KIT | KIT-Bibliothek | Impressum | Datenschutz

Project 01: Scholars in the loop? Bridging the gap between distinctive knowledge of small disciplines and training data for AI

Ehret, Uwe [Hrsg.] 1; Frank, Martin [Hrsg.] ORCID iD icon 2; KIT-Zentrum MathSEE [Hrsg.]; Götzelmann, Germaine ORCID iD icon 2; Tonne, Danah ORCID iD icon 2; Debus, Charlotte 2
1 Institut für Wasser und Gewässerentwicklung (IWG), Karlsruher Institut für Technologie (KIT)
2 Scientific Computing Center (SCC), Karlsruher Institut für Technologie (KIT)

Die Mediendatei ist nicht mehr verfügbar.

Abstract:

01 Scholars in the loop? Bridging the gap between distinctive knowledge of small disciplines and training data for AI
MATH PI: Dr. Danah Tonne, Steinbuch Centre for Computing (SCC), Data Exploitation Methods (SCC-DEM)
SEE PI: Dr. Charlotte Debus, Steinbuch Centre for Computing (SCC), Junior Research Group Robust and Efficient AI (SCC-RAI), Germaine Götzelmann, Steinbuch Centre for Computing (SCC), Data Exploitation Methods (SCC-DEM)
Department(s): Informatics (Computer Science)
Type of position: 75% FTE, E13 TV-L
Recently, critical assessments of AI have pointed out that machine learning approaches are acting as a magnifier glass on social biases, revealing critical blind spots and imbalances in the underlying data labels. Small research disciplines, on the other hand, are especially prone to deal with edge cases and filling in blind spots regarding human culture and knowledge. They are important correction factors to address and ultimately adjust cultural biases, skewed views and information gaps in a postcolonial world as well as providing well-needed scholarly information about areas prone to misinformation, fake news and pseudoscience activities. ... mehr


Zugehörige Institution(en) am KIT Institut für Wasser und Gewässerentwicklung (IWG)
KIT-Zentrum Mathematik in den Natur-, Ingenieur- und Wirtschaftswissenschaften (KIT-Zentrum MathSEE)
Scientific Computing Center (SCC)
Publikationstyp Audio & Video
Publikationsdatum 19.10.2023
Erstellungsdatum 17.10.2023
Sprache Englisch
Identifikator KITopen-ID: 1000163164
HGF-Programm 46.21.02 (POF IV, LK 01) Cross-Domain ATMLs and Research Groups
Lizenz KITopen-Lizenz
Serie KCDS Virtual Open House 2023 - Fall
Folge 2
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page