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Exploring physics at energies beyond the reach of human-built accelerators by studying cosmic
rays requires an accurate reconstruction of their energy. At the highest energies, cosmic rays are
indirectly measured by observing a shower of secondary particles produced by their interaction
in the atmosphere. At the Pierre Auger Observatory, the energy of the primary particle is either
reconstructed from measurements of the emitted fluorescence light, produced when secondary
particles travel through the atmosphere, or shower particles detected with the surface detector at
the ground. The surface detector comprises a triangular grid of water-Cherenkov detectors that
measure the shower footprint at the ground level. With deep learning, large simulation data sets
can be used to train neural networks for reconstruction purposes.
In this work, we present an application of a neural network to estimate the energy of the primary
particle from the surface detector data by exploiting the time structure of the particle footprint.
When evaluating the precision of the method on air shower simulations, we find the potential to
significantly reduce the composition bias compared to methods based on fitting the lateral signal
distribution. Furthermore, we investigate possible biases arising from systematic differences
between simulations and data.
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1. Introduction

The Pierre Auger Observatory is at this time the largest cosmic ray detector of its kind. It
is designed to measure showers of secondary particles produced by cosmic rays interacting in the
atmosphere. During clear moonless nights, 24 fluorescence telescopes (FD) observe the longitudinal
development of the electromagnetic component of air showers allowing for a calorimetric energy
estimate of the primary particle [1]. Additionally, 1600 water-Cherenkov detectors forming the
surface detector (SD) measure the signal deposited by incident particles with almost 100% duty
cycle [1]. The integrated signal expected at a detector at 1000 m from the impact point of the
shower core is strongly correlated to the energy of the primary cosmic ray particle [3, 4]. However,
the shape of the time traces in different SD stations, which is not used with standard methods, may
contain useful information to improve energy reconstruction. Neural networks (NN) comprise a
method to extract this information from the time traces efficiently.

1.1 The reference energy estimator

As a reference model, an analytical method mimicking the current standard method of energy
reconstruction [2] is applied for the Monte Carlo test data set. As explained in Refs. [3, 4], the
shower size 𝑆(1000) is derived from a fit of the signal as a function of the distance to the shower
core with a lateral distribution function. Afterwards, the direct energy calibration (DEC) can be
performed,

lg(𝐸/eV) = 𝐴 + 𝐵[lg(𝑆(1000)/VEM) − lg 𝑓att(𝑥)], (1)

where 𝑓att(𝑥) = 1 + 𝑎 𝑥 + 𝑏 𝑥2 + 𝑐 𝑥3 describes the attenuation of the shower particles as a function
of 𝑥 = sin2 𝜃 − sin2(38◦) with the zenith angle 𝜃 of the shower, and 𝐴 and 𝐵 are the calibration
parameters at the reference zenith angle of 38◦ to the Monte Carlo energy.

1.2 The training of the neural network

The showers used for the training of the network were simulated with Corsika [5], using
Epos-LHC [6] as hadronic interaction model. The detector response was simulated with the Offline
software [7] based on Geant4 [8]. The energy of the ∼580 000 showers used for the training ranges
from 1018 to 1020.2 eV, following a spectral index of −1. The zenith angle ranges from 0 to 65◦

and follows a uniform distribution in sin2 𝜃. This distribution is expected above the atmosphere
for an isotropic flux of primaries. For the mass composition, a uniform mixture of proton, helium,
oxygen, and iron is chosen. About 16% of these showers provide an independent test data set.
On the station level, the time traces for the triggered PMT, as well as trigger time information, is
available for each event. Each of the detectors is equipped with three photomultiplier tubes (PMT).
The average trace for the triggered PMTs of one detector station is computed. The first 120 time
bins (1 time-bin = 25 ns) [1] after the start bin defined in the trigger algorithm are provided as input
for the NN. This trace is given in a logarithmic form, 𝑆(𝑡) = lg(𝑆(𝑡)/VEM+1)/lg(100+1). So that
non-triggered stations are provided with zeros only. Three convolutional layers are applied until
each of the traces is compressed down to 10 features. These 10 features of a station are concatenated
with 𝜏hot,𝑖 = (𝑡hot − 𝑡𝑖)/𝜎Δ𝑡 , where 𝑡𝑖 is the trigger time of station 𝑖, 𝑡hot is the trigger time of the
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Figure 1: Bias 𝜇, and resolution 𝜎 of the NN predictions as a function of energy lg(𝐸MC/eV). The four
different primary particles proton (p), helium (He), oxygen (O), and iron (Fe) are plotted. Only showers with
zenith angles below 60◦ are considered. For comparison, bias and resolution is also shown for the reference
energy estimator, the direct energy calibration (DEC).

station with the highest signal, and 𝜎Δ𝑡 is the standard deviation of the time differences 𝑡hot − 𝑡𝑖
for the simulated set of showers. The spatial distribution of these 11 features is processed by five
separable two-dimensional convolutional layers.

Since the detectors of the SD are placed on a triangular grid, the network has to be provided
with this symmetry. Following the approach of Ref. [9], the triangular grid is transformed into a
rectangular grid. That way, each shower footprint is rotated and reflected in a pre-defined azimuth
range of 30◦ by twelve unique transformations of the triangular grid. The network is provided
with a grid of 5×5 stations, the station with the highest signal being the central one. Since this
transformation changes the neighborhood of grid positions, the 3×3 kernel used for the spatial
convolution is constrained to be zero for positions that are not actually one of the six neighbors of its
center. Finally, the output of the last convolutional layer is flattened, and a densely connected layer
produces the network output 𝜇 and 𝜎 describing the Gaussian probability density function (PDF)
of the prediction. The neural network is trained to predict the label 𝑦 = lg(𝐸MC/eV) − 19.35,
as it is beneficial for the target values to lie between 1 and −1. The loss function is the negative
log-likelihood of the probability the true energy was chosen from the predicted Gaussian PDF
described by 𝜇 and 𝜎,

LossMDN(𝑦; 𝜇pred, 𝜎pred) = lg(𝜎pred) + 1
2 lg(2 𝜋) + (𝑦−𝜇pred )2

2 𝜎2
pred

. (2)

The optimization is performed by the Adam algorithm [10] with a learning rate of 0.0015, 𝛽1 = 0.9,
and 𝛽2 = 0.999. During the training, the EarlyStopping and ReduceLROnPlateau callbacks,
available in the TensorFlow framework [11], supervise the training additionally. The training
procedure is done 10 times, and the network with the best validation loss is selected. This network
was trained for 53 epochs. In Fig. 1, the bias and resolution are shown for the selected network. It
can be seen that the mass-dependent bias between proton and iron primaries is reduced from about
±10% for the DEC to ±4% for the NN, while also an improved resolution is obtained with the NN.
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2. Performance on measured events

For a set of hybrid events that are successfully reconstructed with SD and FD, the NN prediction
can be compared to the calorimetric energy estimate 𝐸FD from the FD. Only showers within the range
of full SD efficiency [1] (i.e. with 𝐸FD > 1018.5 eV) are considered. The data set consists of 3879
events collected between 2005 and 2022. Due to systematic differences between MC simulations
and data, like detector aging and muon deficit, the predictions are expected to be biased.

2.1 Detector aging

In contrast to simulations, the response of actual detectors suffers from aging effects, which are
effectively described by a change of the so-called area-over-peak variable 𝐴/𝑃 [12] over time. The
𝐴/𝑃 is given by the ratio of the deposited charge over the peak signal a vertical muon on average
produces in the detector. The two values are obtained either with online calibration, performed by
station software, or with an offline calibration procedure where calibration histograms are fitted [1].
As shown in Fig. 2, there is a long-term drift of 𝐴/𝑃 values observed in the detectors, which is
mostly attributed to the decrease of the reflectivity of the inner side of the liner (i.e. the plastic bag
that holds the water volume of the water-Cherenkov detector) or a change in the absorption length of
photons in the water [12]. A change in 𝐴/𝑃 results in a change of the shape of the signal traces and,
thus, affects the predictions of the NNs in contrast to the standard reconstruction where integrated
signals are considered. The current Monte Carlo simulation setup, used for generating the training
data set, gives us a constant area-over-peak of (𝐴/𝑃)MC = 3.2.

After a number of photons is produced in a water-Cherenkov detector, it approximately evolves
according to an exponential decay. The wavelength-dependent decay time 𝜏 is related to the detector
properties as

1
𝜏(𝜆) =

𝑐

𝑛(𝜆)

(
1

𝐿 (𝜆) + [1 − 𝑅(𝜆)] 𝐴WCD

4𝑉WCD

)
, (3)

where 𝜆 is the wavelength of the photon, 𝑛(𝜆) ≈ 1.33 is the water refraction index, 𝑐 is the speed of
light, 𝐿 (𝜆) is the absorption length in water, 𝑅(𝜆) is the reflectivity of the liner, 𝐴WCD is the inner
area of the detector, and 𝑉WCD the water volume in the detector. The depth of the water volume
is ℎ = 1.2 m and the radius of the water cylinder 𝑟 = 1.8 m [1]. Using an effective absorption
length of 𝐿 ≈ 100 m and reflectivity 𝑅 = 0.94 over the whole wavelength range 𝜆, we obtain values
around 𝜏 = 86 ns for the decay time. Note that the detector response in time 𝑡 is approximated with
a truncated exponential decay

𝐷𝛼 (𝑡) = 1
𝛼

exp
(
− 𝑡

𝛼

)
Θ(𝑡). (4)

where 𝛼 is the decay constant and Θ(𝑡) is the Heaviside step function. The signal measured by
a detector is given by a convolution of the distribution of arriving particles 𝑝(𝑡) with the detector
response 𝐷𝛼 (𝑡). For example, for a single arriving particle at 𝑡 = 𝑡1, we have 𝑝(𝑡) = 𝛿(𝑡 − 𝑡1) and,
thus, its measured signal is given by

𝑆𝛼 (𝑡) = 𝑆1
𝛼

exp
(
− 𝑡−𝑡1

𝛼

)
Θ(𝑡 − 𝑡1), (5)
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where 𝑆1 is the signal deposited by one particle. We can define the area 𝐴 and the peak 𝑃 of the
resulting signal as,

𝐴Δ𝑡 =

∫ ∞

−∞
𝑆𝛼 (𝑡) d𝑡 =

∫ ∞

−∞

𝑆1
𝛼

exp
(
− 𝑡

𝛼

)
Θ(𝑡) d𝑡 ≡ 𝑆1, and 𝑃 = 𝑆𝛼 (𝑡=𝑡1) =

𝑆1

𝛼
, (6)

where Δ𝑡 = 25 ns is the sampling frequency of the ADC. From this definition we see that the 𝐴/𝑃 is
simply related to the decay time of the detector response in Eq. (4), i.e. 𝐴/𝑃 = 𝛼/Δ𝑡. The equivalent
area-over-peak for a decay time of 𝜏 = 86 ns is therefore, 𝐴/𝑃 = 𝜏/Δ𝑡 ≈ 3.4. In Fourier space, the
detected signal can be simply written as the product, 𝑆𝛼 (𝜔) = 𝑝(𝜔) �̃�𝛼 (𝜔), where 𝜔 is the angular
frequency. For modeling the long-term performance we can change the signal 𝑆𝛼 (𝑡) measured with
a detector response 𝐷𝛼 (𝑡) to the signal that would have been observed with another decay constant
𝛽, which is particularly simple with Fourier transforms (FT),

𝑆𝛽 (𝜔) = 𝑆𝛼 (𝜔)
�̃�𝛽 (𝜔)
�̃�𝛼 (𝜔) = 𝑆𝛼 (𝜔) �̃�𝛼→𝛽 (𝜔), (7)

where �̃�𝛼→𝛽 (𝜔) is the FT of the convolutional kernel 𝐾 (𝑡)𝛼→𝛽 . The FT of the detector response
𝐷𝛼 (𝑡) is given by �̃�𝛼 (𝜔) = i/(i−𝛼𝜔). Therefore, the time-domain kernel for partial de/convolution
from response with decay time 𝛼 to decay time 𝛽 is given by

𝐾𝛼→𝛽 (𝑡) =
∫ ∞

−∞
�̃�𝛼→𝛽 (𝜔) 𝑒i𝜔𝑡 d𝜔 =

∫ ∞

−∞

�̃�𝛽

�̃�𝛼
𝑒i𝜔𝑡 d𝜔 = 𝑟 𝛿(𝑡) + (1 − 𝑟)𝐷𝛽 (𝑡), (8)

where 𝑟 = 𝛼/𝛽 is the ratio of the decay times or the respective area-over-peak ratios. We can
immediately observe two useful properties of this kernel: (a) a trace remains unchanged when the
kernel is applied with 𝛼 ≡ 𝛽, and (b) the kernel does not change the integral of a trace (since both
𝛿 and 𝐷𝛽 preserve the norm), and, thus, the kernel does not change the total signal. Furthermore,
examining the structure of the kernel, the first term produces a copy of a trace scaled by a factor 𝑟
while the second term is partially convolving or deconvolving a trace with weight 1− 𝑟 when 𝛽 > 𝛼
or 𝛽 < 𝛼, respectively. From an original signal trace 𝑆(𝑡) with a given area-over-peak 𝐴/𝑃 and
𝛼 = 𝐴/𝑃Δ𝑡, an aging-corrected trace 𝑆′(𝑡) with the nominal area-over-peak (𝐴/𝑃)MC = 3.2 value
and 𝛽 = (𝐴/𝑃)MC Δ𝑡 is produced with the following folding integral

𝑆′(𝑡) =
(
𝑆 ∗ 𝐾𝛼→𝛽

)
(𝑡) =

∫ ∞

−∞
𝐾𝛼→𝛽 (𝑡′) 𝑆(𝑡 − 𝑡′) d𝑡′. (9)

In Fig. 2, an example for the partial de/convolution of a time trace is shown. As in most cases, the
difference in 𝐴/𝑃 is quite small, the difference between the original and the partially de/convolved
traces is only barely visible. However, for saturated traces the flat plateau is not reproduced.
Therefore, for future analysis the partial de/convolution will be changed so that the trace is not
changed where it is saturated.

The NN prediction of the primary energy on measured data shows a bias dependent on the
average area-over-peak ⟨𝐴/𝑃⟩ of the triggered stations in the respective events, which is undesirable
in an optimal estimator of energy. When the partial de/convolution of the traces is performed
according to Eq. (9), the ⟨𝐴/𝑃⟩ dependence of the bias is almost removed (see Fig. 3). However,
a global bias of the order of 5% is observed and needs to be corrected. After the bias correction
discussed in the following section is performed, the additional partial de/convolution of the input
traces leads to an improvement of the resolution of the corrected predictions of ∼0.7% above
1018.5 eV.
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Figure 2: Left: A typical long-term evolution of the area-over-peak 𝐴/𝑃 for one PMT of a randomly chosen
station (104, in this case) obtained from the Auger monitoring system. The blue line denotes the current
value of (𝐴/𝑃)MC = 3.2 in simulations. Right: Typical cases for partial de/convolution. The blue line
(underneath the black dashed line) represents the original trace, while the red curve corresponds to the
partially de/convolved trace that should match the (𝐴/𝑃)MC = 3.2 of Monte Carlo simulations. Partially
de/convolving the transformed trace back to the original 𝐴/𝑃 results in the black dashed line.

2.2 Bias correction

The models used to simulate ultra-high-energy particle showers do not fully reproduce the
measurements. In fact, more muons are observed in measurements than are predicted by hadronic
interaction models [13]. As the algorithm developed by the NN is very complex, it is hard to predict
the effect of such mismatches between training data and measured events on the predictions. First,
it is observed that the energy is, on average, overestimated. It is suspected that an increase in the
number of muons produced in the shower leads to more particles reaching the ground, causing
higher signals at the stations. Moreover, a zenith-dependent bias is observed. Understanding the
cause of this bias is still a work in progress. Nevertheless, correcting for it on average is possible
by fitting a linear calibration function 𝑓cal in sec 𝜃 to the energy bias observed in the hybrid data
set using the least-squared method. In Fig. 3, the bias for the NN on hybrid data is shown together
with the calibration fit. Please note that the calibrated prediction 𝐸cal

pred = 𝐸pred/[ 𝑓cal(sec 𝜃) + 1] is,
on average unbiased with respect to 𝐸FD, as the calibration function contains not only the zenith
dependence but also a constant offset. With the bias correction the resolution of the predictions is
reduced by ∼2% for events above 1018.5 eV.

In Fig. 4, the performance for the corrected predictions is shown. It is observed that bias
and resolution are competitive with the standard reconstruction. However, the superiority of the
NN (see Fig. 1) is lost. This is due to different reasons, such as additional systematic differences
between simulations and measurements, which are all a subject of further investigations. Moreover,
as the energy in the standard reconstruction is calibrated to the hybrid data set, no effects from the
mass-dependent bias are expected for a smooth change in the composition. For the NN, however,
a composition change with energy will introduce an energy-dependent bias. Nevertheless, for a
composition that is changing faster, or at energies where the hybrid data set does not provide enough
data, the NN is expected to be less affected due to its mass-dependent bias having only half the
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Figure 3: Left: Bias 𝜇 of the energy 𝐸pred predicted by the NN compared to the FD reconstructed energy 𝐸FD
as a function of the average area-over-peak ⟨𝐴/𝑃⟩ of the triggered stations in the respective events. After the
partial de/convolution of the measured data traces (black circles), the NN prediction no longer depends on
the average 𝐴/𝑃 of the event. For visualization, linear fits to the relative errors as a function of ⟨𝐴/𝑃⟩ in the
range (2.9<⟨𝐴/𝑃⟩<3.2) are shown (dashed lines). The histogram indicates the distribution of ⟨𝐴/𝑃⟩. Right:
Correction of the zenith-dependent bias 𝜇. The calibration function 𝑓cal (sec 𝜃) = 𝑝1 sec 𝜃 + 𝑝0 (dashed line),
is derived by a least-squared fit to the relative error with respect to the FD reconstructed energy of the hybrid
events. The calibrated predictions are obtained with 𝐸cal

pred = 𝐸pred/[ 𝑓cal (sec 𝜃) + 1] (green ×).
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Figure 4: Bias 𝜇, and resolution 𝜎, for NN predictions of showers with reconstructed energy from FD above
1018.5 eV (green ×). The sec 𝜃 calibration and the partial de/convolution of the input traces is applied. For
comparison, the results of the standard reconstruction are shown (orange hexagons).

magnitude of the standard reconstruction, see Fig. 1.

In Fig. 5, the correlation of the corrected NN predictions with the standard reconstruction for
the 273 277 events above 1018.4 eV collected between 2004 and 2021 with successful reconstruction
of the SD data is shown. The same calibration function derived from the hybrid data is used for the
bias correction. In general, there is good agreement between the NN prediction and the standard
reconstruction. Nevertheless, the observed biases need to be further investigated.
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3. Conclusions

Figure 5: Correlation between corrected NN predic-
tion 𝐸NN and energy obtained from the standard re-
construction 𝐸SD for events with successful SD recon-
struction. The marginal plots show the profile of the
ratio of the two energy estimates.

We have shown that the NN can extract use-
ful information from the time traces of the sur-
face detector. By exploiting the time structure
of the signal, we find the potential to reduce the
mass dependency of the energy reconstruction
compared to the standard methods. When ap-
plied to real operating conditions, using hybrid
events, systematic differences between simula-
tions and measured data cause the NN predic-
tions to lose their superiority. Furthermore, the
high precision of the standard reconstruction
optimized for the observed composition may
not leave too much room for improvement in
terms of the resolution and bias. Nevertheless,
due to the reduced mass-dependent bias, the
use of the NN can be beneficial, if a mass com-
position different from the hybrid data set is
considered. To interpret the differences found
between the NN predictions and the standard
reconstruction, the observed zenith-dependent bias has to be investigated in more detail. Further-
more, we plan to examine the composition dependency of the energy estimators for the measured
data using mass-sensitive observables, like the shower maximum 𝑋max and the muon content of
the shower [14, 15]. Moreover, the scintillator detectors installed as a part of the AugerPrime
upgrade [16] will improve the mass separation capabilities on the event-by-event level.
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