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The search for anisotropies in the arrival directions of ultra-high-energy cosmic rays plays a key
role in the efforts to understand their origin. The observed first-harmonic modulation in right
ascension above 8 EeV, detected by the Pierre Auger Observatory with a current significance of
6.9𝜎, suggests an extragalactic origin above this energy. Furthermore, there are indications, at the
∼4𝜎 significance level, of anisotropies at intermediate angular scales, which are obtained when
comparing the arrival directions against the distribution of potential sources from astrophysical
catalogs, in particular that of nearby starburst galaxies, and around the Centaurus region. In this
contribution, we present the status of the different searches for anisotropies at small, intermediate
and large angular scales. We use the latest available data set, with 19 years of operation that has
yielded 135, 000 km2 yr sr of accumulated exposure, covering the sky at declinations from −90◦ to
45◦. At small and intermediate scales, we report updates of the all-sky blind search for localized
excesses, the study around the Centaurus region, and the likelihood analysis with catalogs of
candidate sources. We have also studied the regions of the sky from which the Telescope Array
Collaboration has reported hints of excesses in their data and we find no significant effects in
the same directions with a data set of comparable size. At large angular scales, the dipolar and
quadrupolar amplitudes in energy bins are updated. We discuss the prospects of these searches,
both in regards to increases in statistics and in relation to the future inclusion of event-by-event
mass estimators in these analyses through the upgrade of the Observatory, AugerPrime.
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1. Introduction
Thanks to the high-quality data from the Pierre Auger Observatory [1], the world’s largest

cosmic ray observatory, significant progress has been made in the quest to find the origin of
ultra-high-energy cosmic rays (UHECRs). In particular, regarding the arrival direction studies, a
dipolar modulation in right ascension (R.A.) at energies above 8 EeV has been established with
a significance above 5𝜎 [2]. The direction of this dipole, ∼115◦ away from the Galactic Center,
suggests an extragalactic origin of cosmic rays above this energy threshold. Moreover, for lower
energies, a change in the equatorial dipole amplitudes and phases has been observed [3]. But, given
that the amplitudes are small, these results are not yet statistically significant. However, they are
indicative of a transition in the origin of the anisotropies from a galactic one (with phases close to
the Galactic Center) to an extragalactic one at energies above a few EeV.

Magnetic deflections are proportional to 𝑍/𝐸 , and cosmic rays have a reduced horizon at
ultra-high energies. Thus, we also search for small and intermediate-angular-scale anisotropies
with the highest-energy events that could help to trace their sources. The Auger Collaboration
has reported an excess in the Centaurus region, whose significance has grown steadily since the
beginning of the operation of the Observatory [4, 5]. Furthermore, an indication of anisotropy has
been reported when searching for correlations with catalogs of potential sources. In particular, the
most significant result is for the starburst catalog, which has two galaxies, NGC4945 and M83, in
the Centaurus region and one, NGC253, in a region close to the Galactic South Pole, where a mild
overdensity has been reported [5, 6]. In this contribution, we present an update of these studies.

2. The data sets
We consider events recorded with the water-Cherenkov surface detectors of the Pierre Auger

Observatory. We analyze the events from January 2004 until December 2022. For the transitional
years of 2021 and 2022, when the AugerPrime [7] installation was underway, we use only those
detectors in which the electronics had not been updated (resulting in the equivalent of 1.6 years
of full exposure). For the studies above 32 EeV, we use events with zenith angle 𝜃 < 80◦, for
which we have an exposure of 135, 000 km2 yr sr and an 85% coverage of the sky. The large-scale
analyses above full efficiency of the 1500 m array (𝐸 ≥ 4 EeV) are made considering events with
𝜃 < 80◦ and with a slightly stricter selection, and removing those that were registered during periods
of unreliable data acquisition, resulting in an exposure of 123, 000 km2 yr sr. For the large-scale
studies between 0.25 EeV and 4 EeV, we consider only vertical events (𝜃 < 60◦, a 71% coverage
of the sky) and a stricter quality cut. This data set has an exposure of 81, 000 km2 yr sr. Finally,
we also study events with energies down to 0.03 EeV with the 750 m array, with 𝜃 < 55◦, with an
exposure of 337 km2 yr sr. For more details on the event selection, see e.g. [2, 3, 5]. The events
have an angular resolution better than 0.9◦ for 𝐸 > 10 EeV, and it can degrade up to 1.6◦ at lower
energies [1]. The statistical uncertainty on the energy is ∼7% for 𝐸 > 10 EeV and up to ∼20% for
𝐸 ∼0.1 EeV, and the systematic uncertainty on the absolute energy scale is 14% [8].

3. Small and intermediate-angular-scale searches
Firstly, we report the results of the blind search for overdensities over the exposed sky. For this,

we do a scan in energy in steps of 1 EeV between 32 EeV and 80 EeV and a scan in the top-hat search
radius with steps of 1◦ between 1◦ and 30◦. We compute the binomial probability of measuring the
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number of events, 𝑁obs, inside a circular window, compared to the mean number of events expected
from isotropic simulations, 𝑁exp. The post-trial 𝑝-value is computed as the fraction of isotropic
simulations that have an equal or smaller probability under the same scan. The most significant
excess, presented in Table 1, is for an energy threshold of 38 EeV, an angular window of 27◦, a
post-trial 𝑝-value of 2% and for a region located 2◦ away from Cen A. In Fig. 1, we show the sky
maps for local Li-Ma significance and the flux, for the same energy threshold and top-hat window.

Analysis 𝐸th [EeV] Ψ [◦] 𝑁obs 𝑁exp Local 𝑝-value Post-trial 𝑝-value
Overdensity 38 27 245 172.0 1.8 × 10−8 0.02
Cen A 38 27 237 169.0 1.1 × 10−7 3.0 × 10−5

Table 1: Results of the all-sky search for overdensities and the search centered at Cen A. 𝐸th is the threshold
energy, Ψ is the top-hat radius for which the local 𝑝-value is minimum. 𝑁obs and 𝑁exp are the number of
observed and expected events above 𝐸th and inside Ψ. The post-trial 𝑝-value accounts for the scan.

We also update the search for excesses fixed at the location of Cen A. The energy scan is the
same as in the overdensity search and the angular scan as well, with the exception that between 1◦

and 5◦, the steps are of 0.25◦ as in [4, 5]. The results of the scan are shown in Fig. 2 and the most
significant excess is listed in Table 1. The smallest 𝑝-value is at the same 𝐸th and top-hat window
as in [5], and the post-trial 𝑝-value has decreased to 3.0 × 10−5 (4.0𝜎 1-sided). The excess of
events has grown by five, within the expectations of a linear growth of the signal, and thus the 5𝜎
discovery threshold is expected for an exposure of (165, 000± 15, 000) km2 yr sr, as reported in [5].
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Figure 1: Local Li-Ma significance map within a top-hat window of 27◦ radius (left panel) and flux map
(right panel) with 𝐸 ≥ 38 EeV in Galactic coordinates. The supergalactic plane is shown with a gray line.

Furthermore, we study the regions of the sky where the Telescope Array (TA) Collaboration
has reported excesses in their data (see [9] for the latest update). The TA overdensities close to the
Perseus-Pisces supercluster (PPSC) and the higher-energy excess, the so-called “TA hot spot”, are
reported for a top-hat window of 20◦ and 25◦, respectively, as in [9]. Their post-trial 𝑝-values are
between 3.0-3.2𝜎 (for the PPSC results, no account appears to have been taken for the three trials
in this region, and the post-trial 𝑝-values decrease to ∼2.5𝜎 if they search for an excess close to
any other major structure). In Table 2, we present our results compared to those published by TA.
We have rescaled the energy where TA reports their excesses by −20%, taking into account the
cross-calibration of the energy scale reported in [10]. With comparable statistics to TA, we do not
find any significant excesses in the same regions with rescaled energy thresholds.
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Figure 2: The local 𝑝-value for an excess in the Centaurus region as a function of top-hat search angle, Ψ,
and energy threshold, 𝐸th. The minimum 𝑝-value is indicated with a white cross.

(𝛼0, 𝛿0) [◦] 𝐸TA 𝑁TA
obs 𝑁TA

exp 𝜎TA
post 𝐸Auger 𝑁

Auger
obs 𝑁

Auger
exp 𝜎

Auger
Li−Ma

PPSC (17.4, 36.0) 25.1 95 61.4 3.1𝜎 20.1 68 69.3 −0.2𝜎
(19.0, 35.1) 31.6 66 39.1 3.2𝜎 25.3 40 45.2 −0.8𝜎
(19.7, 34.6) 39.8 43 23.2 3.0𝜎 31.8 27 26.5 0.1𝜎

TA hot spot (144.0, 40.5) 57 44 16.9 3.2𝜎 45.6 7 10.1 −1.0𝜎

Table 2: Results using Auger data for the regions where TA has reported excesses in their data [9]. (𝛼0, 𝛿0)
are the equatorial coordinates where TA has observed the overdensity above 𝐸TA energy threshold (in EeV).
The first three directions correspond to the ones close to the PPSC and the last one corresponds to the
so-called “TA hot spot”. 𝑁TA

obs, 𝑁
TA
exp are the observed and expected number of events reported by TA, and

𝜎TA
post is their post-trial significance. 𝑁

Auger
obs , 𝑁Auger

exp , 𝜎Auger
Li−Ma are the corresponding values using Auger data,

for the same location and energy threshold 𝐸Auger = 0.8 × 𝐸TA.

Catalog 𝐸th [EeV] Ψ[◦] 𝛼[%] TS Post-trial 𝑝-value
All galaxies (IR) 38 24+15

−8 14+8
−6 18.5 6.3 × 10−4

Starbursts (radio) 38 25+13
−7 9+7

−4 23.4 6.6 × 10−5

All AGNs (X-rays) 38 25+12
−7 7+4

−3 20.5 2.5 × 10−4

Jetted AGNs (𝛾-rays) 38 23+8
−7 6+3

−3 19.2 4.6 × 10−4

Table 3: Most significant results of the catalog-based searches. We show the threshold energy, 𝐸th, the
equivalent top-hat radius, Ψ, the signal fraction, 𝛼, the local test statistic, TS, and the post-trial 𝑝-value.

For the catalog-based searches, we apply the same unbinned maximum likelihood method with
two free parameters, the Fisher search radius Θ (the equivalent top-hat radius Ψ is 1.59 × Θ) and
the signal fraction, 𝛼, as in [5, 6]. The energy scan is again in steps of 1 EeV between 32 EeV and
80 EeV. We consider the same four catalogs as in the previous publications and the probability maps
are built weighting objects by their relative flux in the corresponding electromagnetic band and
an attenuation due to their different distances (following the Auger spectral-composition modeling
[11]). The catalogs (and their flux proxies) are: “all galaxies (IR)” from 2MRS (K-band), “starbursts
(radio)” based on Lunardini+19 (1.4 GHz), “all AGNs (X-rays)” from Swift-BAT (14-195 keV) and
“jetted AGNs (𝛾-rays)” from Fermi 3FHL (𝐸 > 10 GeV). The results are shown in Table 3. All
excesses happen at the same 𝐸th and similar angular window since all models capture the overdensity
in the Centaurus region (Cen A or NGC4945 and M83). The starburst model, which also adds
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the mild excess in the Galactic South Pole (NGC 253), has the most significant result, with a
post-trial 𝑝-value that has increased to 6.6× 10−5 (3.8𝜎 1-sided) with respect to [5]. This decrease
in significance is driven by a decrease in the flux in the region of NGC253, which went from
ΦNGC253 = (12.8 ± 1.2) × 10−3 km−2 yr−1 sr−1 (for 𝐸 ≥ 40 EeV and a top-hat window of 25◦), in
[5], to ΦNGC253 = (12.2 ± 1.2) × 10−3 km−2 yr−1 sr−1, within its statistical uncertainty. In Fig. 3,
we show the test statistic of the starburst model, together with the excess in the Centaurus region,
as a function of the exposure of the Observatory. It is seen that the fluctuations for this model are
within the 95% C.L. of the expected linear behavior from signal simulations.
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Figure 3: Test statistic of the starburst model and excess in the Centaurus region above the best energy
threshold as a function of exposure accumulated by the Pierre Auger Observatory (left panel). The fluctuations
around the linear behavior expected from signal simulations are shown in the right panels.
4. Large-angular-scale searches

We present an update of the searches for anisotropies at large angular scales with the current
data set. Above full-efficiency of the Observatory, we can perform a combined Fourier analysis in
R.A., which is sensitive to the equatorial component of a dipolar anisotropy (𝑑⊥), and in azimuth,
which is sensitive to the North-South component (𝑑𝑧) to make a three-dimensional reconstruction of
the dipole. We apply weights that account for the small variations in coverage and the tilt of the array,
and the energy of the events has already been corrected for atmospheric and geomagnetic effects for
events with zenith angle smaller than 60◦ (between 60◦ and 80◦ the cascades are composed mostly of
muons, so the atmospheric effects are less important and the geomagnetic field is already accounted
for in their reconstruction). For more details, see e.g. [2]. The results are listed in Table 4, where it
is seen that for 𝐸 ≥ 8 EeV, the significance of the dipolar modulation in R.A. is now at 6.9𝜎 and
that the significance of the 8-16 EeV energy bin is 5.7𝜎. In Fig. 4, we show the flux above 8 EeV
and the distribution in R.A. of the normalized rates of events for that energy threshold. Moreover,
in Fig. 5, we illustrate the evolution of the dipole direction and amplitude with energy. We perform
a fit to the amplitude as a function of energy, 𝑑 (𝐸) = 𝑑10×

(
𝐸

10 EeV
)𝛽 , obtaining 𝑑10 = 0.049±0.009

and 𝛽 = 0.97 ± 0.21 in agreement with previous results [2]. This increase in amplitude is possibly
due to particles with higher rigidity being less deflected and nearby non-homogeneously located
sources making a larger contribution to the flux (see [2] for references).

In Table 5, we show the results obtained when a quadrupolar component is included to the
Fourier combined analysis. We present them for the energy bins where the significance of the dipole
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𝐸 [EeV] 𝑁 𝑑⊥ 𝑑𝑧 𝑑 𝛼𝑑 [◦] 𝛿𝑑 [◦] P(≥ 𝑑⊥)
4-8 118,835 0.010+0.006

−0.004 −0.014 ± 0.008 0.017+0.008
−0.005 91 ± 30 −53+21

−19 0.15
≥8 49,710 0.058+0.009

−0.008 −0.045 ± 0.012 0.073+0.010
−0.008 97 ± 8 −37+9

−9 7.4 × 10−12

8-16 36,683 0.057+0.010
−0.009 −0.030 ± 0.014 0.065+0.012

−0.009 92 ± 10 −28+11
−12 1.2 × 10−8

16-32 10,288 0.059+0.020
−0.015 −0.07 ± 0.03 0.094+0.026

−0.019 93 ± 18 −51+13
−13 4.5 × 10−3

≥32 2,739 0.11+0.04
−0.03 −0.13 ± 0.05 0.17+0.05

−0.04 143 ± 19 −51+14
−13 8.4 × 10−3

Table 4: Results for the 3D dipole reconstruction above full efficiency. We present, for each energy bin, the
number of events, 𝑁 , the equatorial component of the amplitude, 𝑑⊥, the North-South one 𝑑𝑧 , the modulus
of the amplitude 𝑑, the R.A., 𝛼𝑑 , and declination, 𝛿𝑑 , of the dipole direction and the probability of getting a
larger amplitude from fluctuations of an isotropic distribution P(≥ 𝑑⊥).

300° 240° 180° 120° 60°

60o

30o

30o

60o

0.371 0.441 Flux [km 2 sr 1 yr 1] 060120180240300360
Right Ascension [degrees]

0.92

0.94

0.96

0.98

1.00

1.02

1.04

1.06

1.08

No
rm

al
ize

d 
ra

te
s

Rayleigh analysis
Data E > 8 EeV

Figure 4: Flux above 8 EeV, smoothed by a top-hat window of 45◦, in equatorial coordinates (left panel).
The position of the Galactic Center is shown with a star and the Galactic Plane is indicated with a dashed
line. Distribution in R.A. of the normalized rates of events with 𝐸 ≥ 8 EeV (right panel). The black line
shows the obtained distribution with the Rayleigh analysis assuming only a dipolar component.
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Figure 5: Map with the directions of the 3D dipole for different energy bins, in Galactic coordinates
(left panel). We show the contours of equal probability per unit solid angle, marginalized over the dipole
amplitude, that contain the 68% CL range. The dots represent the location of the galaxies in the 2MRS
catalog within 100 Mpc. The evolution of the dipole amplitude with energy is shown in the right panel.

has surpassed the 5𝜎 discovery level. It is seen that the quadrupolar components are not significant
and that the dipolar ones are consistent with the results we obtain assuming only a dipole.

The equatorial component of the dipole can also be reconstructed for lower energies [3]. Below
2 EeV, the East-West method is used for the 1500 m array since trigger effects are difficult to control
down to the 1% level. The East-West method, which is based on the difference between the counting
rates of the events detected from the east sector and those from the west sector, is less sensitive than
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𝐸 [EeV] 𝑑𝑖 𝑄𝑖 𝑗 𝑄𝑖 𝑗

≥ 8 𝑑𝑥 = −0.002 ± 0.011 𝑄𝑧𝑧 = 0.04 ± 0.05 𝑄𝑥𝑧 = 0.016 ± 0.025
𝑑𝑦 = 0.059 ± 0.011 𝑄𝑥𝑥 −𝑄𝑦𝑦 = 0.07 ± 0.04 𝑄𝑦𝑧 = 0.005 ± 0.025
𝑑𝑧 = −0.02 ± 0.03 𝑄𝑥𝑦 = 0.024 ± 0.019

8-16 𝑑𝑥 = −0.002 ± 0.012 𝑄𝑧𝑧 = 0.10 ± 0.06 𝑄𝑥𝑧 = 0.001 ± 0.029
𝑑𝑦 = 0.049 ± 0.012 𝑄𝑥𝑥 −𝑄𝑦𝑦 = 0.03 ± 0.04 𝑄𝑦𝑧 = −0.028 ± 0.029
𝑑𝑧 = 0.02 ± 0.04 𝑄𝑥𝑦 = 0.039 ± 0.022

Table 5: Results for assuming dipolar and quadrupolar components in the two energy bins where the dipole
has a significance of over 5𝜎.

𝐸 [EeV] 𝑁 𝑑⊥(%) 𝛼𝑑 [◦] P(≥ 𝑑⊥) 𝑑𝑈𝐿
⊥ (%)

SD750 East − West 1/32-1/16 560,474 1.2+0.9
−0.5 159 ± 40 0.33 3.2

1/16-1/8 1,230,515 0.8+0.5
−0.3 −20 ± 33 0.19 2.0

1/8-1/4 673,514 0.7+0.6
−0.3 −8 ± 49 0.48 2.0

Fourier 0.25-0.5 172,171 0.5+0.5
−0.2 −58 ± 51 0.50 1.6

SD1500 East − West 0.25-0.5 958,899 0.5+0.5
−0.2 −139 ± 51 0.50 1.6

0.5 - 1 3,133,596 0.39+0.27
−0.16 −101 ± 36 0.25 0.99

1-2 1,683,113 0.1+0.4
−0.1 −55 ± 99 0.94 0.95

Fourier 2-4 390,780 0.7+0.3
−0.2 −17 ± 23 3.7 × 10−2 1.5

Table 6: Results for the large scale analysis in R.A. We present, for each energy bin, the number of events,
𝑁 , the equatorial component of the amplitude, 𝑑⊥, the R.A. of the dipole direction, 𝛼𝑑 , the probability of
getting a larger amplitude from fluctuations of an isotropic distribution, P(≥ 𝑑⊥), and the 99% CL upper
limit, 𝑑𝑈𝐿

⊥ .

the Fourier method but the systematics are under better control. For the 0.25-0.5 EeV energy bin,
one can also use the data of the 750 m array with the Fourier method and the results are compatible
with those of the 1500 m array and the East-West method. For the energy bins below 0.25 EeV,
the statistics of the 750 m array are larger than that of the main array, and we apply the East-West
method given that for those energies the trigger of the 750 m array is not fully efficient. The results
of these analyses are presented in Table 6 and shown in Fig. 6. Even though the results for the lower
energies have a probability above 1%, it should be noted that the amplitudes of the equatorial dipole
grow from below 1% to above 10% and that the phases shift from close to the Galactic Center
to the opposite direction, suggesting a transition of the origin of the anisotropies from galactic to
extragalactic.

5. Conclusions and outlook
We have updated the anisotropy searches using arrival directions of UHECRs detected at the

Pierre Auger Observatory. For the highest energies, the most significant results are the overdensity
at the Centaurus region, with a post-trial 𝑝-value of 3.0 × 10−5 (4.0𝜎) and the likelihood result for
the starburst catalog, with a post-trial 𝑝-value of 6.6 × 10−5 (3.8𝜎). With the current growth, the
former excess could reach 5𝜎 by the end of 2025 ± 2 years, (165, 000 ± 15, 000) km2 yr sr. The
promising inclusion of mass-composition estimators on an event-by-event basis with AugerPrime
(and improved mass estimators with Phase 1 data) will give us insight into these excesses.
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Figure 6: Equatorial dipole amplitude (left panel) and phase (right panel) for the energy bins where we used
the 1500 m main surface array (purple circles) and the 750 m infill one (green circles). We show the 99%
C.L. upper limits for the energy bins in which the obtained amplitude has a P(≥ 𝑑⊥)> 1%. Results from
IceCube and KASCADE-Grande are also shown for comparison [12].

Furthermore, we have studied the regions in the sky where the TA Collaboration has reported
excesses in their data and, with comparable statistics, we have not found any significant results.

Regarding the analyses done for large angular scales, the significance of the equatorial dipole
for the ≥ 8 EeV cumulative energy bin is now at 6.9𝜎 and that between 8-16 EeV is now 5.7𝜎.
The quadrupolar moments are not significant. The dipole amplitude increases with energy and
with future event-by-event mass-composition estimators, we will be able to study the dipole growth
separating the “lighter” and “heavier” events. A difference between the two populations is expected
due to their different rigidities. We have computed the equatorial component of the dipole down to
0.03 EeV and the results suggest that the anisotropy has a predominant galactic origin below 1 EeV
and a predominant extragalactic one above few EeV. This adds to the indications of an extragalactic
origin above 8 EeV when only looking at the direction of the reconstructed 3D dipole at that energy.
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