
P
o
S
(
I
C
R
C
2
0
2
3
)
2
4
8

Update on the Offline Framework for AugerPrime and
production of reference simulation libraries using the
VO Auger grid resources

Eva Santos𝑎,∗ for the Pierre Auger Collaboration𝑏

𝑎FZU - Institute of Physics of the Czech Academy of Sciences, Na Slovance 1999/2, Prague, Czech Republic
𝑏Observatorio Pierre Auger, Av. San Martín Norte 304, 5613 Malargüe, Argentina
Full author list: https://www.auger.org/archive/authors_icrc_2023.html

E-mail: spokespersons@auger.org

Taking data stably since 2004, the Pierre Auger Observatory has published numerous results
regarding the properties of ultra-high-energy cosmic rays with unprecedented statistics. However,
questions about their origin and mass composition remain unanswered, motivating us to build
AugerPrime, a major upgrade of our surface detector array with improved electronics and new
detectors. The upgrade is swiftly approaching its completion. Phase II of the Pierre Auger
Observatory has begun, which called for an update of the Offline software Framework and modules
to handle the additional detectors and the new electronics. Thanks to its modular structure, Offline

has proved flexible enough to accommodate all the changes required to handle AugerPrime data
reconstruction and event simulation. Additionally, new reference libraries of shower and detector
simulations, including dedicated libraries envisaging the searches for neutral particles, such as
ultra-high-energy photons and neutrinos, profiting from the new AugerPrime detectors with the
upgraded electronics, are in the pipeline. In this contribution, we report on the current status and
prospects for the Auger Offline Framework and the production of reference Monte Carlo libraries
for AugerPrime.
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1. Introduction

As of the writing of these proceedings, the Pierre Auger Observatory [1] has entered its very
first days of the Auger Phase II data taking with the surface particle detector array approaching its
complete upgrade by the end of 2023. The systematic deployment of the new electronics known as
Upgraded Unified Boards (UUB) [2] in the Surface Detector (SD) stations has just been finished.

Figure 1: Photo of an AugerPrime SD station operat-
ing in the field. The visible AugerPrime enhancements
are the RD - SALLA antenna and the aluminum case
containing the SSD mounted on the station. Inside
the station, an additional small PMT and the upgraded
electronics board (UUB) are installed.

On top of most stations, a Surface Scintilla-
tor Detector (SSD) [3] and its respective SSD-
PMT has been installed, and inside each sta-
tion, a small PMT [4] was added. The installa-
tion of the Radio Detector (RD) [5], consist-
ing of a Short Aperiodic Loaded Loop An-
tenna (SALLA) [6], which complements the
AugerPrime SSD’s sensitivity to the electro-
magnetic component of the shower for zenith
angles above 55◦, is swiftly progressing in the
field. Finally, the deployment of a denser re-
gion of the SD array with Underground Muon
Detectors (UMD) [7] will allow for direct mea-
surement of the muon content of air showers in
the energy range 1016.5 – 1019 eV. The photo of
one of our AugerPrime [8] SD stations is shown
in Figure 1.

Given the installation of the AugerPrime
detectors mentioned above, implementing these
elements into the Offline Framework [9] was
imperative. Also mandatory is the production
of new reference simulation libraries contem-
plating the new multi-hybrid events and the
AugerPrime increased detection potential of the
first very-high and ultra-high-energy photons
and neutrinos in the multi-messenger era.

Below, we give an update of [10, 11] regarding the improvements made to the Auger Offline
Framework for AugerPrime and report on the production of the new reference shower and detec-
tor simulation libraries using grid computing via the Virtual Organization (VO) Auger and the
simulation libraries layout.

2. The Auger Offline software Framework for the Pierre Auger Observatory

The Offline Framework was started in 2003 [9] to provide a universal event simulation and
reconstruction framework [12]. Developed in C++, it was designed in a modular structure that
would allow it to be flexible and robust enough to be used during the more than 20 years of expected
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operation of the Pierre Auger Observatory while ensuring the inclusion of a wide diversity of user
applications and new detectors according to future needs, namely those of AugerPrime.

2.1 Structure

The modular structure of the Offline Framework consists of several packages for organizing
the code. At the lowest level lies a set of useful general functions that do not require knowledge of
the Observatory or cosmic-ray physics. Then, the framework layer provides the data structures for
the detector description, the event, the sequencing of the execution of the analysis modules, and the
overall configuration of the framework. Next, the event I/O fills, at the beginning of each loop, the
data structures either with data from real events or simulations. It also handles the data streaming
back to the disk. The main part of the physics code is split into individual modules, whose execution
is sequenced by the RunController.

Data Structures The Offline Framework has two core data structures to the modules: the Event
and Detector. Both data structures closely follow the hardware hierarchy of the Observatory.

The Event provides the accumulated knowledge for a single event, either recorded or simulated.
Offline stores information about the detector calibration, raw and calibrated data, and the results
from the different reconstruction stages for the events recorded by the Pierre Auger Observatory.
In the case of air shower simulations, Offline stores additional information about the Monte Carlo
event and the corresponding detector simulation.

The Detector structure provides slowly varying information, mostly unchanged for consec-
utive events. The atmosphere is considered part of the detector for the hybrid detection technique
with the fluorescence detector, and data from atmospheric monitoring is also provided.

The managers provide access to different data sources, which could be XML or databases in
MySQL or SQLite format.

Event I/O The Offline Framework can handle a large variety of I/O files for the main data
stream. For recorded events, the Offline Framework can accept as input the raw data files from
the Observatory and the internal Offline format. For simulations, it is possible to define as input
CORSIKA [13], CONEX [14], AIRES [15], and also CoREAS [16], and ZHAireS [17], where the
latter two contain the radio emission of air showers. The internal ROOT-based [18] data format
allows users to save and restore the full information in the event data structure. It is also possible to
save the result of simulations in the raw data format used for data acquisition.

At the higher level, most users prefer using the Advanced Data Summary Tree (ADST) files [19].
The ADST is a stand-alone package intended for high-level and fast data analysis. It includes a
graphical display that allows us to view a subset of the event and a convenient mechanism for
efficiently handling standard analysis cuts.

The raw data files, the internal Offline, and the ADST formats use the I/O component of the
ROOT [18] Framework.

2.2 AugerPrime upgrade

The latest challenge, and one of the most significant changes to the Offline Framework, was
the implementation of all the AugerPrime [8] components, namely:
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• the addition of the Scintillator Surface Detector on top of each surface detector [3],
• the addition of the small PMT, which allows to extend the dynamic range of the SD stations [4],
• the UUB, the upgraded electronics board of the surface detector, which has a 3 times faster

sampling rate with respect to the old electronics board [2, 20],
• the SALLA antennas of the RD [21] and their complete signal path consists of the low-

noise amplifier, cables and digitizer. This was realized building on the functionality already
implemented for the Auger Engineering Radio Array (AERA) antennas [6, 12], and

• the new electronics mounted on the buried modules and the new photo sensors for the UMD.

Given the large extent of the AugerPrime upgrade, the Offline developers decided to change the
language standard from C++ version 98/03 to C++ 11/14, which had implications for the deprecation
of old interfaces [10]. A detailed description of all the implications of the required changes can be
found in [10]. Below, we highlight the most relevant changes to Offline since [10].

New electronics boards - UUB The most challenging change from the old electronic board to the
upgraded one was the modification in the digitizer frequency from 40 MHz to 120 MHz since the
previous signal bin of 1 ns implemented in Offline was not a natural least common multiple for the
new time bin of 8.3 ns. The new natural timing unit also affected the calibration histograms of the
vertical equivalent muon (VEM) charge. After properly implementing the 8.3ns time bin in Offline,
it was also necessary to adapt the fitting algorithm for the VEM peak. The new fitting procedure
works for the new and old electronics, including the SSD. These changes are implemented in a new
module that replaced the old algorithm in SdCalibratorOG after it was split into four modules.
The new histogram fitting algorithm is robust enough to be applied to UB, UUB, and SSD data.
Also, a new algorithm for the estimation of the baseline of the several channels of the UUB was
developed and implemented in the SdBaselineFinderKGmodule, replacing the former algorithm.

Radio Detector stations The RD antennas of AugerPrime are co-located with the surface detector
stations and share part of the local station electronics and data acquisition. Both detectors share
the raw event I/O, as some channels carry information from the surface detector while others are
used for the radio detector. In the calibration stage, data is split into independent parts of the event,
loosely coupled by the station id and position. The analysis functionality required for the Auger
RD largely overlaps with the one already existing for AERA [6]. Currently, the Offline Framework
has analysis modules that can be used only for AERA or RD or in a mixed configuration. A
newly developed reconstruction algorithm for radio emission from inclined air showers was also
implemented [22].

Small PMT The installation of the small PMT inside the water-Cherenkov detectors required a
break in the old paradigm, in which each station had three identical PMTs. Although its implemen-
tation inside the station was relatively straightforward, changes in signal for data calibration and
signal simulation were required. For simulations, we apply the quantum efficiency of the PMT at the
time of the emission of the photon to avoid tracking photons that will not produce a photo-electron.
To avoid losing all the speedup gained by suppressing photons at production time, a hybrid scheme
was developed, where the larger quantum efficiency was applied at the source and then re-applied
according to the real quantum efficiency of the PMT hit. Also, unlike the large PMTs, the small PMT
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cannot be calibrated from the signal generated by atmospheric muons. Instead, the calibration is
done using the signal from small showers detected by the small and the large PMTs. The calibration
information has to be merged with the event stream at a later stage for the event reconstruction.

Time-dependent simulations for the water-Cherenkov detectors A true novelty in Offline
concerning [10] was the development of a new module called SdEvolution that allows performing
a more realistic time-dependent simulation of the SD array considering the aging effects of the
water-Cherenkov detector observed in data. This temporal behavior is modeled by exploiting the
light-time decay of muon pulses recorded in each station at different times. The optical properties
of the simulated tanks are modified to match the data at the corresponding time of the simulated
events accordingly. The calibration constants used in simulations are also modified accordingly to
reproduce the time response of the tanks correctly.

3. Virtual Organization Auger

The VO Auger was created in 2006 in cooperation with the CESNET Metacentrum [23], which
provides and maintains the central resources such as the registration portal and the VOMS (Virtual
Organization Membership Service) server. Currently, the VO Auger comprises 13 grid sites in 8
countries. See [24] for the full list of the VO Auger computing resources and local computing
clusters contributing to the Pierre Auger Collaboration.

All members of the Pierre Auger Collaboration can apply for membership by filling out a
registration form which has to be approved by the VO manager. The membership is valid for one
year and can be renewed upon request. Currently, about 30 individual members are registered in
the VO Auger.

3.1 DIRAC interware

In 2014, the VO Auger adopted the DIRAC (Distributed Infrastructure with Remote Agent
Control) interware for job submission, monitoring, and file catalog management [25]. The DIRAC
server runs on the France Grilles Infrastructure. Its usage only requires having a running DIRAC
client installed. A client version is provided in the DIRAC CVMFS - Cern Virtual Machine-File
System repository dirac.egi.eu.

More than 7 million files are registered in the DIRAC File Catalog; these files are stored on
11 different sites and occupy around 1.5 PB of disk space. Given the unprecedented data volume
produced in 2022, old files corresponding to outdated productions had to be deleted from the DIRAC
File Catalog to give space to the updated shower libraries.

3.2 Grid computing in 2022

In 2022, according to the EGI - European Grid Infrastructure accounting portal, the VO Auger
ran about 1 million single-core jobs, which used a normalized elapsed time HEPSCORE23 [26]
of nearly 147 million CPU hours. The productions ran on 10 grid sites from 7 countries. When
excluding the contributions of the LHCb, and Fermilab groups, which we consider to be incor-
rectly assigned as astrophysics experiments, the VO Auger appears as the second largest EGI
user with a relative usage of 29.4%, slightly behind VIRGO, with 30.6%, as shown in Figure 2.
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Figure 2: Relative elapsed time of the As-
trophysics VOs in 2022, according to the
EGI accounting portal. The contributions
of the LHCb, and Fermilab groups were ex-
cluded.

Still, according to the HEPSCORE23, including all mem-
bers of the Astrophysics VOs, LHCb has a relative nor-
malized elapsed time of 94.14%, followed by Fermilab
with 2.14%. VIRGO and Auger appear in the third and
fourth positions with 1.14% and 1.09%, respectively.

The used CPU time corresponds to the new COR-
SIKA [13] reference shower libraries for hadron cosmic-
ray primaries and neutral primaries, namely, photons and
electron neutrinos, described in section 4.

4. Reference shower libraries

The reference simulation libraries consist of COR-
SIKA [13] extensive air shower simulations later pro-
cessed with the Offline Framework [9]. The libraries are
continuously updated, and several CORSIKA and Offline
versions have been used. The most recent productions use
the latest versions of CORSIKA 7.7420 and 7.7500.

4.1 Cosmic-ray shower library

Per each CORSIKA version, three high-energy hadronic interaction models are simulated:
EPOS-LHC [27, 28], QGSJetII-0.4 [29, 30], and Sibyll 2.3 [31–33] (currently Sibyll 2.3d) and four
hadronic species, namely: Hydrogen, Helium, Oxygen, and Iron. FLUKA [34, 35] is used to treat
elastic and inelastic hadronic interactions below 80 GeV in air. The library comprises air shower
simulations ranging from 1015.0 − 1020.2 eV, with zenith angles below 65◦ uniformly distributed in
sin2 𝜃, arranged in energy bins of width log10 (𝐸/eV) = 0.5, except for the highest energy bin, with
a spectral index of −1. There are 5, 000 showers per bin simulated with an optimal thinning [13] of
10−6. Up to 4 different Malargüe atmospheres, one per season, can be found in the simulations.

We have extended the reference shower library for the zenith angle region 𝜃 = 50◦ to 89◦,
following a similar layout to the previous library. However, in addition to the compilation option
SLANT, we further activated CURVED and UPWARD, since above 70◦, the effect of the curvature of
the Earth in the atmosphere can no longer be neglected. This library ranges from 1015 − 1020.2 eV,
following an energy bin of log10 (𝐸/eV) = 0.6. Per energy bin, there are 10, 000 showers.

One extra feature of the new cosmic-ray shower libraries is also the activation of the CORSIKA
options MUPROD and prEHISTORY [36], which enables extended additional information for all the
shower particles that includes the “grandmother” and “mother” of the particles at the ground. This
feature came at the cost of enlarging CORSIKA ground particle files by about a factor of 3.

Photon shower library Together with the reference cosmic-ray shower library, we also produce
photon-induced air showers, in which the pre-shower is activated for energies above 1019 eV. The
standard photon simulations follow a similar structure as the one described above. In this case,
there are 10, 000 showers per energy bin.

6
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4.2 Neutrino shower libraries

The reference neutrino shower libraries are produced using CORSIKA [13]. Neutrino-induced
showers require option NUPRIM, which calls the HERWIG [37] code, to treat the first interaction of a
primary neutrino in the Earth’s atmosphere. Also, one particularity of the neutrino shower libraries
is the change of the default transition energy from the high-energy hadronic interaction model
to FLUKA from 80 GeV to 200 GeV, allowing for a more conservative description of hadronic
interactions occurring in the shower development. Unlike our standard cosmic-ray and photon
shower libraries, neutrino shower libraries have fixed primary energy, zenith angle, and a fixed
interaction depth in the atmosphere.

Downward Going Low (DGL) channel The simulations range from 𝜃 = 60◦ to 75◦, with a zenith
angle step of 3◦. The energies range from 𝐸 = 0.01 to 100.0 EeV, and the interaction depths are
defined in steps of 100g cm−2 from a starting depth of around 100g cm−2 down to the ground level.

Downward Going Low (DGL) channel The library ranges from 𝜃 = 75◦ to 89◦ and uses the
same CORSIKA compilation options. However for the zenith angle range 𝜃 = 75◦ to 83◦, the zenith
angle step is of 2◦, decreasing to 1◦ above 𝜃 = 84◦. The energy range of the DGH library spans
from 𝐸 = 0.05 to 30.0 EeV. As before, the interaction depth step is 100 g cm−2, starting at a slant
depth height of 100 g cm−2, down to the ground.

In both cases, we consider the interaction of electron neutrinos in the atmosphere through
charged and neutral current interactions. The number of showers produced per zenith angle and
interaction depth varies as a function of energy: there are 300 showers for 𝐸 < 0.1 EeV, 200 for
0.1 ≤ 𝐸 [EeV] ≤ 0.3EeV, 150 for 𝐸 = 3EeV, and 50 showers for 𝐸 > 3EeV. We will soon produce
a CoREAS DGH library and plan to simulate a tau neutrino-induced shower library encompassing
the DGH and the Earth-skimming channel. Finally, we plan to repeat the neutrino shower libraries
using AIRES [15] and ZHAireS [17].

4.3 Accessing the simulations

All Auger data and a subset of the simulations produced are stored in the IN2P3 Computing
Center in Lyon, France. iRODS - integrated Rule-Oriented Data System is the preferred system
to download simulations from the Lyon Computing Center. All the task’s simulations and many
others produced by several Auger groups are shared with the whole Collaboration this way.

5. Conclusions and Outlook

In recent years, the Pierre Auger Collaboration has moved the bulk of its production of reference
shower libraries to the grid via the VO Auger. In 2022, an unprecedented amount of single-core
jobs, normalized CPU hours, and disk space were reached, with the production of the new reference
cosmic-ray and neutrino shower DGL libraries. We are consolidating our position as one of the
most significant EGI users within the Astrophysics VO group, and we expect to surpass last year’s
statistics by continuing to produce the DGH electron and tau neutrino shower libraries. We also
plan to produce neutrino shower libraries in CoREAS, AIRES, and ZHAireS and deliver the first
AugerPrime Offline simulations.
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Over 20 years of the Offline Framework establishment, its modular structure written in C++
following good practices has proved its robustness to implement all the required changes, with
AugerPrime being the most challenging feat. Hosted in GitLab, the Offline Framework is provided
with automated tests for frameworks, either integrated or as third-party integrations. The external
testing framework Jenkins is used for automated testing.

In 2009, the Pierre Auger collaboration developed and adopted the Ape tool as a platform-
independent installation tool for the Offline Framework and its dependencies. Since then, Conan
established itself as a package manager for C++ projects.
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