KIT | KIT-Bibliothek | Impressum | Datenschutz

Project 03: Mathematical Foundations of Bayesian Neural Networks

Ehret, Uwe [Hrsg.] 1; Frank, Martin [Hrsg.] ORCID iD icon 2; KIT-Zentrum MathSEE [Hrsg.]; Debus, Charlotte 2; Krumscheid, Sebastian ORCID iD icon 2
1 Institut für Wasser und Gewässerentwicklung (IWG), Karlsruher Institut für Technologie (KIT)
2 Scientific Computing Center (SCC), Karlsruher Institut für Technologie (KIT)

Die Mediendatei ist nicht mehr verfügbar.

Abstract:

03 Mathematical Foundations of Bayesian Neural Networks
MATH PI: TT-Prof. Dr. Sebastian Krumscheid, Steinbuch Centre for Computing (SCC), Junior Research
Group Uncertainty Quantification (SCC-UQ) & Institute for Applied and Numerical Mathematics
(IANM)
SEE PI: Dr. Charlotte Debus, Steinbuch Centre for Computing (SCC), Junior Research Group Robust
and Efficient AI (SCC-RAI)
Department(s): Mathematics or Informatics (Computer Science)
Type of position: 75% FTE, TV-L E13
With the increasing application of machine learning (ML) methods, the robustness of such data-driven
methods becomes a central aspect. Modern ML models must not only be able to deliver
unprecedented prediction accuracy but are also required to deliver an estimate of the uncertainty of
that prediction. Assessing the possible error margin on a prediction is essential in applying ML models
to critical infrastructures, such as electricity resource planning from renewable energy sources.
For deep learning (DL), Bayesian Neural Networks (BNN) provide a promising approach to quantifying
the inherent data uncertainty and that of the ML model itself, which arises from the optimization
... mehr


Zugehörige Institution(en) am KIT KIT-Zentrum Mathematik in den Natur-, Ingenieur- und Wirtschaftswissenschaften (KIT-Zentrum MathSEE)
Scientific Computing Center (SCC)
Publikationstyp Audio & Video
Publikationsdatum 23.10.2023
Erstellungsdatum 20.10.2023
Sprache Englisch
Identifikator KITopen-ID: 1000163237
HGF-Programm 46.21.04 (POF IV, LK 01) HAICU
Weitere HGF-Programme 46.21.02 (POF IV, LK 01) Cross-Domain ATMLs and Research Groups
Lizenz KITopen-Lizenz
Serie KCDS Virtual Open House 2023 - Fall
Folge 4
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page