KIT | KIT-Bibliothek | Impressum | Datenschutz

Project 04: Replacement of physical PSC simulation by machine learning in an Earth system model

Ehret, Uwe [Hrsg.] 1; Frank, Martin [Hrsg.] ORCID iD icon 2; KIT-Zentrum MathSEE [Hrsg.]; Kirner, Ole ORCID iD icon 2; Meyer, Jörg ORCID iD icon 2; Streit, Achim ORCID iD icon 2
1 Institut für Wasser und Gewässerentwicklung (IWG), Karlsruher Institut für Technologie (KIT)
2 Scientific Computing Center (SCC), Karlsruher Institut für Technologie (KIT)

Die Mediendatei ist nicht mehr verfügbar.

Abstract:

04 Replacement of physical PSC simulation by machine learning in an Earth system model
MATH PI: Dr. Ole Kirner, Steinbuch Centre for Computing (SCC), Scientific Computing & Mathematics (SCC-SCM)
SEE PI: Dr. Jörg Meyer, Steinbuch Centre for Computing (SCC), Data Analytics, Access and Applications (SCC-D3A)
Department(s): Informatics (Computer Science) or Physics
Type of position: 75% FTE, E13 TV-L
Polar stratospheric clouds (PSCs) exist in winter in the lower/middle atmosphere and are responsible for ozone depletion in the polar spring and the resulting ozone hole.
The goal of the doctoral research is to show that the physical simulation of PSCs within an earth system model can be replaced by an Al model. It will be investigated and evaluated if this enables a realistic simulation of the PSCs and thus improves the performance of the PSC modul as part of the earth system model ICON-ART.
Tasks of the thesis include:
• Performance analysis of the ICON-ART model code at different resolutions on High Performance Computing (HPC) systems
• Creation of a concept for replacing the PSC simulation with a suitable Al model (such as Transformer, LSTM, CNN) including the identification of suitable features dimension reduction, and hyperparameter tuning
... mehr


Zugehörige Institution(en) am KIT Institut für Wasser und Gewässerentwicklung (IWG)
KIT-Zentrum Mathematik in den Natur-, Ingenieur- und Wirtschaftswissenschaften (KIT-Zentrum MathSEE)
Scientific Computing Center (SCC)
Publikationstyp Audio & Video
Publikationsdatum 23.10.2023
Erstellungsdatum 17.10.2023
Sprache Englisch
Identifikator KITopen-ID: 1000163165
HGF-Programm 46.21.01 (POF IV, LK 01) Domain-Specific Simulation & SDLs and Research Groups
Lizenz KITopen-Lizenz
Serie KCDS Virtual Open House 2023 - Fall
Folge 5
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page