KIT | KIT-Bibliothek | Impressum | Datenschutz

A multiphase-field approach to small strain crystal plasticity accounting for balance equations on singular surfaces

Prahs, Andreas 1; Schöller, Lukas 1; Schwab, Felix K. 2; Schneider, Daniel ORCID iD icon 3; Böhlke, Thomas ORCID iD icon 4; Nestler, Britta 1,3
1 Institut für Angewandte Materialien – Mikrostruktur-Modellierung und Simulation (IAM-MMS), Karlsruher Institut für Technologie (KIT)
2 Deutsches Zentrum für Luft- und Raumfahrt (DLR)
3 Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT)
4 Karlsruher Institut für Technologie (KIT)

Abstract:

An implementation of the crystal plasticity theory in the context of the multiphase-field method provides a numerically efficient tracking of evolving grain boundaries, modeled as diffuse interfaces. In literature, several approaches exist for the implementation of the plastic material behavior within the diffuse interface, based on interpolation, homogenization, or the mechanical jump conditions. Among these, only the jump condition approach exhibits an intrinsic relationship to the sharp interface (SI) theory. Therefore, in the work at hand, the implementation of the crystal plasticity theory within the jump condition approach, referred to as phase-specific plastic fields approach (PSPFA), is discussed in detail. The PSPFA is compared to the interpolation approach, referred to as common plastic fields approach (CPFA), using three-dimensional benchmark simulations of a bicrystal set-up. The comparison reveals that the PSPFA and SI coincide convincingly regarding the accumulated plastic slip and the Mises stress. In contrast, a significant deviation of CPFA and SI is observed both quantitatively and qualitatively, not only within the diffuse interface region, but throughout the complete simulation domain. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000163137
Veröffentlicht am 17.10.2023
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Nanotechnologie (INT)
Institut für Technische Mechanik (ITM)
Institut für Angewandte Materialien – Mikrostruktur-Modellierung und Simulation (IAM-MMS)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2024
Sprache Englisch
Identifikator ISSN: 0178-7675, 1432-0924
KITopen-ID: 1000163137
HGF-Programm 43.31.01 (POF IV, LK 01) Multifunctionality Molecular Design & Material Architecture
Erschienen in Computational Mechanics
Verlag Springer
Band 73
Seiten 773-794
Vorab online veröffentlicht am 04.10.2023
Nachgewiesen in Dimensions
Web of Science
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page