic charge-discharge curve of pressed-

14PAQ cells are shown in supplementary figure S3 with and without relaxation of 10 h. The 

Coulombic efficiency (CE) reduces from 95% to 85% with the introduction of 10 h relaxation 

time which is a clear indication of self-discharge of this material in DME solvent. The heat 

generation of pressed-14PAQ in DME solvent at a high C-rate of 1.0C is also provided in 

supplementary figure S4. The decrease in discharge capacity is observed due to 10% of self-

discharge during 10 h relaxation time. as indicated by the Coulombic efficiency (figure S3). 

The higher coulombic efficiency CE due to the thickening of SEI layers indicates the slowing 

of parasitic reactions between electrodes and electrolytes that cause the CE to depart from 

unity [32]. As long as the batteries have the same test history, those with higher Coulombic 

efficiency (CE) should have a longer lifespan, which is proven in current studies in the case of 

the cyclability test. 

 

Figure 7: (a) voltage, current and heat flow rate curves of 14PAQ coated on Al foil in G4 solvent, 

(b) voltage, current and heat flow rate curves of 14PAQ pressed on Al foil in DME solvent, (c) 

corresponding capacity-normalized generated heat with 0.2 C rate. 
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Self-discharge 

The self-discharge behavior was analyzed in all systems discussed above. The respective 

pristine coin cells are charged and discharged with respective C-rates (0.1 C and 1.0 C) for 2-

3 cycles and then hold for 24 h at the fully charged state. Afterwards, the coin cells are 

discharged with the same C-rate and then charged and discharged again for 2-3 cycles to 

determine the Coulombic efficiency as shown in figure 8 for the two CP cells. Undesirable 

parasitic chemical reactions cause a cells available capacity (stored energy) to be 

spontaneously and irreversibly reduced by self-discharge without any external connection. The 

self-discharge is higher in DME based solvent with 23% as given in terms of the Coulombic 

efficiency. Conversely, G4 system shows a better stability, and it reveals only 3% of self-

discharge due to the saturated electrolyte and interphases that do not dissolve into the 

electrolyte (figure 8b). Both systems are tested with a higher rate of 1C to see the influence of 

the fast charging/discharging on the self-discharge. The similar trend is observed i.e., no 

noticeable difference was found (supplementary figures S4 and S5).  

 

Figure 8: self-discharge (a) Mo6S8 in DME, (b) Mo6S8 in G4 with 0.1 C rate 

The self-discharge of Mg||14PAQ in DME (pressed material) and G4 (coated material) was 

also investigated. Similar results are obtained as those for the CP material. The 14PAQ-

pressed material in coin cell shows 36% of self-discharge during a relaxation period of 24 h in 

DME based electrolyte (figure 9a). The 14PAQ coated material on an aluminium foil in the coin 

cell turns out to be very stable in G4 solvent and the Coulombic efficiency only decays by 4% 

over 24 h (figure 9b). Organic cells discharge by natural phenomena that are driven by the 

same forces that permit them to operate [33]. Several chemical reactions occur at the electrode 

interface between active masses, auxiliary materials, and electrolyte-solutions as well as 

shuttle processes across the ionically conducting phase between the electrodes, which 

contribute to self-discharge [34]. 
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Figure 9: self-discharge (a) 14PAQ-pressed in DME with 1.0 C rate, (b) 14PAQ-coated in G4 

with 0.1 C rate 

Post-mortem analysis 

In addition to the Coulombic efficiency (CE), the morphology and composition of the deposited 

film on the anode also play a crucial rule to the cycle life of Mg batteries. The scanning electron 

microscopy (SEM) images of the Mg anode surface after 200 cycles are compared with that of 

a pristine (polished) Mg-foil to investigate the interface morphology between the anode and 

electrolyte. Although the surface appears uneven in different cycle-aged Mg-anodes, no 

significant sharp feature resembling dendrites are found (figure 10), which is very important to 

deliver high energy density and for safe operation of Mg batteries. Compared to the pristine 

Mg-foil, the surface morphology of the cycle-aged Mg anodes, shown in figure 10 (b, c, d), 

appears porous. Energy dispersive X-ray (EDX) measurement shows that besides 

magnesium, carbon (C), fluorine (F), and oxygen (O) are present in small amounts, but no 

boron (B). The EDX spectrum and elemental mapping (figure 11) of the sample in DME 

confirms that the MgO/or and organofluoride -CF2/-CF3/MgF2 deposition on Mg metal anode 

exists in higher concentration with elements, such as C, O, F. The concentration of C, O, F of 

each cycle-aged anodes are presented in table S1 (supplementary table). The higher 

concentration of C, and F is found in cycle-aged anode in DME. Based on the XPS 

measurements by Roy et al., [35] it can be assumed that this is most probably not a result of the 

MgF2 based solid interphase. Further investigation of such thin solid interphases will require 

high-resolution transmission electron microscopy (HR-TEM). Nevertheless, the SEM/EDX 

images of cycle-aged Mg-anode provide some evidence of formation of interphase and porous 

surfaces hint the dissolution of these interphases into the electrolyte. The porous surface of 

cycle-aged Mg anode against Mo6S8 in DME is studied with point-EDX measurement to know 

the elemental composition and shown in supplementary figure S6. A high concentration O and 
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C contents inside the porous area was observed indicating the thinner interfaces and 

subsequently the dissolution into the electrolyte leading to the porous, uneven morphology. 

 

Figure 10: (a) morphology of pristine polished-Mg anode, (b) morphology of cycle-aged (200 

cycles) Mg anode against 14PAQ in G4, (c) morphology of cycle-aged (200 cycles) Mg anode 

against Mo6S8 in DME, (d) morphology of cycle-aged (200 cycles) Mg anode against Mo6S8 in 

G4. 
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Figure 11: EDX-elemental mapping of (a), cycle-aged (200 cycles) Mg anode against 14PAQ 

in G4, (b) zoomed circled area of cycle-aged (200 cycles) Mg anode against Mo6S8 in G4 (c) 

cycle-aged (200 cycles) Mg anode against Mo6S8 in DME, (d) cycle-aged (200 cycles) Mg 

anode against Mo6S8 in G4. 

The noticeably spiral shape microstructures on some spots are seen in Mg-anode in G4 (vs 

Mo6S8) as zoomed-in/highlighted in figure 11b. The elemental mapping of such spiral pattern 

shows comparatively more O and F contents, indicating the formation of magnesium oxide and 

probably fluoride. The blue and pink colors represent O and F element maps, respectively.  

Conclusions and outlook  

Detailed results of a study have been presented on the functioning and performance of different 

magnesium full coin cells using commercial Mo6S8 in the Chevrel Phase (CP), self-synthesized 

1,4-polyanthraquinone (14PAQ) cathodes against Mg-foil by utilizing 0.3 M magnesium tetrakis 

(hexafluoroisopropyloxy) borate Mg[B(hfip)4]2 /dimethoxyethane (DME), 0.5 M Mg[B(hfip)4]2 

/DME and 0.5 M Mg[B(hfip)4]2 /tetraglyme(G4) electrolytes. The following conclusions can be 

drawn: 

 In G4 solvent stable cycling and fewer self-discharge phenomena, however activation 

process needs more cycles to achieve the required capacity. 
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 Less heat is generated at a low C-rate in the case of G4 and better electrochemical 

performance is achieved. 

 The electrochemical heat generation rate is a strong function of the current and SOC, 

with increases near the end of charge / discharge for high and low SOCs.  

 Internal resistance changes with the state of charge and is higher in the case of 0.3 M 

DME. The generated heat during the cycling phases indicated the high resistance. 

 Side reactions/dissolution of formed interfaces on the anode side must be considered. 

To find the anode interface species that have been dissolved into the electrolyte, an analysable 

amount of electrolyte after cycling is required, which is not possible to extract in case of coin 

cell level. Therefore, in future upscaling to pouch cell level will be studied, for which the amount 

of electrolyte is in the millilitre (mL) range and the electrolyte can be extracted using a 

centrifuge for a subsequent investigation by analytical techniques e.g., High-performance 

liquid chromatography (HPLC) or gas chromatography mass spectrometry (GC-MS). 

Additionally, thermal abuse tests on pouch cell level to identify the exothermal reactions of 

respective cells will also be performed.   
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The comparison is made on the activation process and cyclability of magnesium cells. The 
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