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Abstract

Numerical-model-based forecasts of precipitation exhibit poor skill over north-
ern tropical Africa when compared with climatology-based forecasts and with
other tropical regions. However, as recently demonstrated, purely data-driven
forecasts based on spatio-temporal dependences inferred from gridded satel-
lite rainfall estimates show promise for the prediction of the 24-hr precipitation
occurrence rate in this region. The present work explores this potential further
by advancing the statistical model and providing meteorological interpreta-
tions of the performance results. Advances include (a) the use of a recently
developed correlation metric, the Coefficient of Predictive Ability (CPA), to
identify predictors, (b) forecast evaluation with robust reliability diagrams and
score decompositions, (c) a study domain over tropical Africa nested in a con-
siderably enlarged spatio-temporal domain to identify coherent propagating
features, and (d) the introduction of a novel coherent-linear-propagation fac-
tor to quantify the coherence of propagating signals. The statistical forecast
is compared with a climatology-based benchmark, the European Centre for
Medium-Range Weather Forecasts (ECMWF) operational ensemble forecast,
and a statistically postprocessed ensemble forecast. All methods show poor skill
within the main rainbelt over northern tropical Africa, where differences in
Brier scores between the different approaches are hardly statistically signifi-
cant. However, the data-driven forecast outperforms the other methods along
the fringes of the rainbelt, where meridional rainfall gradients are large. The
coherent-linear-propagation factor, in concert with metrics of convective avail-
able potential energy and convective instability, reveals that high stochasticity
in the rainbelt limits predictability. At the fringes of the rainbelt, the data-driven
approach leverages coherent precipitation features associated with propagating
tropical weather systems such as African Easterly Waves.
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1 | INTRODUCTION

Rain-fed agriculture is a significant source of food and
income for livelihoods in tropical Africa, a region that
would benefit greatly from accurate forecasts of rainfall on
timescales from hours to seasons. Early warning systems
for floods and droughts and reservoir management are
some other areas that could take advantage of this. How-
ever, while economies in the midlatitudes have greatly
profited from the “quiet revolution” in numerical weather
prediction (Bauer et al., 2015), such a development has
not taken place in tropical Africa. In addition to the poor
availability of in situ observations (Parker et al., 2008; Fink
et al., 2011), this is also due to the lower intrinsic pre-
dictability in the Tropics at the meso- and synoptic scales
(Judt, 2020), that is, forecast errors at these scales grow
faster than in the midlatitudes. This faster error growth
relates to the convective nature of rainfall, in contrast
to frontal-dominated precipitation in the midlatitudes.
Haiden et al. (2012) show that, in terms of skill, a six-day
lead-time precipitation deterministic forecast in the extrat-
ropics is comparable to a one-day lead-time in the Tropics.
Specifically for tropical Africa, Vogel et al. (2018; 2020)
and Walz et al. (2021) demonstrate that—particularly in
regions where long-lived Mesoscale Convective Systems
(MCSs) provide the bulk of the annual rainfall (Mathon
et al., 2002; Feng et al., 2021)—an Extended Probabilistic
Climatology (EPC) based on records of past rainfall can
outperform or reach skill comparable to state-of-the-art
global Numerical Weather Prediction (NWP) models for
24-hr and five-day ensemble rainfall forecasts. While sta-
tistical postprocessing of NWP forecasts can correct for
biases and dispersion errors, it still does not enhance
the skill beyond that of EPC-based forecasts (Vogel
et al., 2018). Compared with other parts of the Tropics, the
vast lowlands of West and Central Equatorial Africa stand
out as the continental region with the lowest predictive
skill of rainfall.

In addition to the low intrinsic predictability, deficien-
cies in operational systems may contribute to the low
skill of rainfall predictions over tropical Africa. Current
global NWP models at spatial resolutions of a few tens of
kilometres parameterize moist convection. This leads to
fundamental misrepresentations of MCSs and thus rain-
fall intensity and frequency over West Africa (Marsham
et al., 2011; Pante and Knippertz, 2019), though recent
improvements in parameterization may have alleviated
this problem (Becker et al.,, 2021). Moreover, it is chal-
lenging to forecast the initiation of convection, as triggers
tend to stem from unresolved small-scale processes. Tay-
lor et al. (2012) investigate the potential of soil moisture
gradients as a storm-triggering mechanism, which gives
rise to better short-term forecasts of convective initiation

and tracks (Taylor et al., 2022). Lafore et al. (2017) dis-
cuss the enhanced skill of precipitation forecasts related to
orographic forcing over tropical Africa, as highlighted in
Vogel et al. (2020) for the East African Highlands. How-
ever, northern tropical Africa and the Congo Basin have
few orographic features. Thus, the overall inability of the
forecast models to predict triggers and simulate the orga-
nization of convection are major reasons that NWP mod-
els struggle to produce skilful precipitation forecasts over
West Africa (Fink et al,, 2011). The poor model repre-
sentation of convective processes also contributes to the
fact that additional upper-air observations and thus an
improved definition of the initial state are basically lost
after 24 hr of model integration, as data denial experi-
ments for the African Monsoon Multidisciplinary Anal-
ysis (AMMA) and Dynamics-Aerosol-Chemistry-Cloud
Interactions in West Africa (DACCIWA) campaigns show
(Agusti-Panareda et al., 2010; van der Linden et al., 2020).

The new generation of convection-permitting (CP)
models allows a better representation of MCSs, the diurnal
cycle of precipitation, and monsoon circulation over West
Africa (Marsham et al., 2011; Pante and Knippertz, 2019).
The latter authors note that the explicit simulation of
Sahelian thunderstorms improves not only tropical but
also midlatitude weather forecasts at lead times of 5-8
days. Operational short-range forecasts with pan-Africa
CP models were recently started at the UK Met Office,
showing improved skill but also revealing problems with
spin-up in the first 24 hr of integration (Hanley et al., 2021;
Warner et al., 2023). Cafaro et al. (2021) demonstrate
that CP ensemble forecasts for tropical East Africa show
improved skill over deterministic forecasts at the 24-hr
lead time but are underdispersed in terms of the loca-
tions of heavy rainfall and domain-average rainfall. Thus,
while CP models improve the climatological representa-
tion of rainfall systems in Africa, the gain in predictive skill
appears limited and the computational costs are enormous
(Senior et al., 2021).

Given the general challenge of forecasting nonto-
pographically triggered mesoscale convection, it is con-
ceivable that windows of enhanced predictability may
exist when large-scale, more predictable trigger and
forcing mechanisms act. For boreal summer, Kniffka
et al. (2020) note enhanced model skill in rainfall pre-
dictions over southern West Africa during the DAC-
CIWA campaign when long-lived synoptic vortices were
present. It is also well-known that tropical waves, in par-
ticular African Easterly Waves (AEWSs), modulate rain-
fall in West Africa during the boreal summer wet sea-
son (Reed et al., 1977; Fink and Reiner, 2003; Lavaysse
et al., 2006; Schlueter et al., 2019a; Schlueter et al., 2019b).
These and other studies suggest that the waves do not
trigger convection directly but change the larger scale
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(thermo)dynamical environment and, thereby, enhance
the odds of triggering and organization of MCSs.

The links between waves and rainfall in West Africa
suggest two alternative avenues of forecasting precipi-
tation. Firstly, one can leverage the more predictable
large-scale waves in mixed statistical-dynamical fore-
cast approaches, similar to methods developed for trop-
ical cyclone occurrence in the North Atlantic Ocean by
Maier-Gerber et al. (2021), or in wave-pattern-based cal-
ibration approaches (de Andrade et al., 2021). A second
approach is to use purely data-driven forecast models.
Such models have a long tradition going back to the
times prior to NWP, as they are computationally cheap
and tend to be well calibrated by construction. Early
approaches often relied on Markov processes, as in Gabriel
and Neumann (1962) and Gates and Tong (1976). More
recently, advanced statistical and machine-learning tools
have been employed (Diez-Sierra and del Jesus, 2020;
Ravuri et al, 2021). While studies of this type may not
seek physical explanation, their successes rely on the
spatio-temporal coherence of rainfall and systematic rela-
tionships with other meteorological variables. Following
this avenue, Vogel et al. (2021) show that a relatively sim-
ple, purely data-driven logistic regression model for 24-hr
precipitation occurrence, which draws on spatio-temporal
patterns of daily rainfall, outperforms forecasts based on
climatology or NWP models during the summer monsoon
season in West Africa. The model relies on the identifi-
cation of grid points with the strongest correlation to a
target grid point at lags of 1 and 2 days. The success of this
method suggests that statistical models can reliably repre-
sent the systematic relationships between rainfall and cir-
culation features that dynamical models appear to struggle
with (Elless and Torn, 2018). Vogel et al. (2021) argue
that their approach can, in principle, be employed when-
ever there is a dominant coherent forcing that triggers and
modulates rainfall.

The study presented here builds on the foundations
laid by Vogel et al. (2021) and develops them in sev-
eral ways: We strengthen the purely data-driven sta-
tistical model for 24-hr precipitation occurrence by (a)
using the recently developed Coefficient of Predictive
Ability (CPA) for predictor selection and (b) expanding
the logistic regression model to consider temporal lags
of up to three days.'The CPA bridges Spearman’s rank
correlation coefficient, as used by Vogel et al. (2021),
and the Area Under the Receiver Operating Character-
istic (ROC) curve (AUC), in a way that makes CPA a
non-negative asymmetric quantity bound between 0 and 1

IThree days appears to be a good compromise between including all
relevant information and keeping the domain size and computations at
a reasonable level.
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(Gneiting and Walz, 2022). Moreover, (c) we introduce
the coherent-linear-propagation factor as a metric that
quantifies the coherence of a propagating rainfall signal
identified over lags of one, two, and three days, (d) we
provide—at least qualitatively—physical interpretations
of the most significant patterns using auxiliary meteo-
rological fields, and (e) we replace the standard anal-
ysis of Brier scores and reliability diagrams with more
robust methods, namely, the recently developed Consis-
tency Optimality Reproducibility PAV Algorithm-Based
(CORP) approach (Dimitriadis et al., 2021). Finally, as
minor updates, (f) we now use the newer Global Precip-
itation Measurement Integrated Multi-satellitE Retrievals
(hereafter, GPM IMERG) product instead of the discon-
tinued Tropical Rainfall Measuring Mission (TRMM) data,
and (g) the study domain has been extended significantly
beyond West Africa, now including various environments
(e.g., ocean, flatlands, highlands) in order to facilitate the
identification of coherent propagating features. The ulti-
mate goal of our work is to understand better the poten-
tial sources of predictability related to the time-space
behaviour of rainfall in tropical Africa and to test the skill
of the purely data-driven statistical model against the lat-
est benchmarks with respect to predicting precipitation
occurrence in the next 24 hr.

The article is structured as follows. Section 2 provides
an overview of the data and methods used. In Section 3,
spatio-temporal patterns, the direction and speed of prop-
agating rainfall, and the degree of coherence are discussed
for the summer monsoon season, and we compare the
predictive performance of the purely data-driven logistic
regression model with a climatological forecast (termed
EPC15), the European Centre for Medium-Range Weather
Forecasts (ECMWF) raw ensemble (ENS), and a statis-
tically postprocessed ensemble forecast (ENS-IDR). The
article closes with Section 4, where we summarize and dis-
cuss the major findings of this study and provide a brief
outlook.

2 | DATA AND METHODS

2.1 | Data
2.1.1 | Observational data and ECMWF
ensemble forecasts

To represent precipitation, we use the satellite-based,
gridded GPM IMERG final version product (Hou
et al., 2014; Huffman et al., 2020). GPM IMERG uses both
radar-calibrated microwave radiance from polar-orbiting
satellites and infrared radiance from geostationary satel-
lites to create grids with half-hourly temporal and 0.1°
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spatial resolution. We remap conservatively to 1°x 1°
spatial resolution in order to suppress small-scale noise
in the precipitation field and ease the computational bur-
den, and we consider daily accumulations (0600 UTC to
0600 UTC) that reflect the diurnal cycle of convection. To
define precipitation occurrence, we use a binary cutoff at
0.2 mm of daily accumulation, as Vogel (2019) found only
minimal changes with other thresholds between 0.0 and
1.0 mm.

The ERAS5 dataset (Hersbach et al., 2020) is used for
horizontal wind at 600 and 925 hPa, surface-based Con-
vective Available Potential Energy (CAPE), and Convec-
tive INhibition (CIN). To match the spatial resolution
of GPM-IMERG in this study, the ERA5 data have been
remapped using bilinear interpolation from the native
0.25° x 0.25° resolution to the 1° x 1° grid.

We compare forecasts from our data-driven model
with the operational global 24-hr ensemble forecast from
ECMWEF, which consists of 50 perturbed members and
a control run at a spatial resolution of 0.25° x 0.25°
(ECMWF Directorate, 2012). We remap conservatively to
1° x 1° resolution and daily accumulations from 0600 UTC
to 0600 UTC, and we refer to this forecast as ENS. As Wang
et al. (2023) demonstrate, ECMWF forecasts outperform
National Centers for Environmental Prediction—-Global
Forecast System (NCEP-GFS) forecasts of precipitation
over Africa.

2.1.2 | Study domain and period

We concentrate on a study domain that covers most
of tropical Africa and over which we issue forecasts
(25°W-35°E, 0-18°N, red dashed box in Figure 1). The
analyses over the study domain consider signals prop-
agating from outside, comprising the adjacent oceans,
as well as parts of South America and Southwestern
Asia (12°S-30°N, 68°W-75°E, the whole area shown in

Figure 1). The use of a significantly larger zonal extent
compared with the meridional extent is motivated by our
interest in identifying zonally propagating features. Tem-
porally, the observations cover the summer monsoon sea-
son (July, August, and September) in the 19-year period
from 2001-2019, and the forecasts cover the 13 years
from 2007-2019, reflecting the ENS data availability in the
THORPEX Interactive Grand Global Ensemble (TIGGE:
Bougeault et al., 2010; Swinbank et al., 2016) archive.

2.2 | Methods

As noted, our study builds on the purely data-driven sta-
tistical approach to probability forecasts of 24-hr precip-
itation occurrence developed by Vogel et al. (2021), but
extends it in several ways. We now describe the method-
ological innovations—some original to our article, others
that have only very recently been developed—that under-
line these extensions.

221 |
CPA

Selection of predictor variables via

To identify predictor variables for our purely data-driven
statistical model, we use 0600 UTC to 0600 UTC accumu-
lated GPM IMERG precipitation within the nested core
area (Figure 1) as target data, with the same field over
the full area at temporal lags of 1, 2, and 3 days serving
to provide candidate variables for the statistical model.
For each target grid point, we compute the CPA measure
between the local precipitation accumulation and all of the
candidate variables.

The recently developed CPA measure is tailored to
the selection of predictor variables for forecasting mixed
discrete—continuous variables such as accumulated pre-
cipitation (Gneiting and Walz, 2022). CPA is asym-
metric and thus takes the distinct roles of the target

Liberia

FIGURE 1

75

Overview of the study domain. We restrict the development of the purely data-driven statistical model and its evaluation to

the nested core area that comprises 25°W-35°E in longitude and 0°-18°N in latitude. The shading indicates altitude in metres. [Colour figure

can be viewed at wileyonlinelibrary.com]|
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variable—here, 24-hr precipitation accumulation at a tar-
get grid point (B)—and the potential predictor variables
into account (A), that is, in general,

CPA(A, B) # CPA(B, A). (1)

For data without ties, CPA becomes symmetric and can be
expressed in terms of Spearman’s rank correlation coeffi-
cient ps, which was used by Vogel et al. (2021), namely,
as

CPA = ”STH. )

While precipitation accumulations tend to show ties, this
relationship only holds to a good degree of approximation
over most of our analysis region. If the outcome is binary,
CPA reduces to the classical AUC measure. Like the AUC
measure, CPA is a non-negative quantity that is bound
between 0 and 1, with a value of 0.50 indicating the absence
of predictive skill and a value of 1 representing a determin-
istic, strictly increasing relationship. Values of CPA below
0.50 correspond to decreasing relationships and negative
correlations.

As we operate in cross validation mode—with data
from a single year left out and the rest of the data used
to fit the statistical model—data from the season in con-
sideration for the forecast are not included. For example,
when developing the forecast model for the year 2016, data
from 2016 are left out but data from all other years between
2001 and 2019 are used, and this is repeated for all years
from 2001-2019. As an illustrative example for the CPA
analysis, Figure 2 considers the target grid point closest to
Niamey (Niger), with data from 2016 left out. At a lag of
one day, the maximum arises 765 km to the east of Niamey,
reaching a CPA value of 0.68. At a lag of two days, CPA gen-
erally decreases in magnitude and grid points with high
CPA are shifted away from Niamey. At a lag of three days,
the maximum CPA of 0.61 is reached at the border of Chad
and Sudan nearly 2400 km east of Niamey in roughly the
same direction as the other lags. The results are indica-
tive of westward propagation with an approximate phase
speed of 8.5 m-s~!, which is typical for rainfall affected by
AEWs. These patterns are exploitable for statistical fore-
casting and resemble those in fig. 1 of Vogel et al. (2021),
suggesting good consistency between TRMM and IMERG
data.

2.2.2 | Coherent-linear-propagation factor

To quantify the coherence of the patterns identified by the
above analysis, we define a coherent-linear-propagation

Royal Meteorological Society

Lag: one day

FIGURE 2
red dot) closest to Niamey (13°N, 2°E) at temporal lags of (a) one,

CPA with respect to the grid point (marked by a

(b) two, and (c) three days, based on data from July-September
2001-2019, except for 2016. The white cross (x) marks the grid point
of maximum CPA at the given lag, with distance and direction ()
from Niamey. The shading can also be interpreted in terms of the
approximate value of Spearman’s rank correlation ps according to
Equation 2. [Colour figure can be viewed at wileyonlinelibrary.com]

factor (coh) at any given target grid point. Figure 3 illus-
trates the concept on the same grid point as in Figure 2.
Specifically, let X, be the target grid point under consid-
eration, and let X3, X,, and X3 (blue dots in Figure 3) be
the grid points of maximum CPA at lags of one, two, and
three days, respectively. We aim to quantify the extent to
which the positions of these points agree with propaga-
tion at constant speed and in a constant direction. To this
end, we introduce auxiliary, equispaced points P;, P,, and
P; on a great-circle segment that starts from X, with dis-
tance D between successive points (Figure 3). This way,
the great-circle distance (gcd) between X, and P; equals
3D. The deviation from a linear propagation can now be
quantified by the error term (orange lines in Figure 3),

1/2

(3)
Analogous to a regression problem, we can now find the
optimal choice of the grid point P; at which E achieves a
minimum. We denote this minimum by E,, and we let D,
be one third of the great-circle distance between X, and the
optimal P;.
The magnitude of E, will tend to be larger for grid
points showing fast propagation, that is, for large Dy, such
that these quantities should be considered in relation to

E = ( ged (X1, P1)* + ged (X, P,)* + ged (X3, P3)? )
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154
124
0 4 8 12 16 20 24 28
FIGURE 3 Computation of the coherent-linear-propagation factor (coh) at the grid point X closest to Niamey (13°N, 2°E). The grid

points X7, X,, and X; (blue dots) are the locations of maximum CPA with respect to X, at lags of one, two, and three days, respectively, based
on data from July-September 2001-2019 except for 2016. The points P; and P, lie on the great-circle segment from Xj to P; and mark the
corresponding ideal locations of maximum CPA in the case of a perfectly linear propagation with constant phase speed. The grid point Ps
depicted here is chosen such that the error term in Equation 3 (orange lines) becomes minimal. [Colour figure can be viewed at

wileyonlinelibrary.com|

each other. We therefore define? the coh at the target

grid point Xj as
3Dy

>0 4
3D, + Eo @

coh =
In Figure 3, the grid point at P; is such that the error
term in Equation 3 is minimized. The coh measure then
equals the ratio of the length of the blue great-circle seg-
ment to the sum of the length of the blue segment and the
error term; specifically, Dy = 844.4 km, Ey, = 315.8 km, and
coh = 0.889. Generally, under near-perfect linear propa-
gation, E, will be small and thus coh will be close to
its ideal value of 1. If the points of maximum CPA scat-
ter at random, E; will be large and coh will be small
(but remain non-negative). In a nutshell, high values of
the coh measure characterize regions dominated by stable
propagation of long-lived atmospheric features that mod-
ulate conditions for rainfall, implying comparably high
predictability that could potentially be exploited with sta-
tistical models. Conversely, low coh characterizes regions
that do not experience stable, coherent linear propagation.
For these regions, rainfall might be largely stochastic or
might be subject to distinct forcings. It is important to note
that these characterizations are in terms of linear prop-
agation; more complex methods might be able to detect
acceleration and deceleration as well as nonlinear tracks.
Also, the definition is only sensitive to geographic dis-
tances and not the values of CPA itself, which of course,
do matter for the skill of statistical models built on these
relationships.

2If X, = X; = X, = X;, we note a lack of propagating features at the
target grid point at X)), and thus we set coh = 0. In all other cases we
proceed as stated.

223 |
forecast

Purely data-driven logistic model

Following Vogel et al. (2021), we now construct a purely
data-driven, statistical logistic regression (hereafter Logis-
tic) model. To this end, let o;, 0,, and o; denote the
observed precipitation accumulations at the grid points of
highest CPA at lags of 1, 2, and 3 days, respectively. Then
the logistic model for the probability p of 24-hr precipita-
tion occurrence at the target grid point depends on o, 05,
03 and the day of the year d, positing that

log = ag + a1f(01) + axf(02) + asf(03)

I-p
+ by sin 2zd + b, cos @ (5)
365 365

where the final two terms depend periodically on the day
of the year. The function f(x) = log(x + 0.001) is used to
transform a non-negative rainfall amount to a real value.
We estimate the statistical parameters aq, a;, a;, as, by,
and b, in Equation 5 using the LogisticRegression subrou-
tine from the scikit-learn package (Pedregosa et al., 2011).
The parameters are estimated for each target grid point
individually, and so they vary spatially. Following Vogel
et al. (2021), we operate in cross-validation mode, that is,
the logistic model is trained on data from all years avail-
able except the year for which the prediction is issued.
This is repeated until all the years from 2007-2019 are
used. Cross-validation makes the best use of the data avail-
able and limits artefacts due to a low number of samples,
thereby producing more robust results. As a consequence
of this approach we developed a separate model for every
year from 2007-2019. It is to be noted that we only show
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the results from 2016 as an example in Section 3.1, but the
results for other years are similar.

2.2.4 | Benchmarking: EPC15, ENS,
and ENS-IDR forecasts

In order to benchmark the performance of the purely
data-driven Logistic probability of precipitation forecasts,
we compare it with an Extended Probabilistic Climatol-
ogy with a 15-day window (EPC15; Walz et al., 2021),
the raw ECMWF ensemble (ENS), and a statistically post-
processed ensemble (ENS-IDR). For a fair comparison in
cross-validation mode, we treat the EPC15 forecast in the
same way as the Logistic forecast, that is, the probabil-
ity of precipitation is determined from a +15-day win-
dow around the target date, based on observations from
2001-2019 except for the year for which the prediction
is issued. This is repeated for each of the years from
2007-2019, for which we assess and compare the four types
of forecast.

The operational ECMWF ensemble consists of 50 per-
turbed members and a control run, so the ENS probability
of precipitation forecast equals the number of ensem-
ble members that predict a precipitation accumulation
of at least 0.2 mm divided by 51. Statistical postprocess-
ing can correct systematic deficiencies in NWP ensem-
ble output (Vannitsem et al., 2018) and various methods,
ranging from simple linear regression to sophisticated
neural-network-based techniques, have been proposed for
this purpose. In this study, we use Isotonic Distributional
Regression (IDR; Henzi et al., 2021) since, unlike every
single competitor, IDR does not depend on user decisions
and has been shown by Henzi et al. (2021) to be com-
petitive with Bayesian Model Averaging (BMA; Sloughter
etal.,2007) and Ensemble Model Output Statistics (EMOS;
Scheuerer, 2014) for precipitation (Henzi et al., 2021).
Furthermore, in the case of probability forecasts for a
binary outcome, such as the occurrence of precipitation,
IDR coincides with isotonic calibration (Zadrozny and
Elkan, 2002), which is a widely used, classical method in
machine learning. We retain the cross-validation setting
used to generate the Logistic and EPC15 forecasts, that is,
we train IDR? on observations from the monsoon seasons
(July-September, hereafter JAS) in 2007-2019 except the
year for which the prediction is issued, and repeat for each
of the evaluation seasons from 2007-2019.

To assess whether or not an observed difference in the
mean Brier score of the Logistic forecast and a bench-
mark forecast could be explained by chance alone, even

3To implement IDR we use the i sodisreg package for Python; see
https://github.com/evwalz/isodisreg.
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though the theoretical skill is equal, we employ the
Diebold-Mariano test (Diebold and Mariano, 2002) in con-
cert with the Benjamini-Hochberg correction (Benjamini
and Hochberg, 1995), as recommended by Wilks (2016) for
the spatio-temporal setting at hand. For details on EPC15,
IDR, and the test procedure we refer to the aforementioned
references.

3 | RESULTS

We first discuss spatio-temporal patterns of rainfall in the
summer monsoon season by analysing the characteristics
of maximum CPA relative to a target grid point and by
studying the associated coherent-linear-propagation factor
along with auxiliary meteorological fields and results from
previous studies. We assess the predictive performance of
our purely data-driven Logistic probability of precipitation
forecast (hereafter, Logistic forecast) in comparison with
the three benchmark forecasts, both for the example grid
point near Niamey and over the entire evaluation domain
(Figure 1).

3.1 | Maximum CPA
and coherent-linear-propagation factor

Using the methodology described in Section 2.2.1, Figure 4
provides a detailed analysis of the points of maximum CPA
relative to the target grid points in the evaluation domain.

The maximum CPA (Figure 4a—c) peaks at a temporal
lag of one day and for target grid points over the north-
ern tropical Atlantic Ocean, where it reaches values of
about 0.75. The African rainbelt (Nicholson, 2008; Nichol-
son, 2009) is broadly co-located with the lowest values
of maximum CPA, albeit with some east-west gradient
(see dark red isohyets in Figure 4a-c). The latitudinal
position of its axis varies from 6°N in central Africa to
10°N over West Africa, and monthly rainfall amounts
range from well above 400 mm per month over the warm
waters of the Atlantic to below 200 mm per month over
South Sudan. Also note the slight orographic enhance-
ment on the western sides of the Guinea Highlands and
the Cameroon Line Mountains. High values of maximum
CPA are generally found in areas of large climatological
rainfall gradients straddling the rainbelt. On the southern
side, the zone of high CPA at a lag of one day stretches
from the eastern Atlantic at about 5°N past the Guinea
Coast towards southern Nigeria, Cameroon, and Gabon.
Interestingly, the distortion of the rainfall gradient over
the relatively drier Ivory Coast and Ghana is also reflected
in a northward excursion of higher CPA values. To the
north of the rainbelt, over the Sahel, CPA also is enhanced.
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(a-c) Maximum CPA along with (d-f) distance and (g-i) direction between the target grid point and the grid point with

maximum CPA, at temporal lags of (a,d,g) one, (b,e,h) two, and (c,f,i) three days, respectively, for JAS 2001-2019 except 2016. The dark red
contours in (a-c) show monthly average rainfall in the period considered in mm. [Colour figure can be viewed at wileyonlinelibrary.com]

A possible interpretation of these patterns is that the rain-
belt is characterized by favourable conditions for convec-
tion, which creates a high degree of stochasticity, whereas
the fringes are more sensitive to coherent synoptic-scale
features that trigger or organize convection, such as slow,
westward-propagating cyclonic vortices that persist for
more than a day, or nighttime systems that last across the
0600 UTC dividing time (Knippertz et al., 2017; Kniffka
et al., 2020). Comparing results for a lag of one day with
those for lags of two and three days, we find good agree-
ment in the geographic patterns of maximum CPA, despite
a considerable reduction in the values (as low as 0.50).
Considering the distance (Figure 4d-f) and direction
(Figure 4g-i) of the point with maximum CPA relative to
the target grid point, we leave grid points with distances

below 400 km blank to signal very slow propagation. The
largest distances are generally found for points in the
continent’s interior along the African rainbelt. Two types
of behaviour can be distinguished. In a broad region
stretching from the West Coast to 20°E, propagation is
mostly westward (occasionally northwestward) with dis-
tances at a lag of one day typically at 600-1000 km,
which corresponds to about 6-10° longitude per day
or a phase speed of about 6.9-11.5m-s~!. This type of
behaviour is also evident in the example from Figure 2.
It extends out to the downstream Atlantic, with prop-
agation distances in the lower end of the range. The
second type occurs over Central Africa and is char-
acterized by mostly eastward propagation over larger
distances.
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We proceed to an interpretation of these results via
the coh and auxiliary meteorological fields, such as ver-
tical shear, CIN, and CAPE, in Figure 5. The highest
values of coh are found in the western Sahel north
of 10°N, where coh reaches an impressive 0.90 over
Burkina Faso, western Niger, and northwestern Nige-
ria (Figure 5a). In view of the relatively low maximum
CPA of around 0.65 at a lag of one day, this insin-
uates relatively fast, westward-propagating rainfall fea-
tures with phase speeds in the range 7.5-12m-s7!, in
concert with smaller-scale variation, possibly weakening
the spatio-temporal relationships. This aspect is also evi-
dent in Figure 2, where high values of CPA are spread
out over a relatively large area. These results are con-
sistent with large easterly vertical wind shear between
600 and 925hPa (arrows), which is key to the forma-
tion of MCSs (Maranan et al., 2018). Given mean prop-
agation speeds of 9m-s~! for AEWs and 15m-s™! for
MCSs (Fink and Reiner, 2003), the high coherence might
stem from a dominating influence of AEW propagation,
which is known to modulate rainfall strongly in this area
(Schlueter et al., 2019b). At the same time, shorter-lived
MCSs form within the AEW envelope but propagate much
faster due to the high shear, leading to relatively low CPA,
as noted.

Another relevant factor in explaining the high
coherence over the western Sahel is CIN (Figure 5b),
which shows high values throughout, with a marked
south-to-north increase, with values ranging from
801J-kg~! over southern Mali to over 400 J-kg~! over north-
ern Mali and Niger. High CIN implies that relatively strong
triggers are needed to generate rainfall: for example, asso-
ciated with AEWs and MCSs. Combined with high CAPE
(Figure 5c), long-lived rainfall events tend to be relatively
infrequent but, if they occur, rather intense, resulting in
relatively low CPA and moderate overall rainfall in the
western Sahel.

In the eastern Sahel, values of coh drop below 0.50,
despite CPA values being similar to the west Sahel region
and even higher in northern parts (Figure 4a-c). This
is likely due to weaker AEWSs, which grow in ampli-
tude while propagating westward across the Sahel along
the African Easterly Jet (AEJ), which is climatologi-
cally weaker in the east (Fink and Reiner, 2003; Lafore
etal.,2017). Shear also is weaker than in the western Sahel
and less homogeneous in direction and magnitude. Fur-
ther reasons for lower coh may lie in higher CIN and
smaller CAPE, which make it harder to trigger convec-
tion, as also reflected in lower rainfall (dark red isohyets in
Figure 4a-c).
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A sharp drop in coh is observed as we move south-
ward from the Sahel towards the centre of the rainbelt,
where values of coh are generally very low. An excep-
tion is Central Africa (eastern Central African Republic
and northern Democratic Republic of the Congo), where
coh is locally much higher, though in combination with
CPA below 0.575, as indicated by stippling in Figure 5a—c,
which suggests possible artefacts. Indeed, there is no dom-
inant propagation direction in this area (Figure 4g-i).
Generally, westward propagation dominates in the rain-
belt (Figure 4g-i) combined with low CIN and high CAPE
(Figure 5b-c) such that convection can be triggered with
ease almost anywhere, inducing high area-averaged rain-
fall and a high degree of stochasticity.

To the southwest of the rainbelt there is a mostly
oceanic region (tropical eastern Atlantic) with moderate
to large values of coh, where values of CPA at one day lag
peak around 0.75 near the coast of Liberia and Sierra Leone
(Figure 4a). Since convective maxima over the ocean tend
to occur in the early morning (Albright et al., 1985; Hen-
don and Woodberry, 1993), it is conceivable that in some
cases the spatio-temporal relationship is caused by a con-
vective storm surviving until the next morning and there-
fore affecting consecutive 24-hr periods, as corroborated
by distances mostly below 400 km (Figure 4d) and vari-
able directions from northerly to easterly. Interestingly, for
lags of 2 and 3 days, larger distances and more consistent
westward propagation are found (Figure 4e—f,h-i), sug-
gesting that at these timescales propagating disturbances
dominate over local effects. Vertical shear (Figure 5a)
in this region is mostly northeasterly and thus does not
follow the largely easterly direction to the north of the
rainbelt. Despite this, propagation is predominantly west-
ward, indicating that levels other than 600 and 925hPa
may play a role. Another characteristic of this region
is low CIN (Figure 5b), which slightly increases south-
ward towards the equatorial cold tongue, and low CAPE
(Figure 5c). Given the absence of triggers common over
land (diurnal heating, orography, coastal effects, etc.), this
suggests that triggers from meso- or synoptic-scale cir-
culation features may be necessary to release the weak
convective instability or even to cause stratiform rain over
the oceanic region. While Knippertz et al. (2017) describe
slowly westward-moving, oceanic, synoptic-scale cyclonic
systems during the DACCIWA campaign in 2016 and their
effects on rainfall, there are no extant in-depth studies of
this phenomenon.

3.2 | Forecast performance

As noted, our purely data-driven Logistic probability of
precipitation forecast uses the CPA analysis to identify

predictor variables from rainfall records. We now assess
its predictive performance relative to the EPC15, ENS, and
ENS-IDR forecasts.

For an initial illustration at the previously considered
grid point closest to Niamey, Figure 6 shows reliability
diagrams in the recently proposed CORP form (Dimitri-
adis et al., 2021) for the Logistic forecast and the three
competitors. The CORP approach assumes a monotonic,
nondecreasing shape of the conditional event probability
(CEP) or reliability curve and yields an associated decom-
position of the mean Brier score (BS) into miscalibra-
tion (MCB), discrimination (DSC), and uncertainty (UNC)
components, namely,

BS = MCB — DSC + UNC, (6)

while avoiding the shortcomings of the traditional bin-
ning and counting approach to reliability diagrams and
score decomposition. For a comparison with the classi-
cal approach, see Figure S1 and the detailed discussion in
Dimitriadis et al. (2021). Supplementing the CORP reliabil-
ity curves and confidence bands, which reflect the natural
variability of the reliability curves under the assumption
of perfect calibration, the inset histograms illustrate the
marginal distribution of the forecast values. In the case of
discrete probabilities (ENS, ENS-IDR), bar plots are used,
and in the case of (nearly) continuously distributed fore-
cast probabilities (Logistic, EPC15) density estimates are
shown.

For the Niamey grid point, the Logistic forecast shows
a mean Brier score of 0.209.* It is well calibrated (MCB =
0.005), showing moderate discrimination ability (DSC =
0.024) and forecast probability range ~ 0.30 —0.87. In
terms of the Brier score, it outperforms both the EPC15
and the ENS forecast but not the ENS-IDR forecast. The
EPC15 forecast is even better calibrated (MCB = 0.003)
but has poor discrimination ability (DSC = 0.012), with
forecast probabilities ranging between 0.40 and 0.75 only.
The low values in the marginal distribution are likely
indicative of the monsoon onset, which is highly vari-
able from year to year, while the high values indicate the
peak of the monsoon season. In contrast, the ENS forecast
is poorly calibrated (MCB = 0.027), but shows superior
discrimination ability (DSC = 0.040), with forecast prob-
abilities attaining the full range from 0 to 1. However,
when the rainfall probability of the ENS forecast is 1.00
(i.e., all 51 members indicating rain), which is surprisingly

“We repeated the analysis considering only lags up to two days, that is,
by setting a; = 0 in Equation 5, which resulted in a slightly worse Brier
Score (BS = 0.211), mainly due to a decrease in discrimination

(DSC = 0.020) despite a slight improvement in calibration

(MSC = 0.004).
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CORP reliability diagrams for (a) Logistic, (b) EPC15, (c) ENS, and (d) ENS-IDR probability of precipitation forecasts at the

grid point closest to Niamey (13°N, 2°E) for JAS 2007-2019. The CORP reliability curves plot the conditional event probability (CEP) against
the forecast value, along with 90% consistency bands under the assumption of perfect reliability. We also show the mean Brier score (BS) and
its CORP miscalibration (MCB) and discrimination (DSC) components. The UNC component is 0.228 and only depends on climatology and
not the forecast. [Colour figure can be viewed at wileyonlinelibrary.com]

often (50.9%) the case, rainfall occurs with a conditional
event probability (CEP) of 0.85 only. Finally, the postpro-
cessed ENS-IDR forecast is well calibrated (MCB = 0.004),
while retaining most of the discrimination ability from the
ensemble (DSC = 0.038), leading to the best mean Brier
score 0f0.194,0.015 better than Logistic. However it is to be
noted that the postprocessing reduces the range of forecast
probabilities to ~ 0.00-0.85.

We repeat this comparison at every target grid point
within the nested core area, to obtain the mean Brier score
(BS, Figure S2) and the associated MCB and DSC com-
ponents (Figure 7) from the CORP decomposition. The
most striking result is that the ENS forecast suffers from

poor calibration over much of the analysis region, and very
poor calibration over the Gulf of Guinea and the equato-
rial Atlantic Ocean in particular (Figure 7e). However, it
needs to be mentioned that, similarly to Vogel et al. (2020)
who pointed out that the uncertainties associated with
TRMM estimates over the oceanic deserts may be respon-
sible for the high miscalibration in ENS, uncertainties
associated with the IMERG precipitation estimates (e.g.,
Bolvin et al., 2021) over the oceans may be partly responsi-
ble for the high MCB values of ENS in this study. The MCB
values of the postprocessed ENS-IDR forecasts resemble
those of the Logistic and EPC15 forecasts, with all three
being well calibrated (Figure 7a,c,g). Not surprisingly, the
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climatological EPC15 forecast shows the least discrimina-
tion ability, as reflected by low DSC values (Figure 7d).
The spatial patterns of the DSC values for the Logistic fore-
cast (Figure 7b) resemble those for CPA at a lag of one
day (Figure 4a) and peak in the off-equatorial Atlantic
Ocean near the Cape Verde Islands, the eastern Sahel, the
Gulf of Guinea, and the coasts of southern West Africa.
DSC values for ENS and ENS-IDR (Figure 7f,h) show some
spatial agreement with Logistic but are generally much
smoother. The good agreement between the two indicates
that the postprocessing retains the discrimination ability
of the dynamical model. Grid points within the African
rainbelt generally show very low DSC values for all four
forecasts considered, which is likely related to the high
level of stochasticity discussed above.

To facilitate direct comparison between the Logistic
forecast and the benchmark techniques, Figure 8 shows
the Brier skill score (BSS) of the Logistic forecast rela-
tive to the EPC15, ENS, and ENS-IDR forecasts. Relative

to EPC15 (Figure 8a), the Logistic forecast shows better
skill over most of our evaluation domain, and particu-
larly in regions of high rainfall gradients, where coher-
ent (Figure 5a) propagating features create predictabil-
ity through convective triggers or ambient conditions.
Improvements over EPC15 in the rainbelt, however, are
mostly small and statistically insignificant (hatched areas).
In comparison with the ENS forecast (Figure 8b), the
Logistic forecast is superior practically everywhere, with
some very high values over the ocean. Nonetheless,
according to the Diebold-Mariano test for equal predic-
tive ability, the differences between the Logistic and EPC15
and ENS forecasts fail to be statistically significant over
some parts of the climatological rainbelt.

The BSS of the Logistic forecast relative to the ENS-IDR
forecast (Figure 8c) shows an overall mixed result. The
Logistic forecast performs significantly better over regions
with high CPA, namely, the northeastern Sahel, the Gulf of
Guinea, and the majority of the highly populated coastal
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FIGURE 8  Brier skill score (BSS) for the Logistic forecast relative to the (a) EPC15, (b) ENS, and (c) ENS-IDR forecasts for JAS
2007-2019. Hatching indicates grid points where the difference in the mean Brier score (BS) fails to be statistically significant at a level of
0.05, according to the Benjamini-Hochberg corrected Diebold-Mariano test for equal predictive ability. The contours show average monthly
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regions along it (comprising Cote d’Ivoire, Ghana, Togo,
Benin, Nigeria, and Cameroon), the oceanic regions sur-
rounding the Cape Verde islands near the coast of Senegal,
and nearby coastal regions, due to superior discrimination
ability (Figure 7b). The ENS-IDR forecast performs better
over a narrow strip of grid points over the Atlantic ocean
off the coast of Sierra Leone along the southern boundary
of the rainbelt, in the western Sahel, in the Central African
Republic, and in the Congo basin. However, the associated
differences in the mean Brier score fail to be statistically
significant. This confirms that, even with sophisticated
postprocessing, a forecast with a dynamical model can
hardly outperform a relatively simple data-driven one.
Interestingly, the findings in this section remain largely
unchanged if the Logistic forecast is based on predictor

variables at a temporal lag of one day only, barring some
deterioration of the predictive performance over the west-
ern Sahel (Figure S3). This somewhat surprising result
indicates that the bulk of the useful information is con-
tained in yesterday’s rainfall, be it a local storm that per-
sists from one day to the next (as is often the case over
the ocean) or an MCS or AEW that propagates towards the
point of interest (as is often the case over the Sahel).

4 | CONCLUSIONS

Operational forecasts of rainfall in tropical Africa and
the adjacent Atlantic Ocean have low skill (Vogel
et al., 2018), but purely data-driven statistical models that
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exploit spatio-temporal correlations show promise (Vogel
et al., 2021). To explore the potential of the data-driven
approach more systematically, we have used the recently
developed CPA in a spatio-temporal analysis of 24-hr
accumulated GPM-IMERG rainfall from 2001-2019 for
the West African summer monsoon season, spanning up
to lags of three days temporally and covering up to several
thousand km spatially. The CPA patterns found can be
attributed predominantly to synoptic-scale drivers caus-
ing characteristic time-space behaviour of precipitation
anomalies. To substantiate this, we have introduced a
novel coherent-linear-propagation factor (coh) that quan-
tifies the extent to which the locations of lagged maximum
CPA reflect a propagation with constant phase speed and
direction. Large values of coh combined with substantial
CPA over the three days indicate physically interpretable
and statistically stable relationships and, thus, the poten-
tial for high statistical predictability. Such patterns are
usually associated with high values of CAPE, CIN, and
shear, which necessitates the presence of relatively strong
triggers like AEWs and MCSs to generate rainfall. Land
regions located within the climatological rainbelt show
very low values of CPA and coh, indicating high stochas-
ticity, while oceanic regions located within the rainbelt
show sizeable CPA and moderate coh. High values of coh
along the northern and southern fringes of the rainbelt
over land reflect the presence of a coherent synoptic forc-
ing that triggers and sustains precipitation over the three
days.

To leverage these findings, we have carried out a sys-
tematic comparison of the predictive performance of a
purely data-driven Logistic probability of precipitation
forecast that employs predictors from the identified loca-
tions of maximum CPAs with three benchmark forecasts,
namely, the climatological EPC15 forecast, the ENS fore-
cast, which is heavily miscalibrated, and ENS-IDR. All
forecasts struggle over regions where the precipitation
is dominated by highly stochastic processes—in particu-
lar, in the African rainbelt—due to the lack of coherent
synoptic-scale signals. In these regions, the differences
between the mean Brier scores of the Logistic, EPC15, and
ENS-IDR forecasts are small and fail to be statistically sig-
nificant. However, along the fringes of the rainbelt—in
particular, in the northeastern Sahel, the Gulf of Guinea,
and nearby coastal regions—where stochasticity is much
less pronounced, statistical approaches benefit from domi-
nant forcing that triggers and sustains precipitation events
such as AEWs, well in line with earlier results by Vogel
et al. (2021).

With a view toward operational forecasting, we sum-
marize that raw ensemble forecasts issued by opera-
tional services tend to be poorly calibrated in our study
region and may offer little to no skill over northern

tropical Africa. However, it needs to be mentioned that
the operational forecasts from ECMWF are based on
convection-parameterized simulations. While CP models
have been shown to perform better in this regard over some
regions (e.g., Woodhams et al., 2018), the computational
costs of a large-domain CP ensemble forecast will remain
too high for years to come. Therefore, we recommend that
operational services consider the use of statistical post-
processing techniques that improve the skill of the raw
forecasts by proper calibration (Henzi et al., 2021; Hew-
son and Pillosu, 2021). Climatological forecasts such as the
EPC forecast offer very cheap alternatives if postprocess-
ing is not available. However, our key recommendation is
that purely data-driven techniques, such as the Logistic
forecast studied here, be used to obtain the probability of
precipitation forecasts over northern tropical Africa, with
the added benefit of being computationally much cheaper
than NWP-based forecasts. We anticipate and encourage
extensions of the data-driven, statistical approach, which
currently is restricted to probability forecasts for the occur-
rence of precipitation, to full probabilistic forecasts of
precipitation accumulations.

Finally, one might employ advanced techniques of
machine learning, such as convolutional neural networks
or graph neural networks, to develop more sophisti-
cated data-driven approaches, as demonstrated impres-
sively by Lam et al. (2022), Bi et al. (2023), Nguyen
et al. (2023), and Chen et al. (2023). Whilst artificial intel-
ligence (AI) based data-driven methods such as these
show immense potential for many aspects of forecasting,
they still face hurdles in forecasting precipitation. The
approach demonstrated in this article may help advance
Al-based methods in this direction, as our rather sim-
ple data-driven Logistic forecast combines expertise from
data science and atmospheric science to leverage insights
about spatio-temporal patterns of precipitation over north-
ern tropical Africa and adjacent regions. While modern
neural networks already have the ability to learn such pat-
terns from data alone, without the need for human exper-
tise for variable selection, it remains to be seen whether
they can outperform much simpler data-driven or hybrid
(statistical-dynamical) methods in regions such as north-
ern tropical Africa.
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