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Abstract: A touch-evoked response of zebrafish larvae pro-

vides information on the mechanism of the gene functional

expressions. Recently, an automated system has been devel-

oped for precise and repeated touch-response experimen-

tation with minor human intervention. To quantify the

collected data, we propose a fully automated multi-larvae

touch-response behavior inspection pipeline based on larva

tracking and segmentation. Experimental data with differ-

ent treatments is analyzed by using the proposed inspection

platform for demonstration, and the result proves that this

platformcan generate comparable touch-response behavior

inspection readouts efficiently and automatically. The ini-

tial results were published in 31. Workshop Computational

Intelligence, and this paper summarizes and extends the

main work of the respective article.

Keywords: experiments; full automation; object tracking;

touch response

Zusammenfassung: Eine durch mechanische Berührungs-

reize ausgelöste Reaktion der Larven des Zebrabärblings

liefert Informationen über den Mechanismus der geneti-

schen funktionellen Expression. Kürzlich wurde ein auto-

matisiertes System entwickelt, um genaue und wieder-

holte Berührungsreizreaktionsexperimente mit geringer
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menschlicher Assistenz durchzuführen. Zur Quantifi-

zierung der gesammelten Daten schlagen wir eine

vollautomatisierte Inspektionspipeline für Berührungs-

reizreaktionen von mehreren Larven vor, die auf

Larventracking und Segmentierung basiert. Experimentelle

Daten mit unterschiedlichen chemischen Behandlungen

werden durch die vorgeschlagene Inspektionsplattform

analysiert. Die Auswertung bestätigt, dass die Plattform

vergleichbare Inspektionsanzeigen der Berührungsre-

izreaktionen effizient und automatisch erzeugen kann.

Die ursprünglichen Ergebnisse wurden in einem

Konferenzbeitrag beim 31. Workshop Computational

Intelligence veröffentlicht und werden in diesem Artikel

resümiert und erweitert.

Schlagwörter: Vollautomation; Berührungsreizreaktionen;

Objektverfolgung; Experimente

1 Introduction

Zebrafish larvae are commonly used animal models for

organism-based screenings due to their small size, high

fecundity, and short reproductive cycle [1]. Their specific

(repeatedly and obvious) behaviors indicate certain func-

tional mechanisms of mutants by the treatments [2, 3],

making it possible to do the large-scale high-throughput

screening of chemicals or drugs. Automated experimental

systems to acquire the data of these behaviors have been

developed so far [3–7], so the automated high-throughput

inspection of the data from the systems is also becoming in

higher demand, as visual inspection is time-consuming and

not statistically comparable. In particular, the automated

touch-response experimental system on zebrafish larvae

has been developed to conduct the experiment by control-

ling a blunt needle to touch the larvae at a specific position

and with a predefined force (Figure 1). The touch-evoked

response of zebrafish larva consists of three components,

including a C-Bend (the larva bends the body as a C-Shape,
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Figure 1: The diagram of conducting touch-response experiment and

the corresponding response.

shortened as C-Bend), reverse C-Bends, and escape move-

ment (changing the position). The touch-response exper-

imental data (videos) are in a high frame rate [8, 9], so

the automated inspection is essential in this case. During

the touch-evoked response of zebrafish larvae, four time

points of importance are the time when touch applied (t1),

response begins (t2), response peak (t3), and response stops

(t4). Four criteria are to be quantified, including the latency

time (tl), C-Bend curvaturemaximum (cm), C-Bendpeak time

(tcp), response time (tr), and escape distance (de). However,

it is challenging to generate a precise number of C-Bend cur-

vatures and escape distance manually [7]. Furthermore, the

operators cannot keep the same criteria all the time for each

video, as the video has more than ten thousand frames on

average. Thus, we proposed a touch-response quantification

pipeline for single zebrafish larva in [8], but as for themulti-

larvae case, we face more challenges: (i) multiple larvae

need to be tracked and segmented at the same time; (ii) the

larva that is touched shall be defined; (iii) the quantifica-

tion of multiple larvae has higher computational costs. To

solve these problems, we proposed anAI-basedMulti-larvae

Touch-response behavior Inspection Pipeline (AMTIP) in the

work published in 31.Workshop Computational Intelligence

[10] with the main work summarized and extended in this

paper.

In AMTIP, the tracking procedure plays a vital role,

especially in the tracking of multiple larvae [9]. Recently,

machine learning or deep learning based tracking meth-

ods have emerged to promote the accuracy of the track-

ing procedure [11, 12], and much previous work focused

on the tracking and segmentation of single or multiple

adult zebrafish [13–16]. To make the best of the deep

learning methods, we use a U-Net [17] based segmentation

method for the initialization of tracking. However, those

high-computational methods are difficult to be used in the

tracking procedure of our high-frame-rate videos. In order

to make the inspection pipeline less complex, we propose

an optical flow based needle tracking procedure and a par-

ticle filter based larvae tracking procedure. Besides, the

segmentation for each larva is also of importance to the

analysis of the movements. In [18], a Gaussian Mixture

Model (GMM) based segmentation is used to detect the

moving objects, and the noise is filtered according to the

region size by using a global Otsu (a conventional auto-

mated thresholding) method. However, considering global

information in our platform makes the procedure more

computationally expensive. Therefore, a local region grow-

ing based segmentation method is used for each larva

according to the result of tracking procedure. Based on the

tracking and segmentation results, we propose AMTIP to

find the touched larvae and generate the behavior quan-

tification according to the proposed experiment criteria.

In order to test the performance of the proposed plat-

form, we conduct six sets of experiments with different

drugs and analyze the experiment criteria and detected

errors (failure cases). With the verification of the exper-

iment results, AMTIP shows a high efficiency for analyz-

ing the touch-response experimental data and reduces the

efforts for the operators involved in the experiments. The

methods used in AMTIP can make contributions to the opti-

mization of object tracking methods for analyzing videos

with expensive computation. As well, AMTIP can also be

transformed into the inspection pipeline of other organisms

(like medaka) and can also be added with more quantifica-

tion criteria.

The organization of the article is as follows. Section 2

describes the design of the proposed AMTIP. Section 3 pro-

vides the setup of the experiments, the quantification crite-

ria and results as well as the discussion. According to the

above results, conclusions are drawn in Section 4.

2 Multi-larvae touch-response

inspection pipeline

The touch-response inspection procedure transfers the raw

data collected by the acquisition platform into variables

(criteria) that make sense to humans. Figure 2 visualizes

the architecture of AMTIP that transfers the videos col-

lected by the data acquisition system [8, 9] and generates

the quantification criteria of the touch-response behaviors,

including latency time tl, C-Bend curvature maximum cm,

C-Bend curvature peak time tcp, response time tr, and escape

distance de. Four time points are vital to the quantification

of touch response, including t1 (touch applied), t2 (response

begins), t3 (response peak), and t4 (response stops). The

AMTIP contains three essential parts: initialization, tracking

and segmentation procedure, and quantification.
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Figure 2: The diagram of the AI-based multi-larvae touch-response behavior inspection pipeline (AMTIP), including the initialization, tracking and

segmentation procedure, quantification, and quantification criteria. The steps are marked in red.

The initial positions (initialization, Step 1 in Figure 2) of

the needle and larvae obtained from the first frame are vital

to the accuracy of the tracking procedure in AMTIP. Thus,

a U-Net is used to segment the needle and larvae, which

can be used directly as the initial positions for the tracking

procedure.

Given the initial positions, each following frame of the

video is processed by the tracking and segmentation pro-

cedure (Step 2 in Figure 2), including an optical flow based

needle tracking [19, 20], a particle filter based larva track-

ing [11], and a region growing based larva segmentation.

As the needle moves slowly, an optical flow is sufficient

to estimate the needle position for each video frame (with

coordinates in the frame denoted as
{
Xn
j
, Yn

j
, t j

}
where n

indicates the needle and t j indicates the frame j). The optical

flow, however, cannot be applied to track the larvae that

move rapidly, so a particle filter based larvae tracking is

considered to generate the positions of the larvae for each

frame (
{
Xl
j
, Yl

j
, t j

}
where l indicates the larva). To fulfill

the detailed analysis of the touch-response behaviors of the

larvae, a region growing based larva segmentation is used.

The seed points of the region growing are chosen by the

larva positions generated by the larvae tracking procedure,

as described in [10]. The outputs of the tracking and segmen-

tation contain the image patches of all larvae, as well as the

positions of the larvae and needle for each frame.

With the results of the tracking and segmentation pro-

cedure, the quantification criteria (latency time tl, C-Bend

curvature maximum cm, C-Bend curvature peak time tcp,

response time tr, and escape distance de) are generated by

the following three steps,

1. Each video contains multiple larvae (Larva #1, Larva

#2, Larva #l, etc.), so the larva that is actually touched

by the needle needs to be firstly distinguished among

the larvae in the video by AMTIP for the following

quantification (Step 3–1 in Figure 2). The needle stops

at the larva position after touch is applied, so the initial

position of the touched larva (Xl
0
at t = 0) is the closest

to the final position of the needle (Xn
t f
at t = t f ).

2. As for the latency time tl and response time tr, the

essential time points, including t1 (touch applied), t2
(response begins), and t4 (response stops), need to

be computed as detailed in Figure 2. As shown in

Step 3–2 in Figure 2, the distance between the nee-

dle and larva for each frame is computed from t = 0

until the time point with the distance lower than a

heuristic threshold Tnl, as t1 (when touch is applied).

The t2 is obtained as the time point when the larva

moves and the response begins (with a heuristic thresh-

old Tmq: the percentage of the particles used in par-

ticle filter in Step 2). Similarly, as shown in Step

3–3 in Figure 2, the t4 is searched from t f reversely

until the time point when the response stops. Conse-

quently, the latency time is computed as tl = t2 − t1,

and the response time is computed as tr = t4 − t2. The

escape distance is computed by the sum of the distances

between the larva positions in the frames from t2 to t4,

namely de = Σ j=t4−1
j=t2

√(
Xl
j
− Xl

j+1

)2
+
(
Yl
j
− Yl

j+1

)2
.
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3. To quantify the amplitude of the touch-response behav-

iors, the curvature of the C-Bend for each frame is to

be analyzed according to the skeleton of the larvae.

Besides, the C-Bend curvaturemaximum cm can be com-

puted, as well as the time point of cm (t3, response peak),

generating tcp = t3 − t2.

3 Experiment

3.1 Experiment setup

Different chemicals can have different influences on the touch-evoked

behaviors of the zebrafish larvae. Thus, the experiments on long-term

treatments (denoted as Elt) with different chemicals are conducted on

the zebrafish larvae to analyze the difference between various chem-

icals, with the protocol visualized in Figure 3 on a timeline, and the

experimental setup is outlined in Table 1.

In Experiment Elt , the larvae at 73 h post-fertilization (hpf) are put

in the well plate to conduct the touching on the body. The details of the

Figure 3: Protocol of the quantification experiment Elt which is marked

in red.

Table 1: The experiment setup of experiment Elt .Wild: larvae in fish

water. DMSO: larvae in dimethyl sulfoxide. Dia: larvae treated by

diazepam. Iso: larvae treated by isoprenaline hydrochloride. Caffi: larvae

treated by caffeine. Saha: larvae treated by suberoylanilide hydroxamic

acid.

Parameter Quantity

Tnl (used in AMTIP, Section 2) 10 pixels

Tmq (used in AMTIP, Section 2) 50 %

Volume of water 4 mL

Age of larvae 73 hpf

Dechorionation 27 hpf

Touching positions Body

Number of larvae per well 4

Type of larvae Wild and treated by DMSO (1 %), Dia,

Iso, Caffi, Saha

Concentration of chemicals 100 μmol/mL
Total number of larvae 173

treatments are outlined in Table 1. Six experiments are conducted:wild

type (without treatment), larvae with Dimethyl sulfoxide (DMSO),1 as

well as larvae treated by Diazepam (Dia) to reduce the movements [21],

Isoproterenol hydrochloride (Iso) with unknowneffects, Caffeine (Caffi)

for also reduction of movements [21], and Suberoylanilide hydroxamic

acid (Saha) with unknown effects, respectively. Each treatment is in a

concentration of 100 μmol/mL for the demonstration. The larvae are

dechorionated and treated at 27 hpf for long-term treatment. The pro-

posed AMTIP is used to quantify the data collected in Experiment Elt for

verifying that AMTIP can generate different touch-response behavior

criteria with different chemical treatments on zebrafish larvae in the

long term (assumption). Even though the proposed AMTIP is designed

for the multi-larvae case, it can be used to quantify the data in the

single-larva case.

3.2 Experiment results

The experiment on long-term treatment (Elt) is conducted to collect 173

videos (24 videos for Wild, 27 videos for DMSO, 38 videos for Dia, 30

videos for Iso, 24 videos for Caffi, 30 videos for Saha, with the dataset

denoted as DA-Elt in Table 2) and the quantification is run via AMTIP

with the results visualized in Figure 4, including latency time tl , C-Bend

Table 2: The datasets of experiment Elt .

Dataset denotation Chemical Number

DA-Elt Wild type 24 videos

DMSO 27 videos

Dia 38 videos

Iso 30 videos

Caffi 24 videos

Saha 30 videos

Total 173 videos

1 As each treatment is prepared with DMSO, the experiments on the

larvae with only DMSO (1 %) are also conducted as controls.
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(a) (b)

(c) (d)

(e)

Figure 4: Five quantification indices on DA-Elt

with six experiment cases (wild, DMSO, Dia, Iso,

Caffi, and Saha) generated by AMTIP, including

latency time tl , C-Bend curvature maximum cm,

C-Bend curvature peak time tcp, response time

tr , and escape distance de. (a) Latency time. (b) C-

Bend curvature maximum. (c) C-Bend curvature

peak. (d) Response time. (e) Escape distance.

curvaturemaximum cm, C-Bend curvature peak time tcp, response time

tr , and escape distance de. The results in Figure 4 verify the assumption

of Experiment Elt in Section 3.1 that the proposed AMTIP can gener-

ate different quantification results (the chemical effects) for different

chemicals. In detail, the larvae with a longer latency time have lower

response strength (lower cm), shorter time to shape the C-Bend peak

(lower tcp), and less response duration (lower tr and de), examples seen

from the cases of Dia and Caffi. This result also proves that the larvae

under the treatments of Dia and Caffi respond less compared with the

wild and DMSO. Additionally, the treatments of Iso and Saha cannot

change the touch-response behaviors of the larvae significantly with

similar results to the wild and DMSO.

3.3 Evaluation of AMTIP

The proposed AMTIP can fail in the touch-response quantification

owing to the inaccuracy of the segmentation method and missing

objects by the tracking procedure used in the inspection pipeline. Thus,

the detected errors (failure cases) are to be analyzed to evaluate the

proposed AMTIP. The collected video data contain some unquantifiable

ones, such as the larvae are not touched, and the larvae or needle

cannot be detected. The dataset DA-Elt collected in the experiment on

long-term treatment Elt is used to analyze the detected errors: including

the number of videos with no larvae touched (#NT) as well as those

with failures of quantification (#QF). Among the videos collected (#C),

shown in Table 3, the ground-truth numbers of the videos with no

larvae touched (#NT g , generated by visual screening) are compared

with the numbers output from AMTIP (#NT p), with the false positive

rate (FPR) and false negative rate (FNR). As well, the numbers of

failures of quantification (#QF) are given with the percentage (EQF
= #QF∕|#C − #NT g|). The AMTIP can generate #NT p and #QF automat-

ically and find more than 90 % videos without any larvae touched on

average (1− FNR). Besides, around 10 % of valid videos (#C − #NT g )

cannot be quantified by AMTIP (failure cases). In addition, the larvae

under the treatment of Dia are assumed to have a response scarcely.

Thus, the output of latency time is expected to be infinite, and the other

quantification criteria (C-Bend curvature maximum, C-Bend curvature

peak time, response time, and escape distance) are expected to be

0. However, AMTIP can only generate finite numbers less than the

duration of videos (15 s in our case), but from Figure 4a, the latency

time of Dia is still useful to be compared with the controls as it shows a

much longer latency time than those of wild and DMSO. Furthermore,

the results in Figure 4b–e are over zero (negative outputs), caused by

the following reasons: (i) some larvae still have a slight response; (ii) the

movements of the needle can push the larvae away (fake response); (iii)

the tracking procedure generates the movements of the larvae because
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Table 3: The analysis of the detected errors (failure cases) of the

proposed AMTIP. #C: the number of the collected videos. #NT g: the

ground-truth number of the videos with no larvae touched, generated by

visual inspection. #NT p: the predicted number of the videos with no

larvae touched, generated by AMTIP. FPR: false positive rate of the videos

without larvae touched. FNR: false negative rate of the videos without

larvae touched. #QF: the number of failures of quantification. EQF : the

percentage of failure of quantification. EQF = #QF∕|#C − #NT g|.

Type #C #NT
g

#NT
p

FPR FNR #QF E
QF

Wild 24 4 7 16.7 % 4.2 % 1 5 %

DMSO 27 3 8 22.2 % 3.7 % 0 0 %

Dia 38 4 1 0 % 7.9 % 8 23.5 %

Iso 30 6 6 6.7 % 6.7 % 2 8.3 %

Caffi 24 7 5 4.2 % 12.5 % 3 17.6 %

Saha 30 5 6 13.3 % 10 % 2 8 %

Average – – – 10.5 % 7.5 % – 10.4 %

of the slight environment changes or other inaccuracy. Nonetheless,

the results of Dia in Figure 4b–e are much lower than those of wild

and DMSO. In other words, even with slight variance, the proposed

AMTIP verifies our assumption on treatmentDia that reduces the touch

response of zebrafish larvae. Finally, AMTIP can achieve the quantifi-

cation in higher efficiency (frame rate: on average 63 ms per frame on

CPU) via the proposed efficient tracking and segmentation procedure

compared with the U-Net (frame rate: on average 2.60 s per frame on

CPU).

3.4 Discussions

The results verify that the proposed inspection pipeline AMTIP can

work as an automated quantification tool for the touch-response data

in a high frame rate. The AMTIP has the following advantageous strate-

gies:

– The timepointwhen the touch is applied (t1), aswell as the actually

touched larva, is obtained by the final position of the needle and

the initialized positions of the larvae, as the local segmentation

during the tracking procedure is not as accurate as the initialized

segmentation by the U-Net.

– The response of the larvae is defined by the particles used in the

particle filter based larva tracking (details in Section 2) instead

of the change of the larva center, as the centers of the larvae can

change slightly but constantly during the tracking procedure, even

if the larvae do not move.

– The time point when the touch response stops (t4) is computed

from the last frame reversely to the previous frames, since the

larva can move slowly (no significant changes of pixels) for a

moment and start moving strongly again.

– The quantification is achieved after the tracking and segmentation

of all frames in the video, making it possible to consider the global

information of the video.

However, some drawbacks still need to be considered carefully when

the users apply AMTIP to the customized data. The tracking procedure

and local segmentation of the larvae are the keys to AMTIP, but they

may fail in the following cases: (i) the larvae overlap with each other

when moving; (ii) the well edge area has similar brightness to the

larvae; (iii) the needle overlaps with the larvae. It is essential to con-

duct the touch-response experiments on a large scale, so the proposed

AMTIP is vital in such cases.

4 Conclusions

In this work, we introduce an AI-based inspection platform

for the touch response of zebrafish larvae, which can gen-

erate five quantification indices (latency time, C-Bend cur-

vature maximum, C-Bend curvature peak time, response

time, and escape distance) automatically without human

intervention. This platform uses an automated inspection

pipeline based on a multi-larvae tracking procedure, with

a U-Net for initialization of the tracking procedure, optical

flow and particle filter for tracking, and region growing for

local segmentation of larvae. Six sets of experiments (two

controls and four treatments) are conducted, and the results

generated from this platform as well as the analysis of

the detected errors verify the effectiveness of the platform.

The AMTIP can generate the expected conclusions as the

assumption according to the corresponding experimental

results. A high efficiency is also guaranteed with on average

63 ms per frame for the inspection pipeline on CPU. The

AMTIP can be applied to the inspection of animal behaviors

and systems that are required to analyze position changes

in videos and to quantify the movements into criteria.
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