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The combined rotational and time-reversal symmetry breakings that define an altermagnet lead to an unusual
d-wave (or g-wave) magnetization order parameter, which in turn can be modeled in terms of multipolar magnetic
moments. Here, we show that such an altermagnetic order parameter couples to the dynamics of the lattice even
in the absence of an external magnetic field. This coupling is analogous to the nondissipative Hall viscosity and
describes the stress generated by a time-varying strain under broken time-reversal symmetry. We demonstrate
that this effect generates a hybridized paramagnon-polaron mode, which allows one to assess altermagnetic
excitations directly from the phonon spectrum. Using a scaling analysis, we also demonstrate that the dynamic
strain coupling strongly affects the altermagnetic phase boundary, but in different ways in the thermal and
quantum regimes. In the ground state for both 2D and 3D systems, we find that a hardening of the altermagnon
mode leads to an extended altermagnetic ordered regime, whereas for nonzero temperatures in 2D, the softening
of the phonon modes leads to increased fluctuations that lower the altermagnetic transition temperature. In 3D
even at finite temperatures, the dominant effect is the suppression of quantum fluctuations. We also discuss the

application of these results to standard ferromagnetic systems.

DOLI: 10.1103/PhysRevB.108.144418

I. INTRODUCTION

Ferromagnets and antiferromagnets are states of broken
time-reversal symmetry with finite uniform or staggered
magnetic dipole moments arising from uniform or periodic
configurations of the electronic spin. A rather different type
of magnetic order, which has recently received significant at-
tention [1-18], is multipolar magnetism, which exhibits more
complex patterns despite having zero net (staggered) magneti-
zation. Time-reversal symmetry breaking in these cases is due
to the formation of magnetic quadrupoles, octupoles, toroidal
moments, or higher-order configurations of dipole moments
whose averaged magnetization vanishes by symmetry. When
the symmetry characterizing the ordered state involves a com-
bination of rotations and time reversal, the system is known as
an altermagnet [1-7,19]. In many of the cases studied so far,
the altermagnetic order parameter corresponds to a d-wave or
g-wave magnetization, which in turn can also be expressed
in terms of multipolar magnetic moments [17,20,21]. More
broadly, these altermagnetic states correspond to even-parity
spin-triplet Pomeranchuk instabilities of the Fermi liquid [22].
In particular, the nematic-spin-nematic state proposed and
investigated in Refs. [23,24] has an order parameter corre-
sponding to a d-wave magnetization, which is the same order
parameter proposed for the various candidate altermagnetic
compounds [3,6,19].

In dipolar magnetic materials, such as standard ferro- and
antiferromagnets, changes in the lattice parameter modify the
exchange interaction between the spins. Such a magnetoelas-
tic coupling has important consequences, e.g., the emergence
of hybrid magnon-acoustic phonon modes in the magnetically
ordered state, called magnon-polarons [25]. In multipolar
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magnetic materials, however, different types of coupling be-
tween the magnetization M; and the strain &;; are allowed
[6,26-29]. Formally, while the magnetoelastic effect is asso-
ciated with the magnetostriction response tensor N ji;, defined
as €;; = NijuMiM;, several higher-order multipolar magnetic
states, including altermagnets, have a nonzero piezomagnetic
response tensor A;ji, defined by &;; = A; ;M [26]. A direct
consequence of the piezomagnetism of these altermagnets is
that application of a magnetic field should lead to a (possibly
symmetry-breaking) lattice distortion in the ordered state—or,
alternatively, a lattice distortion should induce a nonzero mag-
netization [30,31].

In this regard, multipolar order plays a role that is in
some aspects analogous to nematic order [32-34], in partic-
ular when the multipolar order is associated with a rotational
symmetry of the lattice, e.g., octupolar magnetic order. The
difference is of course that nematic order does not break
time-reversal symmetry which, as we will see, gives rise to
fundamental differences.

In this paper, we show that a subset of altermagnets (and
even some standard ferromagnets) displays another nontrivial
coupling between magnetic and elastic degrees of freedom.
By this effect, a strain mode er~+ that transforms as the I'"
irreducible representation of the relevant point group couples
to the momentum operator 7 that is canonically conjugate to
the fluctuating multipolar order parameter ¢ that characterizes
the altermagnetic state:

Hgyﬂ — )L?Ocz/d3x8p+(x)7[(x). (1

This effect is reminiscent of the Hall viscosity re-
sponse [35-39], which describes the stress o;; generated
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(nondissipatively) by a time-varying strain, o;; = Uijkl%-

In our case, it is the multipolar magnetic moment ¢ char-
acterizing the altermagnetic state that is generated by the
time-changing strain.

Importantly, this dynamic paramagnon-phonon coupling
is fundamentally different from the more standard static
coupling generated by magnetostriction, which is given
by [25,40]

/Hznag—el = / dSXNijk[Sij ()i (x) ey (x), @

where N, is the magnetoelastic tensor introduced above and
¢; are the components of the (staggered) magnetization. Such
a static coupling also hybridizes the magnetic and elastic
collective excitations, giving rise to magnon-polaron modes
[25,40]. This effect is most relevant when the phonon and
magnon branches cross, where it opens a gap and it can even
promote nontrivial topological effects [41,42]. In contrast,
as we show in this paper, the dynamic coupling of Eq. (1)
plays an important role even if the paramagnon and phonon
dispersions do not cross. We note that while the dynamic cou-
pling is not allowed in an antiferromagnet due to momentum
conservation, it may arise in ferromagnets with appropriate
underlying crystalline symmetries. As we will show later, this
is the case for orthorhombic ferromagnets. In contrast, the
magnetoelastic coupling of Eq. (2) has at least one term al-
lowed regardless of the underlying crystalline symmetry Nj;;;
corresponding to a volume change caused by magnetic order.

Here, we first study the impact of this dynamic strain-
multipolar moment coupling on the elastic-magnetic col-
lective modes of the paramagnetic phase, i.e., before any
multipolar magnetic long-range order sets in. We demonstrate
the emergence of a hybridized paramagnon-polaron mode,
which opens the possibility of detecting the dispersion of
the paramagnetic altermagnons (or magnons) directly from
the phonon spectrum. Moreover, we also point out that this
coupling can be understood as a two-mode squeezing [43,44]
of the elastic and magnetic multipolar modes.

Second, we investigate how the altermagnetic-to-
paramagnetic transition is affected by the dynamic
strain coupling. We consider both thermal and quantum
fluctuations—indeed, by tuning appropriate parameters, it is in
principle possible to reach a quantum critical point [45-48]
where the altermagnetic transition temperature vanishes, or a
quantum disordered regime where altermagnetic fluctuations
affect the ground state without long-range order. Surprisingly,
we find distinct effects of the dynamic coupling on thermal
and quantum fluctuations. In the important regime where the
bare magnon velocity is larger than the phonon velocities,
thermal fluctuations are boosted by the altermagnon-phonon
coupling. In 2D, these fluctuations are strong enough to
suppress the ordering temperature. On the other hand,
quantum fluctuations are suppressed by the same coupling,
leading to an increased regime of stable altermagnetic ground
states. In 3D where thermal fluctuations are weaker, this
suppression of quantum fluctuations is the dominant effect
and coupling to phonons causes an increase in the ordering
temperature. These behaviors are illustrated by the phase
diagrams in Fig. 1.

This paper is organized as follows: in Sec. II, we define
our multipolar magnetic order parameter and its coupling to
strain. In Sec. Il A, we construct a ¢* theory for the altermag-
netic degrees of freedom and write down the elastic theory for
the crystal in question. Having done so, we are then able to
calculate an effective field theory for the altermagnons, and
derive the altermagnon and phonon dispersions and spectral
functions, this is presented in Sec. III B. In Sec. IV, we then
perform an RG (renormalization group) calculation for the
altermagnon propagator in the crossover regime, yielding the
phase diagram for the system. Section V contains the sum-
mary and conclusions, including the possible extension of our
results to certain ferromagnets.

II. DYNAMIC COUPLING BETWEEN STRAIN
AND MULTIPOLAR ORDER

We start by defining the multipolar moment of an alter-
magnet. Consider a magnetic order parameter ¢ transforming
under an irreducible representation I'~ which, by construc-
tion, is odd under time reversal, as indicated here by the
superscript “—." Let I'; be the representation of the mag-
netic field component H,, i.e., the representation according
to which magnetic dipoles transform under the point group
operations. If I'" =T, we have the usual ferromagnetic
order parameter

¢ (x) ~ D echx)Ien(x), 3)
ab

where J* is an angular momentum operator and a and b stand
for spin and orbital indices. cZ (x) and ¢,(x) are corresponding
electron annihilation and creation operators. In the simplest
case, J is one of the Pauli matrices; in general, it also in-
cludes an orbital moment. Other representations that are odd
under time reversal but different than I'; form higher order
multipolar magnetic order parameters that behave like (see
also Ref. [20])

o~ 3 [ d e <x " ’%)J;,,cb (x - %) @
ab

with some form factor f(x). Clearly, f(x) = §(x) recovers
the ferromagnetic order parameter in Eq. (3). The same is
true if f(x) transforms trivially under point-group operations.
However, other form factors that transform nontrivialy give
rise to higher-order multipoles [21]. In particular, when f(x)
corresponds to d-wave, g-wave, or i-wave form factors, these
order parameters describe an altermagnet [3,19]. The underly-
ing distribution of the spin (or orbital moment) density in the
unit cell is most naturally a consequence of multiple atoms per
unit cell, even in situations where there is only one electronic
band crossing the Fermi surface. In what follows, we focus on
these types of multipolar order parameters.

In order to motivate the coupling of strain and multipolar
magnetic order, we briefly summarize the established case of
strain coupling of a nematic order parameter n. Suppose 7
transforms under a representation I'", which is, by definition
of a nematic state, time-reversal even. Then it couples to strain
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FIG. 1. (a) Altermagnetic transition temperature 7; in a 2D system as a function of the dynamic strain coupling constant A of Eq. (1)
for different values of the bare altermagnon mass m, = ry/A%. Note that my < 0 (m, > 0) defines the ordered (disordered) state without the
coupling to the lattice and the ¢* mode coupling. The dynamic coupling to phonons suppresses order at finite temperature, but enhances or
even induces order at zero temperature. (b) Altermagnetic 7, in a 2D system as a function of m, for different values of 1. (c) and (d) show the
same information as panels (a) and (b) respectively but for a 3D system. These plots refer to the regime ¢ > vy, r; the opposite regime is shown

in Fig. 7.
in the Hamiltonian H via the nematoelastic coupling

n.e.
He

&)

= )\n,e,fd3xsr+(x)n(x).
er+ 1s the combination of strain tensor elements that trans-
forms like T't; see below for examples. This coupling gives
rise to a structural distortion at a nematic transition. Even
without nematic long-range order, one can relate the nematic
susceptibility and the elastic constants [49]. The latter gets
softened whenever there is a large nematic susceptibility and
a sizable coupling constant A, .

A coupling of the type Eq. (5) is not allowed for multipolar
order ¢, even if it transforms like the elastic strain tensor under
the symmetry operations of the crystal. The issue is that strain
is even under time reversal and will not directly couple to
magnetism. One way to resolve this is by adding an external
magnetic field H,. Then a symmetry-allowed coupling of the

kind
Hi=3"

emerges, provided I'™ € FJ_a ® Fi+ , .., the product represen-
tation of field and strain contains I'~. This is just another
way of expressing the piezomagnetic response of a multipolar

Y hiiHe f Prers (0pE), ()

A=X,V,2

magnet, &;; = A;jxMy, which makes explicit the proportional-
ity between the relevant piezomagnetic tensor elements A;jx
and the multipolar magnetic order parameter ¢. Couplings of
the type Eqgs. (5) and (6) are static and thus occur for generic,
nondynamic order parameter configurations [26,30].

If one, however, considers the dynamics of the order pa-
rameter, one can identify another direct coupling to strain
that does not require a finite magnetic field. First, note that
an order parameter ¢(x) has under rather generic dynamics
a conjugated momentum 7 (x). In the quantum regime, this
implies the canonical commutation relations [¢(x), 7 (x")] =
iné(x — x'), while in the classical regime the dynamics fol-
lows from the corresponding Poisson brackets. Since ¢ is odd
under time reversal, 7 is even and hence transforms as I'".
This implies that strain and multipolar order couple like the
one given in Eq. (1), provided that there are combinations
of the strain tensor ¢;; that transform as I'*. Expressed in
terms of an action, this coupling takes, after eliminating the
conjugated momentum 7 in favor of the time derivative of the
order parameter d. ¢, the form

soo =20 (" e [
e =7 ) T xer+(x, T)0:¢(x, T). @)

Here, Ao is a coupling constant and 8 = 1/T the inverse
temperature and 7 the imaginary time. ¢ given in Eq. (1) is
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a velocity, which will be properly defined below. As we will
see below, A is dimensionless. Hence, for systems with strong
coupling to the lattice, a natural value of the coupling constant
isAg ~ 1.

In contrast to the piezomagnetic coupling of Eq. (6), the
interaction Eq. (1) or, equivalently, Eq. (7) does not affect
static field configurations. However, it strongly mixes the
dynamics of lattice and magnetic degrees of freedom and is
present even in the absence of an external magnetic field. As
we will see, it opens up the possibility to observe dynamical
multipolar magnetic fluctuations via Raman [50-54] or neu-
tron scattering [55-59], even in the magnetically disordered
state. We further motivate such a coupling in the Appendix.
The analysis of the coupling in Eq. (7) is the content of the
rest of this paper.

The formulation in Eq. (7) allows us to make the afore-
mentioned connection to the Hall viscosity explicit. The
relationship between dynamic strain and stress is given
by [60]

0ij = Cijki€xi — Nijki O €kl 8)

with the usual elastic constants C;ji; and the viscosity tensor
nijki- The second term takes into account that deforma-
tions performed at a finite speed are dissipative and produce
heat. Indeed, elements of the viscosity tensor that are sym-
metric under the exchange of ij «<— kl contribute to the
entropy production. However, antisymmetric contributions are
nondissipative. Due to the Onsager reciprocity relation such
antisymmetric components occur as a consequence of broken
time-reversal symmetry. Let us consider a system without
altermagnetic fluctuations but in an external magnetic field.
In the presence of a finite magnetic field it is allowed for
the antisymmetric components to be nonzero. An example,
relevant to the point group Dy, which we discuss in detail
below, is the Hall viscosity

_nxxxy(_Bz) = . (9)

The Hall viscosity contribution in the action that yields the
equation of motion Eq. (8) is then

r]H = r)xyxx(Bz) =

1
&m=—?ﬂfdm%&m—%ﬂm%

- (Exy + 8)'x)(318xx - 81’£yy)]~ (10)

Comparing this with Eq. (7) shows that n (B,)d.&,, plays
the same role as 9,¢ if we consider ' = By,. Since
n(B,) = —n" (—B.) both are odd under time reversal and
both transform the same way under point group operations.
The fluctuating field due to the altermagnetic order parameter
suffices, which is why Eq. (7) does not require an external
magnetic field. The dynamics of the order parameter induces
nondissipative stress, in analogy to the Hall viscosity re-
sponse.

To proceed, we consider specific crystalline point groups
and altermagnetic order parameters. Here for simplicity we
first focus on layered but three-dimensional systems. Let
us consider a tetragonal system with point group Dy [61].
Magnetic order that preserves lattice translations should
transform under one of the five irreducible representa-
tions of the point group that are odd under time reversal

(see also Ref. [62]). Of those, A2_g and E, correspond to
ferromagnetic states with magnetization along the z axis
and in the x-y plane, respectively. Those form magnetic
dipoles, i.e., usual magnetic order. In addition, one can form
higher order moments that transform like A7 g, or ng.

Along the k, = 0 plane, the form factors of Eq. (4) in mo-
mentum space are fB;g(k) = sin k; sink,, fB{g(k) =cosk, —
cos ky, and fA;g(k) = fB;g(k)fB;g(k)- In all cases, the spins

point out of the plane. Note that the Aj, state corresponds to
a magnetic dotriacontapole, while the other two form mag-
netic octupoles. They can be understood as charge multipoles,
characterized by the form factor f(x), which modulate a pseu-
dovector s that by itself transforms line a magnetic dipole
[21]. Thus, if f(x) describes a quadrupolar (hexadecapolar)
distribution, i.e., with angular moment [ =2 (I = 4), then
¢(x) corresponds to an octupolar (dotriacontapole) magnetic
moment with j =14+ 1=3 (j =1+ 1=15). To clarify our
notation, we use the subscript fr- (k) as the irreducible rep-
resentation of the order parameter, not of the form factor
function f(k) itself. From Eq. (4) follows I'" =T, @ I'y,
where I' is the representation of the form factor. The above
results follow with 'y = A7 .

All three states of multipolar order in Dy, are single com-
ponent states and can be described by an Ising order parameter
¢ [63]. To be specific, we assume below that ¢ transforms
according to B, which is the altermagnetic order parameter
proposed for MnF, [6,19]; the modifications for the other
symmetries are straightforward. The coupling to strain given
in Eq. (7) is then given as

A
wwzgﬁffm%@ﬁm, (11)

where g, (X) = €,,(x) — &y,(x).

To give another example, consider the octahedral group
O),. Dipolar magnetic order in this group transforms as the
three-dimensional irreducible representation 7},, amounting
to ferromagnetic order along the crystalline axes. In addition,
there are four multipolar order parameters that do not break
inversion symmetry: Aj, @ Al o Eg , and T,. Strain transforms
e1ther as AJr amounting to Volume changes €, + €,, + €.;;

+, with doublet (2€;; — €xx — €yy, €xx — €,y); and T;g' with
trlplet (€xy, €xz €z). Thus, if the order parameter transforms
like Az_g, there exists no strain field that can dynamically
couple via the conjugated momentum, while a field induced
coupling to T;g' strain via Eq. (6) is allowed. Both types
of couplings are allowed for the other two order parameter
options.

The group Oy, is relevant for PriM,Al, systems with tran-
sition metal M where multipolar order has been discussed
extensively [64-67]. However, the candidate state for mul-
tipolar magnetic order is A,, (ferro-octupolar order) and no
strain combination transforms as this irreducible representa-
tion. Hence, the coupling, Eq. (1) is not realized here.

III. MANIFESTATIONS OF THE DYNAMIC STRAIN

COUPLING ON THE COLLECTIVE MODES

The dynamic coupling in Eq. (7) between strain and a mul-
tipolar magnetic order parameter is particularly interesting in
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the regime where quantum fluctuations are strong, i.e., in the
quantum critical regime where the ordering temperature has
been suppressed to zero. In this regime, we can describe the
multipolar order in terms of a long-wavelength collective field
theory. We will first explore the implications of the interaction
Eq. (11) in the case of a single-component order parameter
with point group Dg;. In the next section, we will briefly
summarize the theory of multipolar order and fluctuations
without the dynamic coupling to strain. Then we will add
the strain coupling and analyze the resulting coupled problem
within a renormalized Gaussian approach. While the latter is
justified by the fact that we operate at the upper critical dimen-
sion, we go beyond the Gaussian theory and include critical
fluctuations using a one-loop renormalization group approach
in the next section. This method is particularly suitable to
determine the impact of the dynamic elastic coupling on the
phase boundary of multipolar magnetism.

A. Field theory for coupled multipolar
and elastic degrees of freedom

We briefly summarize the collective field theory of mul-
tipolar order in the absence of coupling to elastic degrees
of freedom. We consider an insulating system and analyze
the regime near its quantum critical point, i.e., the regime
where the quantum dynamics of the order parameter is most
important. The single-component system is described in terms
of an Ising order parameter and governed by the action

1
So =5 /(ﬁ(x)(ro —c 07 — V2)¢(x)+'4/¢(x)4~ (12)

Here x = (x, ) combines the spatial coordinates and the
imaginary time, while [ --- = [d’xdt---. The parameter
9, which is the mass term for the altermagnons, tunes the sys-
tem through the quantum critical point. ¢ is the altermagnon
velocity, which is of order of the typical magnetic interaction
J times the lattice constant. The coefficient u penalizes large-
amplitude fluctuations and bounds the action.

Before proceeding, we note that the situation is slightly
different for two-component multipolar order parameters, like
the Eg‘ state of Oy, (see also Ref. [62]). In this case, the order
parameter is governed by the action

1
Sy = 5;2 X¢,-<x)(ro — 7292 = V) i)

b f (610 + B (02
+v / (P1(x)* + ¢ (x)*)’
+w f 612 (1 () — 3o (0. (13)

This corresponds to the six-state clock model, and as such the
ground state is sixfold degenerate with the relative amplitude
between ¢; and ¢, obtained by minimizing the last term in the
action above. In the remainder of the paper, we will focus on
the case of an Ising-like magnetic multipolar order parameter.

At long wavelengths, we can write the elastic action in
terms of longitudinal and transverse phonon modes [68]

&:%Z ()07 + vV ) (). (14)

v=L,T ¥*

Here v = L and T corresponds to longitudinal and transverse
phonons with displacement «; and u7 and velocity v, and vy,
respectively. The velocities depend upon the elastic constants
of the system and, for the tetragonal crystal under considera-
tion, on the polar angle 6 of the momentum.

v; = %(011 — 12+ 2cu
+ (—ci1 + c12 + 2c44) cos (26)), (15)
v = %(011 + ca4 + (—c11 + caq) cos (20)).

For the system to be stable, it must follow that v, > vy.
Note that, for three-dimensional crystals, there is an additional
transverse mode. Since we are interested in the point group
operations relevant for the By, order parameter ¢, the crucial
lattice displacements are in-plane. Therefore hereafter we fo-
cus on a single transverse mode with predominant in-plane
polarization.

Finally, using the fact that ¢;; = (d;u; + d;u;)/2, we can
rewrite the dynamic coupling in Eq. (11) in terms of
the longitudinal and transverse displacements. After Fourier
transformation to momentum and Matsubara frequencies, we
find

2 @[(¢? — &) ur(~a) — 2q.qyur (—9)].

q gl
(16)

Here w, = 2wnT are Matsubara frequencies and g = (¢, w,).
The coupling is anisotropic, since at ¢ = (gy,0) and g =
(0, g,) only the longitudinal phonon couples to the multipolar
order parameter. On the other hand, for ¢ = (g, £q,), the
coupling is solely to the transverse phonons. This symmetry-
selective interaction can also be used to determine the nature
of the multipolar magnetism of unknown symmetry. If one
studies the spectrum of a phonon of well-defined symmetry
and observes traces of a magnon mode that vanish along spe-
cific high symmetry directions, one can deduce the symmetry
of the altermagnon.

S = 1o

B. Spectral functions and hybridized collective modes

For d =3 and T = 0, the quartic interaction u in Eq. (12)
is marginally irrelevant. Below we will account for the cor-
responding logarithmic divergencies using a renormalization
group approach. Anticipating the result of this analysis, we
account for the effects of the dynamic coupling on the collec-
tive elastic-altermagnetic modes by considering an effective
Gaussian theory with ry replaced by the renormalized mass
r. This allows us to analyze the spectral properties that follow
from the coupling in Eq. (11) or, equivalently, Eq. (16). This is
accomplished by integrating out one set of degrees of freedom
and then calculating the propagator for the remaining one.

Starting with the altermagnetic propagator, we note that
in the absence of the dynamic coupling, the collective
modes in the disordered phase are gapped altermagnons (i.e.,
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FIG. 2. Altermagnonlike (purple), longitudinal phononlike
(blue), and transverse phononlike (red) dispersions for momentum
directions along high-symmetry lines in the ¢, = O planes, plotted
for different values of the coupling strength Ay. The dispersions of
the phononlike and altermagnonlike modes are strongly influenced
by the coupling. The dashed lines show the “pure” modes without
coupling. The modes mix to a dynamic altermagnon-polaron at large
coupling values, leading to a softening of the phononlike modes
for given directions and a hardening of the altermagnonlike mode.
The modes are shown for 1o = 0, 0.5, 1, 1.5 with the shades getting
progressively lighter with increased coupling constants. We set
here ¢/v, = 3/2 and c¢/vy = 3. The altermagnon gap is given by
r = 0.1. A is a cutoff, as explained in the main text.

a
alter-paramagnons) with velocity c, as given by Eq. (12). After
integrating out the two phonon modes and performing the

analytic continuation to real frequencies iw, — w + i0t, we
obtain the Gaussian renormalized altermagnon propagator:

1

x(q, w) = , amn
r+q*— %A o)
where
2,2 3_ 2 2 4 5 2
Agoy=1- B[ a) e (18)

2 2 2,2 2 2
q w” — v, q w” — Vpq

The poles of this propagator in the case ¢ > vy, r are shown in
Fig. 2. Where we considered g, = 0 such that = 7 and the
phonon velocities are constant. This regime is relevant when-
ever electronic energy scales are larger than the lattice ones.
For completeness, we discuss the opposite regime below.

We see in Fig. 2 that the modes which initially correspond
to phonons also appear in the altermagnetic propagator. This is
a direct consequence of the hybridization promoted by the dy-
namic coupling. As such, the phonon and alter-paramagnons
are not independent modes, but hybridize into new collec-
tive modes that we dub paramagnon-polarons, inspired by
the nomenclature used in Ref. [25]. Figure 2 shows that as
the dynamic coupling increases, the phononlike modes are
softened whereas the gapped altermagnonlike mode is hard-
ened. The coupling is clearly anisotropic, as only one phonon
mode is softened along each of the high-symmetry directions
considered in Fig. 2—namely, g, = 0 (positive horizontal
axes) and g, = ¢, (negative horizontal axes). Away from the
critical point (r > 0), the altermagnonlike mode acquires a

q
A
cA
(b)
c
0.5} -
v
0.4}
0.3}
0.2
0.1
q
0 0.04 0.08 0.12 A

FIG. 3. Dispersions of the altermagnonlike (purple) and longi-
tudinal phononlike (blue) mode for coupling constant values A =
0,1,2,3 along the g, = 0 direction. The dashed lines show the
uncoupled modes and the solid lines show the hybridized modes.
(a) refers to the case c/v, = % whereas (b) refers to ¢/v, = 2. 1In (a),
there is a level repulsion whereas in (b), we see the modes softening
discussed in greater detail in Fig. 2. In both panels, the altermagnon

gap is given by /47 = 0.1.

gap, whereas at the critical point, three gapless modes would
emerge.

We emphasize that this result is valid in the regime ¢ >
vy r. In the other regime ¢ < vy 7, we find instead a level
repulsion and a greatly diminished softening of the phonon
mode, as illustrated in Fig. 3. Such a regime is applicable
in materials with a very small magnetic interaction J. The
regime ¢ > vy 7 is more common and forms the focus of
this paper, although we will make reference to both regimes.
After calculating all three propagators x, we can obtain the
corresponding spectral functions by computing Im(x) from
the propagators:

1
Ar(q, ®) — {7(q, @)w* + vig*’

xr(q, w) = (19)

where xr is the propagator for the transverse phonon with
renormalized coefficient

)Lz 2.2
trig o) =1+ 205D

Tro+qg—% 20
2
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(b) cA (c) cA

q
A

-04 -0.2 0.2 0.4 -04 -0.2 0.2 0.4 A -04 -0.2 0.2 0.4

FIG. 4. The spectral function for altermagnon (left), longitudinal phonon (middle), and transverse phonon (right) propagators as function of
frequency w and momentum q along two high-symmetry lines at the g, = 0 plane. (a)—(c) refer to a nonzero coupling constant value 1y = 1.5,
whereas (d)—(f) correspond to Ao = 0. When coupled (a)—(c), the modes hybridize and it is possible to detect the altermagnon by measuring
the phonon spectrum, except along the special directions for which the phonon mode decouples from the altermagnon. This mixing is most
prominent close to the critical point where the q = 0 altermagnon excitation energy is small. We have set here c/v, = % and c/vr = 3. The
altermagnon gap is given by /55 = 0.1.

of the dynamic term, while A7 (g, @) corresponds to coupling where
of the two phonons away from both high symmetry directions

2
Mo’ qeqy(q?—q2)
2 2_ w2
¢ (ro+¢°—7)

2
Mo’ qq, (@) ApL(g, w) = . (24)
(W) —{r(q, ©)0* + vig?
AT(qv Cl)) = 2(._ 2 70 (21) . . . .. .
—{1(q, w)w* + viq To model the finite lifetimes arising from damping or other
processes, we add a small imaginary part to the frequency w
with on the real axis. Figure 4 shows the spectral functions as a den-

sity plot. For the altermagnetic propagator, we see that along
each high-symmetry direction, only one phononlike mode
has a nonzero spectral weight, whereas the altermagnonlike
mode is symmetric. This effect mirrors the behavior of the
poles of the altermagnetic propagator discussed above in
Fig. 2 and is a direct consequence of Eq. (16). For g, = %¢,,
the altermagnon only couples to the longitudinal phonon,
whereas for g, = 0 or g, = 0, the altermagnon couples to the

1 transverse mode, making this mode visible. The anisotropy

. (23) . S . .

AL(q, w) — {1(q, @)@? + vig? of the dynamic coupling is also manifested in the gapped

2
G
(g, w) =1+ q—g% (22)
forq”— =

For the longitudinal phonon propagator, we have

XL(qv CL)) =

144418-7
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qy

(b)
0.04

0.03

9«

qy

0.96

0.94

dx Ax 0.92

0.90

FIG. 5. Anisotropic momentum dependence of the spectral weights of the transverse phononlike (a), longitudinal phononlike (b), and
altermagnonlike (c) branches of the altermagnetic propagator for a nonzero coupling Ao = 0.5. The phononlike modes decouple from the
altermagnonlike one along high symmetry directions. These figures are plotted for r = 0, ¢ /v, = % and ¢/vr = 3.

altermagnonlike mode when we plot the spectrum of the
longitudinal phonon. Because this phonon mode does not
hybridize with the altermagnon along ¢, = ¢y, it can only
be observed in certain directions. Similarly, in the spectrum
of the transverse mode, the gapped altermagnonlike mode
has a vanishing spectral weight along the g, = 0 direction.
In either case, we also see that along the directions where
the altermagnon-phonon coupling is nonzero, the gapless
phononlike mode softens. These results show that even though
directly measuring an altermagnon is a nontrivial task, by
measuring the phonon spectrum at finite momentum, even
away from the critical point, it is possible to assess the
altermagnon mode—provided the measurement is along a
specific momentum-space direction. Conversely, by measur-
ing the phonon spectrum along high-symmetry directions and
identifying which ones display a gapped mode allows one to
obtain the symmetry of the altermagnetic order parameter. In
order to further illustrate the anisotropic nature of the cou-
pling between the altermagnetic and phonon modes, we show
a density plot of the spectral weight of each branch of the
altermagnetic spectral function along the entire ¢y, g, plane
in Fig. 5. We see that the weight of the longitudinal phonon
vanishes along g, = £g,, as along these directions the phonon
decouples and no longer contributes to the altermagnon prop-
agator. Analogously, the weight of the transverse phonon no
longer contributes along g, , = 0, such that the weight of this
branch vanishes along these directions. While the spectral
weight of the altermagnon branch of course never drops to
zero, it becomes fourfold anisotropic.

In the regime where at least one of the phonon velocities
is larger than the velocity of the altermagnon excitations, the
two modes cross with level repulsion for generic momenta as
long as one is not right at the altermagnetic quantum critical
point. However, for specific directions in momentum space the
gap that opened vanishes. For the longitudinal phonons, this
is the case along the diagonal ¢, = £¢, and for the transverse
modes along the axes, i.e., g, = 0 or g, = 0. Hence, nodal
lines of the gap form. The magnitude of the in-plane compo-

. . . rl/2
nent of the momentum at this nodal line is |q, | ~ W
If one expands the dispersion near these crossing points one
obtains a linear dispersion similar to the one of a Weyl sys-
tem with vanishing gap. These lines are protected by the

crystalline symmetry of the system, but may nevertheless have
implications for surface states of the combined spectrum.

The coupling between the canonical momentum of one
degree of freedom and the coordinate of another one is at the
heart of our discussion. As we considered effective Gaussian
theories, interesting insight can be gained by considering a
simple Hamiltonian that describes two coupled oscillators in
which the displacement of one is coupled to the momentum
of the other:

2 mw? A
H=Y (2% + %xf) +Ipa. (25)
i=1,2 L

As usual, the problem can be diagonalized using a 4 x 4
symplectic matrix S. The transformation (x1, x2, p1, p2) —
S~ (x1, x2, p1, p2) can also be cast as a unitary transformation
of the operators, such as x; - Ux;U —!, where

U = ei(apl P2+bX1X2)’ (26)

where the coefficients a and b can be expressed in terms of
the m;, w;, and the coupling 1. Applied to the vacuum, such
an operator creates two-modes squeezed states made by the
two coupled oscillators [43]. The two-mode squeezing occurs
regardless of whether the magnetic system is gapped or not.
It reflects the fact that the momentum-coordinate coupling
strongly changes the relative fluctuations of the involved de-
grees of freedom, where the softening of one mode enforces
the hardening of the other.

IV. IMPACT OF THE DYNAMIC STRAIN COUPLING
ON THE ALTERMAGNETIC PHASE DIAGRAM

Having established how the collective altermagnetic and
phonon modes are hybridized by the dynamic strain coupling,
we now discuss how the altermagnetic phase transition is
impacted by this coupling. In order to determine the phase
diagram, we perform a one-loop renormalization group (RG)
calculation for the quartic coefficient # and the mass term
coefficient r. We integrate out the phonon modes and obtain

1
S = z/¢>(61)X_1(61)¢(—q)+uf¢(X)4, 27
q

144418-8



DYNAMIC PARAMAGNON-POLARONS IN ALTERMAGNETS

PHYSICAL REVIEW B 108, 144418 (2023)

with the phonon-renormalized inverse altermagnon propaga-
tor on the real frequency axis written in Eq. (17). The form
of coupling Eq. (18) implies rather different behaviors in the
regimes where w is small or large compared to cg. Consider-
ing first w > vr 1 |q|, we have

7
Alg.w)~ 1 -2, (28)
1)
such that the coupling renormalizes the coefficient of the ¢>
term of the altermagnetic propagator. Since the ¢* coefficient
is proportional to the inverse squared correlation length, its
suppression implies an enhancement of the spatial fluctuations
mediated by the dynamic strain coupling. On the other hand,
when o < v r|q|, we find
cz)»%
Alg, w) = 1+ R 9x = gy, (29)
242
cA
A(qa a)) ~ 1 + _20’
L

gx = 0. (30)

In this regime, it is the altermagnon velocity c that is renormal-
ized downwards by the coupling, which suppresses quantum
fluctuations.

As our goal is to calculate the phase diagram at nonzero
temperatures, we employ the crossover method outlined in
detail in Ref. [69]. We start from the flow equations given
by a perturbative RG calculation, which is controlled at the
upper critical dimension d = 3 and includes the logarithmic
corrections beyond mean field theory.

d’z+3d>(>3df>2<>

=7 = 2r +Ju—; — 3ur— ,

a1 a1 ; Xolq dl ; Xo\q

du d [~

R o 1o Sl 2(q), 31
dl udl \ Xo(‘]) 3D

where ¥ is the propagator [Eq. (17)] taken at r = 0. To derive
these expressions, we have integrated out the long wavelength
modes leaving us with a set of shell integrals over Ae™! <
lg] < A for some momentum cutoff A, with [ a parameter
used to vary length-scales. Note that we employ no cutoff for
the Matsubara frequencies. The shell equations can be solved
in a straightforward way:

d [~ d g =
—_ m —_ T E m
dl q Xo (q) dl /Ae’<|q|<A (27[)3 X0 (q)

n=—00

0 2T T
> / / dode¢ sin (0)x2(A),  (32)
—v0 Jo

where we suppress the dependency of xo on w,, ¢, and 6. The
flow equations at one-loop level are then

A3
(2m)

n

dm
dl
dg
di
dT
dl

= 2m + gAcF(T) — gmc® A*Fy(T),
= -3 A’ F(D),

=T, (33)

Altermagnetic ordered regime

Altermagnetic ordered regime

FIG. 6. Ground-state (i.e., 7 = 0) phase diagram of altermag-
netic order as a function of the control parameter my = ry/A> and
the coupling constant Ay with ¢ > v, 7, Eq. (37) for the cases (a) 2D
and (b) 3D. We see that at zero temperature, the formation of a
dynamic altermagnon-polaron expands the ordered state (shaded
region), since the altermagnetic transition occurs for higher values
of my.

where we defined the dimensionless quantities

r _ 3ucA?3

20y (34)

and

0 27 b d
E,T)=T Z/ / dOd¢ sin (0)x2'(A, w,, 60, ¢).
0 0

n=—0oo

(35)

Note that T is the running temperature, whereas the physical
temperature corresponds to 7' (I = 0).

Taking the limit 7 — 0 and solving the flow equations nat-
urally yields a phase diagram with a quantum critical point.
We can define the distance from the critical point [70]

cA
t=m+ TFI 0)g. (36)

We plot the phase diagrams at 7 = 0 in Fig. 6 for the two
regimes. For the case ¢ > v, 7, we used the parametrization:

2
0 3

RGO 37)
c 2
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As for the case ¢ < vy r, we considered the following
parametrization:

o) 1
vr® _ 1 /250735000526,

c 6
0) 1

u®) _ 3150+ 50¢cos 26. (38)
C

The key result is that increasing the dynamic strain
coupling constant Ay expands the regime with long-range
altermagnetic order. This is consistent with what we found
above that, in the quantum regime, Ao renormalizes ¢ and
suppresses quantum fluctuations. Thus larger values of the
coupling leads to a larger ordered regime characterized by
a smaller |my| due to the hardening of the hybridized alter-
magnonlike mode. Hence, the dynamic coupling to phonons
suppresses quantum altermagnetic fluctuations, reinforcing al-
termagnetic order. This is the case for both regimes ¢ < vy 7
and ¢ > vy r. We can also solve the flow equations for the
case of small but finite 7', which yields an expression for the
transition temperature 7. This crossover regime is relevant
when gp = g(/ =0) < 1and T < cA. In this regime, to first-
order in gy, it is sufficient to simply use the 7 = 0 solution for
g(l) [69]

80

I = .
8D = T3 A 00zl

(39)

Thermal fluctuations only enter at O(g%)). We now turn our
attention to m, and consider the ansatz

m = moe* Vh(l). (40)

This ansatz solves our flow equation when

)
E(l) =21 — A3 / gUHEW)dl,
0 (41)

Ac (! ,
h(l) =1+ =% / eSO F (1Ngdl.
my Jo

We can then substitute these expressions in the flow equa-
tion for m and integrate by parts to find an expression for the
transition temperature 7. to first order in go. At the critical
point, by definition, we can also set / — oo, we find

3
e Acgo [T [T . — A;
my+ = /0 fo dfdé sin (9) ; 3

T 2w 3 2
1
+ gOAcTS/ / d¢db sin (0) ZA,- 71_3 +
o Jo "\ 6E] " E7T,

Ej 1 . &
X log(l —e %) — Ele(e T )> =0, 42)

1

where E; is the energy for each mode and A; the corresponding
weight for the three branches, determined via

L‘Z i
X(g o)=Y 40, (43)
and Li,(z) is the polylogarithm.

As well as in 3D, there also exists 2D altermagnetic can-
didates [19] such as the quasi-2D oxide insulator V,Se,O

[71] and semimetal Cr,O [72]. We can carry out this analysis
in 2D using an epsilon expansion with € =3 —d = 1. The
calculation then becomes very similar compared to the 3D
case taken at = 7 and with the only angular integration
being over ¢.

Since this equation cannot be solved analytically for 7, we
resort to numerical methods to find the solution. We plot the
obtained phase diagram in Fig. 1, using the parametrization
for the velocities of Eq. (38), i.e., ¢ > v, r. We see in 2D
that, in general, increasing the dynamic coupling to phonons
Ao leads to a decrease in the transition temperature. This is
consistent with the results of Fig. 2, which shows that the
coupling leads to a softening of phonons. A consequence of
this softening is that for larger coupling, the system contains a
larger population of soft phonons, which suppresses altermag-
netic order. As T = 0 is approached this effect is less relevant,
as there are no phonon modes occupied at zero temperature.
By comparing Figs. 1 and 6, we note that, for a given coupling
constant value, unless my is within the 7 = 0 ordered regime,
there is no transition at nonzero temperature. Increasing X
leads to an increase in mg and for any mg < mg(1o), the transi-
tion temperature rises to a maximum before being suppressed.
This initial rise is most likely due to the system being in the
regime where the altermagnon hardening is still the dominant
effect. While these conclusions refer to the case where ¢ >
vr/r, we can also calculate the phase diagram for the other
regime, ¢ < vg,7. Such a regime is less common but would be
the case for systems with small magnetic interaction J. As dis-
cussed above in Fig. 3, the impact of the dynamic coupling on
the phononlike mode is significantly diminished, whereas the
altermagnonlike mode still hardens. Consequently, as shown
in Fig. 7, where the parametrization of Eq. (38) was used, in
the regime ¢ < v ;7 we still find a very similar phase diagram
near the quantum critical regime; however, in the thermal
regime the coupling has a much smaller effect on the transition
temperature. In 3D, the behavior at the QCP remains the same
but thermal fluctuations are less relevant, as we see in Fig. 1.
In this case, the suppression of quantum fluctuations is the
dominant effect, such that an increase in coupling leads to a
slow increase of the transition temperature. If the temperature
is high (AL“C >> 1), one would potentially expect soft phonons
to be relevant, however we find instead that the transition tem-
perature starts to plateau; at high temperatures we are in the
classical regime which is equivalent to taking only the zeroth
Matsubara frequency and as such the coupling to phonons is
zero. At high temperatures, the coupling hence has little to no
effect on 7.

V. CONCLUSIONS

In summary, we showed from symmetry considerations
that a dynamic coupling between strain and the momentum
of a magnetic collective mode naturally emerges in a class
of systems with multipolar magnetic order. An important
application of these results is for the case of altermagnets,
as they are described by d-wave, g-wave, and i-wave mag-
netization order parameters, which in turn correspond to
nonzero magnetic multipoles. While in this paper we fo-
cused on a tetragonal crystal with Dy, symmetry and an
altermagnetic order parameter transforming as the irreducible
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FIG. 7. (a) Ground-state phase diagram for a 2D system. (b) Al-
termagnetic transition temperature 7, as a function of the dynamic
strain coupling constant Ay of Eq. (1) for different values of the bare
altermagnon mass my = ro/AZ. (c) Altermagnetic 7, as a function of
my for different values of A¢. These plots correspond to the case of
a 2D system with ¢ < v, 7, Eq. (38). Compared with Fig. 1, which
refers to the case ¢ > v, 7, the dynamic coupling to phonons has a
weakened impact in the thermal regime, but still a significant impact
in the quantum regime. The former is the result of a lack of soft-
ened phonons, whereas the latter is a consequence of the hardened
altermagnon.

representation B}, (relevant for instance for the altermagnet
candidate MnF5), the results are more general, as we pointed
out by commenting on crystals with O; point group. One
of our main results is the demonstration that, due to this
dynamic strain coupling, altermagnons can in principle be
probed directly from the phonon spectrum. This is important,

as detecting such a state with zero net magnetization via the
magnetic spectrum is a challenging task.

The coupling discussed here can be understood as an inter-
nal, fluctuation-induced nondissipative response, which gives
rise to stress o;; generated by a time-varying strain in the
presence of the magnetic multipolar collective mode. It is
analogous to the stress that occurs due to a finite Hall vis-
cosity. The coupling induces a symmetry-sensitive dynamic
hybridization of phonon and altermagnon modes, i.e., an
altermagnon-polaron. It softens the former and hardens the
latter, giving rise to significant changes of regions where
altermagnetism occurs in the temperature-quantum fluctation
phase diagram. In both 3D and 2D systems at 7 = 0, the effect
of the coupling leads to an enhancement of order, hence in
the T = 0 plane of the phase diagram, the ordered regime is
enlarged. At nonzero T in a 2D system the situation changes.
Now, thermal fluctuations (phonons) become the dominant
effect, and the renormalization of these fluctuations due to the
dynamic coupling leads to a high population of soft phonons.
These, in turn, suppress order, leading to a reduction in the
transition temperature. In a 3D system, the ordered regime is
also increased at finite-T as thermal fluctuations remain small.
The results for a 2D system suggest that thermal fluctuations
become the dominant effect at finite 7 in highly anisotropic
3D systems.

While the focus of this paper was on altermagnets, it is
important to note that the coupling in Eq. (1) should also
be relevant for certain ferromagnets. The condition for this
coupling to be present is that the magnetization and some
of the strain components must transform as the same irre-
ducible representation I' of the point group, the difference
being that the former is time-reversal-odd (I' ™) and the latter,
time-reversal-even (I'*). While this is not possible in the cubic
group Oy, it is allowed for tetragonal Dy, and hexagonal Dy,
ferromagnets with in-plane moments. In those cases, respec-
tively, the two-component in-plane magnetization transforms
as Eg’ and E l_g’ whereas the out-of-plane shear strain doublet

(&xz, &y;) transforms as E;r and E1+ . An even more promising
class of systems is that of D,, orthorhombic ferromagnets.
In these cases, each of the three components of the magne-
tization transform separately as one of the one-dimensional
irreducible representations B;, with i =1, 2, and 3. How-
ever, it turns out that each of the three shear strains, &,,
&xz, and &y, transforms as one of the B;g irreps. The same
conclusions hold for the other two orthorhombic point groups,
D, and C5,. Therefore the effects discussed here should be
present in any orthorhombic ferromagnet. A promising family
of materials to search for this effect are the ferromagnetic Mott
insulating perovskites ATiOs;, with appropriate rare-earth
A [73].
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APPENDIX: ALTERNATIVE DERIVATION
OF THE DYNAMIC COUPLING

The coupling of Eq. (11) can also be obtained by fol-
lowing the approach of Refs. [39,74]. Consider a fermionic
field operator c(x) that is a spinor in spin and orbital space.
Performing a deformation of the lattice with nonsymmetrized
strain €, = d,up, We consider a coordinate transformation

x =0T "x, (A1)
where
@) =¢. (A2)

We consider an arbitrary strain field such that f\(t) is an
arbitrary matrix with a positive determinant. The fermionic
field transforms as [74]

cx(x) = +/det T c(I'x). (A3)
In the case of a small change, we have € — & + §%
0 Sa 0
) = L@ A —a®).  (Ad)
0€ap 2 Bxﬁ

In order to study an infinitesimal change we set € = 0 such
that x’ = x. In this case the infinitesimal transformation can
be written as

1= FapLlap |cx), (A5)

op

cz(x) =

iSep .0
= +ixy— =
2 BXﬁ

1
_E(xapﬁ + pﬁxa)- (A6)

One can also include rotations that act in the internal space.
We refer to the generator for this transformation as Sg
and consider J,g = Lyp + Syp. For specific examples, see
[39,74]. The important point is that 7,4 is even under parity,
odd under time reversal and its symmetric part transforms like
a symmetric second rank tensor, i.e., just like a multipolar
order parameter discussed in this paper. The field operator
cz(r) of the strained system is hence related to the unstrained
case via
cz(x) = e D) = U@nex), (A7)

with strain generators Jyp = —%(xa Pg + PpXe) + é[aa, ogl.
x and p = —iV are the position and momentum operators and
the Pauli matrices o, act in orbital space.

Because U (t) represents a time-dependent transformation,
a term can be introduced into the action via

Se = —i / drd3ch(x)U(t)%(U(t)’l)c(x). (A8)
The coupling term that emerges from the relation between
the strained and unstrained system is hence [39,74] S. =
[drd’x D up Eap j—tchaﬂc. This is the coupling of strain to
the time derivative of a fermionic bilinear that transforms like
the multipolar magnetic order parameter. It is the analog of the

coupling Eq. (11) to the conjugate momentum that appears on
the level of the Hamiltonian.
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