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Sensitivity of the IceCube-Gen2 surface array for CR anisotropy

1. Introduction

One of the most significant unresolved questions in cosmic ray (CR) physics pertains to the
energy at which the transition from Galactic to extragalactic cosmic rays occurs. This transition
holds the key to understanding some of the issues regarding the origin of CRs, as it is believed
to mark the point where the sources of CRs shift from the Milky Way to extragalactic systems.
Pinpointing the exact energy of this transition remains a challenge, as the trajectories of CRs are
significantly influenced by the magnetic fields present in the Galaxy, making it difficult to trace
individual CRs back to their specific origins.

However, constraints can be obtained by studying the large-scale anisotropy in the CR arrival
directions. In the past few decades, several experiments have provided long-term and significant
observations of a subtle sidereal anisotropy across a wide energy range from 1 TeV to 100 EeV.
These ground-based experiments, located in both the northern and southern hemispheres, have
detected large-scale anisotropy in CRs with a high level of statistical significance [1–13]. The
magnitude of the observed large-scale anisotropy, ranging from 10−4 to 10−2, combined with its
energy dependence and angular structure, hints at changes in the origin of the CRs versus energy.

However, statistically significant measurements of the projected dipole amplitude are missing
in the energy range between 2 PeV and 8 EeV. The Pierre Auger Observatory has not yet observe
a significant dipole below 8 EeV [12], and KASCADE-Grande did not find evidence for a dipole
anisotropy in the data with median energy from 2.7 PeV to 33 PeV [2, 14]. Therefore, both
collaborations set upper limits at 99% confidence on the reconstructed (projected) dipole. IceCube-
Gen2, along with its surface array, will be capable of filling a portion of the energy gap between 1
PeV and approximately 100 PeV.

IceCube-Gen2, the next generation of the IceCube Neutrino Observatory [15], will be located
at the South Pole with a mission to detect high-energy and ultra-high energy cosmic rays and
neutrinos, study hadronic interactions, and contribute to the broader field of astroparticle physics. It
will incorporate three detector arrays: a deep optical array, a radio array, and a hybrid surface array
[16]. The hybrid surface array combines scintillator panels and radio antennas in surface stations.
Currently, the IceCube-Gen2 surface array is in the stage of technical design, but CORSIKA
simulations of air shower detection have already been performed [16].

Here, we present the air shower reconstruction efficiency for the scintillators of the IceCube-
Gen2 surface array, describe the Monte Carlo studies of the CR arrival directions and show the
sensitivity of the surface array to large-scale anisotropy of the CRs based on simulated events.

2. Reconstruction efficiency of IceCube-Gen2 surface array

The planned surface area covered by the IceCube-Gen2 surface array is 6.6 km2 (depends on
the definition of the containment cuts). The corresponding CORSIKA simulations of the scintillator
array response were performed for proton- and iron- induced air showers with 4 ≤ log10(𝐸/GeV) ≤
8 and zenith angles (𝜃) up to 51°, and 4 ≤ log10(𝐸/GeV) ≤ 7.5 with 𝜃 up to 63° [16]. To simulate a
large sample of contained events, the shower cores were randomly distributed within a 1.5 km radius
from the center of the surface array. The detector response was then simulated for the scintillators,
where the secondary particles on the ground were injected into the scintillator panels.
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Figure 1: 2D histograms of the reconstruction efficiency for proton- (left) and iron- (right) induced air
shower for scintillators in the IceCube-Gen2 surface array, with energy range from 106 GeV to 108 GeV,
zenith angle up to 63° in sin2 𝜃 scale, and scintillator multiplicity ≥ 5 to trigger the event.

To show realistic capabilities of the IceCube-Gen2 surface array, we perform a selection process
that involves choosing true air shower core locations (x, y) within a distance of 100 meters from
the polygonal edge of the array taking into account the air shower footprints. The scintillator array
is fully efficient (100%) in triggering on air showers above 0.5 PeV for vertical events (𝜃 = 0).
Considering the scintillator triggered multiplicities ≥ 5, we show the reconstruction efficiencies for
proton and iron primaries and make the histograms for these two CR primary particles, fill in the
missing region 0.6 ≤ sin2(𝜃) ≤ 0.8 and 7.5 ≤ log10(𝐸/GeV) ≤ 8 assuming a 100% efficiency
(see Figure 1), and fit the unbroken histograms with a modified error function (2 dimensional) as a
function of the energy 𝐸 and the zenith angle with 𝑧 = sin2 𝜃:

𝜖 (𝐸, 𝑧) = 1
2

[
1 + erf

(
𝐸 − (𝜇0 + 𝜇1𝑧 + 𝜇2𝑧

2 + 𝜇3𝑧
3)

𝜎0 + 𝜎1𝑧

)]
. (1)

The parameters for both proton and iron in Eq.(1) are listed in Table 1. We estimate the reconstruction
efficiencies for helium, nitrogen, and aluminum using the natural logarithm of their mass number,
denoted as ln 𝐴. This estimation is based on the logarithmic mass dependence of the cosmic-ray
primaries. The reconstruction efficiency for helium, nitrogen, and aluminum can be written as

𝜖 (𝐴𝑖 , 𝐸, 𝑧) =
ln 𝐴𝑖

ln 𝐴Fe − ln 𝐴P
[𝜖Fe(𝐸, 𝑧) − 𝜖P(𝐸, 𝑧)] + 𝜖P(𝐸, 𝑧), (2)

where 𝑖 ranges from 1 to 3, representing the estimated helium, nitrogen, and aluminum, respectively.
The contour lines represent 50% and 98% of the reconstruction efficiency using Eq.(1), as shown

Particle 𝜇0 𝜇1 𝜇2 𝜇3 𝜎0 𝜎1
Proton 5.017 ± 0.008 0.711 ± 0.083 −1.791 ± 0.240 3.824 ± 0.198 0.483 ± 0.008 0.001 ± 0.000
Iron 5.177 ± 0.006 0.753 ± 0.063 −0.665 ± 0.182 2.073 ± 0.149 0.404 ± 0.006 −0.067 ± 0.012

Table 1: Parameters in the fit function (1) of cosmic ray reconstruction efficiency of the IceCube-Gen2
surface array. Only proton and iron are covered in this table.
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Figure 2: Contour lines with 50% and 98% recon-
struction efficiency of the IceCube-Gen2 surface ar-
ray are shown for proton and iron, The total efficiency
of all particles utilizes the H4a flux model [18].
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Figure 3: Histogram of the event counts of the
IceCube-Gen2 surface array with a 10-year exposure,
considering the H4a flux model and the reconstruction
efficiency with 3 additional energy bins.

in Figure 2. The total efficiency of all particles utilizes Eq.(1), (2) and the H4a flux model [17].
The scintillators will be the most sensitive component of the surface hardware of IceCube-Gen2

and thereby determine the energy threshold necessary for cosmic-ray detection. In the resolution
analysis of the reconstructed arrival direction [16] it is observed that, at threshold energies of
approximately 1 PeV, the direction can be reconstructed with an accuracy of a few degrees for air
showers with zenith angles up to 45°. Above 10 PeV the angular resolution reaches the sub-degree
level. The accurate estimation of the shower geometry and the reliable determination of the arrival
direction make it highly valuable for studying cosmic-ray anisotropy.

3. Monte-Carlo simulation of cosmic-ray arrival directions

We now apply the reconstruction efficiency to simulate the arrival directions for the IceCube-
Gen2 surface array with a 10-year exposure. The simulation is divided into 7 energy bins ranging
from 106 GeV to 108.8 GeV with a bin size of 0.4 in log10(𝐸/GeV). In each energy bin, we inject 15
different dipoles at declinations ranging from −80° to 80°. In total, we have 1785 injected dipoles
and their corresponding sky maps. To get a precise and stable value of the reconstructed dipole
amplitude we choose dipole amplitudes depending on the declination, focusing on amplitudes that
can be detected at > 10𝜎 within 10 years of operation. Otherwise, it would be required to simulate
the same dipole repeatedly to adequately capture the uncertainties.

Using the H4a flux model [17], the number of arrival directions in each energy bin can
be calculated by integrating the 2D function in Eq.(1) and (2) of reconstruction efficiency and
the number of cosmic rays with 10 years of exposure of the IceCube-Gen2 surface array. This
calculation is a function of 𝐸 and 𝑧. Therefore, we have the event counts for each of the 5 primary
components in the energy bins (see Figure 3):

𝑁eff,𝑖 𝑗 =

∫ 𝜃max

𝜃min

∫ 𝐸 𝑗

𝐸 𝑗−1

𝜖𝑖 (𝐸, 𝜃) 𝑁H4a,𝑖 (𝐸) 𝑑𝐸𝑑𝜃, (3)
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Sensitivity of the IceCube-Gen2 surface array for CR anisotropy

where 𝑖 ranges from 1 to 5 for the 5 primary particles, 𝑗 ranges from 1 to 8 for the edges of the
7 energy bins, and 𝑁H4a,𝑖 represents the event counts for each of the 5 primary particles using the
H4a flux model. In total, we have 8.355 billion simulated cosmic ray events over all 7 energy
bins. Taking into account the ratio of different primaries weighted by the mass-dependent H4a flux
expressions [17] and Eq.(1) and (2), the total efficiency averaged over all primaries is written as

𝜖tot (𝐸, 𝜃) =
Σ5
𝑖=1𝜖𝑖 (𝐸, 𝜃) 𝜙H4a,𝑖 (𝐸)

Σ5
𝑖=1𝜙H4a,𝑖 (𝐸)

. (4)

Next, we randomly inject the CR arrival directions using relative acceptance of the detector
for all energy bins and all zenith angles below threshold and scan over the dipole declination from
−80° to 80° with bin size of 10°. The amplitudes are chosen from 7 × 10−3 up to 9.56 × 10−1

for the injected dipole with different energy bins covering different ranges of the amplitude. The
distribution function of the CRs is a function of exposure of the IceCube-Gen2 surface array,

𝜔Gen2 (𝐸, 𝜃, 𝜃max,A, 𝛿d, 𝛿Gen2) = 𝜔 (𝜃, 𝜃max, 𝛿Gen2) × 𝜖tot (𝐸, 𝜃) × D (A, 𝛿d, 𝛿Gen2) , (5)

where 𝛿d denotes the dipole declination, 𝜔 is the relative exposure of an observatory at declination
𝛿Gen2 = −89.99° without detector efficiencies. The function D (A, 𝛿d, 𝛿Gen2) provides the dipole
distribution, taking into account the relative orientation of the IceCube-Gen2 surface array to the
dipole.

4. Sensitivity to the cosmic ray anisotropy

To assess the sensitivity of a partial-sky coverage observatory to a dipole anisotropy, it is
essential to compare the actual sky map of injected CR arrival directions (data map with simu-
lated dipole in Eq.(5)) with a sky map that reflects the detector’s response to a isotropic CR flux
(reference map without dipole). Note that the reference map, with dipole distribution function
D (A, 𝛿d, 𝛿Gen2) = 1, is not itself isotropic. This comparison allows us to evaluate the deviation
from isotropy and quantify the presence of the dipole anisotropy in the simulated data by Eq.5.
Therefore, the residual between the data maps and the reference maps, which are obtained by nor-
malizing each declination band independently, is sensitive only to anisotropy in right ascension (𝛼).
In particular, the fitting of the dipole’s projection in the equatorial plane with the first harmonic
allows for a direct measurement of a dipolar cosmic ray distribution.

Based on the Monte-Carlo simulation as described in §3, we generate sky maps of relative
intensity 𝐼 = (𝑁pix,𝑖 − ⟨𝑁⟩pix,𝑖)/⟨𝑁⟩pix,𝑖 , where 𝑁pix,𝑖 represents the data map while ⟨𝑁⟩pix,𝑖
represents the background map. Then, we perform a one-dimensional (1D) projection of the sky
map and fit it with a first harmonic function Areco cos (𝑛(𝛼 − 𝜙)) + 𝐵, where Areco is the amplitude
of the reconstructed dipole, 𝜙 is the phase, and 𝐵 is a constant. The reconstruction ratio Areco/A in
the majority of the cases are below 80% due to the limited field of view (FoV) of the surface array.

To assess the significance of a dipole deviation from isotropy, we consider a null hypothesis in
number of sigmas 𝑛𝜎 =

(
Areco − Ahypo

)
/𝜎A , where Ahypo is set to 0, representing the expected

value under the null hypothesis (different from the full-sky case [18]). We assume that the 𝜎A
of the dipole amplitude reconstruction is proportional to 1/

√
𝑁 verified through both Monte Carlo
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Figure 4: The fitting curves of the reconstructed dipole (left) and the corresponding true dipole (right) are
shown based on the sampled data points (𝑛𝜎/

√
𝑁,A) obtained from the simulation in Section 3.

simulation and the covariance matrix in the first harmonic fit of the 1D projected map. Therefore,
the sensitivity function (number of sigmas) can be expressed as follows:

𝑛𝜎 = S (A, 𝐸, 𝜃max, 𝛿d, 𝛿Gen2) A
√
𝑁, (6)

where S is defined as a sensitivity coefficient. We need to clarify that the sensitivity to the true
dipole, denoted as 𝑛𝜎 = StrueAtrue

√
𝑁 , is not obtained directly from the reconstruction of the true

dipole (or input dipole A). Instead, it represents the corresponding true dipole of the 3𝜎 or 5𝜎
reconstructed dipole, denoted as 𝑛𝜎 = SrecoAreco

√
𝑁 , which will be obtained from the observation

by the IceCube-Gen2 surface array in the future. We scatter the data points (𝑛𝜎/
√
𝑁,A) for both

the reconstructed dipole and true dipole cases and fit these data points with a polynomial equation
of the form Σ3

𝑖=1𝜆𝑖A
𝑖 , where 𝜆𝑖 are the coefficients of the polynomial (see Figure 4). The slope of

these curves represents the sensitivity coefficients for both the reconstructed and true dipole cases.

S(A, 𝐸) = 𝜆1(𝐸) + 2𝜆2(𝐸)A + 3𝜆3(𝐸)A2. (7)

where 𝜆1, 𝜆2, 𝜆3, are different parameters for proton and iron which are energy dependent. Figure
5 shows the ratio between the reconstructed dipole and the true dipole. The sensitivity curves and
bands for both 3𝜎 and 5𝜎 are shown in Figure 6, the corresponding points are in Table 2.

Median energy 𝐸𝑖 1.8 PeV 4.4 PeV 11 PeV 28 PeV 70 PeV 176 PeV 441 PeV
Areco (×10−3) 3𝜎 0.0865 0.1991 0.4934 1.2723 3.2468 8.5073 22.9160

0.4998 1.1515 2.8600 7.4196 19.2255 52.6080 163.7749
Areco (×10−3) 5𝜎 0.1441 0.3318 0.8222 2.1203 5.4098 14.1687 38.0990

0.8334 1.9210 4.7783 12.4455 32.5946 92.2597 341.6183
Atrue (×10−3) 3𝜎 0.5442 1.2528 3.1048 8.0071 20.4322 53.5486 144.4248
Atrue (×10−3) 5𝜎 0.9071 2.0880 5.1744 13.3435 34.0472 89.2095 241.9074

Table 2: Points of the 3𝜎 and 5𝜎 sensitivity bands for the reconstructed dipole for each energy bin 𝐸𝑖 (𝑖 = 1
to 7), upper and lower boundary of the corresponding true dipole for both cases (sensitivity bands).
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Figure 5: Ratio between reconstructed dipole and
true dipole in the Monte-Carlo simulation. The am-
plitudes are chosen from 7 × 10−3 up to 9.56 × 10−1

for the true dipole. However, different energy bins
cover different ranges of the true dipole amplitude.
The curves show the propagation of the ratio with the
declination of the true dipole from -80 degree to 80
degree with angle bin size of 10 degree.
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Figure 7: Simulated relative intensity map for IceCube-Gen2 surface array with 5𝜎 of a reconstructed
amplitude 9.029 × 10−3 at 176 PeV. The injected dipole orientation is set as (270°,−10°) for the right
ascension and declination. The corresponding amplitude of true dipole is 1.437 × 10−2.

The sensitivity curves of the reconstructed dipole and bands of the corresponding true dipole
(full dipole) of the IceCube-Gen2 surface array are shown in Figure 6, which represents the
significance of a deviation from the null hypothesis (isotropy). The curves of Areco are lower than
the bands of true amplitude due to the field of view (FoV) of the IceCube-Gen2 surface array. Taking
into account the energy gap region with upper limits and the highest energy data from IceCube, the
energy range chosen for this work is from 106 GeV to the overlap region with Auger, approximately
around 108.8 GeV. A dipole with a very inclined orientation is difficult to reconstruct using the 1D
projection method. Thus, IceCube-Gen2 will need to be combined with experiments on the norther
hemisphere (e.g. IceCube [11], HAWC [1]). Moreover, it is necessary to consider very inclined
dipole declinations, due to the lack of information on dipole declination from existing data.

By considering Eq. (6) and (7), we also plot the sky map of relative intensity at 176 PeV with
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an assumed 5𝜎 significance level for the reconstructed dipole with amplitude of 9.029 × 10−3, and
with 20° top hat smoothing. The dipole orientation is set as (270°,−10°) for the right ascension
and declination. The corresponding amplitude of the injected true dipole (A = 1.437 × 10−2) can
be derived using the reconstruction ratio Areco/A. We use HEALPix (with Nside = 64) for the sky
map, the size of each pixel tile in the sky map is approximately (0°.84)2.

5. Conclusion and outlook

We present the 2D function of the air shower reconstruction efficiency of proton and iron
primaries for the IceCube-Gen2 surface array based on the existing CORSIKA simulation, estimate
the reconstruction efficiencies for helium, nitrogen, and aluminum using the natural logarithm of
their mass numbers and show the total efficiencies of all particles utilizing the H4a flux model.
Next, we simulate the CR arrival directions for the surface array using Monte-Carlo simulation by
injecting 15 different dipoles at declinations ranging from −80° to 80° for 7 energy bins, which
range from 106 GeV to 108.8 GeV with a bin size of 0.4 in log10(𝐸/GeV). In total, we have 1785
injected dipoles. In order to study the anisotropy, we compare the actual sky map of an injected
dipole with a reference map without a dipole for all 1785 cases, make the sky maps of relative
intensity and perform 1D projections of the sky maps and fit them with first harmonic functions.
To assess the sensitivity of IceCube-Gen2 surface array to a dipole anisotropy, we consider a null
hypothesis and the propagation of the sigmas. Finally, we get the sensitivity function and show the
3𝜎 and 5𝜎 sensitivity to the CR dipole anisotropy with curves and bands for the surface array.

In order to improve the accuracy of the sensitivity analysis for the IceCube-Gen2 surface array,
we will extend the threshold of the zenith angle in the CORSIKA simulation up to 80 degrees,
which can provide a more accurate estimation of the reconstruction efficiency.
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