KIT | KIT-Bibliothek | Impressum | Datenschutz

KCDS Virtual Open House 2023 - Fall

Ehret, Uwe [Hrsg.] 1; Frank, Martin [Hrsg.] ORCID iD icon 2; KIT-Zentrum MathSEE [Hrsg.]; Kühn, Eileen ORCID iD icon 2; Chaichenets, Leonid ORCID iD icon 2
1 Institut für Wasser und Gewässerentwicklung (IWG), Karlsruher Institut für Technologie (KIT)
2 Scientific Computing Center (SCC), Karlsruher Institut für Technologie (KIT)

Die Mediendatei ist nicht mehr verfügbar.

Abstract:

KCDS PhD Project 06: Trainability of data driven quantum models

MATH PI: Dr. Leonid Chaichenets, Steinbuch Centre for Computing (SCC), Scientific Computing & Mathematics (SCC-SCM)
SEE PI: Dr.-Ing. Eileen Kühn, Steinbuch Centre for Computing (SCC), Data Analytics, Access and Applications (SCC-D3A)
Department(s): Informatics (Computer Science) or Mathematics
Type of position: 75% FTE, TV-L E13
In the field of quantum machine learning many ansätze for designing quantum circuits that make up a trainable quantum model are influenced by heuristics but also by current challenges of quantum computers such as noise and size. One influential paper presents a collection of potential hardware-efficient building blocks for quantum circuits analyzing those regarding trainability and their efficiency to benefit from the available problem space of a quantum computer. Typical scientific questions thus involve deciding for one of the building blocks, and the number of repetitions required to solve the underlying problem. To answer these questions several experiments are required. This contrasts with current developments in geometric quantum machine learning, exploiting symmetries in data to be encoded as part of the quantum circuit. ... mehr


Zugehörige Institution(en) am KIT Scientific Computing Center (SCC)
Publikationstyp Audio & Video
Publikationsdatum 17.10.2023
Erstellungsdatum 13.10.2023
Sprache Englisch
Identifikator KITopen-ID: 1000163108
HGF-Programm 46.21.02 (POF IV, LK 01) Cross-Domain ATMLs and Research Groups
Weitere HGF-Programme 46.21.01 (POF IV, LK 01) Domain-Specific Simulation & SDLs and Research Groups
Lizenz KITopen-Lizenz
Serie KCDS Virtual Open House 2023 - Fall
Folge 1
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page