KIT | KIT-Bibliothek | Impressum | Datenschutz

Two-stage quality monitoring of a laser welding process using machine learning – An approach for fast yet precise quality monitoring

Dold, Patricia M. 1; Bleier, Fabian; Boley, Meiko; Mikut, Ralf ORCID iD icon 1
1 Institut für Automation und angewandte Informatik (IAI), Karlsruher Institut für Technologie (KIT)

Abstract:

In production, quality monitoring is essential to detect defective elements. State-of-the-art approaches are single-sensor systems (SSS) and multi-sensor systems (MSS). Yet, these approaches might not be suitable: Nowadays, one component may comprise several hundred meters of the weld seam, necessitating high-speed welding to produce enough components. To detect as many defects as possible in time, fast yet precise monitoring is required. However, information captured by SSS might not be sufficient and MSS suffer from long inference times. Therefore, we present a confidence-based cascaded system (CS). The key idea of the CS is that not all data are analyzed to obtain the quality weld, but only selected ones. As evidenced by our results, all CS outperform SSS in terms of accuracy and inference time. Further, compared to MSS, the CS has hardware advantages.


Verlagsausgabe §
DOI: 10.5445/IR/1000163191
Veröffentlicht am 20.10.2023
Originalveröffentlichung
DOI: 10.1515/auto-2023-0044
Scopus
Zitationen: 2
Dimensions
Zitationen: 2
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Automation und angewandte Informatik (IAI)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 26.10.2023
Sprache Englisch
Identifikator ISSN: 0178-2312, 2196-677X
KITopen-ID: 1000163191
HGF-Programm 37.12.02 (POF IV, LK 01) Design,Operation & Digitalization of the Future Energy Grids
Erschienen in at - Automatisierungstechnik
Verlag De Gruyter
Band 71
Heft 10
Seiten 878–890
Vorab online veröffentlicht am 17.10.2023
Nachgewiesen in Dimensions
Web of Science
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page