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Summary

The averaging method is a widely used technique in the field of nonlinear differential
equations for effectively reducing systems with "fast" oscillations overlaying "slow"
drift. The method involves calculating an integral, which can be straightforward in
some cases, but can also require simplifications such as series expansions. We pro-
pose an alternative approach that relies on the classical probability density (CPD)
of the "fast" variable. Further, we demonstrate the equivalence between the averag-
ing integral and the cross-correlation product of the CPD and the target function.
This equivalence simplifies handling many problems, particularly those involving
piecewise-defined target functions. We propose an effective numerical method to cal-
culate the averaged function, exploiting the well-known mathematical properties of
cross-correlation products.
KEYWORDS:
averaging, cross-correlation, multiple time scales, system reduction, slow-fast dynamical systems, classi-
cal probability density

1 INTRODUCTION

The averaging method is widely used in nonlinear differential equations to reduce complex systems with "fast" oscillations
and "slow" drifts. It is an essential tool for analyzing and synthesizing such systems, as it enables the effective representation
of the underlying dynamics. The technique has been extensively studied and applied in various fields, including physics [1–4],
engineering [5–8], and biology [9].

The basic idea behind the averaging method is to transform a rapidly oscillating system into a slowly varying one maintaining
the significant properties of the original one. Then, the averaged system can give more analytical insight into the system’s "slow"
dynamics or might reduce computational costs. The simplification is achieved by calculating the time average of the rapidly
oscillating variables over a period of the "fast" motion.

While the idea of averaging is much older and has been used many years before, in 1934 Krylov and Bogulyubov developed
first a general averaging approach and showed that the solution of the averaged system approximates the exact dynamics [10,11].

Over the past few decades, the averaging method has been the subject of numerous studies, and various approaches have been
proposed to address its limitations and improve its accuracy. For example, in [12], the author proposed modifying the classical
averaging method that accounts for higher-order terms in the expansion. The averaging technique has also been applied in
stochastic differential equations [13]: a stochastic averaging method for studying the effects of time-delayed feedback control
on quasi-integrable Hamiltonian systems subjected to Gaussian white noise was proposed in [14]. In [15], the authors proposed a
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stochastic averaging technique to analyze randomly excited single-degree-of-freedom (SDOF) strongly nonlinear systems with
delayed feedback fractional-order proportional-derivative (PD) control.

The growth of the knowledge on the averaging method resulted in the publication of numerous articles [16–18], book chap-
ters [19–21] and comprehensive monographs such as Averaging Methods in Nonlinear Dynamical Systems [22] and Nonlinear
oscillations in mechanical engineering [23]. These works offer an in-depth look at the theory and practical applications of the
averaging method in various areas of study.

In addition, the averaging method has also been applied to various real-world problems, including the analysis of power
electronic systems [24,25] and the study of climate dynamics [26].

Parallel to its analytic applications, the averaging method finds its numerical applications as well [27]. In [28] Leimkuhler and
Reich described a reversible staggered time-stepping method for simulating long-term dynamics formulated on two or more time
scales.

The above examples demonstrate the versatility and importance of the averaging method in studying nonlinear differential
equations. Despite its numerous applications and improvements, the method still presents many challenges and opportunities
for further research.

Although calculating the averaging integral is typically straightforward, obtaining an analytic expression can pose algebraic
difficulties in many cases. Additionally, there may be a need to perform averaging using numerical or experimental data. Tradi-
tional quadrature methods for averaging require time series data, which can be particularly challenging to obtain for fast motions.
However, measuring the probability of finding a particle at a specific position can often be a more accessible approach. For
example, a camera with a sufficiently long exposure time can generate an image with pixel brightness proportional to the CPD.

In the present paper, an alternative formula is proposed to evaluate the averaging integral for the case of one dependent variable
that can be decomposed into the sum of a "fast" motion and a "slow" drift. We show that the averaging integral is equivalent to
the cross-correlation of the "fast" motion’s CPD and the original function subjected to averaging. In general, the average of the
function is not necessarily equal to the function of the average.

The CPD is a well-known concept in classical and quantum mechanics [29] describing the probability that a particle, following
a certain motion, can be found at a given position. For simple, periodic motions, the CPD can be derived analytically [30–32].
However, the evaluation is often possible numerically only for more complex motions.

In the following, we will interchangeably use the terms probability density function (PDF) and CPD since their mathematical
properties are identical.

The paper is structured as follows: in Sec. 2, the equivalence of the averaging integral and the CPD-based cross-correlation of
the target function is proven, followed by some important implications on the efficient calculation and properties of the averaged
function. In Sec. 3, the CPDs of several types of oscillations are derived. In Sec. 4, different methods are described for the
efficient numerical calculation of CPDs and the averaged function itself. Sec. 5 summarizes the paper’s results and gives scope
for applications and further research of the averaging method based on cross-correlation. The appendix contains additional
information on the moments and partial moments of the arcsine distribution.

2 THEOREM ON CROSS-CORRELATION BASED AVERAGING

Main result. We consider the averaging of a scalar-valued function of the form 𝑓 (𝑥𝑆 +𝑥𝐹 ) where the "slow" variable is denoted
by 𝑥𝑆 and the "fast" variable by 𝑥𝐹 . We assume, furthermore, that the "fast" variable 𝑥𝐹 can be given as a periodic function of
the time 𝑔(𝑡) with the time period 𝑇 (for almost periodic functions [33], let 𝑇 → ∞). Hence, 𝑥𝐹 = 𝑔(𝑡), thus, one has 𝑓 (𝑥𝑆+𝑔(𝑡)).
We prove that the time average of this function is equivalent to the cross-correlation of 𝑓 (𝑥) and the CPD 𝜌(𝑥) of the "fast"
variable 𝑥𝐹 (𝑡), i.e.

1
𝑇

𝑇

∫
0

𝑓 (𝑥𝑆 + 𝑔(𝑡))d𝑡 =
∞

∫
−∞

𝑓 (𝑥)𝜌(𝑥 − 𝑥𝑆)d𝑥. (1)

Definition 1. Let 𝑔𝑖 ∶ (𝑎, 𝑏) → ℝ be either a strictly monotonically increasing 1 function with the parameter 𝑑𝑖 = 0 when the
sign of its derivative is positive or a strictly monotonically decreasing 1 function with the parameter 𝑑𝑖 = 1 when the sign of
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its derivative is negative. Then, its CPD is defined [34] by

𝜌𝑖 ∶

{

ℝ → ℝ0+

𝑥 → (−1)𝑑𝑖
𝑔′𝑖 [𝑔

−1
𝑖 (𝑥)]

1
𝑏−𝑎

1(𝑔𝑖(𝑎),𝑔𝑖(𝑏))(𝑥),
(2)

where slightly abusing the notation (during the whole article) to set the value of 𝜌𝑖 to 0 outside (𝑔𝑖(𝑎), 𝑔𝑖(𝑏)), we use the indicator
function defined as

𝟏𝑋(𝑥) =
{

1 𝑥 ∈ 𝑋,
0 otherwise. (3)

Note that the strict monotony guarantees the existence of the inverse. If the function 𝑔𝑖(𝑥) = 𝐶𝑖 is constant on 𝑥 ∈ (𝑎, 𝑏), its
CPD is given by

𝜌𝑖(𝑥) = 𝛿(𝑥 − 𝐶𝑖), (4)
where 𝛿(⋅) denotes the Dirac distribution.
Definition 2. Let 𝑔 be a piecewise, continuously differentiable, periodic function with the time period 𝑇 defined by

𝑔 ∶

{

(𝑡𝑖−1, 𝑡𝑖) → ℝ for 𝑖 = 1… 𝑛,
𝑥 → 𝑔𝑖(𝑥),

(5)

with 𝑡0 = 0 and 𝑡𝑛 = 𝑇 such that all 𝑔𝑖 are either strictly monotonously increasing, decreasing, or constant on its domain of
definition. We further define Δ𝑇𝑖 ∶= 𝑡𝑖 − 𝑡𝑖−1. Then the CPD of 𝑔 is defined by the weighted average

𝜌(𝑥) ∶= 1
𝑇

𝑛
∑

𝑖=1
Δ𝑇𝑖𝜌𝑖(𝑥). (6)

Theorem 1. For a bounded function 𝑓 and an at least peace-wisely continuously differentiable periodic function 𝑔 with period
𝑇 , the averaging operator

𝑓 (𝑥𝑆) = ⟨𝑓 (𝑥𝑆 + 𝑔(𝑡))⟩ = 1
𝑇

𝑇

∫
0

𝑓 (𝑥𝑆 + 𝑔(𝑡))d𝑡 (7)

is equivalent to the cross-correlation integral

(𝜌 ⋆ 𝑓 )(𝑥𝑆) =

∞

∫
−∞

𝑓 (𝑥)𝜌(𝑥 − 𝑥𝑆)d𝑥, (8)

where 𝜌(𝑥) denotes the CPD of the "fast" variable 𝑔(𝑡).
Proof. Starting at time 0 and ending at 𝑇 , the time period can be divided into 𝑛 intervals, such that on 𝑛𝐼 pieces of intervals,
the function is strictly monotonously increasing, on 𝑛𝐷 pieces of intervals strictly monotonously decreasing, and on 𝑛− 𝑛𝐼 − 𝑛𝐷
pieces of intervals it is constant. Let us denote the division points by 𝑡0 = 0, 𝑡1,. . . 𝑡𝑛 = 𝑇 . We denote the intervals by

𝑇𝑖 = (𝑡𝑖−1, 𝑡𝑖) ⊂ ℝ for 𝑖 = 1… 𝑛, (9)
and their length by

Δ𝑇𝑖 = 𝑡𝑖 − 𝑡𝑖−1 ∈ ℝ+ for 𝑖 = 1… 𝑛. (10)

We define the index sets
𝑆𝐼 ∶= {𝑖 ∈ 𝑆𝐼 |𝑔𝑖 is strictly monotonically increasing on 𝑇𝑖}, (11)
𝑆𝐷 ∶= {𝑖 ∈ 𝑆𝐷|𝑔𝑖 is strictly monotonically decreasing on 𝑇𝑖}, (12)
𝑆𝐶 ∶= {𝑖 ∈ 𝑆𝐶 |𝑔𝑖 is constant on 𝑇𝑖}. (13)
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By applying the three categories, Eq. (6) can be written as
𝜌(𝑥) ∶= 1

𝑇

(

∑

𝑖∈𝑆𝐼

1
𝑔′𝑖 [𝑔

−1
𝑖 (𝑥)]

1𝑔𝑖(𝑇𝑖)(𝑥) +
∑

𝑖∈𝑆𝐷

−1
𝑔′𝑖 [𝑔

−1
𝑖 (𝑥)]

1𝑔𝑖(𝑇𝑖)(𝑥) +
∑

𝑖∈𝑆𝐶

Δ𝑇𝑖𝛿(𝑥 − 𝐶𝑖)
)

. (14)

Inserting it into Eq. (8) we have
∞

∫
−∞

𝑓 (𝑥)𝜌(𝑥 − 𝑥𝑆)d𝑥 =

∞

∫
−∞

𝑓 (𝑥) 1
𝑇

(

∑

𝑖∈𝑆𝐼

1
𝑔′𝑖 [𝑔

−1
𝑖 (𝑥 − 𝑥𝑆)]

1𝑔𝑖(𝑇𝑖)(𝑥 − 𝑥𝑆)

+
∑

𝑖∈𝑆𝐷

−1
𝑔′𝑖 [𝑔

−1
𝑖 (𝑥 − 𝑥𝑆)]

1𝑔𝑖(𝑇𝑖)(𝑥 − 𝑥𝑆) +
∑

𝑖∈𝑆𝐶

Δ𝑇𝑖𝛿(𝑥 − 𝑥𝑆 − 𝐶𝑖)
)

d𝑥. (15)

Since 𝑓 (𝑥) is bounded and 𝜌𝑖(𝑥) ≤ 1 by definition, the dominated convergence theorem assures that integration and summations
signs can be interchanged (even if the number of intervals goes to infinity), hence

∞

∫
−∞

𝑓 (𝑥)𝜌(𝑥 − 𝑥𝑆)d𝑥 = 1
𝑇

(

∑

𝑖∈𝑆𝐼

∞

∫
−∞

𝑓 (𝑥)
𝑔′𝑖 [𝑔

−1
𝑖 (𝑥 − 𝑥𝑆)]

1𝑔𝑖(𝑇𝑖)(𝑥 − 𝑥𝑆)d𝑥 −
∑

𝑖∈𝑆𝐷

∞

∫
−∞

𝑓 (𝑥)
𝑔′𝑖 [𝑔

−1
𝑖 (𝑥 − 𝑥𝑆)]

1𝑔𝑖(𝑇𝑖)(𝑥 − 𝑥𝑆)d𝑥

+
∑

𝑖∈𝑆𝐶

Δ𝑇𝑖

∞

∫
−∞

𝑓 (𝑥)𝛿(𝑥 − 𝑥𝑆 − 𝐶𝑖)
)

d𝑥 (16)

= 1
𝑇

(

∑

𝑖∈𝑆𝐼

𝑔𝑖(𝑡𝑖)+𝑥𝑆

∫
𝑔𝑖(𝑡𝑖−1)+𝑥𝑆

𝑓 (𝑥)
𝑔′𝑖 [𝑔

−1
𝑖 (𝑥 − 𝑥𝑆)]

d𝑥 −
∑

𝑖∈𝑆𝐷

𝑔𝑖(𝑡𝑖−1)+𝑥𝑆

∫
𝑔𝑖(𝑡𝑖)+𝑥𝑆

𝑓 (𝑥)
𝑔′𝑖 [𝑔

−1
𝑖 (𝑥 − 𝑥𝑆)]

d𝑥 +
∑

𝑖∈𝑆𝐶

Δ𝑇𝑖𝑓 (𝑥𝑆 + 𝐶𝑖)
)

,

(17)
where the last summation term is obtained by using the sifting property of the Dirac distribution. Note that in case of decreasing
intervals, the lower boundary of 𝑔(𝑇𝑖) is at 𝑔(𝑡𝑖), and the upper boundary is at 𝑔(𝑡𝑖−1). Thus a change in the integration boundaries
will cancel out the minus sign as follows

∞

∫
−∞

𝑓 (𝑥)𝜌(𝑥 − 𝑥𝑆)d𝑥 = 1
𝑇

(

∑

𝑖∈𝑆𝐼

𝑔𝑖(𝑡𝑖)+𝑥𝑆

∫
𝑔𝑖(𝑡𝑖−1)+𝑥𝑆

𝑓 (𝑥)
𝑔′𝑖 [𝑔

−1
𝑖 (𝑥 − 𝑥𝑆)]

d𝑥 +
∑

𝑖∈𝑆𝐷

𝑔𝑖(𝑡𝑖)+𝑥𝑆

∫
𝑔𝑖(𝑡𝑖−1)+𝑥𝑆

𝑓 (𝑥)
𝑔′𝑖 [𝑔

−1
𝑖 (𝑥 − 𝑥𝑆)]

d𝑥 +
∑

𝑖∈𝑆𝐶

Δ𝑇𝑖𝑓 (𝑥𝑆 + 𝐶𝑖)
)

. (18)

Now, in every non-constant interval of 𝑓 , we introduce the following variable transformation, respectively
𝑥 = 𝑥𝑆 + 𝑔𝑖(𝑡), 𝑥𝑆 = 𝑥 − 𝑔𝑖(𝑡), d𝑥 = 𝑔′𝑖 (𝑡)d𝑡, 𝑡 = 𝑔−1𝑖 (𝑥 − 𝑥𝑆) (19)

and we substitute it into Eq. (18)
∞

∫
−∞

𝑓 (𝑥)𝜌(𝑥 − 𝑥𝑆)d𝑥 = 1
𝑇

(

∑

𝑖∈𝑆𝐼

𝑡𝑖

∫
𝑡𝑖−1

𝑓 (𝑥𝑆 + 𝑔𝑖(𝑡))
𝑔′𝑖 [𝑔

−1
𝑖 (𝑔𝑖(𝑡))]

𝑔′𝑖 (𝑡)d𝑡 +
∑

𝑖∈𝑆𝐷

𝑡𝑖

∫
𝑡𝑖−1

𝑓 (𝑥𝑆 + 𝑔𝑖(𝑡))
𝑔′𝑖 [𝑔

−1
𝑖 (𝑔𝑖(𝑡))]

𝑔′𝑖 (𝑡)d𝑡 +
∑

𝑖∈𝑆𝐶

Δ𝑇𝑖𝑓 (𝑥𝑆 + 𝐶𝑖)
)

(20)

= 1
𝑇

(

∑

𝑖∈𝑆𝐼

𝑡𝑖

∫
𝑡𝑖−1

𝑓 (𝑥𝑆 + 𝑔𝑖(𝑡))d𝑡 +
∑

𝑖∈𝑆𝐷

𝑡𝑖

∫
𝑡𝑖−1

𝑓 (𝑥𝑆 + 𝑔𝑖(𝑡))d𝑡 +
∑

𝑖∈𝑆𝐶

𝑡𝑖

∫
𝑡𝑖−1

𝑓 (𝑥𝑆 + 𝑔𝑖(𝑡)
⏟⏟⏟

=𝐶𝑖

)d𝑡
)

(21)

= 1
𝑇

𝑇

∫
0

𝑓 (𝑥𝑆 + 𝑔(𝑡))d𝑡. (22)

Remark 1. In technically relevant applications, almost periodic "fast" motions, such as, for example, the sum of two sines with
incommensurable frequencies, often arise. Choosing the interval boundaries will influence the result if one wants to average
such functions on a finite time interval. 𝑔(𝑡) being almost periodic, no time period exists in this case. However, one can take
𝑇 → ∞ to obtain a uniquely-defined integral (cf. Sec. 3.2.2).
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This result is important for several reasons; it facilitates the calculation of averaged values in the case of piecewise-defined
functions. Further, the numerical calculation of averaged values also becomes simpler since, numerically, the CPD is very easy
to obtain; it is enough to evaluate the "fast" movement on a time period in 𝑁 pieces of equidistantly positioned time instants
and to make the histogram of the obtained data. It is well known that for 𝑁 → ∞, the histogram approaches the PDF/CPD [35].
Corollary 1. Since Eq. (8) is the cross-correlation of the functions 𝑓 (𝑥) and 𝜌(𝑥), the averaging problem in Eq. (1) can be
transformed into the Fourier domain if the product 𝑓 (𝑥)𝜌(𝑥 − 𝑥𝑆) is 𝐿1(ℝ). (By the boundedness of 𝑓 (𝑥), this criterion can
always be ensured by multiplying 𝑓 (𝑥) with a window function 𝑤(𝑥) to restrict it to the technically relevant region. The area
under the curve of 𝜌(𝑥) is 1 by definition, thus 𝑤(𝑥)𝑓 (𝑥)𝜌(𝑥 − 𝑥𝑆) ∈ 𝐿1(ℝ)). The cross-correlation integral in the Fourier
domain becomes a product, and through inverse Fourier transformation, the averaged function can be obtained rapidly, i.e.

{𝜌 ⋆ 𝑓} = {𝜌} ⋅ {𝑓}. (23)
The numerical calculation of the averaged value of 𝑓 (𝑥) can also be performed using effective methods relying on the numerical
equivalents of the Fourier transformation, for example, the fast Fourier transform (FFT) algorithm.
Corollary 2. Eq. (8) remains valid if the "fast" variable 𝑥𝐹 depends on 𝑥𝑆 , i.e. 𝑥𝐹 = 𝑔(𝑡, 𝑥𝑆).
Proof. It is easy to see that 𝑥𝑆 plays the role of a constant through the calculations; thus, the proof remains valid if we allow
the dependency of the "fast" variable on the "slow" one.
Corollary 3. Assume that 𝑚1 = ∫ ∞

−∞ 𝑥𝜌(𝑥)d𝑥 = 0. By this and the fact that 𝑚0 = ∫ ∞
−∞ 𝜌(𝑥)d𝑥 = 1, affine functions, i.e., of

the form 𝑓 (𝑥) = 𝑎𝑥 + 𝑏, remain unchanged under the application of the cross-correlation integral. Hence, under the above
assumptions, affine functions are eigenfunctions of the averaging operator with eigenvalue 𝜆 = 1.
Proof.

𝑓 (𝑦) =

∞

∫
−∞

(𝑎𝑥 + 𝑏)𝜌(𝑥 − 𝑦)d𝑥 = 𝑎

∞

∫
−∞

𝑥𝜌(𝑥 − 𝑦)d𝑥
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

=𝑦

+𝑏

∞

∫
−∞

𝜌(𝑥 − 𝑦)d𝑥
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

=1

= 𝑎𝑦 + 𝑏. (24)

Definition 3. The 𝑘𝑡ℎ moment of a random variable 𝑋 described by its PDF 𝜌(𝑥) is defined by

𝑚𝑘 = E(𝑋𝑘) =

∞

∫
−∞

𝑥𝑘𝜌(𝑥)d𝑥. (25)

Definition 4. The 𝑘𝑡ℎ partial moment of a random variable 𝑋 described by its PDF 𝜌(𝑥) is defined by

𝑚𝑘(𝑥) = E𝑥(𝑋𝑘) =

𝑥

∫
−∞

𝑦𝑘𝜌(𝑦)d𝑦. (26)

Lemma 1. All partial moments of 𝜌(𝑥) are bounded and exist if the range of 𝑔(𝑡) is bounded.
Proof. Let 𝐹 (𝑥) = ∫ 𝑥

−∞ 𝜌(𝑥̃)d𝑥̃ denote the cumulative density function of 𝑋. Since the range of 𝑔(𝑡) is bounded, 𝜌(𝑥) has
compact support with 𝑥𝑙 ∶= inf 𝑔(𝑡) and 𝑥𝑢 ∶= sup 𝑔(𝑡). In the range of interest, we have 𝑥𝑙 < 𝑥 < 𝑥𝑢. Since 𝜌(𝑥) is a PDF,
∫ ∞
−∞ 𝜌(𝑥)d𝑥 = 1. Let us define

𝐿𝑘(𝑥) = min
𝑦∈(𝑥𝑙 ,𝑥)

𝑦𝑘 and 𝑈𝑘(𝑥) = max
𝑦∈(𝑥𝑙 ,𝑥)

𝑦𝑘. (27)
Then, we have

𝐿𝑘(𝑥)𝐹 (𝑥) = 𝐿𝑘(𝑥)

𝑥

∫
𝑥𝑙

𝜌(𝑦)d𝑦 =

𝑥

∫
−∞

𝐿𝑘(𝑥)𝜌(𝑦)d𝑦 ≤

𝑥

∫
−∞

𝑦𝑘𝜌(𝑦)d𝑦 ≤

𝑥

∫
−∞

𝑈𝑘(𝑥)𝜌(𝑦)d𝑦 = 𝑈𝑘(𝑥)

𝑥

∫
𝑥𝑙

𝜌(𝑦)d𝑦 = 𝑈𝑘(𝑥)𝐹 (𝑥). (28)

Thus all partial moments are bounded and therefore exist. By inserting 𝑥 = 𝑥𝑢, it is also shown that all moments exist.
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Figure 1 Visual interpretation of the definition of 𝐷𝜌 Figure 2 Partial moments of the arcsine distribution with
𝐴 = 1

Theorem 2. Assume that 𝑓 (𝑥) is a real analytic function and has the domain of convergence 𝐷(𝑦) = (𝑦+𝑅𝑙(𝑦), 𝑦+𝑅𝑢(𝑦)) when
expanded into Taylor series around 𝑦 with the non-positive valued function 𝑅𝑙(𝑦) and non-negative valued one 𝑅𝑢(𝑦). Further,
assume that the range of the "fast" variable 𝑔(𝑡) is [𝑥𝑙, 𝑥𝑢], i.e., sup 𝑔(𝑡) = 𝑥𝑢 and inf 𝑔(𝑡) = 𝑥𝑙. Without loss of generality, we
assume 𝑚1 = 0, thus 𝑥𝑙 ≤ 0 ≤ 𝑥𝑢. We define the set

𝐷𝜌 = {(𝑦 ∈ ℝ|(𝑅𝑙(𝑦) < 𝑥𝑙) ∧ (𝑥𝑢 < 𝑅𝑢(𝑦))}, (29)
i.e., the set of points around which the convergence radius of 𝑓 (𝑥) is large enough that the support of 𝜌(𝑥) fits into it (cf. Fig. 1).
Then, the following holds

𝑓 (𝑦) =

∞

∫
−∞

𝑓 (𝑥)𝜌(𝑥 − 𝑦)d𝑥 =
∞
∑

𝑘=0
𝑚𝑘

𝑓 (𝑘)(𝑦)
𝑘!

for 𝑦 ∈ 𝐷𝜌, (30)

where (⋅)(𝑘)(𝑥) denotes the 𝑘th derivative.

Proof. Taylor expansion of 𝑓 (𝑥) around 𝑦 and interchanging the summation and integral signs (allowed due to dominated
convergence) yields

𝑓 (𝑦) =

∞

∫
−∞

( ∞
∑

𝑘=0

𝑓 (𝑘)(𝑦)
𝑘!

(𝑥 − 𝑦)𝑘
)

𝜌(𝑥 − 𝑦)d𝑥 =
∞
∑

𝑘=0

⎛

⎜

⎜

⎝

𝑓 (𝑘)(𝑦)
𝑘!

∞

∫
−∞

𝑥𝑘𝜌(𝑥)d𝑥
⎞

⎟

⎟

⎠

=
∞
∑

𝑘=0
𝑚𝑘

𝑓 (𝑘)(𝑦)
𝑘!

for 𝑦 ∈ 𝐷𝜌. (31)

Eq. (30) demonstrates that the feasibility of obtaining an analytic expression for the averaged value of 𝑓 (𝑥𝑆+𝑔(𝑡)) depends solely
on whether the corresponding moments of 𝜌(𝑥) are known. Often the moments can be obtained with the moment-generating
function or the characteristic function of the corresponding CPD/PDF. Furthermore, the moments can be estimated easily if
equidistant experimental/simulation time series of the "fast" motion is available:

𝑚̂𝑘 =
∑𝑛

𝑖=1 𝑥
𝑘
𝑖

𝑛
, (32)

where 𝑥𝑖 is the 𝑖th time instance in the 𝑛-element data series. The variance of the moments estimator is obtained by

Var(𝑚̂𝑘) = Var
(

∑𝑛
𝑖=1 𝑋

𝑘
𝑖

𝑛

)

=
Var(𝑋𝑘

1 )
𝑛

=
𝑚2𝑘 − 𝑚2

𝑘

𝑛
. (33)

Eq. (33) shows that the estimator gets more accurate with a larger sample size. However, higher moments are more sensitive re-
garding the tails of the distribution. Therefore, noisy measurement data requires a larger sample size to obtain accurate estimates
for higher moments.
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Theorem 2 is especially important in two cases: a) the target function is a polynomial; thus, only a finite number of moments
are needed to obtain the average, or b) the support of 𝜌 is small, and for 𝑘 → ∞ we have 𝑚𝑘 → 0. We prove this second statement
in the following.
Corollary 4. We keep the assumptions of Theorem 2 and further assume that 𝜌 has short support, i.e., 𝑥𝑢 − 𝑥𝑙 = 𝜀. We also
assume that all derivatives of the target function 𝑓 (𝑘)(𝑦) are of (1). Then, the difference between the original and the averaged
target function 𝑓 (𝑦) − 𝑓 (𝑦) is uniformly of (𝜀2) for 𝑦 ∈ 𝐷𝜌.
Proof. By the fact that 𝜌 is a PDF and by the assumption 𝑚1 = 0, Theorem 2 yields

𝑓 (𝑦) = 𝑓 (𝑦) +
∞
∑

𝑘=2
𝑚𝑘

𝑓 (𝑘)(𝑦)
𝑘!

for 𝑦 ∈ 𝐷𝜌. (34)

We also have −𝜀 ≤ 𝑥𝑙 ≤ 0 ≤ 𝑥𝑢 ≤ 𝜀 and make use of Lemma 1 by setting 𝐿𝑘(𝑥) = −|𝑥𝑙|𝑘 and 𝑈𝑘(𝑥) = 𝑥𝑘𝑢 , thus the moments
are bounded by

−𝜀𝑘 ≤ 𝑚𝑘 ≤ 𝜀𝑘, (35)
hence

𝑓 (𝑦) = 𝑓 (𝑦) + (𝜀2), (36)
and

|𝑓 (𝑦) − 𝑓 (𝑦)| = (𝜀2) for 𝑦 ∈ 𝐷𝜌. (37)

It is an important implication since it shows that under the above assumptions, sufficiently smooth functions are not altered much
by averaging if the "fast" variable has a small range. Furthermore, since 𝜀 < 1 we also have lim𝑘→∞ 𝜀𝑘 = 0.

The averaging method might also be applied when defining the target function piecewise. Similar results can be formulated
using partial moments of the "fast" motion’s CPD.
Theorem 3. Assume that the range of the "fast" variable 𝑔(𝑡) is [𝑥𝑙, 𝑥𝑢], i.e. 𝑥𝑢 = sup 𝑔(𝑡) and 𝑥𝑙 = inf 𝑔(𝑡). Without loss of
generality, we assume 𝑚1 = 0, thus 𝑥𝑙 ≤ 0 ≤ 𝑥𝑢. Let the target function 𝑓 (𝑥) be composed of 𝑚 pieces of analytic functions
𝑓𝑖(𝑥) with 𝑖 ∈  ∶= {1,… , 𝑚}, i.e.,

𝑓 (𝑥) =
𝑚
∑

𝑖=1
𝑓𝑖(𝑥)1(𝑥𝑖−1,𝑥𝑖)(𝑥), (38)

with 𝑓𝑖(𝑥) convergent on the domains 𝐷𝑖(𝑦) = (𝑦+𝑅𝑙,𝑖(𝑦), 𝑦+𝑅𝑢,𝑖(𝑦)) when expanded into Taylor series around 𝑦, where 𝑅𝑙,𝑖(𝑦)
and 𝑅𝑢,𝑖(𝑦) are non-positive and non-negative functions, respectively. Let the domain boundaries be given by 𝑥0,… , 𝑥𝑚 with
𝑥0 = −∞ and 𝑥𝑚 = ∞. We denote the domains by 𝑑𝑖 ∶= [𝑥𝑖−1, 𝑥𝑖]. Further, we define the set-valued function

𝐴(𝑦) ∶= {𝑖 ∈ |𝑑𝑖 ∩ [𝑦 + 𝑥𝑙, 𝑦 + 𝑥𝑢] ≠ ∅} (39)
denoting the indices of the set of active functions, i.e., those where 𝜌(𝑥 − 𝑦) > 0 for any 𝑥 ∈ [𝑥𝑖−1, 𝑥𝑖]. We define

𝐷(𝑦) ∶=
⋂

𝑖∈𝐴(𝑦)
𝐷𝑖(𝑦) ⇐⇒ 𝐷(𝑦) = (𝑦 + 𝑅𝑙(𝑦), 𝑦 + 𝑅𝑢(𝑦)) (40)

with
𝑅𝑙(𝑦) ∶= max

𝑖∈𝐴(𝑦)
𝑅𝑙,𝑖(𝑦) and 𝑅𝑢(𝑦) ∶= min

𝑖∈𝐴(𝑦)
𝑅𝑢,𝑖(𝑦). (41)

Furthermore, we define 𝐷𝜌 as in Theorem 2. Then,

𝑓 (𝑦) =
∑

𝑖∈𝐴(𝑦)

∞
∑

𝑘=0

𝑓 (𝑘)
𝑖 (𝑦)
𝑘!

(

𝑚𝑘(𝑥𝑖 − 𝑦) − 𝑚𝑘(𝑥𝑖−1 − 𝑦)
) for 𝑦 ∈ 𝐷𝜌, (42)

where 𝑚𝑘(𝑥) denotes the 𝑘th partial moment as defined in Definition 4.
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Proof. As long as 𝑥 ∈ 𝐷(𝑦), we can evaluate 𝑓 (𝑥) using its Taylor expansion around any 𝑦 by

𝑓 (𝑥) =
∑

𝑖∈𝐴(𝑦)
𝑓𝑖(𝑥)1(𝑥𝑖−1,𝑥𝑖)(𝑥) =

∑

𝑖∈𝐴(𝑦)

( ∞
∑

𝑘=0

𝑓 (𝑘)
𝑖 (𝑦)
𝑘!

(𝑥 − 𝑦)𝑘
)

1(𝑥𝑖−1,𝑥𝑖)(𝑥), for 𝑥 ∈ 𝐷(𝑦). (43)

Inserting Eq. (43) into the averaging integral Eq. (1) we have

𝑓 (𝑦) =

∞

∫
−∞

𝑓 (𝑥)𝜌(𝑥 − 𝑦)d𝑥 =

∞

∫
−∞

(

∑

𝑖∈𝐴(𝑦)

( ∞
∑

𝑘=0

𝑓 (𝑘)
𝑖 (𝑦)
𝑘!

(𝑥 − 𝑦)𝑘
)

1(𝑥𝑖−1,𝑥𝑖)(𝑥)

)

𝜌(𝑥 − 𝑦)d𝑥 (44)

=

∞

∫
−∞

∑

𝑖∈𝐴(𝑦)

( ∞
∑

𝑘=0

𝑓 (𝑘)
𝑖 (𝑦)
𝑘!

𝑥𝑘𝜌(𝑥)

)

1(𝑥𝑖−1−𝑦,𝑥𝑖−𝑦)(𝑥)d𝑥, (45)

and by dominated convergence, summation, and integral signs can be interchanged, leading to

𝑓 (𝑦) =
∑

𝑖∈𝐴(𝑦)

∞
∑

𝑘=0

𝑓 (𝑘)
𝑖 (𝑦)
𝑘!

⎛

⎜

⎜

⎝

∞

∫
−∞

𝑥𝑘𝜌(𝑥)1(𝑥𝑖−1−𝑦,𝑥𝑖−𝑦)(𝑥)d𝑥
⎞

⎟

⎟

⎠

(46)

=
∑

𝑖∈𝐴(𝑦)

∞
∑

𝑘=0

𝑓 (𝑘)
𝑖 (𝑦)
𝑘!

⎛

⎜

⎜

⎝

𝑥𝑖−𝑦

∫
𝑥𝑖−1−𝑦

𝑥𝑘𝜌(𝑥)d𝑥
⎞

⎟

⎟

⎠

(47)

=
∑

𝑖∈𝐴(𝑦)

∞
∑

𝑘=0

𝑓 (𝑘)
𝑖 (𝑦)
𝑘!

(

𝑚𝑘(𝑥𝑖 − 𝑦) − 𝑚𝑘(𝑥𝑖−1 − 𝑦)
) for 𝑦 ∈ 𝐷𝜌. (48)

Eq. (42) shows that the knowledge of the partial moments of the "fast" variable’s CPD is sufficient to calculate the average of
the target function.

The following two examples demonstrate the usefulness of Theorem 2 and Theorem 3.
Example 1. Calculate the average of 𝑓 (𝑥+𝑔(𝑡)) with 𝑓 (𝑥) = 𝑥2 and 𝑔(𝑡) = 𝐴 sin(𝜔𝑡). The average can be obtained classically
by calculating

𝑓 (𝑥) = 𝜔
2𝜋

2𝜋∕𝜔

∫
0

(𝑥 + 𝐴 sin𝜔𝑡)2d𝑡 = 𝜔
2𝜋

2𝜋∕𝜔

∫
0

(

𝑥2 + 2𝑥𝐴 sin𝜔𝑡 + 𝐴2 sin2 𝜔𝑡
) d𝑡 = 𝑥2 + 𝐴2

2
. (49)

Alternatively, the averaged function can be calculated using Eq. (30). It is well known that the CPD of a harmonic motion (cf.
Eq. (120)) with amplitude 𝐴 is given by the arcsine distribution [35] with half-width 𝐴. The derivation of its moments is given
in the appendix. For now, the moments are relevant up to the second order: 𝑚0 = 1, 𝑚1 = 0, and 𝑚2 = 𝐴2∕2. Furthermore,
𝑓 ′(𝑥) = 2𝑥 and 𝑓 ′′(𝑥) = 2 and 𝑓 (𝑘)(𝑥) = 0 for 𝑘 > 2. Thus by Eq. (30)

𝑓 (𝑥) = 𝑚0𝑓 (𝑥) + 𝑚1𝑓
′(𝑥) + 𝑚2

𝑓 ′′(𝑥)
2

= 𝑥2 + 𝐴2

2
. (50)

Example 2. Calculate the average of 𝑓 (𝑥 + 𝑔(𝑡)) with

𝑓 (𝑥) =

{

𝑥 for |𝑥| < 1
0 otherwise. and 𝑔(𝑡) = 𝐴 sin(𝜔𝑡) with 𝐴 < 1. (51)

Using Theorem 3 we have 𝑚 = 3,
𝑥0 = −∞, 𝑥1 = −1, 𝑥2 = 1, 𝑥3 = ∞, (52)

and
𝑓1(𝑦) = 0, 𝑓2(𝑦) = 𝑦, 𝑓 ′

2(𝑦) = 1, 𝑓3(𝑦) = 0 with 𝐷(𝑦) = ℝ for 𝑦 ∈ ℝ, (53)
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hence, 𝐷𝜌 = ℝ. The active set is

𝐴(𝑦) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

{1} for 𝑦 < −1 − 𝐴,
{1, 2} for − 1 − 𝐴 < 𝑦 < −1 + 𝐴,
{2} for − 1 + 𝐴 < 𝑦 < 1 − 𝐴,
{2, 3} for 1 − 𝐴 < 𝑦 < 1 + 𝐴,
{3} for 1 + 𝐴 < 𝑦,

(54)

and by Eq. (42),
𝑓 (𝑦) = 𝑦

(

𝑚0(1 − 𝑦) − 𝑚0(−1 − 𝑦)
)

+ 𝑚1(1 − 𝑦) − 𝑚1(−1 − 𝑦), (55)
and using Eq. (A.13) we find

𝑓 (𝑦) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

0 for 𝑦 ≤ −1 − 𝐴,

𝑦∕2 + 𝜋−1
[

√

𝐴2 − (1 + 𝑦)2 + 𝑦 arcsin ((1 + 𝑦)∕𝐴)
]

for − 1 − 𝐴 < 𝑦 ≤ −1 + 𝐴,

𝑦 for − 1 + 𝐴 < 𝑦 ≤ 1 − 𝐴,

𝑦∕2 − 𝜋−1
[

√

𝐴2 − (1 − 𝑦)2 − 𝑦 arcsin ((1 − 𝑦)∕𝐴)
]

for 1 − 𝐴 < 𝑦 ≤ 1 + 𝐴,

0 for 1 + 𝐴 < 𝑦.

(56)

For an example with 𝐴 = 0.5, see Fig. 15.

3 OBTAINING THE CLASSICAL PROBABILITY DENSITY

An analytic expression of the CPD of the motion 𝑥𝐹 (𝑡) ≡ 𝑔(𝑡) is rarely available. However, in some simple cases, it can be
derived [30,32]. In this section, we recapitulate some of the most important CPDs that rely on a particle’s undamped motion in a
potential and provide a novel example for calculating a more complex motion consisting of the sum of two incommensurable
harmonics. Following this, we also provide some ideas on determining the CPD numerically.

3.1 CPD of undamped, free oscillations
The PDF/CPD of a function in the form as given in Eq. (2) originates from probability theory and is not related to particle
motion [34]. However, an equivalent, physical definition can also be given [30]. Consider that the particle performs a unidirectional
motion 𝑥(𝑡) from 𝑥(𝑎) = 𝑥𝑎 to 𝑥(𝑏) = 𝑥𝑏 with 𝑎 < 𝑏. The particle spends d𝑡 amount of time in an infinitesimally small region of
this interval d𝑥, where

d𝑡 = d𝑥
d𝑥∕d𝑡 =

d𝑥
𝑣(𝑥)

, (57)
being inversely proportional to the particle’s velocity. The probability 𝜌(𝑥) of finding the particle in this infinitesimal region is
the ratio of the time spent here to the total amount of time 𝑏 − 𝑎 needed from 𝑥𝑎 to 𝑥𝑏, that is

𝜌(𝑥)d𝑥 ≡ Probability[(𝑥, 𝑥 + d𝑥)] = d𝑡
𝑏 − 𝑎

= 1
𝑏 − 𝑎

d𝑥
𝑣(𝑥)

, (58)
hence,

𝜌(𝑥) = 1
𝑏 − 𝑎

1
𝑣(𝑥)

. (59)
Often the time and not the displacement dependency of the velocity is known, i.e., 𝑣(𝑡) = d𝑥∕d𝑡 ≡ 𝑔′(𝑡), so we have to express
𝑡 in terms of 𝑥 and rewrite Eq. (59) as

𝜌(𝑥) = 1
𝑏 − 𝑎

1
𝑔′(𝑔−1(𝑥))

for 𝑥 ∈ (𝑥𝑎, 𝑥𝑏). (60)
Eq. (60) is useful when the velocity is known as a function of the time, whereas Eq. (59) is preferred when the velocity is known
as a function of the displacement. This latter one is when an undamped particle of unit mass oscillates freely in a potential well
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between turning points 𝑥𝑎 and 𝑥𝑏 with the time period 𝜏. Based on the conservation of energy, we have
𝐸 = 𝑇 + 𝑉 = 1

2
𝑣2 + 𝑉 (𝑥), (61)

thus insertion of
𝑣(𝑥) =

√

2(𝐸 − 𝑉 (𝑥)) (62)
into Eq. (59) yields

𝜌(𝑥) = 2
𝜏

√

1
2(𝐸 − 𝑉 (𝑥))

. (63)
The factor 2∕𝜏, including the time period of the oscillation, normalizes the area of 𝜌(𝑥) to one. 𝜏 is given by the integral [1]

𝜏 = 2

𝑥𝑏

∫
𝑥𝑎

1
√

2(𝐸 − 𝑉 (𝑥))
d𝑥. (64)

In the following, we give some examples of potentials usually found in applications. Fig. 3 shows examples of the so-called
purely nonlinear oscillators (PNOs) and for the Duffing type oscillators (DTOs).

(a) Potentials of PNOs 𝑉 (𝑥) = |𝑥|𝛼+1∕(𝛼 + 1) for different
values of the parameter 𝛼

(b) Potentials of DTOs 𝑉 (𝑥) = 𝑐1
𝑥2

2
+𝑐3

𝑥4

4
for different values

of the parameters 𝑐1 and 𝑐3

Figure 3 Common potentials. The corresponding probability density functions are calculated in the next sections.

3.1.1 Purely Nonlinear Oscillators
PNOs have a potential that, after non-dimensionalization, can be written as

𝑉 (𝑥) = 1
𝛼 + 1

|𝑥|𝛼+1, (65)
where 𝛼 is a positive real number. The particle has its turning points 𝑥𝑎 and 𝑥𝑏 at ±𝐴 that depends on the particle’s initial energy
𝐸0:

𝐴 =
(

𝐸0(𝛼 + 1)
)1∕(𝛼+1) . (66)
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To determine the CPD, the only challenging task is to calculate the time period’s value; the rest is readily given by Eq. (63).
Fortunately, the problem was solved by many authors in the past [36–39], and the time period of PNOs is known to be

𝜏 =
√

8𝜋
𝛼 + 1

Γ
(

1
𝛼+1

)

Γ
(

1
2
+ 1

𝛼+1

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑇 ∗(𝛼)∶=

𝐴(1−𝛼)∕2 = 𝑇 ∗(𝛼)𝐴(1−𝛼)∕2, (67)

where Γ denotes the gamma function. 𝑇 ∗(𝛼), a factor only depending on 𝛼, is depicted in Fig. (4a). Thus, the CPD is given by

𝜌PNO(𝑥) =
2

𝑇 ∗(𝛼)𝐴(1−𝛼)∕2
1

√

2
𝛼+1

(

𝐴𝛼+1 − 𝑥𝛼+1
)

1
|𝑥|<𝐴(𝑥) =

𝛼 + 1
2
√

𝜋

Γ
(

1
2
+ 1

𝛼+1

)

Γ
(

1
𝛼+1

)

𝐴(𝛼−1)∕2
√

𝐴𝛼+1 − |𝑥|𝛼+1
1
|𝑥|<𝐴(𝑥). (68)

(a) Amplitude independent factor of a PNO’s time period
𝑇 ∗(𝛼) [39]

(b) CPD of PNOs with different values of 𝛼 with initial dis-
placement 𝐴 = 1

Figure 4 Purely nonlinear oscillators

Important values of 𝛼 include 1 and the limiting cases 𝛼 → 0+ and 𝛼 → ∞, which correspond to the cases of a simple (linear)
harmonic oscillator (SHO), a constant restoring force oscillator and the so-called "infinite well" [30] oscillator, respectively.
Further interesting cases are 𝛼 = 2, 3,… , which might arise if, during a system’s linearization around an equilibrium position,
the linear restoring term vanishes, but the remaining force can be approximated well by only using one further purely nonlinear
term.

After lengthy calculations with the help of the software ®Mathematica, the moments of 𝜌PNO can be obtained. It turns out
that the integral can be represented in terms of the hypergeometric function, i.e.,

𝑚PNO,𝑘(𝑥) =

𝑥

∫
−∞

𝑦𝑘𝜌PNO(𝑦)d𝑦 = 𝐶(𝛼, 𝐴)

𝑥

∫
−∞

𝑦𝑘
√

𝐴𝛼+1 − |𝑦|𝛼+1
d𝑦 = 𝐶(𝛼, 𝐴)

𝑦𝑘+12𝐹1

(

1
2
, 𝑘+1
𝛼+1

; 𝑘+1
𝛼+1

+ 1; |𝑦|𝛼+1

𝐴𝛼+1

)

(𝑘 + 1)𝐴
𝛼+1
2

|

|

|

|

|

𝑥

−𝐴

, (69)

where 2𝐹1 is defined as

2𝐹1(𝑎, 𝑏; 𝑐; 𝑧) ∶=
Γ(𝑐)

Γ(𝑏)Γ(𝑐 − 𝑏)

1

∫
0

𝑢𝑏−1(1 − 𝑢)𝑐−𝑏−1

(1 − 𝑢𝑧)𝑎
d𝑢, (70)
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and based on Eq. (68) the constant 𝐶(𝛼, 𝐴) is given by

𝐶(𝛼, 𝐴) ∶= 𝛼 + 1
2
√

𝜋

Γ
(

1
2
+ 1

𝛼+1

)

Γ
(

1
𝛼+1

) 𝐴
𝛼−1
2 . (71)

After the simplification of Eq. (69), the 𝑘th partial moments of the purely nonlinear oscillator’s motion are given by

𝑚PNO,𝑘(𝑥) =
𝛼 + 1

2
√

𝜋𝐴(𝑘 + 1)

Γ
(

1
2
+ 1

𝛼+1

)

Γ
(

1
𝛼+1

)

⎛

⎜

⎜

⎜

⎝

𝑥𝑘+12𝐹1

(

1
2
, 𝑘 + 1
𝛼 + 1

; 𝑘 + 1
𝛼 + 1

+ 1;
(

|𝑥|
𝐴

)𝛼+1
)

+ (−1)𝑘𝐴𝑘+1
√

𝜋
Γ
(

𝑘+1
𝛼+1

+ 1
)

Γ
(

𝑘+1
𝛼+1

+ 1
2

)

⎞

⎟

⎟

⎟

⎠

. (72)

Evaluation of Eq. (72) at 𝑥 = 𝐴 yields the 𝑘th moment of the PNO’s motion:

𝑚PNO,𝑘 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 for 𝑘 odd,
𝛼+1
𝑘+1

Γ
(

1
2
+ 1

𝛼+1

)

Γ
(

𝑘+1
𝛼+1

+1
)

Γ
(

1
𝛼+1

)

Γ
(

𝑘+1
𝛼+1

+ 1
2

) 𝐴𝑘 for 𝑘 even. (73)

3.1.2 Duffing Type oscillators
Undamped Duffing type oscillators [39] are given in the form

𝑥̈ + 𝑐1𝑥 + 𝑐3𝑥
3 = 0, (74)

with real coefficients 𝑐1 and 𝑐3. Based on the signs of these coefficients, three interesting cases are possible
• hardening Duffing oscillator (HDO) for 𝑐1 > 0 and 𝑐3 > 0,

• softening Duffing oscillator (SDO) for 𝑐1 > 0 and 𝑐3 < 0,

• bistable Duffing oscillator (BDO) for 𝑐1 < 0 and 𝑐3 > 0.
Based on [39], the time period of the HDO is given by

𝜏HDO =
4𝐾

(

𝑐3𝐴2

2(𝑐1+𝑐3𝐴2)

)

√

𝑐1 + 𝑐3𝐴2
, (75)

where 𝐾 denotes the complete elliptic integral of the first kind with the elliptic parameter 𝑚. Using Eq. (63) and (75) the CPD
of the HDO is obtained as

𝜌HDO(𝑥) =
√

𝑐1 + 𝑐3𝐴2

2𝐾
(

𝑐3𝐴2

2(𝑐1+𝑐3𝐴2)

)

1
√

𝑐1𝐴2 + 𝑐3
2
𝐴4 − 𝑐1𝑥2 −

𝑐3
2
𝑥4

, (76)

where ±𝐴 are the turning points of the oscillating particle.
Similarly, for |𝐴| < √

𝑐1∕|𝑐3| the time period of the SDO can be given by

𝜏SDO =
4𝐾

(

𝑐3𝐴2

2(𝑐1−|𝑐3|𝐴2)

)

√

𝑐1 − |𝑐3|𝐴2
, (77)

hence, the CPD is
𝜌SDO(𝑥) =

√

𝑐1 − |𝑐3|𝐴2

2𝐾
(

𝑐3𝐴2

2(𝑐1−|𝑐3|𝐴2)

)

1
√

𝑐1𝐴2 − |𝑐3|
2
𝐴4 − 𝑐1𝑥2 +

|𝑐3|
2
𝑥4

. (78)
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The BDO has two subcases, depending on the particle’s energy and thus on its turning points 𝑥𝑎 and 𝑥𝑏. For

𝑥𝑎 < −

√

2|𝑐1|
𝑐3

<

√

2|𝑐1|
𝑐3

< 𝑥𝑏, (79)
the particle passes through both potential wells, called "full-swing" or "out-of-well mode." We denote this case with BDO1.
However, for

−

√

2|𝑐1|
𝑐3

< 𝑥𝑎 < 𝑥𝑏 < 0 or 0 < 𝑥𝑎 < 𝑥𝑏 <

√

2|𝑐1|
𝑐3

, (80)
the particle oscillates only in one of the potential wells, which is also called the "half-swing" or "in-well mode," and we denote
it by BDO2

[39]. When started with zero velocity and initial displacement 𝑥0 = 𝐴, the particle has the time periods

𝜏BDO1
=

4𝐾
(

𝑐3𝐴2

2(𝑐3𝐴2−|𝑐1|)

)

√

𝑐3𝐴2 − |𝑐1|
, 𝜏BDO2

=
2𝐾

(

2(𝑐3𝐴2−|𝑐1|)
𝑐3𝐴2

)

√

𝑐3
2
𝐴

, (81)

respectively. Then, the CPDs become

𝜌BDO1
(𝑥) =

√

𝑐3𝐴2 − |𝑐1|

2𝐾
(

𝑐3𝐴2

2(𝑐3𝐴2−|𝑐1|)

)

1
√

𝑐1𝐴2 + 𝑐3
2
𝐴4 − 𝑐1𝑥2 −

𝑐3
2
𝑥4

, (82)

𝜌BDO2
(𝑥) =

√

2𝑐3𝐴

𝐾
(

2(𝑐3𝐴2−|𝑐1|)
𝑐3𝐴2

)

1
√

𝑐1𝐴2 + 𝑐3
2
𝐴4 − 𝑐1𝑥2 −

𝑐3
2
𝑥4

, (83)

respectively. In all four cases, the time periods are functions of 𝑐1 and 𝑐3𝐴2. Through non-dimensionalization, |𝑐1| = 1 can be
achieved; thus, the time period becomes a univariate function. Its values are depicted in Fig. 5a.

(a) Time periods of different types of non-dimensionalized
(|𝑐1| = 1) undamped DTOs depicted against the parameter
𝐴̄ =

√

|𝑐3||𝐴| [39]

(b) CPDs of the three different types of DTOs with different
initial displacement 𝐴 = 0.8 and 𝐴 = 1.45 for |𝑐1| = |𝑐3| = 1

Figure 5 Duffing type oscillators

The partial moments of the CPDs defined in Eqs. (76), (78), (82), (83) can be obtained by calculating

𝑚DUFF,𝑘(𝑥) =
𝑥

∫
−∞

𝑦𝑘𝜌DUFF(𝑦)d𝑦, (84)



14 ATTILA GENDA ET AL

where 𝜌DUFF denotes any of the cases HDO, SDO, BDO1 and BDO2. After lengthy calculations with the help of the software
®Mathematica, it turns out that the integral is solvable for 𝑉 (𝑥) < 𝐸0 ∶= 𝑐1𝐴2∕2+𝑐3𝐴4∕4 in terms of the Appell hypergeometric
function, i.e.

𝑚DUFF,𝑘(𝑥) = 𝐶(𝑐1, 𝑐3, 𝐴)

𝑥

∫
𝑥𝑎(𝑐1,𝑐3,𝐸0)

𝑦𝑘
√

2𝐸0 − 𝑐1𝑦2 − 𝑐3
𝑦4

2

d𝑦 (85)

= 𝐶(𝑐1, 𝑐3, 𝐴)

𝑦𝑘+1𝐹1

(

𝑘+1
2
; 1
2
, 1
2
; 𝑘+3

2
; 𝑐3𝑦2
√

𝑐21+4𝑐3𝐸0−𝑐1
,− 𝑐3𝑦2

√

𝑐21+4𝑐3𝐸0+𝑐1

)

√

2𝐸0(𝑘 + 1)

|

|

|

|

|

𝑥

𝑥𝑎(𝑐1,𝑐3,𝐸0)

for 𝑥𝑎(𝑐1, 𝑐3, 𝐸0) < 𝑥 < 𝑥𝑏(𝑐1, 𝑐3, 𝐸0),

(86)
with the constant 𝐶(𝑐1, 𝑐3, 𝐴) given by Eqs. (76,78,82) and (83), respectively, and with the lower turning point 𝑥𝑎(𝑐1, 𝑐3, 𝐸0) and
the upper turning point 𝑥𝑏(𝑐1, 𝑐3, 𝐸0). The Appell hypergeometric function is defined as

𝐹1(𝛼; 𝛽, 𝛽′; 𝛾; 𝑥, 𝑦) =
Γ(𝛾)

Γ(𝛼)Γ(𝛾 − 𝛼)

1

∫
0

𝑢𝛼−1(1 − 𝑢)𝛾−𝛼−1(1 − 𝑢𝑥)−𝛽(1 − 𝑢𝑦)−𝛽′d𝑢. (87)

The turning points of the HDO and BDO1 are

𝑥𝑎,HDO/BDO1
= −𝐴 = −

√

√

√

√

√

√

√

√

√

𝑐21
𝑐23

+
4𝐸0

𝑐3
−

𝑐1
𝑐3
, and 𝑥𝑏,HDO/BDO1

= 𝐴 =

√

√

√

√

√

√

√

√

√

𝑐21
𝑐23

+
4𝐸0

𝑐3
−

𝑐1
𝑐3
. (88)

The turning point of SDO is

𝑥𝑎,SDO = −𝐴 = −

√

√

√

√

√−
𝑐1
𝑐3

−

√

√

√

√

𝑐21
𝑐23

+
4𝐸0

𝑐3
, and 𝑥𝑏,SDO = 𝐴 =

√

√

√

√

√−
𝑐1
𝑐3

−

√

√

√

√

𝑐21
𝑐23

+
4𝐸0

𝑐3
, (89)

while the turning points of BDO2 are

𝑥𝑎,BDO2
=

√

√

√

√

√−
𝑐1
𝑐3

−

√

√

√

√

𝑐21
𝑐23

+
4𝐸0

𝑐3
, and 𝑥𝑏,BDO2

=

√

√

√

√

√−
𝑐1
𝑐3

+

√

√

√

√

𝑐21
𝑐23

+
4𝐸0

𝑐3
. (90)

Since 𝜌HDO(𝑥) is even, its odd moments are all 0. Its even moments are

𝑚HDO,𝑘 =

√

𝑐1 + 𝑐3𝐴2

𝐾
(

𝑐3𝐴2

2(𝑐1+𝑐3𝐴2)

)

𝐴𝑘+1𝐹1

(

𝑘+1
2
; 1
2
, 1
2
; 𝑘+3

2
; 1, 𝑐21

2𝐸0𝑐3

(√

1 + 4𝐸0𝑐3
𝑐21

− 1
)

− 1
)

√

2𝐸0(𝑘 + 1)
(91)

=

√

𝑐1 + 𝑐3𝐴2

𝐾
(

𝑐3𝐴2

2(𝑐1+𝑐3𝐴2)

)

𝐴𝑘+1
√

𝜋Γ
(

𝑘+3
2

)

2𝐹1

(

1
2
, 𝑘+1

2
; 𝑘
2
+ 1; 𝑐21

2𝐸0𝑐3

(√

1 + 4𝐸0𝑐3
𝑐21

− 1
)

− 1
)

Γ
(

𝑘
2
+ 1

)

√

2𝐸0(𝑘 + 1)
. (92)

By the same argument, the odd moments of 𝜌SDO(𝑥) and 𝜌BDO1
(𝑥) are also all 0, and its even moments are given by

𝑚SDO,𝑘 =

√

𝑐1 − |𝑐3|𝐴2

𝐾
(

𝑐3𝐴2

2(𝑐1−|𝑐3|𝐴2)

)

𝐴𝑘+1
√

𝜋Γ
(

𝑘+3
2

)

2𝐹1

(

1
2
, 𝑘+1

2
; 𝑘
2
+ 1; 𝑐21

2𝐸0|𝑐3|

(

1 −
√

1 − 4𝐸0|𝑐3|
𝑐21

)

− 1
)

Γ
(

𝑘
2
+ 1

)

√

2𝐸0(𝑘 + 1)
, (93)

and

𝑚BDO1,𝑘 =

√

𝑐3𝐴2 − |𝑐1|

𝐾
(

𝑐3𝐴2

2(𝑐3𝐴2−|𝑐1|)

)

𝐴𝑘+1
√

𝜋Γ
(

𝑘+3
2

)

2𝐹1

(

1
2
, 𝑘+1

2
; 𝑘
2
+ 1;− 𝑐21

2𝐸0𝑐3

(√

1 + 4𝐸0𝑐3
𝑐21

+ 1
)

− 1
)

Γ
(

𝑘
2
+ 1

)

√

2𝐸0(𝑘 + 1)
. (94)
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𝜌BDO2
(𝑥) possesses exceptional characteristics as it exhibits asymmetry. The complexity of the distribution prevents us from

presenting its moments in a closed form. Instead, we leave this task to the reader as an exercise.
Example 3. We are interested in the escape of two particles coupled by a strong linear spring of stiffness 𝑘 ≫ 1 in a quadratic-
quartic potential well 𝑉 (𝑥) = 𝑥2∕2 − 𝑥4∕4. The equations of motion are given by

𝑥̈1 + 𝑉 ′(𝑥1) + 𝑘(𝑥1 − 𝑥2) = 0, (95)
𝑥̈2 + 𝑉 ′(𝑥2) + 𝑘(𝑥2 − 𝑥1) = 0, (96)

𝑥1(0) = 𝑥2(0) = 0, (97)
𝑥̇1(0) = −𝑣0, (98)
𝑥̇2(0) = 𝑣0. (99)

Introducing the new variables center of mass and relative displacement
𝑦1 =

𝑥1 + 𝑥2
2

, and 𝑦2 = 𝑥2 − 𝑥1, (100)
we obtain

𝑦̈1 +
𝑉 ′

(

𝑦1 −
𝑦2
2

)

+ 𝑉 ′
(

𝑦1 +
𝑦2
2

)

2
= 0, (101)

𝑦̈2 +
(

2𝑘 + 1 − 3𝑦21
)

𝑦2 −
𝑦32
4

= 0, (102)
𝑦1(0) = 𝑦̇1(0) = 0, (103)

𝑦2(0) = 0, (104)
𝑦̇2(0) = 2𝑣0. (105)

Since 𝑉 ′(𝑥) is even, 𝑦1(𝑡) = 0 is a solution; however, its stability needs to be clarified and will depend on the values of 𝑣0 and
𝑘. By inserting 𝑦1(𝑡) in Eq. (102), the problem is reduced to an SDO with parameters 𝑐1 = 2𝑘 + 1 and 𝑐3 = −1∕4. The total
energy is given by

𝐸0 =
1
2
𝑦̇22(0) = 2𝑣20, (106)

which determines the amplitude of the vibrations

𝐴 = 2
√

2𝑘 + 1

√

√

√

√

1 −

√

1 −
2𝑣20

(2𝑘 + 1)2
. (107)

Since 𝑘 ≫ 1, the vibrations in 𝑦2 are fast, and we can average Eq. (101). By Theorem 1 it is not necessary to exactly determine
𝑦2(𝑡); its CPD suffices. Theorem 2 shows that only the first three moments will play a role in the averaging since 𝑉 ′(𝑥) is a
polynomial of degree three. Since 𝑦2(𝑡) is symmetric, the odd moments are zero, and the only moment left (besides the trivial
zeroth one) is the second one, given by Eq. (93). Since 𝑐1 ≫ |𝑐3|, the motion does not differ much from a harmonic motion
having the second moment given by Eq. (A.8)

𝑚𝑦2,2 =
𝐴2

2
. (108)

After rescaling the moment due to the factor 1∕2, insertion into Eq. (108) yields
⟨

𝑉 ′
(

𝑦1 −
𝑦2(𝑡)
2

)⟩

=
⟨

𝑉 ′
(

𝑦1 +
𝑦2(𝑡)
2

)⟩

= 𝑉 ′(𝑦1) +
1
8
𝑉 ′′′(𝑦1)𝑚𝑦2,2 =

(

1 − 3
8
𝐴2

)

𝑦1 − 𝑦31, (109)
resulting in the averaged differential equation

𝑦̈1 +
(

1 − 3
8
𝐴2

)

𝑦1 − 𝑦31 = 0. (110)
Linear stability analysis yields the stability condition

8
3

!
> 𝐴2, (111)
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𝑘

Figure 6 Problem setting – a pair of coupled parti-
cles in a quadratic-quartic potential well

Figure 7 The critical value of the initial velocity 𝑣0,c depicted against
the stiffness of the linear spring 𝑘

which is equivalent to
𝑣0

!
< 𝑣0,c ∶=

2
3

√

3𝑘 + 1. (112)
A comparison of the analytic estimate with direct numerical simulations is shown in Fig. 7. The numerical simulations were
obtained by disturbing the initial conditions by setting 𝑦1(0) = 0.005 and integrating the system up to 1000 time units. If the
particle pair escapes, the solution 𝑦1(𝑡) = 0 is categorized as unstable.

3.2 CPD of forced oscillations
When excitation is present, the energy conservation principle can no longer be applied in the simple form as before, and the use
of Eq. (59) becomes less viable. Instead, using Eq. (60) is more appropriate. However, this approach has a drawback: it requires
knowledge of the analytic solution of the forced oscillation, which is typically only available for a few, but important cases.

A specific case of nonlinear systems is called partially strongly damped systems [23]. These systems consist of "slow" master
variables and strongly damped "slaves." In the standard form, such systems can be represented as

𝑥̇ = 𝜀𝑋(𝑥, 𝑦, 𝑡) (113)
𝑦̇ = 𝐾(𝑥)𝑦 + 𝜀𝑌 (𝑥, 𝑦, 𝑡) (114)

𝑥(0) = 𝑥0, 𝑦(0) = 𝑦0, (115)
with the assumption

max
{

𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒
[1
2
(𝐾 +𝐾⊤)

]

}

= −1. (116)
One can introduce the "slow" variables 𝜉 and 𝜂 and perform averaging that yields

𝜉̇0 = 𝜀⟨𝑋(𝜉0, 𝜂0, 𝑡)⟩𝑡 (117)
𝜂0 = exp(𝐾(𝜉0)𝑡)𝑦0, 𝜉0(0) = 𝑥0, (118)

||𝑥 − 𝜉0|| = 𝑂(𝜀), 0 ≤ 𝑡 ≤ 𝑂(𝜀−1). (119)
One implication is that their forced response determines the time evolution of the strongly damped variables. Often, the equations
are such that the variable of interest can be described by the sum of a "slow" variable 𝑥𝑆 ≡ 𝜉0 and a "fast" one 𝑥𝐹 ≡ 𝜂0. In
the following, we focus on this case assuming only one variable of the form 𝑥 = 𝑥𝑆 + 𝑔(𝑡); thus, Theorem 1 is applicable. We
present two typical "fast" motions often encountered in practical applications.
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3.2.1 CPD of an SHO
Arguably, the most important analytically solvable case is the one of a harmonic response of amplitude 𝐴. Fortunately, both
previous investigations on the purely nonlinear oscillators (𝛼 = 1) and the Duffing type oscillators (𝑐3 = 0) include the above
case. Thus, we have

𝜌SHO(𝑥) =
1
𝜋

1
√

𝐴2 − 𝑥2
1(−𝐴,𝐴)(𝑥). (120)

See the appendix for more information on the moments of 𝜌SHO.

3.2.2 CPD of the sum of two harmonic functions with incommensurable frequencies
Let us consider now the CPD of a particle performing the following motion

𝑔(𝑡) = 𝐴1 sin(𝜔1𝑡 + 𝛽1)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

=∶𝑔1(𝑡)

+𝐴2 sin(𝜔2𝑡 + 𝛽2)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

=∶𝑔2(𝑥)

, (121)

where 𝐴1, 𝐴2 > 0 and 𝜔1∕𝜔2 ∉ ℝ∖ℚ, i.e., 𝜔1 and 𝜔2 are incommensurable. This motion is obtained as the solution of a
harmonically excited undamped harmonic oscillator, where 𝜔1 is the eigenfrequency of the oscillator and 𝜔2 is the excitation
frequency. The same expression emerges as the particular solution of a damped harmonic oscillator under bi-harmonic excitation
(BHO).

To obtain the CPD of 𝑔(𝑡), the analytic formula (60) cannot be used anymore since the inverse of the function cannot be given
by a closed formula. In addition, the motion is not periodic, implying the assembly of infinitely many terms in Eq. (6). If one
wants to sample 𝑔(𝑡) starting at 𝑡 = 𝑎 and ending at 𝑡 = 𝑏, the resulting CPD would depend on the values of 𝑎 and 𝑏. However,
if the length of the function sample, 𝑏 − 𝑎 goes to ∞, so Eq. (6) converges to a particular limiting function 𝜌BHO(𝑥) which can
be obtained by convolution of the CPDs/PDFs 𝜌1(𝑥) and 𝜌2(𝑥). This statement is true because 𝑔(𝑡) has the same PDF as the
random variable 𝑋 ∶= 𝑋1+𝑋2, where 𝑋1 and 𝑋2 are independent random variables following the arcsine distribution centered
at 0 with half-width 𝐴1 and 𝐴2. Based on [40], the PDF of a random variable consisting of the sum of two independent random
variables can be calculated by the convolution of the PDFs of the summands. The following elliptic integral has to be solved to
obtain an analytic value for the PDF of 𝑔(𝑡):

𝜌BHO(𝑥) = (𝜌1 ∗ 𝜌2)(𝑥) =

∞

∫
−∞

𝜌1(𝜏)𝜌2(𝑥 − 𝜏)d𝜏 =

∞

∫
−∞

1

𝜋
√

𝐴2
1 − 𝜏2

𝟏(−𝐴1,𝐴1)(𝜏)
1

𝜋
√

𝐴2
2 − (𝜏 − 𝑥)2

𝟏(−𝐴2+𝑥,𝐴2+𝑥)(𝜏)d𝜏, (122)

Without loss of generality, we assume that 𝐴1 ≥ 𝐴2, and we introduce the polynomial
𝐺(𝜏) ∶=

(

𝐴2
1 − 𝜏2

) (

𝐴2
2 − (𝜏 − 𝑥)2

) (123)
with roots

𝜏1 = −𝐴1, 𝜏2 = 𝐴1, 𝜏3 = 𝑥 − 𝐴2, 𝜏4 = 𝑥 + 𝐴2. (124)
Thus, depending on the value of 𝑥 integral (122) can be reduced to

𝜌BHO(𝑥) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

0 𝑥 < −𝐴1 − 𝐴2

∫ 𝑥 + 𝐴2
−𝐴1

𝐺−1∕2(𝜏)d𝜏 −𝐴1 − 𝐴2 < 𝑥 < −𝐴1 + 𝐴2

∫ 𝑥 + 𝐴2
𝑥 − 𝐴2

𝐺−1∕2(𝜏)d𝜏 −𝐴1 + 𝐴2 < 𝑥 < 𝐴1 − 𝐴2

∫ 𝐴1
𝑥 − 𝐴2

𝐺−1∕2(𝜏)d𝜏 𝐴1 − 𝐴2 < 𝑥 < 𝐴1 + 𝐴2

0 𝐴1 + 𝐴2 < 𝑥

(125)

The elliptic integral can be calculated by transforming Eq. (122) to Legendre’s normal form [41] given as

𝜌BHO(𝑥;𝐴1, 𝐴2) = 𝐶(𝑥,𝐴1, 𝐴2)

𝜋
2

∫
0

d𝜙
√

1 − 𝑚(𝑥,𝐴1, 𝐴2) sin
2 𝜙

, (126)
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Figure 8 Periodic, bi-harmonic motion given by 𝑔(𝑡) = − cos(𝑡) − cos(1.4𝑡 − 0.1) and its numerically obtained CPD

Figure 9 Aperiodic, bi-harmonic motion given by 𝑔(𝑡) = − cos(𝑡) − cos(
√

2𝑡 − 0.1) and its analytically obtained CPD

where 𝐶 and the parameter 𝑚 are functions of the independent variable 𝑥 and the parameters 𝐴1 and 𝐴2. To obtain the normal
form in Eq. (126), the following rational transformation has to be applied

𝜏 =
𝑎3(𝑎2 − 𝑎4) − 𝑎4(𝑎2 − 𝑎3) sin

2 𝜙

(𝑎2 − 𝑎4) − (𝑎2 − 𝑎3) sin
2 𝜙

, (127)
where 𝑎1 > 𝑎2 > 𝑎3 > 𝑎4 are the roots of 𝐺(𝜏), i.e., the same values as 𝜏1,… , 𝜏4, but in descending order. Substituting Eq. (127)
in Eq. (125) we obtain

𝜌BHO(𝑥) =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

0 for 𝑥 < −𝐴1 − 𝐴2,
1

𝜋2
√

𝐴1𝐴2
𝐾

(

(𝐴1+𝐴2)2−𝑥2

4𝐴1𝐴2

)

for − 𝐴1 − 𝐴2 < 𝑥 < −𝐴1 + 𝐴2,

2
𝜋2

√

(𝐴1+𝐴2)2−𝑥2
𝐾

(

4𝐴1𝐴2

(𝐴1+𝐴2)2−𝑥2

)

for − 𝐴1 + 𝐴2 < 𝑥 < 𝐴1 − 𝐴2,

1
𝜋2

√

𝐴1𝐴2
𝐾

(

(𝐴1+𝐴2)2−𝑥2

4𝐴1𝐴2

)

for 𝐴1 − 𝐴2 < 𝑥 < 𝐴1 + 𝐴2,

0 for 𝐴1 + 𝐴2 < 𝑥,

(128)

where 𝐾(𝑚) is the complete elliptic integral of the first kind with modulus 𝑚. Figs. 8-9 give examples for the CPD of a periodic
bi-harmonic motion with 𝜔2∕𝜔1 = 1.4 and an aperiodic one with 𝜔2∕𝜔1 =

√

2.
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(a) CPD 𝜌(𝑥) of the quasi-periodic motion 𝑔(𝑡) = 1.5 sin(𝑡) +
0.5 sin(

√

2𝑡). The histogram-based numerical approximation
(blue) is compared to the exact analytic solution (red). 𝜌1(𝑥)
and 𝜌2(𝑥) represent the CPDs of the individual harmonics in
𝑔(𝑡)

(b) CPD 𝜌(𝑥) of 𝑔(𝑡) = sin(𝑡)+sin(
√

2𝑡)+sin(
√

3𝑡). The black
line represents the CPD of the individual harmonic terms, the
arcsine distribution with half-width 1. The convolution-based
numerical estimate is given in purple, while the histogram-
based estimate is given in black

Figure 10 CPD of poly-harmonic functions. Two different numerical approaches are shown

If 𝑔(𝑡) is periodic, the frequency ratio can be written as 𝜔2∕𝜔1 = 𝑎∕𝑏 with 𝑎, 𝑏 ∈ ℕ being relative primes to each other. Thus,
the time period is given by 𝜏 = 2𝜋𝑎∕𝜔1. The PDF of 𝑔(𝑡) depends strongly on the values of 𝐴1, 𝐴2, 𝑎, and 𝑏 and the initial phase
difference of the two harmonics 𝛽2 − 𝛽1. Since the sample necessary to describe the PDF has a finite length, at every turning
point of 𝑔(𝑡) the PDF 𝜌 has a singularity (cf. Fig. 8). Contrary to this, for an aperiodic function, the sample has to be infinitely
long, resulting in the limiting case with only one (𝐴1 = 𝐴2) or two peaks (𝐴1 ≠ 𝐴2).

4 NUMERICAL METHODS

If 𝑔(𝑡) is more complicated than in the above examples, the usage of numerical methods might become necessary since Eq. (6)
cannot be solved analytically anymore. The numerical approximation of the PDF is also necessary if 𝑔(𝑡) is not known explicitly
but is only given as a numerical solution of an ODE. In the following, two general and one specific method are described
highlighting their advantages and disadvantages.

4.1 Histogram-based approximation of the CPD
Arguably the simplest numerical method to obtain 𝜌(𝑥) from 𝑔(𝑡) that instinctively comes into mind is based on sampling, i.e.,
on the construction of a histogram. 𝑔(𝑡) is evaluated at a large number of equidistantly placed values, and the obtained data is
plotted in a histogram (cf. Fig. 10) [30]. Subsequently, linear/cubic splines can be fitted on the data in order to be able to evaluate
the result at arbitrary values.

The histogram converges to the PDF [40] as the number of evaluation points goes to infinity. The advantage of the method is
that it can be applied flexibly on long or short intervals, and the possibility of evaluating 𝑔(𝑡) (without explicitly having a formula
for it) is sufficient. The convergence to the CPD depends mainly on the number of function evaluations.

The main disadvantage of the method is its relatively slow convergence.

4.2 Spline-based approximation of the CPD
Another method that instinctively comes to mind once Eqs. (2) and (6) are known, is the usage of splines (cf. Fig. 8). Since
we can only handle monotonically increasing or decreasing intervals, 𝑔(𝑡) has to be truncated into pieces 𝑔𝑖(𝑡) such that all are
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either monotonically increasing or decreasing. To achieve this, one can split 𝑔(𝑡) at its local extrema. Then, on each piece, 𝑔𝑖(𝑡)
is evaluated at a sufficiently large number of points 𝑥𝑁𝑖

∈ ℝ𝑁𝑖 , which not necessarily have to be distributed equidistantly. After
that, natural cubic splines are fitted on the data (𝑥𝑁𝑖

, 𝑔𝑖(𝑥𝑁𝑖
)).

Further on, the derivatives and the inverses of these splines are needed. A straightforward way to get the derivative is to
calculate it piecewise from the polynomial pieces of the splines. Fitting splines on the data (𝑔𝑖(𝑥𝑁𝑖

), 𝑥𝑁𝑖
) is a direct method

for obtaining the inverse. The spline fitting is performed easily using ®MATLAB’s curve fitting tool. The fits are combined as
prescribed by Eq. (2), and their weighted sum is calculated as given by Eq. (6), thus the result is a fit that can be evaluated at
arbitrary values.

The advantage of the method is the more exact estimation of the CPD, even with relatively few spline nodes.
The disadvantage is that for non-periodic, highly-oscillating functions, the estimation of the CPD on long intervals can be

very slow due to the large number of pieces created between local extrema of 𝑔(𝑡).

4.3 Convolution-based approximation of the CPD for special cases
In special cases, when 𝑔(𝑡) is given by the sum of 𝑛 independent functions 𝑔𝑖(𝑡) with 𝑖 = 1,… , 𝑛 with individual CPDs 𝜌𝑖(𝑥), the
resulting CPD 𝜌(𝑥) might be obtained by consecutive 𝑛− 1 times numerical convolution of all 𝜌𝑖(𝑥) (cf. Fig. (10b)1. In order to
do so, the CPDs are evaluated at many equidistant points, and 𝑛− 1 numerical convolutions are performed such that at the end,
all 𝜌𝑖(𝑥) are contained in the result. Since convolution is associative, it does not matter in which order the CPDs are convoluted
with each other. Subsequently, cubic splines are fitted on the data, and by numerical quadrature, the fit’s area is normalized to
one to compensate for numerical inaccuracies.

The spline-based method is advantageous for periodic 𝑔(𝑡) with the known time period, whereas the histogram-based method
is better suited for non-periodic 𝑔(𝑡). In exceptional cases, the convolution-based method can obtain significantly more accurate
results than the histogram-based method.

In any of the three presented methods, the final result is a fit that MATLAB can use just as any in-built function. However,
keeping the number of data points within limits is essential since the evaluation time might increase unnecessarily.

4.4 Numerical averaging
Once the CPD 𝜌(𝑥) is obtained in either analytic or numerical form, the cross-correlation described in Eq. (1) has to be calculated
to obtain the average of 𝑓 (𝑥𝑆+𝑔(𝑡)). If analytically, the solution is not accessible by direct integration or Fourier transformation;
a numerical one must be found.

Three basic approaches are given in the following:
1. Direct numerical quadrature of

1
𝑇

𝑇

∫
0

𝑓 (𝑥𝑆 + 𝑔(𝑡))d𝑡 (129)

with 𝑁𝑥 fixed values of 𝑥𝑆 followed by subsequent spline fitting on the obtained data. The equidistant evaluation of
𝑓 (𝑥𝑆 + 𝑔(𝑡)) for many values of 𝑡 (𝑡𝑖 = 0, 𝑇 ∕𝑁𝑡, 2𝑇 ∕𝑁𝑡,… , (𝑁𝑡 − 1)𝑇 ∕𝑁𝑡) and calculation their mean is the midpoint
rule Riemann sum with Δ𝑥 = const. It is well known that for sufficiently smooth (2) functions, this quadrature rule has
a quadratic convergence rate, thus the mean average error (MAE), defined in Eq. (137) is of 𝑂(𝑁−2

𝑡 ) and is independent
of the spatial resolution 𝑁𝑥 (cf. Fig. 12b). The computational cost is 𝑂(𝑁𝑡𝑁𝑥). In Fig. (12a), sublinear dependency on
𝑁𝑡 and 𝑁𝑥 can be observed based on a numerical experiment due to MATLAB’s algorithm, which evaluates vector data
structures sublinearly proportional to their size.
The direct numerical quadrature approach is problematic if 𝑇 → ∞, and it might be generally slow since new function
evaluations are needed for every new value of 𝑥𝑆 .
However, this is the only possible way if the function to average is given only as 𝑓 (𝑥𝑆 , 𝑥𝐹 , 𝑡).

1By independent, we mean that 𝑔(𝑡) has the same CPD as the sum of the independent random variables 𝑋𝑖 described by their PDFs 𝜌𝑖(𝑥).
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2. Numerical computation of (𝜌 ⋆ 𝑓 )(𝑥𝑆). Much faster than the previous method since 𝑓 (𝑥) does not have to be evaluated
repeatedly. Instead, 𝜌(𝑥) has to be obtained. Once 𝑓 (𝑥) and 𝜌(𝑥) are discretized at 𝑁𝑥 equidistant grid points, their nu-
merical cross-correlation can be performed. The numerical convolution of two vectors of length 𝑛𝑥 is an operation of cost
𝑂(𝑁2

𝑥 ) when done by its definition.
3. Numerical cross-correlation, taking advantage of the properties of the Fourier transform, can be evaluated using the FFT

with computational cost 𝑂(𝑁𝑥 log𝑁𝑥), which is the most significant advantage of this method (cf. Fig. 13a). Indeed,
MATLAB’s inbuilt cross-correlation function xcorr itself uses FFT. For sufficiently smooth 𝑓 (𝑥) and bounded 𝜌(𝑥), the
MAE of cross-correlation-based numerical averaging is inversely proportional to the discretization step length since the
numerical quadrature, in this case, corresponds to a Riemann sum with the left rule, i.e., MAE∼ 𝑁−1

𝑥 (cf. Fig. 13). If 𝑓
or 𝜌 are less regular, the convergence rate might be worse than linear (cf. Fig. 14).

4.5 Benchmark example
The following will demonstrate these properties using two benchmark examples with known analytic solutions. In the first case,
let the "fast" motion be given by

𝑔(𝑡) = 2𝐴
𝜋

arcsin sin
(𝜋
2
𝜔𝑡
)

, (130)
which is a triangle wave taking values between −𝐴 and 𝐴 and time period of 𝜏 = 4∕𝜔, we assume 𝐴 < 𝜋. It might be interpreted
as the motion of a massless particle with energy 𝐸0 = 𝐴2𝜔2 in an "infinite well," i.e., a PNO with 𝛼 → ∞ of width 2𝐴.

The target function 𝑓 (𝑥) to be averaged will be a truncated sine force field given by

𝑓 (𝑥) =

{

sin 𝑥 for |𝑥| < 𝜋,
0 otherwise. (131)

The problem to be solved by averaging is

𝑓 (𝑥) = 𝜔
4

4
𝜔

∫
0

sin
(

𝑥 + 2𝐴
𝜋

arcsin sin
(𝜋
2
𝜔𝑡
))

⋅ 1(−𝜋,𝜋)

(

𝑥 + 2𝐴
𝜋

arcsin sin
(𝜋
2
𝜔𝑡
))

d𝑡. (132)

The calculation of Eq. (132) in this form is not trivial. However, the average can be easily obtained using Theorem 1. The CPD
is given by

𝜌(𝑥) =

{

1
2𝐴

for |𝑥| < 𝐴,
0 otherwise, (133)

and so the average is determined by

𝑓 (𝑥𝑆) =

∞

∫
−∞

𝑔(𝑥)𝜌(𝑥 − 𝑥𝑆)d𝑥 = 1
2𝐴

𝐴+𝑥𝑆

∫
−𝐴+𝑥𝑆

sin 𝑥 ⋅ 1(−𝜋,𝜋)(𝑥)d𝑥. (134)

The result will be piecewise defined; thus, we introduce the boundary points
𝑑1 = −𝜋 − 𝐴, 𝑑2 = −𝜋 + 𝐴, 𝑑3 = 𝜋 − 𝐴, 𝑑4 = 𝜋 + 𝐴. (135)

We denote the five intervals defined by 𝑑1,… , 𝑑4 as
𝐷1 = {𝑥 ∈ ℝ|𝑥 ≤ 𝑑1}, 𝐷𝑖 = {𝑥 ∈ ℝ|𝑑𝑖−1 ≤ 𝑥 < 𝑑𝑖} for 𝑖 = 2…4, 𝐷5 = {𝑥 ∈ ℝ|𝑑4 ≤ 𝑥}.

Evaluating the integrals in the different domains, we finally find

𝑓 (𝑥𝑆) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

0 𝑥𝑆 ∈ 𝐷1,
− 1

2𝐴

(

1 + cos(𝑥𝑆 + 𝐴)
)

𝑥𝑆 ∈ 𝐷2,
si(𝐴) sin 𝑥𝑆 𝑥𝑆 ∈ 𝐷3,
1
2𝐴

(

1 + cos(𝑥𝑆 − 𝐴)
)

𝑥𝑆 ∈ 𝐷4,
0 𝑥𝑆 ∈ 𝐷5,

(136)
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(a) Triangle wave function with amplitude 𝐴 and its CPD (b) 𝑓 (𝑥) and its averaged values 𝑓 (𝑥) with 𝐴 = 1.
Figure 11 Benchmark problem

with si(𝐴) ∶= sin(𝑥)∕𝑥. This solution will be compared to numerical ones taking 𝐴 = 1.
In Fig. 12a, the computational cost of the direct numerical integration of Eq. (129) by Riemann sums is depicted against

the resolution of the spatial (𝑁𝑥) and temporal (𝑁𝑡) discretization in a log-log plot. The computational cost shows a sublinear
dependency in 𝑁𝑥 and 𝑁𝑡. In Fig. 12b, a log-log plot depicts the numerical solution’s mean absolute error (MAE) against 𝑁𝑥
and 𝑁𝑡. The MAE is defined as

MAE =
∑𝑁

𝑖=1 |𝑋̂𝑖 −𝑋𝑖|

𝑁
, (137)

where 𝑋̂ denotes the estimates, while 𝑋 stands for the exact values. In the direct numerical quadrature of Eq. (129), 𝑁𝑥 has
practically no effect on the accuracy, while the absolute error decreases quadratically with increasing temporal resolution.

In Fig. 13, the computational cost and the MAE are depicted against the resolution of the spatial discretization on a log-log
scale. Due to MATLAB’s FFT-based cross-correlation algorithm, the computational cost grows only almost linearly with the
problem size, while the MAE is inversely proportional to the spatial resolution.

The second benchmark example is given in Example 2., 𝐴 = 0.5 is used for numerical calculations. This problem is more
challenging numerically than the previous one since 𝑓 (𝑥) is not continuous, and the CPD of the arcsine distribution has singu-
larities at its boundaries. However, the MAE converges to zero when the resolution of the spatial discretization tends to infinity
(cf. Fig. 14). The MAE is not evenly distributed: it becomes the largest at the domain boundaries due to the discontinuities of
𝑓 (𝑥) (cf. Fig. 15).

5 CONCLUSIONS

An efficient alternative to standard averaging based on cross-correlation has been proposed in this article. The method is appli-
cable if the dependent variable can be written as the sum of a "slow" and a "fast" variable, which is often the case since various
methods of nonlinear dynamics, like multiple scales, averaging, or Blekhman’s direct separation of motions are explicitly based
on this assumption. In order to perform averaging on a function with the above "slow-fast" variable in its argument, it is suffi-
cient if the CPD of the "fast" variable is known; its explicit time dependency itself is not required, although often available and
may be used to obtain the CPD itself. In some cases, this might be a significant advantage over the classical way of evaluating
the integral in Eq. (129) since 𝑔(𝑡) does not have to be known explicitly. This fact also provides more insight into what averaging
is. Information on the exact time history of the "fast" variable is discarded, and only the probability of its location is used.

A further alternative for the representation of averages of analytic functions has been provided by a specific type of expansion
where the moments of the "fast" variable’s CPD and the target function’s derivatives are used. By utilizing the moment generating
and characteristic functions of random variables, it is possible to perform averaging with "fast" variables with the same CDP
as the sum of independent random variables. It is well known that the PDF of such random variables can be calculated by the
convolution of the individual PDFs, which simplifies the product of their moment-generating/characteristic functions.
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(a) log2 𝑡𝐶 ≈ −22 + 0.9411 log2 𝑁𝑥 + 0.7031 log2 𝑁𝑡 with
𝑅2 = 0.9888

(b) log2 MAE ≈ −0.9962 + 0.003 log2 𝑁𝑥 − 2 log2 𝑁𝑡 with
𝑅2 = 1

Figure 12 Plane fits on the computational time 𝑡𝐶 and mean absolute error (MAE) depicted against the spatial and temporal
discretization resolution in a log-log plot.

(a) Linear fit log2 𝑡𝐶 ≈ 0.9963 log2 𝑁𝑥 − 21.32 with 𝑅2 =
0.9714. (𝑁𝑥 log𝑁𝑥) computational cost is expected

(b) Linear fit log2 MAE ≈ −0.9999 log2 𝑁𝑥 − 1.701 with
𝑅2 = 1

Figure 13 Computational time 𝑡𝐶 and mean absolute error (MAE) depicted against the spatial resolution of the discretization in
a log-log plot.

Furthermore, several explicit formulas for CPDs have been derived in this study, and it has been shown how they might
be utilized to perform averaging on piecewise defined polynomials. For other analytically not accessible cases, an efficient,
FFT-based numerical method has been proposed.

The cross-correlation-based averaging method can be extended for the case of more than one dependent variable. However,
it might be disadvantageous for periodic motions since in more than one spatial dimension, the CPD is not a function anymore,
but it degenerates to a distribution on a set with zero measure, yet with unit hyper-volume. Still, for aperiodic motions, such
as, for example, the motion of an undamped particle tossed in 45° angle in a two-dimensional rectangular "infinite-well" with
incommensurable side length (ideally elastic ball in billiard table), the CPD becomes a function, and the multidimensional cross-
correlation can be calculated. In this case, the particle is found at any point of the potential well with the same constant velocity
inversely proportional to the area of the well.



24 ATTILA GENDA ET AL

Figure 14 Linear fit log2 MAE ≈ −0.5709 log2 𝑁𝑥 − 3.88 Figure 15 Absolute error [%] of the numerical cross corre-
lation with 𝑁𝑥 = 213 + 1 grid points on (−1.7, 1.7). 𝑓 (𝑥) =
𝑥 ⋅ 𝟏(−1,1)(𝑥) and 𝑔(𝑡) = 0.5 sin 𝑡. The analytic expression of
the averaged function 𝑓 (𝑥) is given in Eq. (56)

We aim to attract readers’ attention to the model reduction technique proposed in this paper. The method has several potential
applications in areas of science where multiple time scales are present. Indeed, without proving the validity of the equivalence,
the method has been used in previous research of the authors [42,43] to reduce the complexity of the underlying escape problems,
respectively.

One of the most interesting potential applications is when the CPD can be measured experimentally. In many cases, obtaining
the high-frequency compound of the motion may be very difficult because it needs fast, high-resolution measuring equipment.
On the other hand, the CPD can be easily obtained as a "cloud" picture, approximating the linger time by the brightness. With
the appropriate image processing, the CPD can be estimated and used to obtain the semi-empirical equations governing the
"slow" system’s evolution.

It may be an exciting hint to future work to build a potential bridge between the classical dynamics of high-frequency excited
systems and quantum mechanics. Further applications are in the development of control strategies [44].

Future research might also consider finding other cases of motion where explicit CPDs can be derived. The investigation of the
goodness of approximations of CPDs, for example, through polynomials, might also be a possible direction of further research.

A possible generalization of this paper’s results includes the extension of the cross-correlation integral to stochastic "fast"
motions: Would the result on the equivalency of the time integral with a spatial cross-correlation hold in the stochastic case as
well? If so, Theorem 1 may also be interpreted in the framework of the ergodic theory: a function’s time average is exchanged
by its spatial average.

ACKNOWLEDGMENT

We want to thank PD Gudrun Thäter for proofreading this paper. Her assistance helped to refine and improve the quality of this
work.

FUNDING ACKNOWLEDGMENT

This study was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Project No.
508244284.



ATTILA GENDA ET AL 25

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

References

[1] L.D. Landau, E.M. Lifshitz, Mechanics 3rd ed., Butterworth, Oxford, 1976.
[2] Wiktor Eckhaus, Journal of Mathematical Analysis and Applications 1975, 49 (3), 575–611.
[3] O. V. Gendelman, Nonlinear Dynamics 2018, 93 (1), 79–88.
[4] Vladimir I. Arnold, Valery V. Kozlov, Anatoly I. Neishtadt, Mathematical Aspects of Classical and Celestial Mechanics

3rd ed., of Encyclopaedia of Mathematical Sciences, Springer Berlin, Heidelberg, 2006, Original Russian edition published
by URSS, Moscow, 2002.

[5] Alexander Fidlin, Olga Drozdetskaya, Procedia IUTAM 2016, 19, 43–52.
[6] Jimmy Aramendiz, Alexander Fidlin, Kan Lei, ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für

Angewandte Mathematik und Mechanik 2021, 101 (7), e201800293.
[7] Simon Schröders, Alexander Fidlin, Nonlinear dynamics 2021, 103 (3), 2315–2327.
[8] J. Guckenheimer, P. Holmes, Nonlinear Oscillations Dynamical Systems and Bifurcations of Vector Fields, Springer-

Verlag, Berlin, 1990.
[9] Guillaume Ballif, Frédérique Clément, Romain Yvinec, SIAM Journal on Applied Mathematics 2022, 82 (1), 359–380.

[10] N.M. Krylov, N.N. Bogoliubov, New Methods of Nonlinear Mechanics in their Application to the Investigation of the
Operation of Electronic Generators, I (in Russian), United Scientific and Technical Press, Moscow, 1934.

[11] NN Bogolyubov, Yu A Mitropolskii, Asymptotic methods in the theory of nonlinear oscillations, , Foreign Technology
Div Wright-Patterson AFB, Ohio, 1955.

[12] Vadim Strygin, Journal of Applied Mathematics and Mechanics 1984, 48, 767–769.
[13] R Khasminski, Kybernetika 1968, 4 (3), 260–279.
[14] Z.H. Liu, W.Q. Zhu, Journal of Sound and Vibration 2007, 299 (1), 178–195.
[15] L. Chen, X. Liang, W. Zhu, et al., Sci. China Technol. Sci. 2019, 62, 287–297.
[16] Yuri Kifer, Modern dynamical systems and applications 2004, 385–403.
[17] Yuri Kifer, Inventiones mathematicae 1992, 110 (1), 337–370.
[18] Yuri Kifer, Ergodic Theory and Dynamical Systems 2004, 24 (3), 847–871.
[19] V M Volosov, Russian Mathematical Surveys 1962, 17 (6), 1.
[20] John Guckenheimer, Philip Holmes, Averaging and Perturbation from a Geometric Viewpoint, Springer New York, New

York, NY, 1983, pp. 166–226.
[21] Yu. A. Mitropolskii, Nguyen Van Dao, Averaging Method, Springer Netherlands, Dordrecht, 1997, pp. 282–326.
[22] J.A. Sanders, F. Verhulst, J. Murdock, Averaging Methods in Nonlinear Dynamical Systems, of Applied Mathematical

Sciences, Springer New York, 2007.
[23] Alexander Fidlin, Nonlinear oscillations in mechanical engineering, Springer Science & Business Media, 2005.



26 ATTILA GENDA ET AL

[24] P.T. Krein, J. Bentsman, R.M. Bass, B.L. Lesieutre, IEEE Transactions on Power Electronics 1990, 5 (2), 182–190.
[25] Jian Sun, H. Grotstollen, IEEE Transactions on Power Electronics 1997, 12 (3), 537–546.
[26] Yuri Kifer, in Stochastic Climate Models, (Eds: Peter Imkeller, Jin-Song von Storch ), Birkhäuser Basel, Basel, 2001, pp.

171–188.
[27] Ernst Hairer, Christian Lubich, Gerhard Wanner, Geometric numerical integration 2nd ed., Vol. 31 of Springer Series

in Computational Mathematics, Springer-Verlag, Berlin, 2006, Structure-preserving algorithms for ordinary differential
equations.

[28] Ben Leimkuhler, Sebastian Reich, Journal of Computational Physics 2001, 171 (1), 95–114.
[29] D.J. Griffiths, D.F. Schroeter, Introduction to Quantum Mechanics, Cambridge University Press, 2018.
[30] R. W. Robinett, American Journal of Physics 1995, 63 (9), 823–833.
[31] C. C. Real, J. G. Muga, S. Brouard, Comment on “Quantum and classical probability distributions for position and

momentum,” by R. W. Robinett [Am. J. Phys. 63 (9), 823–832 (1995)], 1997. https://doi.org/10.1119/1.18791.
[32] G. Yoder, American Journal of Physics 2006, 74 (5), 404.
[33] Harald Bohr, Acta Mathematica 1925, 46 (1), 101–214.
[34] Jay L. Devore, Kenneth N. Berk, Modern Mathematical Statistics with Applications 2nd ed., of Springer Texts in Statistics,

Springer New York, NY, 2012.
[35] Maurice G, Alan Stuart, J. Keith Ord, Kendall’s Advanced Theory of Statistics, Volume 1, Distribution Theory 6th ed.,

John Wiley & Sons, 1994.
[36] A. M. Lyapunov, Stability of Motion, GITTL, Moscow, 1950.
[37] A. Gelb, W. E. Vander Velde, Multiple-Input Describing Functions and Nonlinear System Design, McGraw-Hill, New

York, 1968.
[38] Ali H Nayfeh, Delores T Mook, Nonlinear oscillations, Wiley, New York, 1979.
[39] Ivana Kovacic, Nonlinear Oscillations: Exact Solutions and their Approximations 1st ed., Springer Cham, Switzerland,

2020, Hardcover ISBN: 978-3-030-53171-3; Softcover ISBN: 978-3-030-53174-4; eBook ISBN: 978-3-030-53172-0.
[40] Robert V. Hogg, Joseph W. McKean, Allen T. Craig, Introduction to mathematical statistics 6th ed., Prentice Hall, Upper

Saddle River, New Jersey, 2004.
[41] Harry Bateman, Higher Transcendental Functions [Volumes I-III], Vol. I-III, McGraw-Hill Book Company, New York,

1953.
[42] Attila Genda, Alexander Fidlin, Oleg Gendelman, Nonlinear Dynamics 2021, 104 (1), 91–102.
[43] Attila Genda, Alexander Fidlin, Oleg Gendelman, On the Escape of a Resonantly Excited Couple of Colliding Particles

from a Potential Well under Bi-harmonic Excitation, 2022. https://enoc2020.sciencesconf.org/375919/document.
[44] Alexander Fidlin, Jon Juel Thomsen, International Journal of Non-Linear Mechanics 2008, 43 (7), 569–578.
[45] I. Bronstein, K. Semendjajew, G. Musiol, H. Mühlig, Taschenbuch der Mathematik, Verlag Harri Deutsch, Frankfurt am

Main, 2001.
[46] Robert L. Winkler, et al., Management Science 1972, 19 (3), 290–296.

How to cite this article: A. Genda, A. Fidlin, and O. Gendelman (2023), Cross-Correlation and Averaging: An Equivalence
Based on the Classical Probability Density (to be filled out by the editor of the journal)

https://doi.org/10.1119/1.18791
https://enoc2020.sciencesconf.org/375919/document


ATTILA GENDA ET AL 27

APPENDIX

The arcsine distribution’s moments and partial moments are obtained in the following. First, the moment generating function
𝑀𝑋(𝑡) of the standard arcsine distribution (a special case of the Beta distribution with parameters 𝛼 = 𝛽 = 1∕2 [35]), given
on (0, 1) is derived. Let 𝑋 ∼ Beta(1∕2, 1∕2) be a random variable following the standard arcsine distribution, of which the
moment-generating function is defined as

𝑀𝑋 (𝑡) = E [

𝑒𝑡𝑋
]

=

1

∫
0

𝑒𝑡𝑥 1
𝜋
√

𝑥(1 − 𝑥)
d𝑥 = 1𝐹1

(1
2
; 1; 𝑡

)

, (A.1)

where 1𝐹1 (𝑎; 𝑏; 𝑡) denotes the confluent hypergeometric function defined by

1𝐹1 (𝑎; 𝑏; 𝑡) =
Γ(𝑏)

Γ(𝑎)Γ(𝑏 − 𝑎)

1

∫
0

𝑒𝑡𝑢𝑢𝑎−1(1 − 𝑢)𝑏−𝑎−1d𝑢. (A.2)

By a linear transformation, one can change the distribution’s location and scaling, i.e., by 𝑌 = 𝛼𝑋 + 𝛽, the random variable is
shifted to the negative direction by 𝛽 and stretched by 𝛼. The moment-generating function then becomes

𝑀𝛼𝑋+𝛽(𝑡) = E [

𝑒(𝛼𝑋+𝛽)𝑡] = 𝑒𝛽E [

𝑒𝛼𝑋𝑡] = 𝑒𝛽𝑡𝑀𝑋(𝛼𝑡) = 𝑒𝛽𝑡1𝐹1

(1
2
, 1, 𝛼𝑡

)

= exp
(𝛼𝑡
2

+ 𝛽𝑡
)

𝐼0
(𝛼𝑧
2

)

, (A.3)
with 𝐼0(𝑥) denoting the modified Bessel function of the first kind of the zeroth order. The moments are given by

𝑚𝑛 = 𝑀 (𝑛)
𝛼𝑋+𝛽(𝑡)

|

|

|𝑡=0
. (A.4)

For the confluent hypergeometric function, the following identity holds
d𝑘

d𝑡𝑘 1𝐹1(𝑎, 𝑏, 𝑡) =
(𝑎)𝑘
(𝑏)𝑘

1𝐹1(𝑎 + 𝑘, 𝑏 + 𝑘, 𝑡), (A.5)
where (𝑎)𝑘 denotes the rising factorial, i.e. (𝑎)𝑘 = 𝑎(𝑎 + 1)(𝑎 + 2)… (𝑥 + 𝑘 − 1) and (𝑎)0 = 1. By making use of the identity,
one obtains the 𝑘th derivative of Eq. (A.3)

𝑀 (𝑘)
𝛼𝑋+𝛽(𝑡) =

𝑘
∑

𝑗=0

(

𝑘
𝑗

)

𝛼𝑗𝛽𝑘−𝑗

(

1
2

)

𝑗

(1)𝑗
𝑒𝛽𝑡1𝐹1

(1
2
+ 𝑗, 1 + 𝑗, 𝛼𝑡

)

. (A.6)

Inserting 𝑡 = 0, one obtains the moments

𝑚𝑘 =
𝑘
∑

𝑗=0

(

𝑘
𝑗

)

𝛼𝑗𝛽𝑘−𝑗

(

1
2

)

𝑗

(1)𝑗
= 𝛽𝑘 +

𝑘
∑

𝑗=1

(

𝑘
𝑗

)

𝛼𝑗𝛽𝑘−𝑗
(2𝑗 − 1)!!

2𝑗𝑗!
, for 𝑘 ≥ 1. (A.7)

where (2𝑗 − 1)!! = (2𝑗 − 1)(2𝑗 − 3)…3 ⋅ 1 is the double factorial. In case of a centered arcsine distribution with 𝛼 = 2𝐴 and
𝛽 = −𝐴 one has

𝑚𝑘 = 𝐴𝑘

(

(−1)𝑘 +
𝑘
∑

𝑗=1

(

𝑘
𝑗

)

(−1)𝑘−𝑗
(2𝑗 − 1)!!

𝑗!

)

=

{

𝐴𝑘 1
2𝑘
( 𝑘
𝑘∕2

) for 𝑘 even,
0 for 𝑘 odd, for 𝑘 ≥ 1. (A.8)

The partial moments of the centered arcsine distribution can be determined by solving the integral

𝑚𝑘(𝑥;𝐴) =

𝑥

∫
−𝐴

𝑦𝑘

𝜋
√

𝐴2 − 𝑦2
d𝑦 = 𝐴𝑘

arcsin 𝑥
𝐴

∫
− 𝜋

2

sin𝑘 𝑡d𝑡, (A.9)

where the change of variables 𝑦 = 𝐴 sin 𝑡 has been applied. The indefinite integral of sin𝑘 𝑡 can be obtained by using recursively
the identity [45]

∫ sin𝑘 𝑡d𝑡 = −sin𝑘−1 𝑡 cos 𝑡
𝑘

+ 𝑘 − 1
𝑘 ∫ sin𝑘−2 𝑡d𝑡. (A.10)



28 ATTILA GENDA ET AL

Thus,

∫ sin𝑘 𝑡d𝑡 =
⎧

⎪

⎨

⎪

⎩

−cos 𝑡
(

∑

𝑘−1
2

𝑗=0 𝑝(𝑘, 𝑗) sin
𝑘−2𝑗−1 𝑡

)

for 𝑘 even,
−cos 𝑡

(

∑

𝑘
2
−1

𝑗=0 𝑝(𝑘, 𝑗) sin𝑘−2𝑗−1 𝑡
)

+ 𝑝(𝑘, 𝑘
2
− 1)𝑡 for 𝑘 odd.

(A.11)

with

𝑝(𝑘, 𝑗) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

( 𝑘
𝑘∕2)

22𝑗+2(𝑘−2𝑗−1)( 𝑘−1−2𝑗
(𝑘−1)∕2−𝑗)

for 𝑘 even,

22𝑗(𝑘−2𝑗−1(𝑘−1)∕2)
( 𝑘−1
(𝑘−1)∕2)𝑘

for 𝑘 odd.
(A.12)

Hence, Eq. (A.9) becomes

𝑚𝑘(𝑥;𝐴) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 for 𝑥 < −𝐴
−𝜋−1

√

𝐴2 − 𝑥2𝐴𝑘−1 ∑(𝑘−1)∕2
𝑗=0 𝑝(𝑘, 𝑗)𝑥𝑘−2𝑙−1 for |𝑥| < 𝐴 and 𝑘 even,

−𝜋−1
√

𝐴2 − 𝑥2𝐴𝑘−1 ∑𝑘∕2−1
𝑗=0 𝑝(𝑘, 𝑗)𝑥𝑘−2𝑙−1 + 𝑝(𝑘, 𝑘∕2 − 1)

(

𝜋−1 arcsin(𝑥∕𝐴) + 1∕2
) for |𝑥| ≤ 𝐴 and 𝑘 odd,

𝑚𝑘 for 𝐴 < 𝑥,
(A.13)

where 𝑚𝑘 is defined in Eq. (A.8). The arcsine distribution’s first six partial moments (𝑘 = 0,… , 5) are depicted in Fig. 2.


	Cross-Correlation and Averaging: An Equivalence Based on the Classical Probability Density
	Abstract
	Introduction
	Theorem on cross-correlation based averaging
	Obtaining the classical probability density
	CPD of undamped, free oscillations
	Purely Nonlinear Oscillators
	Duffing Type oscillators

	CPD of forced oscillations
	CPD of an SHO
	CPD of the sum of two harmonic functions with incommensurable frequencies


	Numerical methods
	Histogram-based approximation of the CPD 
	Spline-based approximation of the CPD
	Convolution-based approximation of the CPD for special cases
	Numerical averaging
	Benchmark example

	Conclusions
	Acknowledgment
	Funding Acknowledgment
	Conflict of interest
	References
	Appendix


