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A B S T R A C T
Background A typical problem in the registration of MRI and X-ray mammography is the nonlinear
deformation applied to the breast during mammography. We have developed a method for virtual
deformation of the breast using a biomechanical model automatically constructed from MRI. The
virtual deformation is applied in two steps: unloaded state estimation and compression simulation. The
finite element method is used to solve the deformation process. However, the extensive computational
cost prevents its usage in clinical routine.
Methods We propose three machine learning models to overcome this problem: an extremely
randomized tree (first model), extreme gradient boosting (second model), and deep learning-based
bidirectional long short-term memory with an attention layer (third model) to predict the deformation
of a biomechanical model. We evaluated our methods with 516 breasts with realistic compression
ratios up to 76%.
Findings We first applied one-fold validation, in which the second and third models performed better
than the first model. We then applied ten-fold validation. For the unloaded state estimation, the median
RMSE for the second and third models is 0.8 mm and 1.2 mm, respectively. For the compression, the
median RMSE is 3.4 mm for both models. We evaluated correlations between model accuracy and
characteristics of the clinical datasets such as compression ratio, breast volume, and tissue types.
Interpretation Using the proposed models, we achieved accurate results comparable to the finite
element model, with a speedup of factor 240 using the extreme gradient boosting model. These
proposed models can replace the finite element model simulation, enabling clinically relevant real-
time application.

1. Introduction
The second-leading cause of death in the United States

and a major public health issue worldwide is cancer. In
the United States, 1,918,030 new cancer cases and 609,360
cancer-related deaths were recorded in 2022. 43,250 and 530
female and male patients, respectively were expected to die
from breast cancer out of 290,560 newly diagnosed cases.
The incidence of breast cancer in women increased slowly by
0.5% per year from 2014 to 2018. Although incidence trends,
and thereby mortality patterns for breast cancer are slowing,
there has not been a dramatic decline despite the large efforts
in early diagnosis. Investments in improved early diagnosis
and treatment, as well as more focused cancer control initia-
tives, could reduce cancer mortality in the future Siegel et al.
(2022).

There are several imaging techniques available for the
detection and diagnosis of breast cancer, such as magnetic
reasoning imaging (MRI), X-ray mammography, digital
breast tomosynthesis, and ultrasound images. Imaging tech-
niques often complement each other.

Due to different patient positioning and compression of
the breast in those modalities, image registration is one of
the methods that has been researched in the last decades
to facilitate multimodality diagnosis by transferring lesion
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positions from one modality to another. The predominant
challenge in breast image registration is the huge nonlinear
deformation of soft tissue, e.g. when the breast is com-
pressed in mammography. To overcome this challenge, the
state of the art in multimodal breast image registration is
the application of sophisticated biomechanical simulations,
mostly solved with the finite element methods (FEM) García
et al. (2018).
1.1. Finite Element Methods and Application to

Biomechanical Breast Models
Finite Element Methods discretize an object to approxi-

mately solve the differential equations describing the phys-
ical conditions Pasciak (1995). The boundary conditions
are considered as input from which the algorithm approx-
imates to the corresponding solution Pasciak (1995). The
continuum problem is approximated by a method where the
continuum is partitioned into a finite number of elements
and a finite set of parameters determines the performance
of these elements. The solution of the whole system as
a set of its elements pursues exactly the same principles
that apply to standard discrete problems Zienkiewicz et al.
(2013). Biomechanical modeling (BM) of the behavior of
anatomical structures under different loads is a necessary
step for numerous academic and clinical applications. Cor-
responding partial differential equations (PDEs) control the
physical phenomenon being modeled such as the deforma-
tion of organs like liver, prostate, stomach, breast, and other
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Table 1
Literature review of finite element methods for breast deformation

Reference Application Compression Ratio Computation Time Software Studies

Azar et al. (2000) MR image-guided biopsy 12% - 26% < 30 mins ABAQUS Clincial
Samani et al. (2001) Image registration - - ABAQUS Phantom
Ruiter et al. (2002) Cancer diagnosis 21% - ANSYS Clinical
Ruiter et al. (2006) Image registration 6% -∼25% - ANSYS Clinical
Tanner et al. (2006) Breast deformation 20% - ANSYS Clinical
Chung et al. (2008) Image registration 30% - - Phantom
Han et al. (2011b) Breast deformation 19.4%-50.4% 312 mins (Explicit) ABAQUS Clinical
Hopp et al. (2013) Image registration ∼50% 20 mins (Optim.:120 mins) ABAQUS Clinical
Lee et al. (2013) Image registration 40% -70% - CMISS Clinical
Mertzanidou et al. (2014) Image registration 50% 2 hrs ITK Clinical
Liu et al. (2017) Simulation compression ∼56% - ABAQUS Clinical
García et al. (2019) Image registration - 61 min (Optim.) NiftySim Clinical

virtual organs in augmented reality applications Phellan
et al. (2021).

FEM specifically for modeling the mechanical response
of breast tissue have been used for several applications
with different complexities of biomechanical models and
materials Hipwell et al. (2016), García et al. (2018). More
specifically, the mechanical response of breast tissue under
mammographic compression has been modeled using FEM,
using different compression ratios and different solvers. An
overview of the compression ratios, software packages, com-
putational time, and type of studies used is presented in Table
1.

Despite the fact that these models have been used with
success to register multimodal breast images, FEM are time
consuming and thus limit clinical applicability and inte-
gration into clinical workflows. Furthermore, several ap-
proaches consider an iterative scheme to optimize meta
parameters such as compression thickness, material param-
eters, or breast rotation to cope with uncertainties in clinical
data (referred to as "Optim." for optimization in Table 1).
Therefore, the FEM simulation have to be computed numer-
ous times, which increase further the overall computation
time. The challenge of accurate real-time modeling of soft
tissue deformation is still an open question.

Numerous strategies have been proposed to reduce the
computational effort of FEM in order to achieve real-time
compliance. Some of them focused on improving linear
solvers, which are the main FEM bottleneck Mendizabal
et al. (2019). The GPU implementation by Han et al. (2014)
relies on a total lagrangian explicit dynamics (TLED) for-
mulation by Miller et al. (2006), which is considered the
most optimal method for modeling breast biomechanics
Mendizabal et al. (2019). Moreover, niftySim is a GPU-
based solver Han et al. (2011a), used for breast modeling.
The Simulation Open Framework Architecture (SOFA) also
uses a GPU-based solver to accelerate computations and has
been used for prostate deformation simulation Moreira et al.
(2013).

1.2. Machine and Deep Learning Algorithms
A lot of research has been done to predict the me-

chanical behavior of different anatomical structures using
different machine learning algorithms Phellan et al. (2021).
The fundamental benefit of ML models is their ability to
forecast outcomes in real-time once the mapping function
has been computed offline. The three main types of algo-
rithms are neural networks (NNs), tree-based algorithms,
and support vector regression (SVR) machines. Although
many anatomical structures have been studied with machine
learning Phellan et al. (2021), for simulating the deformation
of the breast, to our best knowledge, there has been limited
research:

Mendizabal et al. (2019) focused on simulating defor-
mations of ultrasound images for ultrasound-guided breast
biopsy. They used a U-net architecture trained on a small
synthetic dataset. Their main goal was to find a relationship
between the partial surface deformation under the US probe
and the deformation inside the breast. For that purpose,
they were able to make an accurate prediction for lesion
displacement in real-time. Their model did not take into
consideration the heterogeneity or complex boundary con-
ditions that actually exist in clinical cases. Their model is
insensitive to the patient-specific elastic properties because
it only accounts for surface displacement.

For the evaluation, they used the displacements gener-
ated by the FEM as ground truth and then calculated the
mean error. Since their goal was to accurately predict lesions,
they also calculated the target registration error (TRE) be-
tween their prediction and the known lesion in the phantom
breast. They used different probe displacements from less
than 12.5 mm to more than 27.5 mm, achieving a mean TRE
of 2.7 mm to 5.8 mm, respectively. Their main limitation was
that they had to re-train the model for each new geometry,
which is restricted to the types and number of compression
tools such as different probe shapes Mendizabal et al. (2019).

Martínez-Martínez et al. (2017) and Rupérez et al.
(2018) modeled the mechanical response of breast tissue
under mammographic compression using an MRI-derived
nonlinear finite element model. Their main goal was to
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Figure 1: Workflow of our proposed method

accelerate the multimodal registration and simulate breast
tissue behavior during image-guided interventions such as
biopsies. They proposed three models: decision tree (DT),
extremely randomized trees (ERT), and random forest (RF).
They first conducted their experiments based on phantoms
and then extended them to clinical datasets.

They evaluated their methods by calculating the mean
3D Euclidean distance between the nodes predicted by the
models and the nodes extracted from the FE simulation,
which served as the ground truth. Their experiments showed
that ERT had the best performance with an average error of
0.62 mm. One limitation is the number of datasets (10 phan-
toms, 10 clinical cases) that were evaluated, which limits the
generalization of the model. In addition, only a compression
ratio of 20% was considered, which is much lower than the
compression ratios applied in mammography. Their model
consisted of three tissue types: fatty and glandular tissues
and skin.

In this paper, we propose and compare two machine
learning models, i.e. extremely randomized tree (ERT) and
extreme gradient boosting (XGBoost), and a deep learn-
ing model (Att-BLSTM) to predict the deformation of a
biomechanical model based on breast MRI under realistic
mammographic compression. The biomechanical model is
based on our previous work, see e.g. Hopp et al. (2012,
2013), which can be considered relatively complex as it
considers four tissue types: fatty, glandular, and muscular
tissues, as well as skin. Furthermore, it uses an estimation
of the unloaded state of the breast before applying plate
compression using a contact problem between the breast and
the rigid compression plates.

The model has been evaluated in several clinical use
cases and obtained clinically relevant results, e.g. for mul-
timodal diagnosis of MRI and X-ray mammography with
an average localization error of about 13 to 18𝑚𝑚 Dietzel
et al. (2012); Hopp et al. (2013), image fusion of MRI
contrast kinetics with X-ray mammograms Dietzel et al.
(2015); Hopp et al. (2012), and for multimodal computer-
aided diagnosis Hopp et al. (2017, 2016).

Based on the metadata of the corresponding mammo-
grams of the patients included in this study, we considered
compression ratios of up to 76%. We tested our ML and
DL approaches with 516 breasts for which we automatically
generated the biomechanical models from T2-weighted MR
images. We trained and evaluated the models using a FEM
simulation of mammographic compression and correlated
the results with characteristics of the clinical datasets such
as compression ratio, accuracy as a function of tissue type,
and breast volume.

2. Methods
2.1. Biomechanical Breast Model

Our biomechanical breast model is based on the method
of registration of MRI and full X-ray mammography de-
veloped in earlier work of our group Hopp et al. (2013).
It estimates a configuration of the breast comparable to its
shape in X-ray mammography based on the breast geometry
observed with MRI in 3D. A biomechanical model is used in
combination with a FEM simulation which virtually mimics
the deformation applied to the MRI.
2.1.1. Image Segmentation and Meshes

To obtain the patient-specific breast geometry, we seg-
mented a T2-weighted MR image using an unsupervised
neural network (for details, please refer to Said et al. (2022)).
It is based on an iterative method that generates various
segmentations of the same MRI volume, from which we
selected the presumably best segmentation based on inde-
pendent quality metrics. Three main tissues are classified:
fatty, glandular, and muscular tissues.

A tetrahedral meshing approach was used to construct
the model geometry from the segmented MRI, which divides
the breast anatomy into approximately 2000 ∼ 2500 4-node
tetrahedrons using the iso2mesh tool Fang and Boas (2009).
This method is based on tetgen Si and Gärtner (2005) and
CGAL The CGAL Project (2022). For details, please refer
to Said et al. (2021).
2.1.2. Material Model and Boundary Conditions

An isotropic hyperelastic neo-Hookean material model
was used to account for the nonlinear and incompressible tis-
sue behavior during the deformation process Wellman et al.
(1999). Two material constants 𝐶01 and 𝐷1 are determined
as functions of Young’s modulus E and Poisson’s ratio 𝜈
to describe the stress-strain relationship of the breast tissue.
The values used are the same as in our previous work Said
et al. (2021). Poisson’s ratio 𝜈 was set to 0.495 for all three
tissues while Young’s modulus differed from one tissue to
another. 𝐸𝑓𝑎𝑡 was set to 1100 Pa, 𝐸𝐺𝑙𝑎𝑛𝑑 was set to 2500
Pa, and 𝐸𝑀𝑢𝑠𝑐𝑙𝑒 was set to 6000 Pa. On the top of the
outer breast surface, we modeled a simplified layer of skin
using membrane elements. The geometry of these membrane
elements is a 3-node triangle with a constant thickness of
2𝑚𝑚 for all the clinical datasets. Similarly, a hyperelastic
neo-Hookean material was used with 𝐸𝑆𝑘𝑖𝑛 set to 1000 Pa.
A more detailed description of the biomechanically based
registration and the relationship between stresses and strains
is discussed in Hopp et al. (2012).
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Figure 2: A clinical case of our biomechanical model in the sagittal plane (lateral view): The initial state, the unloaded state
estimation followed by the compression step.

As for the boundary conditions, the breast was modeled
as an adjunct to the body by considering the muscle as a
non-deformable body. In the anteroposterior direction, we
constrained the movement of nodes at the interface between
the muscle and other tissues.

We mimicked mammographic compression in two steps:
we first simulated the unloaded state of the breast in which no
gravity is applied to the breast. This is modeled in a simpli-
fied way by applying a body force with a gravitational force
in the anteroposterior direction. In the second simulation
step, we added compression plates to compress the breast
until the required compression thickness was achieved as
shown in Figure 2. The compression thickness was read from
the metadata. Our assumption was that the lower compres-
sion plate was fixed at the inframammary fold and only the
upper plate moved toward the breast. In terms of boundary
conditions, a displacement of the upper compression plate
was defined and the lower plate was kept in position. We
used 8-node hexahedrons to model the plates and applied a
linear elastic material with material parameters mimicking
acrylic glass. The deformation simulation of the breast was
considered as a contact problem between the breast surface
and the plate surfaces, defining a small sliding interface with
an adjustable friction coefficient of 0.25. Due to the nearly
incompressible material, the employed deformation mostly
affected the shape of the breast and not a volume change.

We employed the FEM to compute the mechanical re-
sponse of the breast tissue for the modeled compression. The
mechanical deformations were estimated using the dynamic
FE solver in the commercial FEM software ABAQUS /
Explicit Smith (2009), which was selected for its robust
convergence for highly nonlinear deformations and contact
problems. The nonlinear system of equations is solved in
ABAQUS / Explicit using a small-step incremental solution
method. The simulation of the breast compression is divided
into small time steps to calculate the displacements of the
moving upper plate towards the breast. For each small time
step, we took into consideration the geometric non-linearity
of the breast. We used a smooth step displacement curve and
set ABAQUS / Explicit to automatically determine the step
size and convergence criterion of each increment. We can

extract the deformed configuration of the breast by request-
ing from ABAQUS the node positions at a certain time step
(referred to as "step number"). We used this information as a
feature for training our ML models, as described in the next
section.
2.2. Data Generation and Features Extraction

The extracted features mainly contain three different
types of information: the geometry of the breast described
by the initial coordinates of the breast mesh, the properties
of the tissues such as the breast volume and the volume
fractions of the tissues given by the segmentation, and the
external factors causing the deformation such as the position
of the compression plates and surface nodes of the breast
mesh. As mentioned before, our biomechanical simulation
consists of two steps: estimation of the unloaded state and
simulation of the compression. For the estimation of the
unloaded state, we extracted eleven features similar to those
proposed in Martínez-Martínez et al. (2017); Rupérez et al.
(2018). For the compression simulation, we extracted a total
of 22 features: the same eleven features as in Martínez-
Martínez et al. (2017); Rupérez et al. (2018) and an addi-
tional eleven features that empirically improved the results
in our experiments, especially for the large deformations
during the breast compression simulation. A description of
the 22 features is summarized in the following list:

• Feature 1-3: The three components of the nodal coor-
dinates (X, Y, and Z) of each node in the initial breast
geometry

• Feature 4: The step number at which the nodal coor-
dinate was acquired

• Feature 5-7: The volume fraction of each segmented
tissue (fatty, glandular, and muscular tissues) com-
pared to the total volume of the breast

• Feature 8: The volume of the breast mesh in 𝑚𝑚3

• Feature 9-11: The fraction of elements for each tissue
type (fatty, glandular, and muscular tissues) compared
to the total number of elements in the breast mesh
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• Feature 12: The displacement of the upper compres-
sion plate towards the breast for the particular step

• Feature 13-14: Y and Z coordinates of the edge of the
fixed lower compression plate

• Feature 15-16: Y and Z coordinates of the edge of the
moving upper compression plate for the particular step

• Feature 17: a flag indicating if the node of the current
instance is a surface node of the breast mesh which
will potentially get into contact with the upper com-
pression plate

• Feature 18: a flag indicating if the node of the current
instance is a surface node of the breast. Note that
these nodes are also the nodes forming the membrane
elements modeling the skin.

• Feature 19-21: 3-bit binary value representation of the
tissue type to which the node belongs based on the
breast mesh as shown in Table 2

• Feature 22: Laterality of the breast mesh (left or right
breast)

Finally, one instance of 22 features represents the infor-
mation of one node in a breast.
Table 2
Tissue labels

bit 2 bit 1 bit 0 Class

0 0 1 muscle
0 1 0 fatty
0 1 1 interface (fatty, muscle)
1 0 0 glandular
1 0 1 interface (glandular, muscle)
1 1 0 interface (fatty, glandular)
1 1 1 interface (three tissues)

After extracting the features, we organized them in a
2D matrix where the columns represent 11 and 22 features
for the unloaded state estimation and compression step,
respectively and the rows represent the nodes at one time
step as an instance as shown in Figure 3.
2.3. Data Processing

Before feeding the instances into the machine learning
algorithms, we first applied a preprocessing step, which
consists mainly of a normalization.

It is responsible for bringing different breast geometries
into a similar reference space to increase robustness and
training stability.

In our application, due to the large variance in the
geometry of the breasts, such as position, shape, and size,
normalization is an essential step to bring the plates and the
breast mesh into the same coordinate system.

It has been empirically tested that the z-score normaliza-
tion has the best performance for our problem: we performed

n Features

Step 1

Intermediate Steps

Last Step

node 1

node 1

node 2

node 2

Figure 3: Data structure of the features, which are considered
as the input for training our machine and deep learning models.

a pretest comparing two common normalization methods: z-
score and min-max scaling normalization. A small dataset
of 100 breasts was used for training and 10 breasts were
predicted using our machine learning and deep learning
models, which will be described in section 2.4. We evaluated
the performance using the root mean square error (RMSE)
(see section 2.5) and analyzed the percentages of nodes in the
breast model with an RMSE less than 2𝑚𝑚. For the z-score
normalization on average 14.4% of the nodes had an RMSE
less than 2𝑚𝑚, and for the min-max scaling normalization
on average 12.7% of the nodes had an RMSE less than
2𝑚𝑚. Since the z-score method showed better performance
than the min-max scaling on average, it was selected for
normalization. The main concept of the z-score is based on
calculating the standard deviation of distances of data points
from the mean. It aims to have all instances have a mean of
zero and a standard deviation of one Roessner et al. (2011).
For our problem, this means that the X, Y, and Z coordinates
of the nodal positions 𝑉 of one patient dataset are changed
to 𝑉𝑛𝑜𝑟𝑚 in which they are centered around the origin (𝜇)
and the standard deviation (𝜎) of all nodal positions from
the origin is one, as shown in equation 1.

𝑉𝑛𝑜𝑟𝑚 =
(𝑉 − 𝜇)

𝜎
(1)

2.4. Models
After features generation and data processing, the next

step was to build up machine learning models for training.
The inputs of the model were the eleven features for the case
of the unloaded state estimation, while the 22 features were
used for the compression step. The output of the models was
the predicted deformation of the instance sequentially start-
ing from step number one till the last desired required step,
i.e. the three components of the Euclidean coordinates (X,
Y, and Z) of the nodal position belonging to one instance for
a particular step. Since our problem is a supervised problem,
there are three main approaches: linear model, tree-based
models, and artificial neural networks. In this paper, three
different models are proposed and compared: two models
based on tree-based ensemble models, extremely random-
ized trees (ERT) similar to the model used in Rupérez et al.
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(2018), extreme gradient boosting (XGBoost), and a model
based on a recurrent neural network (RNN).
2.4.1. Tree-Based Ensemble Algorithms

The tree-based ensemble algorithm is a subset of tree-
based algorithms but is generally considered to be a more
accurate model since it is based on building multiple trees
together in an ensemble learner, where the features are
randomly split in each tree and the predictions of all the trees
are combined together. Therefore, the ensemble trees can
provide better performance than the traditional tree-based
algorithms. Three classes of ensemble learning techniques
have been developed for the tree models: bagging, stacking,
and boosting. In this paper, we focus on ERT from the
family of bagging tree models. It was recently proposed
by Martínez-Martínez et al. (2017); Rupérez et al. (2018)
which shows the best performance among the three models
proposed by them. We also proposed a model from the
boosting family which is XGBoost.
Extremely Randomized Tree and Extreme Gradient
Boosting The main difference between bagging (ERT)
Geurts et al. (2006) and boosting (XGBoost) Chen and
Guestrin (2016) is that ERT learns trees independently from
each other and in parallel. By that, each model is trained
using a different sample from the same training dataset, and
the prediction is made by averaging the weak predictions
together. Contrary XGBoost learns trees based on the pre-
vious one sequentially in an adaptive way. By that each new
model is trained based on the performance of the previously
trained model and the prediction is made by correcting the
error of the previous model. The loss function used for ERT
and XGBoost is the root mean square error.
2.4.2. Recurrent Neural Networks

The third model we propose belongs to the family of re-
current neural networks. Recurrent neural networks (RNN)
are deep learning algorithms. The main difference between
recurrent and neural networks is that they use data from
earlier inputs to modify the current input and output. In
contrast, conventional neural networks consider inputs and
outputs to be independent of one another.
Bidirectional Long Short-Term Memory with an At-
tention Layer One of the most well-known architectures
in RNN is Long short-term memory (LSTM). Each LSTM
consists of three main gates: forget gate, input gate, and
output gate. The forget gate is the gate responsible for adding
or removing information to the cell state, for which the
sigmoid function is used Zhou et al. (2016). Bidirectional
LSTM memory (BLSTM) processes data in two directions.
As a result, this model can use both past and future data.
Additionally, there is a layer called the attention layer, which
is added as a cascaded layer to the BLSTM. The idea of the
attention layer is to apply an activation function to the output
to obtain a weighted output vector instead. It consists of
two cascaded steps of activation functions. Those activation
functions can be, for example, tanh, sigmoid, or Relu. Based

on Zhou et al. (2016), Att-BLSTM has a better performance
compared to BLSTM without an attention layer.

In this paper, our architecture consists of an encoder and
a decoder Luong et al. (2015). The encoder consists of a
bidirectional long short-term memory with an attention layer
(Att-BLSTM) Zhou et al. (2016). The decoder consists of an
LSTM. The loss function for this architecture is also the root
mean square.
2.5. Evaluation

In order to evaluate the performance of our proposed
models, we considered the deformed nodes from our FEM
simulation as the ground truth. By that, we can calculate
the root mean square error (RMSE) for each node between
our proposed models and the ground truth, as shown in
equation 2. In this equation, 𝜖 represents the deviation of
a node’s position from the ground truth in the x, y, and z
directions. Afterwards, we calculated the mean value of all
nodes belonging to one dataset, where one dataset refers to
one breast of one patient. Finally, we calculated the mean
and median RMSE of all the datasets in the validation set
(see section 3).

𝑅𝑀𝑆𝐸𝑛𝑜𝑑𝑒 =

√

𝜖2𝑥 + 𝜖2𝑦 + 𝜖2𝑧
3

(2)

In addition, we categorized the percentage of nodes from
the validation set into classes with an interval of a certain
value starting from 0𝑚𝑚 to 22𝑚𝑚 with a step size of 2𝑚𝑚.
Since a few percentages of nodes are located in a class
greater than 22𝑚𝑚, we added an additional class for those
nodes. This categorization provides a representation of the
error distribution.

3. Results
Two groups of datasets were considered in this paper:

26 datasets from the Medical University of Vienna with
ages ranging from 29 to 78 years and 232 datasets from the
University Hospital of Jena with ages ranging from 23 to
92 years. All datasets were acquired retrospectively. Patients
underwent independent normal treatment following the pro-
cedures in compliance with relevant laws and institutional
guidelines. The collection of data was approved by the insti-
tutional committees. Datasets were completely anonymized.
Each dataset consisted of a T2-weighted MRI series, which
was acquired in clinical practice according to the internal
guidelines of the respective hospital. Furthermore, metadata
from a corresponding mammogram of the patient was used
to parameterize the model, e.g. compression thickness. In
total, we used 258 patients. For increasing our database, we
first generated breast meshes from both the left and right
breast of each patient, resulting in a total of 516 datasets.
Second, we extracted intermediate steps between the initial
state and the final state of the deformed breast in order to
train the model with different deformation states. Since the
deformation is a function of time in the FEM simulation
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with the dynamic solver, an arbitrary number of intermediate
steps could be extracted. To cover a good range of inter-
mediate steps, we extracted 100 steps for the estimation of
the unloaded state and around 70 steps for the compression
simulation, from the time step when the upper compression
plate starts to contact the breast to the time when the breast is
fully compressed according to the mammogram’s metadata.
Since we extract 100 steps for the unloaded state estimation,
a total of 70884000 instances could be used for training
and validation. Since we extract around 70 steps for the
compression step, a total of 48979346 instances is used.

We first applied one-fold validation to optimize the hy-
perparameters and compare the three models: ERT, XG-
Boost, and Att-BLSTM. We split our data 90% for the
training set (467 datasets) and 10% for the validation set (49
datasets). The validation set has been split equally into 50%
of datasets from the Medical University of Vienna and 50%
of datasets from the University Hospital of Jena. We inves-
tigated the unloaded state estimation and the compression
simulation separately.
3.1. Unloaded State Estimation

For the unloaded state estimation, it can be observed
from Table 3 that Att-BLSTM provides the minimum mean
RMSE of 4.9𝑚𝑚, while the median RMSE for Att-BLSTM
and XGBoost is similar when considering the prediction
of all 100 intermediate steps. For the last step, the mini-
mum mean RMSE is 6.4𝑚𝑚 with Att-BLSTM. Regarding
the median, XGBoost works slightly better with a median
RMSE of 1.0𝑚𝑚 compared to 1.1𝑚𝑚 for Att-BLSTM. The
standard deviation for both methods is considerably higher
due to four and six outliers for XGBoost and Att-BLSTM,
respectively. The interquartile range for XGBoost is 2𝑚𝑚
and for Att-BLSTM is 1.4𝑚𝑚. Based on the categorization
of the percentages of nodes into accuracy classes, as shown
in Figure 4, the RMSE values for XGBoost and Att-BLSTM
are almost the same.

We visualized two cases in the three views of the body
plane: first, a good case is selected based on the mini-
mum error achieved in the Att-BLSTM method to show
the performance of our proposed models compared to the
deformation from the FEM simulations, as shown in Figure
5, 6, and 7. It is clearly obvious that both methods XGBoost
and Att-BLSTM provide visually the same performance
with an RMSE of 0.47𝑚𝑚 and 0.49𝑚𝑚, respectively, in
the three views compared to the FEM simulation (ground
truth), while the breast mesh shape predicted by the ERT
model with an RMSE of 5.7𝑚𝑚 considerably loses volume
and the displacement of the nodes does not follow the
same pattern as in the displacement estimated by the FEM
simulation. Second, for illustration, we also show a case
with an RMSE of 5.9𝑚𝑚, 1.1𝑚𝑚, and 1.1𝑚𝑚 for ERT,
XGBoost, and Att-BLSTM, respectively. In this case, there
are some elements erroneously modeled as glandular tissue
on the surface of the breast, which is due to a non-optimal
automatic segmentation of the MRI volume. Additionally,
there are some elements that exceed the quality criterion

limits of ABAQUS during the FEM simulation and need
to be re-meshed. Despite these challenges in predicting a
non-optimal initial dataset, the behavior of the XGBoost and
the Att-BLSTM provides visually convincing results, still
similar to the deformation in the FEM simulations, as shown
in Figure 8, 9, and 10.
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Figure 4: Comparison of the percentage of nodes in each
category of error for the unloaded state estimation. The RMSE
values were calculated for the three methods (ERT, XGBoost,
Att-BLSTM) as an evaluation metric.

To achieve these results, the hyperparameters of the
best performing methods XGBoost and Att-BLSTM were
empirically optimized using the one-fold validation. For the
unloaded state estimation, the XGBoost hyperparameters
were set as follows: the number of estimators was set to 55,
the learning rate (𝛼) was set to 0.2, the minimum child weight
was set to 50, and the maximum depth was set to 6. For Att-
BLSTM, the activation function in the attention layer in both
stages was set to tanh and Relu, and the learning rate (𝛼) was
set to 0.03.
Table 3
Unloaded state estimation - (mean, median) ± standard devia-
tion RMSE (𝑚𝑚) in the validation set.

Steps ERT XGBOOST Att-BLSTM

All (6.8, 5.9) ± 2.9 (6.3, 0.6) ± 36.9 (4.9, 0.6) ± 26.6
Last (8.1, 6.3) ± 5.5 (7.8, 1.0) ± 37.3 (6.4, 1.1) ± 26.7

3.2. Compression Step
For the compression step, it can be seen from Table 4 that

XGBoost provides the minimum mean and median RMSE of
4.9𝑚𝑚 and 3.5𝑚𝑚 when considering the prediction of all 70
intermediate steps. For the last step, in which the compres-
sion is the highest and reaches the compression thickness
given in the mammogram’s metadata, the mean and median
RMSE are 7.3𝑚𝑚 and 4.3𝑚𝑚 using the XGBoost model.
Compared to these values, Att-BLSTM performs slightly
worse with an average RMSE of 6.0𝑚𝑚 (averaged over all
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Figure 5: Clinical case with a visually good result in the sagittal plane (lateral view): The comparison of the estimation of the
unloaded state between the ground truth (FEM simulation) and the prediction by ERT, XGBoost, and Att-BLSTM. The colors
indicate the three-segmented tissues: dark blue is glandular tissue, light blue is fatty tissue, and yellow is muscular tissue.

Figure 6: Clinical case with a visually good result in the transversal plane (axial view): The comparison of the estimation of the
unloaded state between the ground truth (FEM simulation) and the prediction by ERT, XGBoost, and Att-BLSTM. The colors
indicate the three-segmented tissues: dark blue is glandular tissue, light blue is fatty tissue, and yellow is muscular tissue.

steps) and 9.1𝑚𝑚 for the full compression step, while ERT
performs significantly worse with 10.0𝑚𝑚 and 13.4𝑚𝑚,
respectively.

Based on the error distribution in Figure 11, it can be
observed that Att-BLSTM predicts slightly less nodes with
an RMSE higher than 10𝑚𝑚 compared to the XGBoost
method. The number of nodes with an RMSE lower than
10𝑚𝑚 is approximately the same for XGBoost and Att-
BLSTM. It can also be realized that there is a significant
difference in the first class from 0 − 2𝑚𝑚 and the last
class, which summarizes errors greater than 22𝑚𝑚. For the
first class, the distribution shows that Att-BLSTM performs
slightly better than XGBoost, while the last class indicates

that the number of nodes with large error in Att-BLSTM is
considerably higher than in XGBoost.

Similar to the unloaded state estimation, we optimized
the hyperparameters using the validation set of the one-fold
validation. For XGBoost, the number of estimators was set
to 80, the minimum child weight was set to 6, the maximum
depth was set to 7, and the learning rate (𝛼) was set to 0.08.
For Att-BLSTM, the activation function in the attention
layer in both stages was set to sigmoid and the learning rate
(𝛼) was set to 0.03.

In the following subsections, we emphasize a deeper
analysis of the performance of the models with respect to
patient characteristics.

Figure 7: Clinical case with a visually good result in the coronal plane (back view): The comparison of the estimation of the
unloaded state between the ground truth (FEM simulation) and the prediction by ERT, XGBoost, and Att-BLSTM. The colors
indicate the three-segmented tissues: dark blue is glandular tissue, light blue is fatty tissue, and yellow is muscular tissue.
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Figure 8: Clinical case with visually non-optimal result in the sagittal plane (lateral view): The comparison of the unloaded
state estimation between the ground truth (FEM simulation) and the prediction by ERT, XGBoost, and Att-BLSTM. The colors
indicate the three-segmented tissues: dark blue is glandular tissue, light blue is fatty tissue, and yellow is muscular tissue.

Figure 9: Clinical case with visually non-optimal result in the transversal plane (axial view): The comparison of the unloaded
state estimation between the ground truth (FEM simulation) and the prediction by ERT, XGBoost, and Att-BLSTM. The colors
indicate the three-segmented tissues: dark blue is glandular tissue, light blue is fatty tissue, and yellow is muscular tissue.

The compression step
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Figure 11: Comparison of the percentage of nodes in each
category of error for the compression step. The RMSE values
were calculated for the three methods (ERT, XGBoost, Att-
BLSTM) as an evaluation metric.

Table 4
Compression step - (mean, median) ± standard deviation
RMSE (𝑚𝑚) in the validation set

Steps ERT XGBOOST Att-BLSTM

All (10.0, 8.0) ± 5.4 (4.9, 3.5) ± 4.0 (6.0, 3.6) ± 7.1
Last (13.4, 10.6) ± 9.9 (7.3, 4.3) ± 7.5 (9.1, 4.7) ± 13.1

3.2.1. Correlation with Features of the Breast
We analyzed our results with respect to three charac-

teristics of the breast: the compression ratio, the error as a
function of the different tissue types (glandular, fatty, and
muscular tissues), and the breast volume to investigate if
subgroups correlate with the RMSE. The analysis was per-
formed based on the validation set of the one-fold validation.
Compression Ratio: Given the difference between the
result obtained averaged over all deformation steps and the
final step, we hypothesized that the error increases with the
compression ratio. To validate our hypothesis, we analyzed a

Figure 10: Clinical case with visually non-optimal result in the coronal plane (back view): The comparison of the unloaded
state estimation between the ground truth (FEM simulation) and the prediction by ERT, XGBoost, and Att-BLSTM. The colors
indicate the three-segmented tissues: dark blue is glandular tissue, light blue is fatty tissue, and yellow is muscular tissue.
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correlation between the RMSE and the compression ratio of
the validation set (Figure 12) by calculating the compression
ratio in the intermediate steps till it reaches the desired breast
thickness that is recorded in the metadata for each dataset.
We then calculated the mean value for all the datasets at each
compression ratio starting from 1% until 76 %, which was
the highest compression ratio observed in our patient cohort.
The datasets were binned with a step size of 1%. Figure 12
presents the results of this analysis. We applied a second-
degree exponential fit to the observed data points. The r-
squared of the exponential curve fit is 0.90 for XGBoost,
0.88 for Att-BLSTM, and 0.90 for ERT, which indicates a
strong correlation of the fitting curve with the data, thereby
confirming our initial hypothesis.

Similarly, we analyzed the correlation between the RMSE
and the compression ratio for all the available datasets
with 10-fold cross-validation for the XGBoost model, which
showed the best results overall, as will be discussed in the
next section. The results are shown in Figure 13. The error
distribution closely follows the evaluation of the one-fold
validation subset. Up to a compression ratio of 53%, it can
be realized that the relation between RMSE and the compres-
sion ratio increases slowly. In this range, the increase in error
with increasing compression ratio can also be considered
linear, which we tested by performing a linear fit with an
r-squared of 0.93. However, after 53% compression, the
error increases considerably, leading us to conclude that the
overall error distribution follows an exponential relationship.
We also applied a two-degree exponential fitting curve to
the 10-fold validation data in Figure, 13, resulting in an r-
squared of 0.83.

From the fitted curves in Figure 12, it can again be seen
that ERT has the highest error in comparison to the other two
methods for all compression ratios but the very highest ones.
Furthermore, it can be recognized that both Att-BLSTM
and XGBoost perform nearly the same up to a compression
ratio of about 53%. At a higher compression ratio, XGBoost
shows better results with lower RMSE values compared to
Att-BLSTM.
Tissue Type: Second, we analyzed whether there is a rela-
tionship between the RMSE and the tissue types considered
in our model, i.e. fatty, glandular, and muscular tissues. For
this purpose, we subdivided the instances into nodes labeled
with the respective tissue type, i.e. the inner nodes of the
breast mesh of those elements modeled as fatty, glandular,
and muscular tissues. Nodes at the interfaces between tissues
are neglected.

For each tissue type, we plotted a histogram of the RMSE
for the three models (Figure 14). We fitted a log-normal
distribution to the histograms due to the variance in the
number of nodes belonging to each class. The 𝜇 represents
the mean of the logarithmic values of RMSE and the 𝜎
represents the standard deviation of the logarithmic values of
RMSE. For fatty tissue, XGBoost has the least 𝜇 of 1.76 with
a mean RMSE of 9.4𝑚𝑚, as shown in Table 5. For glandular
tissue, XGBoost has the least 𝜇 of 1.7 with a mean RMSE
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Figure 12: Relation between the compression ratio and the
RMSE of the validation set (49 datasets) for the three
models: ERT, XGBoost, and Att-BLSTM, respectively. The
compression ratio is extracted for every intermediate step for
each dataset until it reaches the desired compression ratio
extracted from the metadata. The RMSE is the mean of
all patients in each intermediate step corresponding to the
compression ratio.
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Figure 13: Relation between the compression ratio and the
RMSE of the available data with 10-fold cross-validation for
the XGBoost model. The representation of compression ratio
and RMSE is the same as in Figure 12.

of 8.4𝑚𝑚. For muscular tissue, although Att-BLSTM has
the least 𝜇 of 1.41, XGBoost has the minimum mean RMSE
of 6.5𝑚𝑚 and that is because the 𝜎 of Att-BLSTM has the
highest value of 1.1.

When comparing the different tissue types, there is no
obvious trend in all the evaluations, besides that, the RMSE
tends to be lower for nodes in muscular tissue than for fatty
and glandular tissues. This can be explained by the fact that
in our biomechanical model, muscular tissue is modeled
as a rigid body that can not deform due to the boundary
conditions. Hence it is easier for the machine learning model
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Figure 14: Probability density function versus RMSE: the relation between the tissue type and the RMSE of the validation set
for the three models: ERT, XGBoost, and Att-BLSTM.
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Figure 15: Relation between the breast volume and the RMSE
of the validation set for the three models: ERT, XGBoost, and
Att-BLSTM. Breast volume has no correlation with the RMSE.

to learn this behavior than the complex deformation of fatty
and glandular tissues.

Table 5
Average RMSE for tissues in 𝑚𝑚

Tissue ERT XGBoost Att-BLSTM

fat 16.6 ± 13.3 9.4 ± 10.9 12.1 ± 17.7
glandular 13.1 ± 7.4 8.4 ± 7.5 13.3 ± 16.8
muscle 13.1 ± 8.3 6.5 ± 5.8 8.4 ± 14.7

Breast Volume: We furthermore investigated whether
there is a relationship between the breast volume and the
RMSE in order to test if larger breast sizes, which typically
deform significantly during mammographic compression,
can be predicted with less accuracy as smaller ones. The
RMSE was plotted as a function of the breast volume in
𝑚𝑚3 in Figure 15. The data points are widely scattered and
no obvious trend is visible. We analyzed the correlation by
a polynomial fitting curve with one degree. It is observed
that three methods ERT, XGBoost, and Att-BLSTM have
an independent relationship with a Pearson correlation
coefficient (r) of 0.09 at maximum.

Figures 16, 17, 18, 19, 20, and 21 visualize the same
two cases that have been presented for the unloaded state
estimation in three views according to three body planes.
The first case shows the performance of our proposed models
compared to the deformation obtained with the FEM simu-
lation. It is clearly obvious that both methods XGBoost and
Att-BLSTM provide similar performance with an RMSE of
1.7𝑚𝑚 and 1.7𝑚𝑚, respectively in the three views compared
to the FEM simulation (ground truth), while the breast mesh
predicted by the ERT method with an RMSE of 6.1𝑚𝑚
loses volume and the deformation of the nodes results in
a different breast shape as in the FEM simulations. The
second case demonstrates a case in which the prediction
by neither method provides a visually comparable result.
The RMSE in this case is 25𝑚𝑚 for ERT, 20.8𝑚𝑚 for
XGBoost, 42.1𝑚𝑚 for Att-BLSTM. This case is considered
as one of the cases with a high compression ratio (67%),
as the thickness before compression is around 120𝑚𝑚, see
Figure 8, and after compression around 40𝑚𝑚, see Figure
19. Additionally, as described earlier, the breast mesh is not
optimal, since e.g. glandular tissue can be recognized on the
surface of the breast (dark blue), which is a result of a non-
optimal automatic segmentation of the MRI. XGBoost fails
to represent the shape of the breast and Att-BLSTM not only
fails but also leads to a considerable global displacement of
the coordinates compared to the ground truth.
3.3. Cross-validation Analysis

As we have demonstrated in the previous sections, XG-
Boost and Att-BLSTM seem basically to be able to provide
a good agreement of predicted breast shapes compared to
the FEM ground truth. For the unloaded state estimation,
Att-BLSTM and XGBoost show nearly the same results
regarding the median RMSE, while XGBoost works better
for the compression step given in the one-fold validation.

In order to increase our database and test the methods for
over-fitting to the validation set, we applied 10-fold cross-
validation for the XGBoost and Att-BLSTM model for the
estimation of the unloaded state and the compression step.
From Table 7, it can be observed that the average RMSE
for XGBoost even decreased to 3.4𝑚𝑚 and 4.7𝑚𝑚, respec-
tively. Also, the error distribution was improved significantly
for the two simulation steps. The results are furthermore
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Figure 16: Clinical case with a visually good result in the sagittal plane (lateral view): The comparison of the compression step
between the ground truth (FEM simulation) and the prediction by ERT, XGBoost, and Att-BLSTM. The colors indicate the
three-segmented tissues: dark blue is glandular tissue, light blue is fatty tissue, and yellow is muscular tissue.

Figure 17: Clinical case with a visually good result in the transversal plane (axial view): The comparison of the compression step
between the ground truth (FEM simulation) and the prediction by ERT, XGBoost, and Att-BLSTM. The colors indicate the
three-segmented tissues: dark blue is glandular tissue, light blue is fatty tissue, and yellow is muscular tissue.

visualized in Figure 22 and 23. The same was observed for
Att-BLSTM with respect to RMSE and error distribution.

From a computation point of view, training our model for
XGBoost in a 10-fold cross-validation with the 516 breast
meshes took around 4.5 hours, while predicting one dataset
takes around 5 seconds. Training Att-BLSTM in a 10-fold
cross-validation with 516 breast meshes took around 60
hours, while predicting one dataset takes around 10 seconds
on an RTX 2080TI GPU using CUDA 10.2. Compared to a
runtime of approximately 20 min for the computation time
of a FEM simulation, this comprises a speedup of factor 240
and 120 for XGBoost and Att-BLSTM, respectively. Note
that computational optimization of the machine learning
method was not the focus of this paper and computation
time for prediction may be decreased in the future by explicit
performance optimization.
3.4. Comparison to Literature

Martínez-Martínez et al. (2017); Rupérez et al. (2018)
achieved an accuracy of 0.62𝑚𝑚 for 10 clinical datasets.
In comparison, our method for a similar problem in the
compression step, achieved a mean and median RMSE of
4.7𝑚𝑚 and 3.4𝑚𝑚, respectively for 516 breasts. However,
a considerable difference in our work is that a significantly
higher compression ratio of up to 76% was used, which

leads to huge nonlinear deformations of the breast. Martínez-
Martínez et al. (2017); Rupérez et al. (2018) in turn limited
their evaluation to a compression thickness of 20%.

At a 20% compression ratio, our methods achieved a
mean and median RMSE of 2.3𝑚𝑚 and 1.8𝑚𝑚, respectively,
with 10-fold cross-validation.

We analyzed two simulation steps, not only the com-
pression step but also, the estimation of the unloaded state.
Furthermore, we evaluated our methods using 516 breasts,
while the work of Martínez-Martínez et al. (2017); Rupérez
et al. (2018) was restricted to 10 phantom and clinical
datasets.

We achieved a speedup of approximately a factor of 240
compared to our FEM model simulation. Martínez-Martínez
et al. (2017); Rupérez et al. (2018) mentioned the time used
for prediction in the ML models, and they mentioned that
biomechanical models, in general, could take 120 minutes
Hopp et al. (2013); Solves-Llorens et al. (2014) which is
approximately a factor of 36000 speedup, as shown in Table
6. Though different modalities were used for breast images,
Mendizabal et al. (2019) achieved a speedup by a factor of
130 compared to their FEM model simulation.

4. Discussion and Conclusion
We have presented a machine learning algorithm to

simulate the mechanical response of breast tissue when
S. Said et al.: Preprint submitted to Elsevier Page 12 of 17
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Figure 18: Clinical case with a visually good result in the coronal plane (back view): The comparison of the compression step
between the ground truth (FEM simulation) and the prediction by ERT, XGBoost, and Att-BLSTM. The colors indicate the
three-segmented tissues: dark blue is glandular tissue, light blue is fatty tissue, and yellow is muscular tissue.

Figure 19: Clinical case with visually non-optimal result in the sagittal plane (lateral view): The comparison of the compression
step between the ground truth (FEM simulation) and the prediction by ERT, XGBoost, and Att-BLSTM. The colors indicate the
three-segmented tissues: dark blue is glandular tissue, light blue is fatty tissue, and yellow is muscular tissue.

Figure 20: Clinical case with visually non-optimal result in the transversal plane (axial view): The comparison of the compression
step between the ground truth (FEM simulation) and the prediction by ERT, XGBoost, and Att-BLSTM. The colors indicate the
three-segmented tissues: dark blue is glandular tissue, light blue is fatty tissue, and yellow is muscular tissue.

Table 6
Literature review of machine learning algorithms for breast deformation

Reference Compression Ratio Time-FEM Time-ML Architecture #datasets

Martínez-Martínez et al. (2017) 20 % 120 min <0.2 s DT/ ERT/RF Clinical -10
Rupérez et al. (2018) NA NA 0.43 s DT/ERT/RF Phantom -10
Mendizabal et al. (2019) NA 407.7 ms 3.14 ms U-Net Phantom -10
Said et al. 20 - 76 % 20 min 5 s ERT/XGBoost/Att-BLSTM Clinical -516
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Figure 21: Clinical case with visually non-optimal result in the coronal plane (back view): The comparison of the compression
step between the ground truth (FEM simulation) and the prediction by ERT, XGBoost, and Att-BLSTM. The colors indicate the
three-segmented tissues: dark blue is glandular tissue, light blue is fatty tissue, and yellow is muscular tissue.
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Figure 22: Percentages of nodes split into categories for the unloaded state estimation with XGBoost and Att-LSTM for the
10-fold cross-validation in comparison to the 1-fold cross-validation regarding the RMSE

estimating the unloaded state from a gravity-loaded MRI and
when performing a mammographic breast compression. The
unloaded state has not previously been predicted by machine
learning models in literature. Contrary to literature, in which
the compression ratio was only 20%, which is considerably
lower than it is usually applied in clinical practice, a signifi-
cant contribution of this paper is that the methods have been
tested with realistic compression ratios and a large number of
clinical datasets, thereby covering a variety of breast shapes
from clinical routine.

Our methods show very promising results for both the
estimation of the unloaded state and the compression simula-
tion with an average RMSE of 3.4 and 4.7𝑚𝑚, respectively.

Although our methods show promising results, there are
some limitations to our models. In general, the proposed ma-
chine learning and deep learning models have been trained
on a very specific biomechanical model. While this model is
relatively complex and, as discussed before, has been tested
in clinical use cases, the machine learning model obviously
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Figure 23: Percentages of nodes split into categories for the compression step with XGBoost and Att-LSTM for the 10-fold
cross-validation in comparison to the 1-fold cross-validation regarding the RMSE

Table 7
RMSE ((mean, median) ± standard deviation) of 10-fold
cross-validation for the unloaded state estimation and the
compression step in the last step for XGBoost and Att-BLSTM.

Method Unloaded state Compression

XGBoost (3.4, 0.8) ± 30.5 mm (4.7, 3.4) ± 4.7 mm
Att-BLSTM (3.0, 1.2) ± 22.3 mm (4.9, 3.4) ± 5.6 mm

can not be generalized to considerable changes in the biome-
chanical model. For example, the model was trained with a
certain resolution of the finite element mesh. Predicting the
deformation for finer or coarser meshes may lead to different
results. Furthermore, meshes not fulfilling certain quality
criteria as they are e.g., checked by ABAQUS, may lead
to different results. Similarly, for the material parameters of
tissues, we restricted training and testing to constant values
from literature. Such material properties could be added in
the future as a free parameter for the model in order to allow
better generalization for other FEM use cases.

We performed a cross-validation analysis to avoid over-
fitting problems with more than 500 cases in total. The
patient cohort included a variety of breast shapes and sizes
from clinical routine and images from two different clinical
sites. It has to be considered that the machine learning
and deep learning model have been trained for the realistic
compression applied to the particular patient during X-ray
mammography, thereby the total number of cases with a very
high compression ratio is small compared to the number of
cases with lower compression ratios. This may have led to an
exponential increase in the error at very high compression
ratios. In order to generalize better in the future, we would
like to enhance the datasets that have a compression ratio of

more than 60%. Furthermore, our method may be tested with
more unseen datasets in the future to improve statistics and
generalization.

Also, we would like to add more experiments (mesh grid
search) for finetuning the hyperparameters and analyzing
different loss functions for the three models.

From the analysis of the relationship between compres-
sion ratio and error, we can conclude that the XGBoost and
Att-BLSTM models work stable up to a compression ratio
of approximately 53%. Moreover, we found out that there
is no dependence on breast volume, which is considered a
good sign since it is common for large breasts to have strong
deformation during mammographic compression.

Establishing the proposed methods may be a consider-
able step to replace FEM simulations describing the defor-
mation of the breast subject to mammographic compression.
This would significantly speed up the process from approxi-
mately 20 minutes to approximately 5 seconds in our case
and thereby lead to clinically relevant computation time.
Besides, it will open the possibility to increase the optimiza-
tion space for biomechanically informed image registration
considerably, since some image registration approaches like
Hopp et al. (2012) require an optimization process for pa-
rameters such as rotation angle around axes, compression
thickness, and Young’s moduli of the different tissues. For
each iteration to optimize parameters, a FEM simulation will
take 20 minutes. In turn with the machine learning and deep
learning models, several rotations, compression thickness,
and Young’s moduli can be tried out in a fraction of a minute
which is expected to increase the registration accuracy.
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