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The determination of the energy spectrum features with low systematic uncertainty is crucial
for interpreting the nature of cosmic rays. In this study, we conducted a measurement of the
energy spectrum at the Pierre Auger Observatory using a surface detector with a calorimetric
energy scale indirectly set by a fluorescence detector. The surface detector consists of an array
of water-Cherenkov detectors that extends over 3000 km2 with 1500 m spacing. Additionally,
two nested arrays of the same kind with 750 m and 433 m spacing were utilized to lower the
energy threshold of the measurements. This contribution presents, for the first time, the spectrum
measured with the 433 m array, which reduces the energy threshold down to 63 PeV, nearly half the
energy at which we previously published a steepening using the 750 m array. Our measurements
include a characterization of the spectral features of the flux steepening around 230 PeV, known
as the second-knee. The study benefits from a nearly 100% duty cycle and geometrical exposure.
Notably, this is the first simultaneous measurement of the second knee energy and spectral indexes
before and after the break, using a surface detector with an energy scale predominantly independent
of air shower simulations and assumptions regarding hadronic interaction models.
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1. Introduction

Figure 1: Map of the SD433. The array consists of
19 water-Cherenkov detectors spaced at 433 m. The
effective area is shown in light orange.

The concept that the Galactic-to-extragalactic
transition occurs between 100 PeV and a few EeV
is well-accredited [1–5]. It is thus to be ex-
pected that different astrophysical phenomena
are at play in this energy region, that overlap
and intertwine with each other. To disentangle
them, a precise measurement of the all-particle
energy spectrum and of the abundance of the
different elements as a function of energy is cru-
cial. It is for this purpose that the Pierre Auger
collaboration has built two denser surface arrays,
spaced at 750 m (SD750) and at 433 m (SD433)
nested in the one spaced at 1500 m (SD1500),
for a high statistics measurement of the spectrum
in this region. Also, it is enriching them, in the
context of the Observatory upgrade, with muon detectors that will allow inferring the mass of
cosmic rays [6] and searching for primary photons [7]. Using data from SD750 we measured the
energy spectrum down to 100 PeV, at which we observed a broad softening [8]. Here we report for
the first time the measurement of the energy spectrum made with the SD433, capable of reaching
down to 63 PeV, thus enabling a comprehensive characterization of the second knee. The SD433,
which consists of an array of 19 water-Cherenkov detectors (WCD) identical to those used in the
other two Auger surface arrays [9] and is nested within the SD750 with which it shares seven
detectors, is depicted in Fig. 1. Data collection with the SD433 began in 2013 with a hexagon of
WCDs installed surrounding a central detector. Over time the SD433 was expanded and reached
its current configuration in May 2019. The data acquisition period concluded with the replacement
of the detector electronics as part of the upgrade. In Section 2 we provide the details of the SD433
response obtained from simulations. Section 3 focuses on the energy calibration of the SD433
followed by Section 4 where we present the measurement of the spectrum, based on data collected
from 28 January 2018 to 21 December 2021.

2. SD433 energy response

We consider in this section the trigger efficiency, the energy resolution, and the energy bias of
the SD433, three of the ingredients required to construct the energy spectrum. We characterized
the response of the array with CORSIKA simulations using EPOS-LHC and FLUKA as the high-
and low-energy hadronic-interaction models, respectively. We accounted for the effect of the
primary-mass composition by running simulations for different primary-mass groups. We took
the relative weight of each group from the composition determined by the Global Spline Fit [10].
Afterward, we simulated the SD433 signals and reconstructed the resulting events with the Offline
framework [11]. Given the deficiencies in the extrapolation of hadronic models beyond the energies
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Figure 2: Trigger efficiency (left), energy resolution, and energy bias (right) of the SD433 determined by
Monte-Carlo CORSIKA simulations. The full efficiency threshold is indicated by a vertical dashed line.

of the accelerator data, the signal sizes derived from simulations are known to differ from cosmic-ray
data. To compensate for this effect we applied separate calibrations for simulations and data.

The efficiency of a surface detector is the probability of a shower triggering it. For a given
array geometry, the efficiency is governed by the energy, the zenith angle, and the mass of the
primary. In 2014 two new station level triggers were deployed [8]. These triggers were included in
the simulation since they are more sensitive to the low-energy electromagnetic component of the
shower, thus reducing the threshold energy of the spectrum. Fig. 2 (left) shows the efficiency for
events arriving with zenith angle 𝜃 ⩽ 45◦, as determined by the simulations. We fitted the efficiency
with the model [12]

𝜖 (𝐸) = 1
2

erf
[
𝑎 lg

(
𝐸

10 PeV

)
+ 𝑏

]
+ 1

2
. (1)

The best fit parameters are 𝑎 = 3.88 ± 0.02 and 𝑏 = −1.54 ± 0.01. The threshold energy for the
spectrum measurement is defined as that at which the efficiency is greater than 97 %: for the SD433
is at lg(𝐸/eV) = 16.8 (𝐸 = 63 PeV).

We calculated the SD433 resolution as the ratio of the standard deviation of the reconstructed
energy to the simulated energy. We binned the energy ratio and calculated its mean as shown in
Fig. 2. The resolution improves with the energy and is 17% at the SD433 threshold energy. We fitted
the resolution (𝜎(𝐸)/𝐸) with a model that adds in quadrature a contribution of the fluctuations in
the shower development for different events (𝑅sh) and another term corresponding to the statistical
uncertainty in the reconstructed shower size given the sparse sampling of the shower front by the
surface detector and the finite size of the WCD,(

𝜎(𝐸)
𝐸

)2
= 𝑅2

sh +
𝑅2

0
𝐸/𝐸0

. (2)

We assumed the shower term to be constant and the detector contribution to scale with the square
root of the energy. The parameter 𝑅0 corresponds to the SD433 resolution for a reference energy
𝐸0 = 100 PeV. By fitting the resolution model to the data, we estimated 𝑅sh = 0.12 and 𝑅0 = 0.09.
The detector resolution is dominant at low energies whereas the shower fluctuations drive the total
resolution at high energies.
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Figure 3: Attenuation of the shower size with the zenith angle for five different intensity cuts. The data and
their corresponding fits are shown. The reference angle is indicated by a vertical dashed line.

The reconstructed energy is biased for events with energy below the full-efficiency threshold,
because upward fluctuations in the WCD signals make the trigger probability higher, so that larger
signals translate into reconstructed ones larger than true ones. To determine the bias, we calculated
the difference between the mean of the reconstructed energy and the simulated energy. Fig. 2 shows
that the bias decreases with the energy as the array becomes more efficient and is only 2% at the
threshold energy. The bias at high energy is close to zero by design as the SD433 is calibrated
against the simulated energy.

3. Energy estimation

We reconstructed the SD433 events with the Offline framework using the same method applied
for the SD750 and SD1500 arrays. The fall-off of the WCD signal with the distance to the shower
axis is fitted with a lateral distribution function modeled as a modified version of the Nishimura-
Kamata-Greisen function [12]. We evaluated the fitted lateral distribution function at a reference
distance of 300 m to estimate the shower size 𝑆(300).

We corrected the shower size to account for its attenuation with the zenith angle using the
constant-intensity cut method. This procedure started by classifying the reconstructed shower sizes
in nine zenith-angle bins of the same size in sin2 𝜃, in the range between 0◦ to 45◦. In each bin,
we ordered the events in decreasing 𝑆(300) and recorded the values at N = 100, 200, 500, 1000,
and 2000 intensities as shown in Fig. 3. We delimited the error intervals with the 𝑆(300) at ±

√
𝑁

away from the cut intensity 𝑁 . The cornerstone of the constant-intensity cut is that if events arrive
isotropically, the 𝑆(300) of all bins at a given intensity cut correspond to the same energy. As
the isotropy condition requires full efficiency above all cuts, we took that last cut at 2000 events
which corresponds to 𝐸 ≈ 100 PeV. We modelled the attenuation of 𝑆(300) using a second degree
polynomial in terms of the variable 𝑥 = sin2 𝜃 − sin2 30◦,

𝑆(300) = 𝑆30 [1 + 𝑎(𝑆30) 𝑥 + 𝑏 𝑥2], (3)

where the factor 𝑆30 is an energy estimator independent of the zenith angle that can be interpreted
as the 𝑆(300) the shower has had it arrived at 30◦. This reference angle is the median of an isotropic
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Figure 4: Energy calibration of the SD433 using the events observed in coincidence with the SD750. A
selection cut is applied at 𝐸750 = 100 PeV, the energy threshold of the SD750. The calibration parameter 𝐴
and the reference shower size 𝑆0 are displayed.

distribution of arrival directions up to 45◦. The attenuation among different cuts is not the same but
varies only within less than 3%. We corrected for this small systematic dependence by expanding
the linear parameter 𝑎 so that 𝑎(𝑆30) = 𝑎0 + 𝑎1 lg(𝑆30/(30 VEM)). We simultaneously fitted the
data of all cuts with the model and obtained the parameters 𝑎0 = 1.66 ± 0.02, 𝑎1 = −0.19 ± 0.09,
and 𝑏 = −1.41 ± 0.13 with a 𝜒2 = 34 for 37 degrees of freedom.

The SD1500 and SD750 are calibrated against the fluorescence detector using events detected
in coincidence. For these calibration events, the shower size of the surface detector is correlated
with the energy measured by the FD. The advantage of this method is that the fluorescence detector
provides an almost calorimetric measurement of the energy. However, it is not possible to apply
this approach to the SD433 calibration since, due to its energy range and distance to the nearest
telescopes, there are very few coincident events. To overcome this problem we instead correlated
the 𝑆30 of the SD433 with the energy assigned to the same event by the SD750. As the energy scale
of the SD750 is set by the FD, the SD433 energies are also inherited from the FD.

We used in the SD433 calibration a set of events that triggered and were reconstructed by both
the SD433 and the SD750. We selected events for which the SD750 measures an energy 𝐸750

greater than 100 PeV, its full efficiency threshold. We also required a zenith angle of less than 45◦

and that the detector with the highest signal is surrounded by six working detectors in both arrays.
After applying these conditions, there are more than 9 700 calibration events. Fig. 4 shows the
SD433 calibration. As in the case of the other two surface detectors, a power-law function is used
as the calibration model,

𝐸 = 𝐴

(
𝑆30

30 VEM

)𝐵
, (4)

where the parameter 𝐴 corresponds to the energy at 𝑆30 = 30 VEM and the parameter 𝐵 is the power
law index. The model is adjusted to the data by maximizing a likelihood function that considers
the combined effect of the energy resolution of both arrays, the shape of the spectrum, and the cut
at the threshold energy [13]. In the likelihood, we also included the correlation between 𝑆30 and
𝐸750 that is present as both detectors sample the same shower front and also share some WCDs. By
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Figure 5: Unfolded cosmic ray spectrum measured with the SD433. The data were fitted with a broken
power law model with soft transitions. The position of the fitted second knee is shown in dashed line.
The error bars and upper limits correspond to the statistical uncertainty given by the 90% confidence level
Feldman-Cousins intervals. The SD750 [8] and SD1500 [15] measurements are also shown.

applying this procedure we estimated the parameters 𝐴 = (117.0 ± 0.4) PeV and 𝐵 = 0.963± 0.003
with their correlation 𝜌 = −0.60. We used these values of 𝐴 and 𝐵 to estimate the energy of each
SD433 event from its 𝑆30 by applying the Eq. (4).

4. Measurement of the spectrum

To ensure an unbiased estimation of the spectrum we selected events in which the WCD with
the highest signal is surrounded by six working WCDs. According to this containment condition,
the hottest detector of an event has to be one of the seven internal WCDs of the SD433. We also
limited the zenith angle of the selected events below 45° as they as they are less attenuated than more
inclined events and are dominated by the electromagnetic component [12]. The WCDs trigger upon
the fulfillment of any of four different conditions including the two modes implemented at the start
of Auger [14] plus two additional modes implemented in 2013. Since the spectrum is measured
above an energy at which the SD433 is more than 97% efficient, the exposure can be calculated from
the array geometry without resorting to simulations. Considering the aforementioned containment
condition, the selected events must fall in the shaded region shown in Fig. 1, which has an area
of 1.14 km2. From the effective area and the maximum zenith angle, the aperture, 1.79 km2 sr, is
obtained when all WCDs are functioning. Given that occasionally some detectors may be down,
the instantaneous aperture is less than this nominal value. To measure the aperture of the SD433,
the acquisition system records the state of its WCDs every 1 s. The periods in which the data
acquisition is unstable are not considered in the computation of the exposure and, correspondingly,
the events observed during these periods are excluded from the spectrum. These problems reduced
the exposure by only 3%. The resulting exposure of the SD433 is 3.85 km2 sr yr with a systematic
uncertainty of 4%.
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To measure precisely the spectrum, the finite energy resolution and the bias of the SD433, which
cause the migration of events to neighbouring bins, must be taken into account. We considered both
effects by using the forward-folding formalism described in Ref. [15] in the fit of the spectrum. We
fitted a spectrum model consisting of a broken power law with soft transitions, the same functional
form used for the two other surface-detector spectra,

𝐽 (𝐸) = 𝐽0

(
𝐸

100 PeV

)𝛾0
[
1 +

(
𝐸

𝐸01

) 1
𝜔01

] (𝛾0−𝛾1 )𝜔01

, (5)

where 𝐽0 = (0.97 ± 0.02)×10−13 km−2 sr−1 eV−1 is the normalization parameter, lg(𝐸01/eV) =

17.37 ± 0.10 is the energy of the transition, 𝛾0 = 3.00 ± 0.05 is the spectral index before the break,
and 𝛾1 = 3.32±0.08 is the spectral index after the break. The width of the transition𝜔01 = 0.25 was
fixed in the fit to the value obtained in [5]. We tried to free this parameter but could not constrain
it due to our sensitivity. The correction that arises from the unfolding procedure is close to 5%
in all the energy range. Fig. 5 shows the spectrum measured with the SD433 after the unfolding
correction is applied. We up-scaled the flux by 𝐸3 to highlight the observed break in the spectrum.
As it is the case for the SD750, the SD433 energy has a systematic uncertainty of 14% that is almost
energy independent. This uncertainty is dominated by the contribution of the uncertainty of the
fluorescence detector energy. The uncertainty in the energy corresponds to a ≃35% uncertainty in
the flux which leads to a systematic uncertainty of 0.34 × 10−13 km−2 sr−1 eV−1 in the parameter
𝐽0. The corresponding energy of the second knee including the systematic uncertainty that comes
from the energy scale is 𝐸01 = (230 ± 50 stat ± 35 syst) PeV. This uncertainty is also propagated
to the spectral indexes in the unfolding procedure leading to 𝛾0 = 3.00 ± 0.05 stat ± 0.10 syst and
𝛾1 = 3.32 ± 0.08 stat ± 0.10 syst. We are currently working to assess the influence of subdominant
sources of systematic uncertainties.

This is the first measurement of all the spectral features of the second knee with an Auger
surface detector. Although the SD750 already hinted the second knee [8], it only measured the
spectral index after the break given a loss of its efficiency around the energy of the break. At that
time, the spectral index after the break was 𝛾 = 3.34 ± 0.02, which is consistent within statistical
uncertainties with the current SD433 measurement. Moreover, the fluxes measured with SD433
and SD750 are within 5% with respect to one another.

Our measurement is also consistent within the uncertainties with a previous report from Auger
where the spectrum around the second knee that was obtained by extrapolating the 750 m spectrum
below 0.1 EeV using the Cherekov dominated FD events [5]. Fig. 6 shows the SD433 spectrum
along with the measurements of other experiments and the previous Auger report.

5. Conclusions

We have presented in this work the cosmic ray spectrum measured with the Auger surface
detector spaced at 433 m. This array, denser than the two other Auger ones, lowers the threshold
energy reachable with the surface detector to 𝐸 = 63 PeV thus covering the second knee. We are
reporting, for the first time, all the second-knee spectral features as seen by the surface detector of
the Pierre Auger Observatory. We have located the second knee at (230 ± 50 stat ± 35 syst) PeV,
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Figure 6: SD433 spectrum scaled by 𝐸3 along with Auger combined measurement [5] and the measurements
of other experiments around the second knee (references in [8]). Experiments that set their energy scale
calorimetrically are shown in color. The systematic uncertainty of Auger is plotted.

at which point the spectral index increases from 𝛾0 = 3.00 ± 0.05 stat ± 0.10 syst to 𝛾1 = 3.32 ±
0.08 stat ± 0.10 syst. The 433 m array has a robust exposure computation, calorimetric calibration
in energy, and covers a broad energy region around the second knee, making it possible to fully
characterize this feature. A preliminary observation of the second knee has also been reported in
[5], using Cherenkov dominated FD events. The final uncertainty estimation of this previous result,
as well as the measurement presented here, are yet to be finalized. However, both characterizations
of the second knee feature are consistent within preliminary estimates of the systematics.
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