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A B S T R A C T

Injection of Newtonian fluids in porous media to displace linearly another Newtonian fluid is described by the Buckley-Leverett (BL) fractional flow theory derived 
for incompressible, constant viscosity fluids at constant injection rate in a homogeneous and isotropic reservoir. Injection of non-Newtonian fluids can be addressed 
by modifying the fractional flow equation by considering the dependence of injected fluid viscosity with velocity, changes of residual oil saturation and chemical 
adsorption on rock. In this work, the BL fractional flow model is extended to describe injection of non-Newtonian fluids into a 1D linear heterogeneous formation 
accounting for fluid adsorption, permeability reduction, inaccessible pore volume, and presence of a denuded water bank developed over time ahead of non- 
Newtonian zone. Results from derived analytical solutions demonstrate fluids saturation and pressure drop across the formation, fluids production rate and cu-
mulative volumes to be in close agreement with the ones from a commercial reservoir simulator.   

1. Introduction

In a world of an ever-growing energy demand and economies built
and strongly dependent on fossil fuels, it is generally acknowledged that 
crude oil produced from hydrocarbon-bearing reservoirs plays a major 
role as the leading source of energy. The development of an oil reservoir 
usually can be subdivided into three major stages: initial (primary) oil 
recovery resulted from the natural energy existing in the reservoir, 
secondary oil recovery associated with operations engaged to maintain 
the reservoir pressure and displace oil from the injection towards the 
production wells through water or gas injection after primary oil pro-
duction declines, and finally tertiary oil recovery, often named enhanced 
oil recovery (EOR). In EOR processes, a wide array of specialized and 
advanced techniques such as miscible gas, chemicals (polymers or sur-
factants) and thermal energy injection can be used to produce additional 
oil after the end of a secondary process; the choice of the process used 
depends on both technical and economic constraints (Green and Will-
hite, 1998; Sorbie, 1991). In general, nearly 20–40 % of the initial oil in 
place can be extracted through the first two stages and the imple-
mentation of the EOR techniques can help to extract up to an additional 
around 20–30 % of the initial oil reserves in place. Chemical flooding is 
an important EOR method that has been used for more than 50 years to 
effectively recover remaining oil from the reservoir at the end of 
waterflooding. It uses water-soluble surfactant and/or aqueous polymer 
solutions engaged to increase the capillary number by decreasing oil/ 

water interfacial tension or decreasing the water/oil mobility ratio, 
respectively. The presence of these chemicals in the injected water in-
fluences the fractional flow curve through the relative permeability 
curves, residual oil saturation, and injected aqueous solution viscosity. 
The adsorption of these chemicals against the formation rock surface 
cause time-dependent alterations in their aqueous solution concentra-
tion along the distance between the injection and production wells. 

Due to its technical and commercial viability, polymer flooding has 
been considered one of the most promising EOR technologies. Wang 
et al. (2001) reported an incremental oil production of up to 300,000 
STB/D from a large-scale polymer flooding implemented in the Daqing 
oil field in China. Used polymers in the field can be either viscosifying 
polymers or viscoelastic polymers. Typically, the former will reduce the 
injected water mobility by increasing its viscosity, which will impact the 
fractional flow curve as discussed by Green and Willhite (1998) and 
Rossen et al. (2011). Hatzignatiou et al. (2013) used a commercial 
simulation model to conduct a simulation study to compare experi-
mentally measured oil production and determine the polymer flow 
behavior in linear core samples. They also (Hatzignatiou et al., 2015) 
investigated the effects of core wettability on the displacement of oil in 
core samples. Several authors (Askarinezhad et al. 2017, 2018, 2021; 
Azad and Trivedi, 2018; Erincik et al., 2017; Huh and Pope, 2008; 
Lotfollahi et al. 2016; Qi et al., 2018; Song and Hatzignatiou, 2022) 
reported that the use of a secondary viscoelastic-polymer flood 
following a viscosifying polymer one reduces oil residual saturation, Sor, 
below the residual oil saturation, Sorw achieved from waterfloods in 
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laboratory experiments. Mechanisms which contribute to the observed 
reduced residual oil saturation include mobility control, improved 
sweep efficiency, and improved microscopic displacement efficiency. 
Therefore, for viscosifying polymers, there is another factor which af-
fects the fractional flow curve, and this is the change of the relative 
permeability curves and residual oil saturation. In this work, the focus of 
the presented analytical solutions and the associated results will be on 
the injection of viscosifying polymers. The application of the second 
class of polymers, viscoelastic, and their impact on oil recovery in het-
erogeneous systems are addressed by Qiao and Hatzignatiou (2023). 

2. Analytical solutions based on fractional flow theory for
chemical flooding

For more than a half century, the Buckley–Leverett immiscible fluid 
displacement model has been used to simulate two-phase flow in porous 
media for one-dimensional homogeneous systems. Buckley and Leverett 
solved the immiscible fluid displacement problem using the fractional 
flow curve through which provided simple methods to define the sharp 
water saturation front position and to compute the water saturation 
profile in a porous medium containing oil which is displaced linearly by 
the injected water (Buckley and Leverett, 1942). Their initial model 
gives the water propagation velocity through the linear system where 
capillary pressure and gravity effects are ignored; later models have 
been also presented in the literature incorporating these effects. Calcu-
lating the average water saturation behind the water front, Welge 
(1952) established a relationship between the average water satu-
ration as a function of either the total volume of water injected or 
the injection time. Both Buckley–Leverett theory and Welge equation 
considered only the injection of Newtonian fluids in the oil-saturated 
porous media. For the polymer flooding fractional flow curve, this is 
always represented by increasing the aqueous phase viscosity since the 

polymer will generally transport in the aqueous phase (Ding et al., 
2020). Green and Willhite (1998) discussed extensively the water- and 
chemical-injection in linear homogeneous oil-saturated porous media 
both as secondary and tertiary processes. 

An extension of the analytical Buckley-Leverett solution incorpo-
rating the Welge (1952) technique for one-dimensional immiscible 
displacement of a Newtonian fluid by a non-Newtonian fluid in porous 
media was presented by Wu et al. (1991) and Wu (2016). The authors 
considered the non-Newtonian fluid viscosity to be a function of the flow 
potential gradient and phase saturation, and reported that the devel-
opment of the injected fluid saturation profile and the displacement 
efficiency are controlled by the relative permeabilities and the inherent 
complexities of the non-Newtonian fluid. The authors verified the water 
saturation results from their analytical solution against results from a 
numerical model developed to simulate of flow of immiscible non- 
Newtonian and Newtonian fluids in porous media. Wu et al. (1993) 
also extended the Buckley-Leverett theory to the two-phase flow prob-
lem in one-dimensional linear systems which consists of two flow do-
mains with different properties for the Newtonian fluids. The authors 
stated that the Buckley-Leverett analytical solution is still applicable in 
the composite system except that there is a saturation profile disconti-
nuity induced by the flux transition across the interface between adja-
cent domains. Wu et al. (2010) also investigated the non-Darcy flow 
effects based on the Forchheimer and Barre-Conway models in both 
linear and radial composite porous media. Rossen et al. (2011) extended 
the fractional flow theory of two-phase flows to polymer flooding in one- 
dimensional cylindrical flow, where the polymer rheology varies with 
the distance of the injection well therefore the fractional flow curve is a 
function of position. A recent study conducted by Ding et al. (2020) 
reviewed the analytical modeling approaches of polymer flooding and 
surfactant flooding based on fractional flow theory in a homogeneous 
porous media and illustrated the effects of surfactant adsorption and 

Nomenclature 

A Cross-sectional area, m2 

Ap Chemical adsorption, kg chemical /kg rock 
Ĉp Retained chemical, kg chemical /PV m3 

Ci Concentration of species i, ppm 
Dp Retention factor, dimensionless 
f Fractional flow (water cut), fraction 
k Absolute permeability, m2 

kj Phase j effective permeability, m2 

krj Phase j relative permeability, dimensionless 
L Porous medium linear length, m 
M End-point mobility ratio, dimensionless 
n Power-law exponent, relative permeability exponent, 

dimensionless 
P Pressure, Pa or atm 
q Volumetric flow rate, m3/s 
qD Dimensionless volumetric flow rate 
Ri Retained (adsorbed) amount of species i, chemical kg / 

rock kg 
sw or sp Water or polymer saturation, fraction 
t Time, s or min 
tD Dimensionless time 
u Darcy velocity, m/s
v Actual fluid velocity, m/s 
x Linear distance, m 
xD Dimensionless linear distance 

Greek Letters 
α Exponent of DPR fluids’ properties 

γ̇ Shear rate, s− 1 

λ Critical time constant, s 
μ Viscosity, Pa.s 
ρ Density, kg/m3 

ρs Rock density, kg/m3 

ϕ Porosity, fraction 

Subscripts 
1 Formation domain (rock type) 1 
2 Formation domain (rock type) 2 
BT Breakthrough time 
D Dimensionless 
e End point 
f Fluid or front 
H Hydrostatic 
i Species, initial, linear interval 
ir Irreducible 
j Linear bed number, phase 
o Oil
p Polymer 
pf Polymer/oil front 
r Rock 
w Water 
wb Oil bank 
wf Water/oil front 
Superscripts 
0 Reference conditions 
j Linear bed number  



partition, interfacial tension, initial oil saturation, and injection slug size 
during surfactant flooding, and the effects of initial oil saturation, 
polymer viscosity and viscoelasticity, slug size, polymer inaccessible 
pore volume and retention in the process of polymer flooding. Based on 
the theory of polymer–oil fractional flow, Sun et al. (2019) calculated 
polymer injectivity in a multilayer reservoir where each layer is 
considered to be homogeneous porous medium. 

However, other works mostly considered non-Newtonian fluid dis-
placing Newtonian fluid in homogeneous porous media (Wu et al., 1991; 
Rossen et al., 2011; Sun et al., 2019; Ding et al., 2020) or Newtonian 
fluid displacing Newtonian fluid in a heterogeneous porous media (Wu 
et al., 1993; Wu, 2016). This work extends the Buckley-Leverett theory 
to non-Newtonian fluid injection in a linear heterogeneous porous 
media consisted of n parallel layers along the direction of oil displace-
ment. Our consideration is one-dimensional linear flow of two immis-
cible fluids through n formation domains (rock types) having different 
rock properties (permeability, porosity, and relative permeability 
curves). Adsorption (retention) phenomena of the injected non- 
Newtonian fluid in the two formation rocks is also incorporated into 
the model. For simplicity, results of a two-phase, immiscible flow 
problem are considered in an incompressible composite system which 
consists of two formation domains (rock types) with each domain having 
different rock properties. The assumptions stated in Appendix A for the 
standard Buckley-Leverett model are used for each flow domain in this 
mathematical model, namely, (a) the system is one dimensional linear, 
(b) the capillary pressure and gravity effects are negligible, (c) fluids and
rocks are incompressible, (d) the rock properties are constant in each
domain, and (e) the fluid properties are constant in each domain at a
given injection rate.

3. Fractional flow function

Although the use of fractional flow theory between water and oil is
straightforward and well-established (Buckley and Leverett, 1942, 
Welge, 1952), the effects of the injected chemical fluid on either the 
relative permeability curves - surfactant injection - or viscosity changes 
of the injected fluid and its non-Newtonian fluid behavior – polymer 
injection - on the fractional flow curve need to be considered when using 
the oil/injected-fluid fractional flow function. 

More specifically for polymer injection, there are available mathe-
matical models that describe the relationship between shear stress and 
shear rate of non-Newtonian fluids, such as the power-law model, 
Carreau-type (Carreau, 1972) model, Herschel-Bulkley (Herschel and 
Bulkley, 1926) model and the Cross-Power law model. In this work, the 
two classical models of power-law and Carreau-type are engaged to 
account for the non-Newtonian fluid behavior and illustrate how they 
affect the fractional flow equation. 

The power-law model (Ostwald, 1929) is described by the following 
relationship 

μp K(γ̇)n 1 (1)  

where μp represents the apparent polymer viscosity, K is the power-law 
constant, n is the power-law exponent and γ̇ is the shear rate. The Car-
reau model (Carreau, 1972) is described by the equation 

μp μ∞
(
μpN μ∞

)[
1 + (λγ̇)2 ][(n 1)/2 ]

(2)  

where μpN and μ∞ are the polymer viscosities at zero shear rate and 
infinite shear rate, respectively. The parameter 1/λ is the critical shear 
rate and n is the shear-thinning (n < 1) or shear-thickening (n > 1) 
index. 

Assuming that the viscosity of the aqueous polymer solution depends 
on its interstitial velocity vp (Rossen et al., 2011), we have 

μp μ0
p

(
vp

v0
p

)n 1

μ0
p

(
qtfp

ϕv0
pAsp

)n 1

(3)  

where vp
ut fp
ϕsp

qt fp
ϕAsp

. Here, ut is the total injection velocity corre-

sponding to the total injection rate qt . μ0
p denotes a reference polymer 

viscosity related to an interstitial velocity v0
p . A and ϕ represent the 

cross-section area of the one-dimensional porous media and its porosity, 
respectively. sp is the polymer solution saturation. 

Rossen et al. (2011) incorporated Eq. (3) into the conventional 
fractional flow equation (Eq. (4)) 

fp
qp

qo + qp

kkrp
μp

kkrp
μp

+ kkro
μo

(4)  

and obtained the following fractional flow function 

fp

[

1 +
kroμ0

p

krpμo

(
qtfp

ϕv0
pAsp

)n 1 ] 1

. (5)  

Then Eq. (5) can be solved implicitly for the fraction flow using an 
iterative method. 

In this work, we want to consider the effects of the residual resistance 
factor (RRF) and inaccessible pore volume (IPV) due to the polymer 
retention. Therefore, the general Darcy’s equations for polymer and oil 
flow become as follows 

qp A
k
/

RRF • krp

μp
ΔPxf , qo A

k • kro

μo
ΔPxf (6)  

and the interstitial velocity in Eq. (3) takes the form of 

vp
utfp

ϕ(1 IPV)v0
psp

qtfp

ϕ(1 IPV)v0
pAsp

(7) 

Fig. 1. Sketch illustrating how the computational intervals, i, are numbered in a system containing two linear beds. The yellow dashed lines refer to the displacing 
distance at different polymer/water saturations. The distance intervals are forced to generate at the boundary of the two domains. Note: j represents linear beds or 
domains and i refers to the number of computational intervals. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 



Combining Eq. (3) and (4), the following fractional flow function can be 
obtained: 

fp

[

1 +
RRFkroμ0

p

krpμo

(
qtfp

ϕ(1 IPV)v0
pAsp

)n 1 ] 1

. (8)  

In Eq. (8), the aqueous polymer solution and oil phase relative perme-
abilities are given by 

krp krp,e
(
Sp
)np

, kro kro,e
(
1 Sp

)no (9)  

with the normalized polymer saturation expressed as follows 

Sp
Sp Swi

1 Swi Sor
. (10)  

In Eq. (9), krp,e and kro,e are the end-point values of relative permeabil-
ities, respectively for polymer and oil phases. np and no are the Corey 
exponents. Similar to Eq. (5), the newly derived fractional flow function 
Eq. (8) considering RRF and IPV can also be solved through an iterative 
method. For the Carreau-type model shown in Eq. (2), a similar pro-
cedure can be adopted to get the implicit expression of fraction flow 
function. 

Considering a heterogeneous formation composed of n distinct linear 
parallel beds across the flow direction (Fig. 1) with varying rock and 
fluid properties (permeability, porosity, initial water and residual oil 
saturations, and relative permeabilities), there will be n fractional flow 
equations given by Eq. (8), namely: 

f j
p

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1

1 +
RRFkroμ0

p
krpμo

(
qt fp

ϕ(1 IPV)v0
pAsp

)n 1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

j

(11)  

where the superscript j( 1, 2,…, n) represents the linear bed j. Note 
that each linear bed has distinct rock and fluid properties, including 
polymer adsorption curves. Therefore, following the standard fractional 
flow (Buckley-Leverett) theory one needs to compute and construct all 
these fractional flow curves, draw the tangent lines from the corre-
sponding initial points ( Dpj +IPVj, 0) where Dp is the retention factor, 
and follow the appropriate fractional flow curves to determine the 
aqueous polymer solution (water) saturation distribution versus linear 
distance at a given time (Green and Willhite, 1998). Appendix A 

includes relevant and important information pertaining to the water/oil 
Buckley-Leverett solution as well as a summarization of important re-
lationships describing polymer flow in porous media. The detailed 
procedure to be followed to determine the aqueous polymer saturation 
versus linear distance for a two-zone linear composite system is outlined 
in Appendix B. 

At a selected time, once the water saturation distribution versus 
linear distance has been determined, the pressure gradient, (dp/dx)j

i, 
across the computational interval i of the linear bed j will be given by the 
following relationship: 

(
dp
dx

)j

i
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(12)  

Note that the total flow rate qt and cross-sectional area A are the same 
for all n linear beds, and Sp represents the aqueous polymer saturation in 
the polymer invaded bed. Depending on the location of the polymer 
front, both or one of the two terms in the parenthesis on the right-hand 
side of Eq. (12) will be present in the calculation of the pressure drop 
across the bed. For example, if the polymer front has yet to reach bed j, 
only the right term will be present, whereas if the polymer front has 
passed entirely through the bed, only the left term will be required. 
Otherwise, both terms need to be accounted when calculating the 
pressure drop across the bed. The total pressure drop, Δp, across the 
entire linear heterogeneous formation can be determined by integrating 
the pressure gradient across the porous medium linear distance from 0 to 
L: 

Δp
∫ xpf

0

(
dp
dx

)j

i
dx+

∫ L

xpf

(
dp
dx

)j

i
dx  

Fig. 2. Illustration of polymer solution injection into a composite one-dimensional system. The first case considers domain (bed) 1 on the injection (left side) of the 
formation and domain (bed) 2 on the effluent (right side). The second case considers the opposite scenario related to the two linear domains (beds). 
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In this work, we utilize an implicit expression of the fractional flow 
function to model polymer solution displacement of oil in a heteroge-
neous formation based on the method of characteristics (MOC). For 
simplicity, a composite system is used in the remaining of this work to 
illustrate the application of the proposed methodology and illustrate 
achieved results. The flow behavior of the injected chemical (polymer) 
solution is illustrated through various polymer injection scenarios by 
altering rock and fluids properties. Fluid saturation and pressure results 
across the linear heterogeneous formation obtained from the proposed 
analytical model are compared and verified against ones obtained from 
a numerical commercial simulator (CMG, 2022). Appendix B provides a 
detailed description and a step-by-step approach outlining how the 

proposed analytical solution is applied for polymer flooding in a com-
posite porous medium system. 

4. Results and discussion

4.1. Linear composite model

In this section, a one-dimensional linear heterogeneous system with 
composite domains is used to display results obtained from the analyt-
ical solution for polymer injection into a core sample containing oil at 
irreducible water saturation. Fig. 2 shows the composite domains for 
two different cases. The first case and second case have each domain in 
the opposite direction. The polymer solution is injected from the left 
boundary of the composite system while the water and oil are produced 
from the right boundary. The input parameters used for the polymer 
flooding cases are summarized in Table 1. For simplicity in this paper, 
we assume polymer and water have same relative permeability curves, 
which means that krw,e krp,e and nw np referring to Eq. (9). 

4.2. Effect of formation heterogeneity on fractional flow curves 

Fractional flow functions in the absence of gravitational and capil-
lary forces are generally calculated using the traditional expression Eq. 
(4) provided the viscosities of the flowing phases are constant. Eq. (3)
suggests that the polymer viscosity varies with its interstitial velocity
thus, the modified fractional flow expression Eq. (8) can be used to
calculate the polymer fractional flow fp based on the chosen values of
flow rates, RRF and IPV. More specifically, Fig. 3 displays two sets of
fractional flow curves for a two-bed (domain) composite domain with
different rock properties in each bed, using the input from Table 1. In
this part of the work, the water fwj(j 1, 2) fractional flow curve is
computed from the conventional expression of fractional flow function
Eq. (4) and the polymer solution fpj(j 1,2) fractional flow curves are
computed from the modified expression of fractional flow function Eq.
(8). In order to compare our results against the ones computed from a

Model Input Parameters 

k1 (mD) 300 krw1,e (-) 0.5 
k2 (mD) 500 krw2,e (-)  0.5 
Swi1 (-) 0.25 kro1,e (-)  0.8 
Swi2 (-) 0.4 kro2,e (-)  0.7 
Sor1 (-) 0.35 nw1 (-)  1.3 
Sor2 (-) 0.2 nw2 (-)  1.4 
μw (cP) 1 no1 (-)  2.5 
μo (cP) 10 no2 (-)  2.5 
μ0

p (cP) 40 n (-)  0.9 
qt (cm3/min) 0.5 L1 L2 (cm)  15.24 
A (cm2) 5.067 φ1 (-)  0.2 
Poutlet (atm) 1 φ2 (-)  0.28  

Fig. 3. Fractional flow curves of an aqueous phase (water or polymer solution) for a two-bed composite domain with negligible chemical adsorption.  

Table 1 
Model input parameters for linear polymer flooding in a two-domain composite 
porous medium containing oil at irreducible water saturation conditions.  



commercial simulation model (CMG, 2022) that considers during oil 
displacement the polymer viscosity to be independent of polymer 
interstitial velocity, we used n 0.9 as the power-law index for the non- 
Newtonian polymer solution in Eq. (8) with a reference polymer solution 
viscosity of 40 cP, which is the value used in the simulator. One should 
note that there are three typical saturations for each domain: water 
saturation front Swfj, oil bank water saturation Swbj and polymer front 
saturation Spfi where (j 1,2). Note that the subscripts 1 and 2 represent 
domains 1 and 2, respectively, and subscript p refers to polymer solu-
tion. Note that for simplification, for the remaining of the paper, the 
subscript “p” in the polymer aqueous solution saturation will be 
replaced by “w” keeping always in mind that when discussing results for 
polymer, these are related to polymer aqueous solution saturation and 
not water saturation. 

The tangents are drawn from the (0, 0) point – assuming there is no 
polymer retention – to the two polymer fractional flow curves wo define 

the polymer solution front 
(

Spfj, fpfj

)
and the oil bank points 

(
Swbj, fwbj

)

as shown in Fig. 3. The tangent from 
(

Swij, fwij

)
– here the subscript i

pertains to the initial water saturation in the two domains – to the two 

water fractional flows define the waterfront 
(

Swfj, fwfj

)
points. When

polymer adsorption is present, the tangents to the polymer fractional 

flow curves are drawn from 
(

Dpj, 0
)

when IPV is zero and from 
(

Dpj +

IPVj,0
)

when IPV is not zero. 

4.3. Results comparison - analytical solution versus numerical simulation 

First, we compare and analyze results from synthetic experiments 
where the effects of polymer adsorption, permeability reduction (RRF) 
and inaccessible pore volume (IPV) are not considered into the analyt-
ical solutions. Subsequently, the polymer adsorption effects are included 
in the results provided. Finally, the combined effects of inaccessible pore 
volume and permeability reduction are also considered as a result of 
polymer adsorption in the porous media. The polymer flooding tests are 
conducted for two cases: one is for the forward flow from domain 1 to 
domain 2 and the other is for the reverse flow from domain 2 to domain 
1. All results presented from the analytical solution include saturation
profiles, pressure profile distribution, pressure drop across the forma-
tion, and cumulative oil/water production rates. These analytical results
are compared with results obtained from the commercial simulation
software CMG.

Fig. 4 shows a comparison of the analytical water saturation profiles 
(solid lines) against the numerical results (dashed lines) obtained from 
the commercial simulator CMG for a simple polymer flooding case 

Fig. 4. Simulation results of analytical solution water saturation profile along the flooded oil-bearing porous medium compared against results from the numerical 
simulator CMG. The interface between the two linear domains (beds) is located at 0.1524 m. 

Fig. 5. Analytical pressure drop solution results along the entire domain displayed versus time and compared against numerical pressure drop results from CMG.  



without accounting for the effects of polymer adsorption, permeability 
reduction and inaccessible pore volume. The left panel of Fig. 4 illus-
trates the saturation profiles across the formation for oil displacement 
from domain 1 to domain 2 and at specific times (10 min and 30 min). 
the boundary between domains 1 and 2 is clearly depicted by the 
observed water saturation jumps occurring at the domains’ interface at 
linear distance of 0.1524 m from the formation inlet. It is noticeable that 
the analytical solution yields sharp saturation fronts for both the water 
and polymer fronts while the numerical results have relatively diffusive 
saturation fronts. It is also noticeable that the numerical water satura-
tions at 10 min displays non-physical profiles in the oil bank region; this 
is also observed in the water saturation profiles at 5 min in the right 
panel of Fig. 4 where the polymer flooding is taking place from domain 2 
to domain 1 (reverse flow compared to flow direction for the left panel of 
Fig. 4). In both cases (forward and reverse flow), one can observe the 
polymer and the oil bank regions at early times but only the polymer 
region at the later times. The results displayed in Fig. 4 clearly indicate 
that the analytical solutions presented in this work yield saturation 
profiles along the formation in close agreement with the ones obtained 
from numerical solutions. 

For the same case as the one discussed in Fig. 4, Fig. 5 shows the 
pressure drop along the formation as a function of polymer solution 
injection time. As previously, the solid curves represent the simulation 

results and the dashed curve the results from our analytical solutions. 
The two horizontal lines shown in Fig. 5 represent the pressure drop 
across the formation for single-phase oil flow (lower dashed line) and 
single-phase polymer solution flow (upper dashed line), respectively. 
Clearly, there are two major turning points in the pressure drop results 
presented in Fig. 5; the first point is when the polymer solution flows 
from the left domain to the right one and the second point refers to a 
time when polymer front breaks through the entire porous medium 
system (domain 2 outlet). The displayed pressure drop results in Fig. 5 
show that there is a good agreement between the analytical and nu-
merical solution except when polymer solution flows from domain 2 into 
domain 1. This is attributed to the differences observed between the 
analytical and numerical water saturation profiles (see saturation pro-
files at 40 min in Fig. 4). The same behavior is also observed in the 
second panel of Fig. 6 (see difference between 0.15 m 0.2 m) where 
the corresponding pressure profile along the system distance is plotted at 
given times. Note that in Fig. 6 the backpressure boundary condition of 
1 atm is constrained at the outer boundary pressure of the system. 

Fig. 7 demonstrates the comparison of oil production rate, cumula-
tive oil and water production results between the analytical solution and 
the numerical one. Despite the fact that numerical oil rate results display 
similar behavior with the water saturation when compared to analytical 
ones, the cumulative (average) oil production values are approximately 

Fig. 6. Analytical versus simulation pressure profile displayed for selected times.  

Fig. 7. Oil production rate and oil and water cumulative production versus time – comparison between analytical solution (dashed curves) and numerical solution 
(solid curves). 



the same as the analytical results in both flow directions (left and right 
panels in Fig. 7). Moreover, there is also a very good match between the 
analytical and numerical results for the cumulative water production 
curves for both forward flow (domain 1 to domain 2) and reverse flow 
(domain 2 to domain 1). 

4.3.1. Fluids viscosity effects 
In order to validate more cases between analytical and numerical 

results, the viscosities of oil and polymer solution are varied. The first 
case examined is with 5 cP polymer solution and 10 cP oil and the 
second one refers to a 5 cP polymer solution and 20 cP oil. Figs. 8–11, 
respectively, display the water saturation profiles vs. system distance 
and pressure drops vs. time for the forward and the reverse flow di-
rections. Compared to the results shown in the left panel of Fig. 4 the 
polymer viscosity has a lower value 5 cP in the corresponding left panel 
of Fig. 8; these results show that in both analytical and numerical so-
lutions the polymer fronts move faster while the locations of the water 
front are the same despite the marked difference in the polymer front 
saturation between the two cases. Note also that the oil bank size is 
bigger in Fig. 8 compared to the one displayed in Fig. 4. Furthermore, 

the numerical solution seems to give different fluctuations on the satu-
ration profiles in the oil bank region when polymer viscosity is changed 
from 40 cP to 5 cP, a behavior that is not observed in the analytical 
solution. In the right panel of Fig. 8, a higher oil viscosity value (20 cP) is 
used. Compared to the left panel of the same Fig., it is seen that the 
polymer front in the analytical solution has a lower saturation value 
since the oil mobility decreases. The numerical solution follows the same 
saturation trend as the analytical one in the polymer invaded portion of 
the formation, whereas the difference between them is relatively large in 
the oil bank region as we can see the blue dashed line has an increasing 
trend at distance around 0.2 m which stabilizes at stabilizes at distance 
approximately 0.22 m. For the reverse flow from domain 2 to domain 1, 
the comparisons of saturation profiles are shown in Fig. 9 where the 
overall trend looks acceptable between the analytical and numerical 
solutions. We omit the detailed explanation for the difference between 
them since this follows a similar behavior as the forward flow illustrated 
in Fig. 8. 

Corresponding to saturation profile displayed in Fig. 8 and Fig. 9, the 
pressure drops across the formation (Δp pin pout) versus time are 
shown in Fig. 10 and Fig. 11. These figures show five typical turning 

Fig. 8. Analytical solution water saturation profile along the flooded oil-bearing porous medium compared against results from the numerical simulator CMG. Left 
panel: polymer viscosity 5 cP and oil viscosity 10 cP. Right panel: polymer viscosity 5 cP and oil viscosity 20 cP. The interface between the two linear domains (beds) 
is located at distance 0.1524 m from formation inlet and the flow is from domain 1 to domain 2. 

Fig. 9. Analytical solution water saturation profile along the flooded oil-bearing porous medium compared against results from numerical simulator CMG. Left panel: 
polymer viscosity 5 cP and oil viscosity 10 cP. Right panel: polymer viscosity 5 cP and oil viscosity 20 cP. The interface between the two linear domains (beds) is 
located at distance 0.1524 m from formation inlet and the flow is from domain 2 to domain 1. 



points in pressure drop curves as numbered in Fig. 10. The first one 
occurs when the waterfront reaches domain 2 at time 4.4 min left and 
2.7 min right, and the second one when water breaks through at the 
production end of the formation (tBTw 10.5 min left and 7 min right). 
The third and fifth Δp turning points take place when polymer front 
enters into domain 2 (17.5 min left and 16.3 min right) and when it 
breaks through at the production end of the formation (tBTp 48 min left 
and 45.8 min right). As it is shown in Fig. B.6 (line A2D2), an extra water 
bank shock wave with a higher saturation value is generated when 
polymer enters into domain 2. The fourth point in Fig. 10 means that 
additional water shock wave passes by the right boundary (outlet) of the 
system. The overall comparison of pressure drop across the formation 
versus time shows that the proposed analytical solution has a very good 
agreement with the numerical ones albeit some minor differences pri-
marily due to numerical dispersion effects of the simulation results. It 
should be noted that in Fig. 5 the polymer viscosity is relatively high (40 
cP), therefore there are two distinct inflection points on the pressure- 
drop vs. time graph reflecting the location of polymer front. 

Similar to the forward injection case results shown in Fig. 10, the 
pressure drop across the formation for the reverse flow also contains five 
typical inflection points as illustrated in Fig. 11. The explanations for 
this behavior are the same as the ones presented earlier for the forward 
injection case: points 1 and 2 reflect the waterfront arrival at the 
interface between domain 1 and domain 2, and the waterfront break-
through at the outer boundary of system, respectively. Points 3 and 5 
represent the polymer front reaching the domain-1/domain-2 boundary 
and the polymer front breakthrough at the outer boundary of the for-
mation, respectively. Finally, the inflection point 4 is related to an extra 
water bank shock-wave (low oil saturation) generated when the polymer 
enters into domain 1; see line A1C1 in Fig. B.10. Fig. 11 shows an 
acceptable agreement between analytical and numerical formation 
pressure drop results. 

4.3.2. Effects of residual resistance factor (RRF) and inaccessible pore 
volume (IPV) 

Polymer retention in a porous medium can result in permeability 

Fig. 10. Formation pressure drop analytical solution results along the entire domain displayed versus time and compared against numerical obtained from CMG 
simulator. Left panel: polymer viscosity 5 cP and oil viscosity 10 cP. Right panel: polymer viscosity 5 cP and oil viscosity 20 cP. Polymer injection is from domain 1 to 
domain 2. 

Fig. 11. Formation pressure drop analytical solution results along the entire domain displayed versus time and compared against numerical results obtained from the 
CMG simulator. Left panel: polymer viscosity 5 cP and oil viscosity 10 cP. Right panel: polymer viscosity 5 cP and oil viscosity 20 cP. Polymer injection is from 
domain 2 to domain 1. 



reduction (residual resistance factor - RRF) and inaccessible pore vol-
ume (IPV) of the polymer flooded formation. Therefore, it is essential to 
consider the effects of polymer retention (adsorption, mechanical and 
hydrodynamic entrapment) during polymer flooding on both fluid 
saturation distribution and pressure drop across the formation. 
Following Green and Willhite (1998), an adsorption coefficient Dpj (j 
denotes the number of linear bed/domain) is introduced to account for 
polymer retention on the developed analytical model; please refer to 
Appendix A for more details. Note that commercial reservoir simulation 
software, such as CMG, consider a dynamic isothermal process for 
polymer retention (adsorption) requiring polymer adsorption input data 
in the form of Langmuir curves. Compared to the case of polymer 
flooding without adsorption displayed in Fig. 4, two observations are 
noticeable in Fig. 12 which shows the computed water saturation pro-
files in the porous media accounting for polymer adsorption. Note that 
permeability reduction in both domains due to polymer retention was 
assumed to be negligible (RRFj 1). The positions of water fronts are the 
same in both cases, whereas the polymer fronts, as expected, move 
relatively slower in the polymer flood showing in Fig. 12 due to polymer 
adsorption, which can also to some extent narrow the diffusive parts of 
polymer front region. 

The corresponding pressure drops versus time for the case of polymer 

adsorption water saturation profiles depicted in Fig. 12 are plotted in 
Fig. 13. A comparison of Figs. 5 and 13 shows that the pressure drop in 
the absence of polymer adsorption builds up faster than the one with 
polymer adsorption, although the overall trend of the formation pres-
sure drop curves and the final plateau values are practically the same 
between the no-adsorption and adsorption cases. In addition, Fig. 5 
shows that the numerical solution yields a slightly slower pressure drop 
buildup in the absence of polymer adsorption. The reason for this 
behavior can be captured in the saturation profiles (Fig. 4) where 
diffusive polymer fronts result in a lower pressure drop compared to the 
sharp polymer front generated by the analytical solution. These pressure 
drop differences between two solution approaches are enhanced as time 
increases. Interestingly, in the presence of polymer adsorption (Fig. 12), 
numerical solutions yield diffusive polymer fronts which are relatively 
faster than the analytical ones at later times; see polymer front differ-
ences at 30 min from domain 1 to domain 2 and at 40 min from domain 2 
to domain 1 polymer flooding. Therefore, the analytical solutions with 
polymer adsorption result in a relatively slower pressure drop buildup 
compared to the numerical ones (Fig. 13). The key reason causing this 
phenomenon is the implementation of dynamic polymer adsorption in 
the commercial simulator versus the constant polymer adsorption co-
efficient included in the analytical solution. 

Fig. 12. Simulation results of analytical solution water saturation profile along the flooded oil-bearing porous medium compared against results from the numerical 
simulator CMG, Dpj = 0.18 and RRFj = 1 for both domains. 

Fig. 13. Analytical solution of formation pressure drop results along the entire domain displayed versus time and compared against numerical pressure drop results 
from CMG, Dpj = 0.18 and RRFj = 1 for both domains. 



Effects of Inaccessible Pore Volume (IPV): Unlike water, polymer 
molecules are not able to flow through the entire pore volume due to 
their size difference and blocked pores as a result of retained (adsorbed) 
polymer. The fraction of total pore volume, which is not available for 
polymer invasion is called inaccessible pore volume (IPV). Comparing to 
results displayed in Fig. 4 for the case of polymer flooding in the absence 
of IPV (i.e., IPV 0), the effects of IPV on water saturation profiles are 
illustrated in Fig. 14 where both cases with IPV and without IPV are 
compared. The IPV values considered for both domains are 5 %. Note 
that in this section, we use the same case as the one illustrated in Fig. 12 
as the base case, which means that polymer adsorption is always present 
without permeability reduction (RRFj 1). 

The solid lines in Fig. 14 display water and polymer saturation results 
from the analytical solutions and the dashed lines are the corresponding 
results from the numerical simulator. As expected, this figure shows that 
a 5 % IPV in both domains results in a faster polymer front movement for 
both analytical and numerical solutions. From a mathematical point of 
view, estimation of polymer front saturation and its velocity needs to be 
based on the tangent line drawn from point (IPV Dp, 0); please refer to 

Appendix B for further details. In addition to causing a relatively lower 
water saturation values in the oil bank region, IPV also causes a rela-
tively lower polymer front saturation and faster front velocities. This can 
be further enhanced by the fact that IPV impacts polymer fractional flow 
curves (fp increases with an increasing IPV value; see Eq. (11)). IPV does 
not affect the shape of polymer fronts either diffusive (numerical) or 
sharp (analytical) fronts; it only accelerates polymer front propagation 
through polymer-flooded porous media. The differences on saturation 
profiles due to IPV effects are very comparable between the analytical 
and the numerical solutions (Fig. 14). In addition, at time t 10 min 
from domain 1 to domain 2 polymer flood, we use zoomed-in plots to 
compare the differences of polymer profiles between the analytical and 
numerical solutions. The polymer profile changes induced by IPV in the 
analytical solution emanates from the fractional flow function. The 
numerical solution shows a different behavior, i.e., lower polymer 
saturation profiles with a slower polymer front movement. Note that the 
overall fit between the analytical and numerical solutions is satisfactory 
except that the non-physical profiles (oscillations) in the numerical oil 

Fig. 14. Analytical solution water saturation profile along the flooded oil-bearing porous medium compared against results from numerical simulator CMG, with and 
without the effects of IPV. 

Fig. 15. Analytical solution water saturation profile results along the flooded oil-bearing porous medium compared against results from the numerical simulator 
CMG, with and without the effect of RRF. 



bank are still present as observed previously for the results presented in 
Fig. 4. 

Effects of Residual Resistance Factor (RRF): One important 
outcome of polymer adsorption/ retention in the porous medium is the 
reduction in rock’s permeability (RRF). Considering a negligible IPV 
(reduction of the portion of pore space polymer flows through the 
flooded medium due to polymer retention) in both domains, Fig. 15 il-
lustrates the effect of polymer reduction (RRFj 1.45 for both domains) 
on the water saturation profiles at times 10 min and 40 min. Zoomed-in 
plots for both analytical and numerical solutions at time t 10 min are 
included for the case of polymer flooding from domain 1 to domain 2. 
From these plots it is observed that the polymer front saturation in both 
analytical and numerical solutions is slightly higher and its velocity 
slower when RRF 1.45 compared to the RRF 1 case. However, the 
results presented in Fig. 15 clearly show that there are no significant 

variations on the saturation profiles, analytical and numerical, when 
polymer adsorption with an associated permeability reduction is 
accounted for. The minor differences observed in the saturation profiles 
caused by the presence of RRF can be explained by the fact that fp de-
creases with increasing RRF as indicated by Eq. (11) that includes the 
RRF effects in the linear beds (domains) of the heterogeneous flooded 
oil-bearing formation. The corresponding results with RRF 1.45 have 
a lower water saturation in the oil bank, a higher polymer front satu-
ration, a faster polymer front velocity after the tangent line is drawn to 
the polymer fractional flow curves, which can be verified by the results 
illustrated in Fig. 15. The differences on the polymer saturation profiles 
resulted from RRF 1.45 and RRF 1 are similar between the 
analytical and numerical solutions. Moreover, in the analytical solutions 
RRF has no impact on the region near the waterfront, whereas different 
RRF values can result in some minor changes in the numerical solutions; 

Fig. 16. Simulation results of analytical solution water saturation profile along the flooded oil-bearing porous medium compared against results from the numerical 
simulator CMG, with and without the combined effects of IPV and RRF. 

Fig. 17. Analytical solution for formation pressure drop across the formation displayed versus time and compared against numerical pressure drop results obtained 
from the CMG simulator in the absence and presence of IPV and RRF effects. 



see the non-physical oscillations at t 10 min. 
Effects of Inaccessible Pore Volume (IPV) and Residual Resis-

tance Factor (RRF): This subsection considers the effects of both 
inaccessible pore volume and permeability reduction in the linear beds 
during polymer flooding. Therefore, Fig. 16 combines these two IPV and 
RRF effects, as shown in Fig. 14 and Fig. 15 respectively, and compares 
the results with the case without IPV and RRF effects illustrated in 
Fig. 12. Obviously, as expected, the results in Fig. 16 are an overlay of 
the results in Fig. 14 and Fig. 15. A very small piece of evidence of this is 
the difference in the water bank saturation profiles (at 10 min) vanishes 
in Fig. 16 based on the numerical results from domain 1 to domain 2. For 
either analytical or numerical solutions, the main differences caused by 
both effects on saturation profiles are still mainly dominated by the IPV 
as in Fig. 14. 

The corresponding formation pressure drop curves versus time are 
shown in Fig. 17. As it has been observed in Figs. 4 and 6, pressure drop 
is strongly affected by the presence of the polymer flooded region. IPV 
impact on the pressure drop is through the accelerated polymer move-
ment (see Figs. 14 and 16), therefore yielding higher pressure drops due 
to longer polymer propagation distance (see xpf in Eq. (13)) compared to 
the case with IPV 0. RRF has a minor impact on the saturation profiles 

as shown in Fig. 15, but it reduces the permeability of the polymer swept 
regions and thus contributes to high pressure drops as illustrated in Eq. 
(13). In other words, IPV affects the rate of pressure drop buildup, 
whereas RRF influences the magnitude of pressure drop at the given 
polymer region, see Fig. 17 for details. Irrespectively of the IPV value 
used (with or without IPV), larger RRF values always result in a higher 
pressure drop in both forward and reverse flow directions in Fig. 17. The 
ratio of final plateau values between the cases with RRFj 1 and RRFj 
1.45 is around 1.45 for both numerical and analytical solutions. This is 
because at the end of the polymer flood (after 70 min), polymer has 
already passed through the entire porous medium flooded domains and 
the pressure drop along the entire system is primarily dominated by 
polymer which has efficiently recovered the mobile oil, i.e., normalized 
polymer saturation close to 1. In contrast to RRF, IPV gives no impact on 
the final plateau values but only on the evolution speed of pressure drop 
before the polymer has broken through the entire heterogeneous system. 
This is an outcome associated with the polymer front moving faster in 
the flooded porous medium when the IPV values of the two domains are 
equal to 5 % (Fig. 16). 

The corresponding pressure distribution profiles with zoomed-in 
plots are shown in Fig. 18 and Fig. 19 at two given times (10 min and 

Fig. 18. Analytical versus simulation formation pressure profile displayed at time t = 10 min in the presence and absence of IPV and RRF effects.  

Fig. 19. Analytical versus simulation formation pressure profile displayed at time t = 40 min in the presence and absence of IPV and RRF effects.  



40 min) for the cases shown in Fig. 16. Like Fig. 6, the outer boundary of 
system is constrained at pressure of 1 atm. From these two figures one 
can see the formed oil bank in all four cases yields practically the same 
pressure drop; however, polymer IPV and RRF effects cause differences 
in the observed pressure drop. Two groups of formation pressure drops 
are shown, one for RRFj 1 and the other one for RRFj 1.45. For these 
two sets of formation pressure drops, the IPV value of 5 % in both do-
mains just yields some small differences compared to those without IPV 
effect. In particular, the ratio of the slope of pressure curves with RRFj 
1.45 to the slope with RRFj 1 is 1.45 in the polymer region. Mean-
while, the faster polymer fronts caused by IPV 5 % result in a rela-
tively larger high-slope curves due to the size of the polymer region, 
which can be clearly observed in the zoomed-in plot of Fig. 19. There-
fore, our key observations can be summarized as follows: (a) IPV pro-
portionally accelerates the polymer movement as well as the rate of 
pressure drop buildup, and (b) RRF proportionally enhances the pres-
sure drop magnitude or the slope of pressure distribution of polymer 
regions without dramatically influencing the saturation profiles. 

From Figs. 17 to 19, both analytical and numerical solutions follow 
the above statements when IPV and RRF are considered with the cor-
responding results to be quite close to each other. However, as shown in 
Fig. 17, in the absence of IPV effects, the numerical solution results are 
always faster than the analytical ones. This is similar to the behavior 

shown in Fig. 13 where only adsorption is considered. We explained this 
by the fact that numerical polymer fronts are faster than the analytical 
ones. After consideration of IPV, the difference of pressure drop between 
the numerical and the analytical solutions is reduced in Fig. 17 and this 
can be referred to the impact of IPV on the polymer fronts shown in both 
Fig. 14 and Fig. 16. These Fig.s show that the polymer fronts in the 
analytical solutions catch up with the numerical ones when IPV 0.05. 
Another clear difference is illustrated in the zoomed-in plots of Fig. 18 
and Fig. 19, which show the numerical solutions to be smoother in the 
polymer front part than the analytical ones due to the diffusive nature of 
the estimated polymer front shapes (see Fig. 16). 

5. Saturation profile

In this section, we will show the how the saturation profile evolves
with time for the two different situations shown in Fig. 2. As it is seen in 
Fig. 20, saturation profiles are illustrated at four typical stages, i.e., 
before the water front breakthrough the domain 2 (t 3 min); variable 
water front part in domain 1 has a dynamic transition to the domain 2 (t 

4.5 min); all variable water saturation passes through the interface of 
domains followed by a constant water bank saturation (t 8 min); the 
polymer front in domain 1 will finally reach to domain 2 (t 25 min). 
The reverse case flowing from domain 2 to domain 1 is shown in Fig. 21 

Fig. 20. Analytical solution of water saturation profiles along the entire porous medium domain (fluid flow from domain 1 to domain 2) at four different injec-
tion times. 



where four different stages of saturation profiles are depicted similarly 
to Fig. 20. 

There are some differences between these two cases in Fig. 20 and 
Fig. 21, especially when the fluid passes through the domain interface. 
We want to emphasize that all saturations passing through the domain 
interface should follow the conservation rule, i.e., fw1|Sw1

fw2|Sw2
. This 

is the principle how the new saturation Sw1 or Sw2 is formed in the second 
domain (Wu, 2016). Appendix B provides a detailed description on the 
development and application of the presented analytical solutions. 

6. Conclusions

This work introduces an analytical approach to obtain solutions – 
fluid saturations and pressure profiles as well as pressure drop across the 
flooded formation – for polymer flooding (oil displacement by injected 
polymer solution) in an oil-bearing heterogeneous porous medium 
consisted of n linear domains (beds) each having different and distinct 
rock and fluid flow properties. Results obtained from a heterogeneous 
composite system are provided and a step-by-step procedure is described 
to illustrate the application of the presented solutions. The analytical 
model presented considers the effects of polymer adsorption, inacces-
sible pore volume and permeability reduction in each one of the n linear 
domains (beds). In addition, the dynamic viscosity of the injected non- 
Newtonian fluid due to fluid velocity variation is also accounted for in 

the construction of the polymer fractional flow curves required for the 
application of the solution procedure as outlined. The new fractional 
flow function includes the effects of polymer interstitial velocity, and as 
mentioned above, the inaccessible pore volume and permeability 
reduction. The analytical results presented include water saturation 
profile, pressure distribution in the porous formation, pressure drop 
across the formation, and cumulative oil or water rates and oil or water 
flow rates. These analytical results are computed, compared and verified 
by comparisons with the numerical results from the commercial soft-
ware CMG. In view of a rather good agreement between analytical and 
numerical results, it is concluded that the proposed analytical solutions 
can be applied to obtain robust oil displacement performance results 
when a chemical fluid is injected into a linear, oil-bearing heterogeneous 
formation. 
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Fig. 21. Analytical solution of water saturation profiles along the entire porous medium domain (fluid flow from domain 2 to domain 1) at four different injec-
tion times. 



A.1 - Classical Buckley-Leverett solution

The Buckley-Leverett (1942) model for one-dimensional, linear, two-phase flow in porous media yields the injected fluid saturation as function of
position and time. The assumptions involved with the standard Buckley-Leverett solution are: (a) 1D linear flow in a horizontal reservoir with a 
constant cross section area, A; (b) immiscible flow of two incompressible fluids (e.g., water and oil); (c) homogeneous, isotropic, and incompressible 
formation (constant porosity, ϕ, and absolute permeability, k); (d) negligible capillary pressure; (e) initial wetting phase (water) saturation at irre-
ducible conditions (So 1-Swi), and (f) constant injection rate of wetting phase (displacing fluid) at the formation inlet and fluid (oil and water) 
production at the formation outlet. 

Denoting with q the constant volumetric injection rate, incompressibility of fluids implies that the total fluid flow rate across any cross-section of 
the reservoir will be equal to q. Darcy velocity, u, defined as u q/A is used conveniently in all equations given below. Fluid properties needed to 
formulate relevant equations are fluids viscosities, μw for water and μo for oil. In addition, phase relative permeabilities must be specified as a function 
of phase saturation. 

Invoking the assumptions stated above, the mass balance equations for the water and oil phases can be written as follows: 

∂
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∂p
∂x

)

ϕ
∂Sl

∂t
, l o,w (A.1)  

where Sl is the phase saturation, k the absolute permeability, ϕ the rock porosity, μl and krl are the phase l viscosity and relative permeability, 
respectively, and the subscript l represents either the oil or water phase. 

Introducing the phase l mobility: 
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, l o,w (A.2)  

Eq. (A.1) can be rewritten as: 
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Adding the two-phase equations and considering the constraint So +Sw 1 yields: 
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0, where λt λo + λw (A.4)  

The total fluid velocity given by: 

ut λt
∂p
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(A.5)  

is constant and independent of the linear position x. Defining the phase fluid fluxes (Darcy velocities) by 

ul λl
∂p
∂x
, l o,w (A.6)  

and considering that the total flux is ut uw + uo, Eq. (A.5) can be rewritten as 
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. (A.7)  

Eliminating the pressure term in the mass conservation equation for water using Eq. (A.7), the mass balance of water is expressed by: 
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The fractional flow term is expressed in the form: 
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and thus Eq. (A.8) can be rewritten as: 
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This is the Buckley-Leverett (BL) equation. It is convenient to use BL equation in dimensionless form by defining the dimensionless position, xD, and 

Appendix A. – Formulations for water injection and polymer injection 
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Substituting these dimensionless variables in Eq. (A.10), results in the following dimensionless BL equation: 
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Supressing the subscript D in the Eq. (A.13) dimensionless terms for convenience purposes yields 

∂S
∂t

+
∂f
∂x

0 (A.14)  

Considering the dependence of fractional flow with the wetting phase saturation, the dimensionless Buckley-Leverett equation (Eq. (A.14)) can be 
written as: 
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Suppose that there exists a unique solution for S S(x, t) for Eq. (A.15), let g [x(t), t ] be a smooth curve in the x-t plane and use the single argument 
function h(t) S(x(t), t). Differentiating h with respect to t, one obtains 
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Assuming the characteristic curve g satisfies the relationship 
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it follows that 
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Eq. (A.18) implies that along the characteristic curve the saturation will maintain a constant value. According to Eq. (A.17), the curve on which S is 
constant, equal to S0, is given by 

x(t) x0 + f′(S)t (A.19)  

Since the initial solution S(x,0) 0, Eq. (A.19) becomes 

x(t) f′(S)t (A.20)  

A.2 - Solution for polymer injection

For the transportation of polymer component with a constant total injection rate, q, the mass transport equation is given by (Green and Willhite,
1998): 
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This equation can be further rewritten as: 
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where: 

Ĉp
1 ϕ

ϕ
ρsAp (A.23) 

denotes polymer retention on the rock in terms of the PV of the rock, ρs is the density of rock and Ap is the adsorption concentration of the polymer 
component in the rock. 

Combining with the transportation equation of polymer solution, it follows: 

dimensionless time, tD, as follows: 



∂Sp

∂t
+

q
Aϕ

∂fp

∂x
0 (A.24) 

Combining Eq. (A.24) and Eq. (A.22) one obtains: 
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where the chemical retention factor Dp is defined as: 
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In addition to adsorption effect, considering inaccessible pore volume (IPV), the pore volume that is accessible to polymer is (ϕSp ϕIPV). A material 
balance over the polymer yields: 
[
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The velocity of the polymer front can thus be calculated from: 
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The velocity of a given polymer saturation S*
p behind the polymer front can be expressed as follows: 
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Appendix B. - Calculation details for a composite formation 

B.1 - Solution procedure

Step 1: Calculate the fractional flow curves for the two domains – Given an injection rate, the water–oil and the polymer-oil fractional flow curves
for each domain are computed using Eq. (8).

Step 2: Identify the three critical points for each domain – For each domain, three important points need to be identified based on the Welge

(1952) graphical technique, which are associated with: (a) the water–oil front saturation and corresponding water–oil fractional flow value 
(

Swf , fSwf

)
,

(b) the oil bank water saturation and corresponding water–oil fractional flow value 
(

Swb, fSwb

)
, and (c) the polymer-oil front saturation and corre-

sponding polymer-oil fractional flow value 
(

Spf , fSpf

)
. The water–oil front 

(
Swf , fSwf

)
point is determined form the tangent line drawn from (Swi,0) to

the water–oil fractional flow curve; note that in this work we assume that the initial water saturation in the formation is equal to the irreducible water 

saturation, Swi Swir. The polymer-oil front point 
(

Spf , fSpf

)
is determined from the tangent line drawn from (IPV Dp,0) to the polymer-oil fractional

flow curve. Finally, the 
(

Swb, fSwb

)
point is determined as the intercept point of the line drawn from (IPV Dp,0) to the polymer-oil fractional curve

and the water–oil fractional curve. 
Step 3: Determine the saturation profile. 
In this step, we will mainly focus on the water part due to its higher complexity than the polymer part which can follow the similar description for 

water when it flows to the second domain. 
Saturation profile in the first domain - Compare the values of Swf and Swb to check if there is any variation part of water saturation. 
Flow flux translation from first domain into the second one - When the injected fluid flows from the first (upstream) domain to the second 

(downstream) domain, the following continuation rule should be satisfied: 

(fw)1 (fw)2 (B.1)  

and the corresponding saturations will have translation from the first domain to the second domain. 
Saturation profile in the second domain – There are two cases that need to be distinguished for the water saturation part. 

Case 1. When the water saturation front reaches the interface of two domains, if the fractional flow value is larger than the BL front fractional flow fSwf in the 
second domain’s water–oil fractional curve, an extra saturation profile will be generated starting from the time when the waterfront passes the interface of two 
domains. 

Case 2. If not, there will be two kinds of situation. The first will be the constant fractional flow flux into the second domain. In this case, the previous saturation 
in the first domain will be translated to a new saturation in the second domain and the velocity of the front should obey the rule of jump condition (Eq. (B.2)). The 
second situation is a changing saturation profile flowing into the second domain, which will lead to an evolution of the water saturation front in the second 
domain and the front will keep being caught up until the front saturation goes to BL front saturation Swf of the second domain. The reason for this process is due to 
the slower front velocity calculated based on the jump rule compared to the faster velocities of nearby saturations behind the waterfront. 



Now one can consider the interface of two domains as the starting position (x 0) to illustrate the situations if the injection flow flux is not equal to 
1.  

(a) Sw(x 0, t) > Swf 

Considering a constant fractional flow flux (corresponding Sw 0.5 in second domain for example), the water saturation positions calculated from the 
method of characteristics are shown in Fig. B.1 (a). Clearly, this unphysical solution is resolved by the mass balance between the two grey areas, which 
results to a same BL front related to (Swf , fSwf ) on the fractional flow curve.  

(b) Sw(x 0, t) < Swf 

If a constant lower fractional flow flux is continuously injected at the boundary, the saturation front will be slower than the position of Swf and the front 
speed will be determined by the Rankine-Hugoniot jump condition: 

v
fSw1 fSw2

Sw1 Sw2
(B.2)  

displayed on the graph below (Fig. B.1 (b)) with Sw1 0.4 and Sw2 0. 

B.2 - Mathematical formulation

(1) Select saturations to track and calculate breakthrough time to the interface of two domains

Based on the saturation profile developed in the first domain, select representative saturations to track their position and find corresponding
saturations in the second domain using the relationship (fw)1 (fw)2. 

The dimensionless breakthrough time to the interface for each saturation in the first domain is given by 

t1,s

(
∂fw

∂Sw

) 1

1,S
xD1 (B.3)  

where xD1 is dimensionless length of the first domain and S represents a given saturation. 
Subsequently, check if the saturation is located in the first domain or the second one after comparison of the given time t and t1,s.  

(2) Calculate the locations of selected saturations for cases 1 and 2.

Case 1. For a saturation remaining still in the first domain: 

xs

(
∂fw

∂Sw

)

1,S
t (B.4)  

For a saturation in the second domain: 

xs xD1 +

(
∂fw

∂Sw

)

2,S

(
t t1,s

)
(B.5)  

For a saturation generated in the second domain: 

Fig. B1. Illustration of the water saturation distribution in the porous medium when the (a) fractional flow value is higher than the BL saturation front, (b) fractional 
flow value is lower than the BL saturation front that results in the generation of a Rankine–Hugoniot shock (Rankine, 1870; Hugoniot, 1887). 



xs

(
∂fw

∂Sw

)

2,S
t (B.6)  

Case 2. For saturations remaining in the first domain, use Eq. (B.4). 

If a constant flow flux flows from the first domain to the second domain, the front velocity is solved by Eq. (B.2) and the location of the front is 
determined from: 

xs xD1 + vf
(
t t1,s

)
(B.7)  

If varied flow fluxes flow from the first domain to the second domain, the saturation front will be continuously overtaken as discussed above. In the 
second domain, the front velocity should always obey the jump condition (Eq. (B.2)) although the front saturation is dynamically changed. The nearby 
saturations will catch up with the front saturation due to its higher velocity and the dimensionless fluid velocities of saturation other than the front 

saturation are still calculated with 
(

∂fl
∂Sl

)

2,S
. After determining the front saturation, the remaining saturation profile in the second domain can be 

computed by Eq. (B.5). 
Note again that polymer profile computation also follows the same procedure as discussed above. 

B.3 - Evolution of fractional flow

In this subsection, the detailed evolution of the fractional flow in a heterogeneous system composed of two domains is depicted through a sequence
of figures starting from Fig. B.3 and ending in Fig. B.10. Fig. B.2 shows an example of two groups of fractional flow curves (including water–oil and 
polymer-oil ones) corresponding to the two system domains (domain 1 and domain 2) of the composite system. There are typically four different stages 
describing the evolution of the fractional flow for either forward (domain 1 to domain 2) or reverse flow (domain 2 to domain 1) direction. Note that in 
a n-domain heterogeneous system, one will need to calculate, plot and follow the described procedure for all n distinct fractional flow curves for both 
water and polymer phases. For the cases shown, chemical retention is considered to be negligible; for cases with chemical retention and inaccessible 
pore volume, the tangents to the chemical fractional flow curves should be drawn from ( Dpj +IPVj,0) for each one of the j ( 1,2, …, n) linear beds. 
Finally, for the cases displayed in Figs. B.2 to B.10 the oil bank water saturation is higher than the water saturation front for the corresponding linear 
domain. When the water saturation of the oil bank is lower than or equal to the water saturation front, the water saturation will decline sharply from 
its oil bank value to the initial water saturation for the corresponding linear domain. 

Polymer injection from domain 1 to domain 2: In the first stage of the forward case, Fig. B.3 shows that before the waterfront reaches domain 2, 
the fractional flow of the injected fluid (polymer) is represented only by the fractional flow curves of domain 1. Note that for the water fractional flow 
curves depicted in Fig. B.3, the waterfront saturation is lower than the water saturation in the formed oil banks. The fluids saturations across the 
formations are described by the flow path J1-T1-A1-B1-I1-I2 depicted in Fig. B.3. When the water front breaks through the interface between the two 

Fig. B2. Tangent lines and points with physical importance displayed on the fractional flow curves of the two-domain composite system.  



Fig. B3. First stage - Prior to water and polymer saturations reaching the interface between the two domains in the composite system, the fractional flow of the 
injected fluid is only related to the fractional flow curves of domain 1. 

Fig. B4. Second stage - The BL front of domain 1 passes to domain 2 and the corresponding water fractional flow curve generates lower water saturations than the BL 
front saturation of domain 2. The velocity of the waterfront in domain 2 follows the Rankine-Hugoniot jump condition (Eq. (B.2) and the BL saturation will eventually 
take over the waterfront due to its higher velocity. 



Fig. B5. Third stage - All the variable water saturations passed over the domain 1. An oil bank saturation 1-swD2 is formed in domain 2 where the BL front saturation 
swB2 may turn to new waterfront saturation. 

Fig. B6. Fourth stage - Polymer front reaches to domain 2 where a new oil bank saturation 1-swA2 is generated just ahead of polymer front. There is a saturation jump 
(A2-D2) between the new and old oil bank saturations (1-swA2 and 1-swD2). 



Fig. B7. First stage - Prior to water and polymer saturations reaching the interface between the two domains in the composite system, the fractional flow of the 
injected fluid is only related to the fractional flow curves of domain 2. 

Fig. B8. Second stage - The BL front of domain 2 passes to domain 1 and the corresponding water fractional flows generate the BL front saturation profile (C1-B1) in 
domain 1. 



Fig. B9. Third stage - All the variable water saturations passed over the domain 2. An oil bank is formed in domain 1 with saturation 1-swC1.  

Fig. B10. Fourth stage - Polymer front reaches to domain 1 where a new oil bank saturation 1-swA1 is generated just ahead of polymer front. There is a water 
saturation jump (A1-C1) between the new and old oil bank water saturations (swA1 and swC1). 



formation domains, the water fractional flow C1-B1 in domain 1 (shown in Fig. B.4) will transfer to C2-D2 in domain 2 with different water saturation 
values, and it will therefore develop a new water front saturation swD2 which is lower than the BL front saturation swB2, which is the second stage of 
fractional flow path (J1-T1-A1-C1-C2-D2-I2). The velocity of new waterfront saturation swD2 is slower than the nearby saturations and therefore the 
front saturation will increase to swB2. Eventually, all the varied water saturations (A1-B1) in domain 1 will pass to domain 2. Fig. B.5 exactly shows the 
corresponding aqueous fractional flow path (J1-T1-A1-D2-B2-I2) at the third stage and the oil bank saturation 1-swA1 in domain 1 shifts to 1-swD2 in 
domain 2. Note that here we assume that at the end of the second stage the BL front saturation in domain 2 has already been developed to be swB2. 
Otherwise, there will still be a water saturation profile with lower saturation values than swB2. At the end of the process (i.e., fourth stage), the oil bank 
region in domain 1 will fully pass into domain 2 and at the same time the polymer in domain 1 enters into the domain 2. The path that describes the 
fluids saturation in the entire system is associated with the curve J1-E1-E2-T2-A2-D2-B2-I2 displayed in Fig. B.6. In particular, at the third stage the 
oil bank saturation is 1-swD2 in domain 2 and when polymer enters the domain 2 at the fourth stage a new oil bank saturation 1-swA2 is formed and will 
propagate in the domain 2, which will result in an oil saturation jump or shock from 1-swA2 to 1-swD2 (see formation saturation profile at t 25 min 
displayed in Fig. 20) with a velocity computed through the Rankine-Hugoniot jump condition (Eq. (B.2)). 

Polymer injection from domain 2 to domain 1: In the first stage of the reverse flow direction case, Fig. B.7 shows that before the waterfront 
reaches the domain 1, the fractional flow of the injected fluid (polymer) is represented only by the fractional flow curves of domain 2. The fluids 
saturations across the formations are described by the flow path J2-T2-A2-B2-I2-I1 depicted in Fig. B.7. When the water front breaks through the 
interface between the two formation domains, the water fractional flow C2-B2 in domain 2 (shown in Fig. B.8) will transfer to C1-B1 in domain 1 with 
different water saturation values, and it will therefore develop the BL saturation profile (C1-B1), which is the second stage of fractional flow path (J2- 
T2-A2-C2-C1-A1-B1-I1). Eventually, all the varied water saturations (A2-B2) in domain 2 will pass into the domain 1. Fig. B.9 exactly shows the 
corresponding aqueous fractional flow path (J2-T2-A2-C1-A1-B1-I1) at the third stage and the oil bank saturation 1-swA2 in domain 2 shifts to 1-swC1 
in domain 1. At the end of the process (i.e., fourth stage), the oil bank region in domain 2 will totally pass into domain 1 and at the same time the 
polymer in domain 2 enters the domain 1. The path that describes the fluids saturation in the entire system is associated with the curve J2-E2-E1-T1- 
A1-C1-B1-I1 displayed in Fig. B.10. Specially, at the third stage the oil bank saturation is 1-swC1 in domain 1 and when polymer enters into the domain 
1 at the fourth stage a new oil bank saturation 1-swA1 is generated and will propagate in the domain 1, which will result in an oil saturation jump or 
shock from 1-swA1 to 1-swC1 with a velocity computed through the Rankine-Hugoniot jump condition (Eq. (B.2)). 
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