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In this work, we present an estimate of the cosmic-ray mass composition from the distributions
of the depth of the shower maximum (𝑋max) measured by the fluorescence detector of the Pierre
Auger Observatory. We discuss the sensitivity of the mass composition measurements to the
uncertainties in the properties of the hadronic interactions, particularly in the predictions of the
particle interaction cross-sections. For this purpose, we adjust the fractions of cosmic-ray mass
groups to fit the data with 𝑋max distributions from air shower simulations. We modify the proton-
proton cross-sections at ultra-high energies, and the corresponding air shower simulations with
rescaled nucleus-air cross-sections are obtained via Glauber theory. We compare the energy-
dependent composition of ultra-high-energy cosmic rays obtained for the different extrapolations
of the proton-proton cross-sections from low-energy accelerator data.
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1. Introduction

Knowledge of the primary composition of cosmic rays is very important for understanding the
nature and origin of ultra-high-energy cosmic rays (UHECR). As cosmic rays propagate toward
Earth, they interact with nuclei in the atmosphere producing cascades of secondary particles, also
known as Extensive Air Showers (EAS). The atmospheric depth at which the particle shower reaches
its maximum, 𝑋max, is one of the most sensitive observables to estimate the mass composition of
UHECRs. By fitting the measured 𝑋max distributions with the model predictions derived from
air shower simulations, one can estimate the primary cosmic-ray mass composition at ultra-high
energies [1]. However, prediction of the development of hadronic interactions in the atmosphere is
difficult, and describing their properties above the LHC energies is a challenging task [2]. Since
direct measurements at ultra-high energies are not yet experimentally feasible, our understanding of
hadronic interactions in EAS relies on the extrapolations from accelerator data. The phenomeno-
logical hadronic interaction models, such as, for example, EPOS-LHC [3], QGSJETII-04 [4], and
Sibyll 2.3d [5] are broadly used for the simulations of the development of the cosmic-ray air showers
and provide a reasonably good overall description of hadronic showers. Yet, the interpretations of
air shower observables remain an open question as they are sensitive to the systematic uncertainties
in the modeling [6].

The Pierre Auger Observatory, located near Malargüe in Argentina, is the largest observatory
to measure the most energetic cosmic ray particles. The hybrid design of the Observatory provides
two independent and complementary approaches for the detection of cosmic rays. The Surface
Detector array consists of more than 1600 water-Cherenkov detectors and measures the cosmic
ray particles at the ground level. The fluorescence telescopes measure the development of the
longitudinal profile of the electromagnetic cascade in the atmosphere.

In this work, we present an update on the estimation of the primary mass composition from
the maximum of the air shower development profile as measured by the Fluorescence Detectors of
the Pierre Auger Observatory. We study and discuss the sensitivity of the obtained composition
fractions to the underlying proton-proton and, more broadly, nucleus-air interaction cross-sections.

2. Measurement of the cosmic-ray mass composition

To derive the cosmic-ray mass composition, we follow a standard approach and fit the 𝑋max

distributions with the model predictions obtained from the air shower simulations with the Conex [7]
program, and EPOS-LHC and Sibyll 2.3d hadronic interaction models. We omit the QGSJETII-04
interaction model since it does not describe the 𝑋max distributions well [8]. We use a binned
maximum likelihood fit, and the goodness of the fit is characterized by the p-value, calculated as a
probability of getting a worse fit with the predicted 𝑋max distributions than with the actual data. The
𝑋max resolution and acceptance were simulated according to their parameterizations provided in the
detailed study on the 𝑋max distributions in [9] and updated for the most recent data in [10]. The fit
was performed using the Markov Chain Monte Carlo (MCMC) inference approach [11], which has
several advantages compared to the frequentist inference. Firstly, MCMC can be applied to global
optimization problems, and it will not get stuck in a local minimum (at least theoretically, if the
number of samples is infinite and/or the sampling steps are set appropriately). More importantly, it
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Figure 1: The mass composition fit for four elemental mass groups (top four panels). The error bars denote
statistical (inner cap) and total (outer cap) uncertainties. The bottom panel shows the p-values of the fit.

allows sampling the posterior probability density function of the estimated fractions making it easy
to marginalize over the mass composition for derived quantities, e.g., the first moments of the 𝑋max

distribution. Furthermore, MCMC can deal with many highly correlated parameters, numerically
impossible with standard gradient minimizers. This can be very useful for composition studies if,
in addition to the nuclear fractions, one also wishes to fit properties of hadronic interactions.

In Fig.1, the mass composition fit is shown for a combination of four particle species: proton,
H; Helium, He; Nitrogen, N, and Iron, Fe, representing four elemental groups, approximately
equally spaced in ln 𝐴. The total uncertainty on the composition fractions includes the statistical
uncertainty from the MCMC posterior distributions and the impact of the systematic uncertainty on
the 𝑋max scale, evaluated by fitting the data with a consistently varied shift in the 𝑋max within the
scale uncertainty. The trends observed in the evolution of the cosmic ray composition with energy
agree with our previous results presented in [1, 8]. Minor differences from the previous results in
the individual mass groups are likely attributed to the larger dataset (more observation years) and the
usage of the most recent version of the Sibyll interaction model, which predicts slightly shallower
showers than the previous one [5]. Though the qualitative behavior is the same, one can also see
the significant dependence of the choice of the interaction model on the individual fractions. On
average, the Sibyll 2.3d interaction model results in a He fraction that is ≈ 20% larger at lower
energies and in an increase of the fraction of N nuclei at higher energies compared to EPOS-LHC.

3



P
o
S
(
I
C
R
C
2
0
2
3
)
4
3
8

Mass composition and interaction cross-sections Olena Tkachenko

Overall, the composition is a mix of H, He, and N nuclei at lower energies and dominated by He
and N at higher energies. The proton fraction obtained with EPOS-LHC reaches up to 70% around
1018.0 - 1018.2 eV and then drops to less than 20% above 1018.7 eV. The Sibyll 2.3d predicts a
smaller proton fraction over the energy range considered, with a near-zero contribution at the higher
energies. The amount of iron in the cosmic-ray mix is consistent with zero within uncertainties at
all energies. Within the energy range observed, the data is compatible with a cycle from H to He to
N; see [12] for further discussion in the astriophysical context.

3. Modifying the proton-proton interaction cross-sections

To study the effect of the uncertainties in the extrapolated characteristics of the hadronic inter-
actions on the measurements of the primary cosmic-ray mass composition at ultra-high energies,
we perform a mass composition fit described above with model predictions constructed under the
assumption of altered proton-proton interactions. For this, we follow an approach for varying the
proton-proton interaction cross-sections, discussed in [13], with a subsequent self-consistent rescal-
ing of the cross-sections modifications into the nucleus-nucleus interaction via the Glauber [14]
theory. We multiply the original cross-sections by an energy-dependent scaling factor [6]:

𝑓 (𝐸) = 1 + 𝐻 (𝐸 − 𝐸0) ( 𝑓lg 𝐸1 − 1) lg(𝐸/𝐸0)
lg(𝐸1/𝐸0)

, (1)
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Figure 2: Comparison of the measured 𝜎pp

with model extrapolations.

where 𝐸0 and 𝐸 are the threshold energy and the energy
of interest respectively, 𝑓lg 𝐸1 is the rescaling factor at 𝐸 =
𝐸1, and 𝐻 (𝑥) denotes the Heaviside step function. Since
we use the LHC center-of-mass energy of

√
𝑠 = 14 TeV

as a threshold energy, the scaling factor equals unity at
the lower energies. We also keep 𝐸1 equal to 1019 eV,
so 𝑓 (𝐸) is equal to 𝑓lg 𝐸1=19 at this energy. Rather than
changing the 𝑓 (𝐸), we vary the energy-independent 𝑓19,
which we refer to as the scaling factor below.

In Fig.2, we show how much of the deviation in the
inelastic proton-proton cross-sections is expected when
the rescaling is applied to the most recent Sibyll 2.3d
interaction model. For comparison, we also show the accelerator-based measurements (see for
reference [16]-[21]), and the measurement at the

√
𝑠=57 TeV with the Pierre Auger Observatory [22].

The estimated proton-proton cross sections from the cosmic ray data agree with the range of scaling
factor values between 0.7 and 1.2 within the uncertainties.

4. Implications of the proton-proton cross-section extrapolation for the estimation
of the mass composition

To estimate how the properties of the hadronic interaction models, in this particular study,
the changes in the proton-proton cross-sections, affect the measured mass composition of cosmic
rays, we have varied the introduced rescaling factor in a wide range of values. To generate the
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Figure 3: Composition estimates for the varied 𝑓
pp
19 for 1018.4-1018.5 eV (left) and 1019.4-1019.5 eV (right).

𝑋max distribution templates for the narrowly spaced scaling factors more efficiently, we use the
generalized Gumbel distribution [15] with shape parameters having a functional dependence on the
scaling factor values instead of performing air shower simulations for each 𝑓

pp
19 . The modifications

in the interaction cross-section will affect the EAS observables, and, as of interest in this study, an
increase in the scaling factor makes the 𝑋max distributions shallower and narrower. In Fig.3, an
example of how much the fitted composition changes with variations in the input rescaling factor
is shown. On the left plot, the fit is shown for the intermediate energies of 1018.4 - 1018.5 eV,
where lighter nuclei with a small contribution dominate the fit. Given the onset of the proton-
proton cross-section modifications at the LHC center-of-mass energy, the iron-air interactions are
unaffected at these energies, so we expect it to remain stable. The changes in the nitrogen fraction
are also very subtle, except for the rescaling factor values corresponding to the unrealistically small
interaction cross-sections. The proton and helium fractions are, indeed, sensitive to the variations
in the rescaling factor, and the composition spans the range from being dominant by He nuclei at
smaller 𝑓

pp
19 values to being dominant by protons. In the right panel, a fit is shown for the higher

energies (1019.4 - 1019.5 eV), where the composition is a mix of heavier nuclei. With an increase in
the scaling factor, the composition is getting lighter.

The overall mass composition behavior with a variation in the rescaling factor is shown in Fig.4.
For the clarity of the comparison, we do not show the uncertainties on composition fraction fitted
under the assumption of the modified cross-sections as all fits use the same data, and the error bars
are very similar for each scaling factor. At lower energies, where the composition is characterized
by a combination of three particle species (H, He, and N), the most noticeable difference occurs
for H and He fractions. Here, the increase in the scaling factor, and therefore, in the interaction
cross-sections, leads to the increase in the proton fraction and in the corresponding decrease in
the amount of He. Although nitrogen interactions already change at around 1018.1 eV, there is no
discernible effect until 1018.7 eV, where there is a drop in the detected number of protons. Beyond
this point, since the proton fraction makes up less than 5%, the main change in the composition
is observed for He and N nuclei. The same pattern as for the lower energies, with an increase in
the fraction of the lighter nuclei for the larger scaling factors, is also seen at the higher energies.
Furthermore, in the energy range above 1018.7 eV, the deviation from the default mass composition
fit increases with energy for He and N nuclei. Except for a few energies where it does contribute to
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Figure 4: Mass composition fit for the different extrapolations of the proton-proton cross-section.

the fit, the iron fraction remains stable. For the two energy bins where the fitted iron fraction rises
above 0, the increase in the 𝑓

pp
19 results in the decrease of the corresponding fraction. Additionally,

the presence of the iron nuclei in the composition mix makes other particle species less sensitive
to the modifications in the interaction cross-sections. There is no significant dependence from the
scaling factor’s variation on the fit quality at each energy. An example of the 𝑋max distributions
fits from the air shower simulations with modified proton-proton cross-section is shown in Fig.5.
As can be seen, increasing 𝑓

pp
19 from 0.8 to 1.2 reduces the He fraction from ≈ 0.7 to 0.4, and

the contribution from H grows. However, the mean and dispersion of the total distribution remain
constant, and the changes in goodness of fit are minor.

In Fig.6, the first 𝑋max distribution moments, mean ⟨𝑋max⟩ (left) and 𝜎(𝑋max) (center), derived
from the fractions [23] with varied rescaling factor, are shown with a comparison to the moments
from 𝑋max data [10]. Throughout the energy range, the mean ⟨𝑋max⟩ remains stable irrespective of
the interaction cross-section changes and agrees well with the data. Over almost the entire energy
range, the mean ⟨𝑋max⟩ varies only within a few g/cm2, except for the highest energies, where the
difference increases. In general, the standard deviation 𝜎(𝑋max) is getting smaller with an increase
in the scaling factor. It is more affected by the rescaling in the cross-sections, particularly at energies
above 1018.5 eV, reaching up to 10% deviation for the 20% variation in 𝜎pp. This trend is consistent
with a lighter composition obtained from the fit associated with the larger cross-section values since
both an increase in the scaling factor and an increase in the fraction of lighter nuclei have the same
effect on the 𝑋max distribution, narrowing it. On average, there is a good agreement between the
calculated 𝜎(𝑋max) and the data, except for several energies where neither of the calculated second
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Figure 5: The fitted 𝑋max distributions for the scaling factor values of 0.8 (left), 1.0 (center), and 1.2 (right).

moments provides a good interpretation.
In Fig.6 (right), the changes in the attenuation length Λ𝜂 are shown with a comparison to data.

The attenuation length is derived by fitting the tail of the 𝑋max distribution, which can be described
with an exponential profile 𝑑𝑁/𝑑𝑋max ∝ exp(−𝑋max/Λ𝜂), where 𝜂 is the fraction of the most deeply
penetrating air showers considered for the fit. We select events in the tail of the 𝑋max distribution
following the previous analyses from the Pierre Auger Observatory with 𝜂 = 20% [22]. The Λ𝜂

is highly sensitive to the particle interactions in EAS and could be converted into the proton-air
interaction cross-sections. The selection of the events in the tail enhances the contribution of
protons. In this case, the estimation of the cross-sections is done under the assumption of a proton-
dominated composition, with the possible contamination by helium nuclei being the largest source
of the systematic uncertainty for the measurements of the proton-air cross-sections at ultra-high
energies from the cosmic-ray data. See [22, 24] and [25, 26] for the previous results from the Pierre
Auger Observatory and the Telescope Array, respectively.

We calculated the attenuation length values for the different values of the scaling factor from
the 𝑋max distributions corresponding to the fitted composition. With an increase in energy, the
size of the selected sample decreases, leading to a larger uncertainty on the estimation of Λ𝜂 from
the data. Therefore, we show only the limited energy range, where it is still possible to estimate
Λ𝜂 with reasonably good accuracy without increasing the size of energy bins. The dependence
of the Λ𝜂 on the scaling factor is similar to the one observed for the 𝜎(𝑋max) - with an increase
in the scaling factor (and, therefore, for larger proton-proton cross-sections) Λ𝜂 is getting smaller.
While the dependence on the scaling factor is not strong for lower energies, the difference between
the results for different scaling factors increases at larger energies. The attenuation length values
calculated under the assumption of the fitted composition agree well with the data.

5. Conclusions

In this contribution, we presented an update on the measurements of the cosmic-ray mass
composition using the data from Pierre Auger Observatory. To estimate the effect of the uncertainties
in the characteristics of the hadronic interactions, we tested the stability of the mass composition fit
with respect to the changes in the proton-proton cross-sections.

The mass composition of cosmic rays is dominated by lighter elements at lower energies and a
heavier mix at higher energies. The observed qualitative behavior of changes in mass composition

7



P
o
S
(
I
C
R
C
2
0
2
3
)
4
3
8

Mass composition and interaction cross-sections Olena Tkachenko

18.0 18.5 19.0 19.5
lg(E/eV)

700

720

740

760

780

800
〈X

m
ax
〉[

g/
cm

2 ]

PRELIMINARY

data

f pp
19 = 1.2

f pp
19 = 1.0

f pp
19 = 0.8

18.0 18.5 19.0 19.5
lg(E/eV)

0

10

20

30

40

50

60

70

σ
(X

m
ax

)
[g
/c

m
2 ]

PRELIMINARY

data

f pp
19 = 1.2

f pp
19 = 1.0

f pp
19 = 0.8

18.0 18.5 19.0 19.5
lg(E/eV)

0

10

20

30

40

50

60

Λ
η

[g
/c

m
2 ]

H

He

N

PRELIMINARYdata

f pp
19 =1.2

f pp
19 =1.0

f pp
19 =0.8

Figure 6: The first two moments of the 𝑋max distribution, mean ⟨𝑋max⟩ (left) and standard deviation 𝜎(𝑋max)
(center), and the attenuation length Λ𝜂 (right) derived from the measured composition fractions.

with energy is independent of cross-section extrapolation. The individual mass groups are, however,
sensitive to the modifications in particle interactions. We see a small deviation from the default
values in the fitted fractions for the proton-proton cross-section staying within the uncertainties of
the current measurements from cosmic-ray data (± 20%). More significant variations substantially
change the predictions from a nearly pure composition to a mix dominated by another nucleus. At
high energies (above 1018.7 eV), significant anticorrelated changes for intermediate masses (He and
N) of up to Δ 𝑓 = 0.5 can be seen. These changes are, however, within the systematic range of the
𝑋max scale uncertainty. At lower energies, where the default proton fraction is significant, a change
in 𝜎pp changes the proton fraction by up to ± 0.25 for very large changes in 𝜎pp of ± 40%. In further
studies, we will explore if the shape of the 𝑋max distribution provides enough sensitivity to fit the
composition and cross-section simultaneously, as suggested in [13].
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