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The surface detector (SD) of the Pierre Auger Observatory, consisting of 1660 water-Cherenkov
detectors (WCDs), covers 3000 km2 in the Argentinian pampa. Thanks to the high efficiency of
WCDs in detecting gamma rays, it represents a unique instrument for studying downward Terrestrial
Gamma-ray Flashes (TGFs) over a large area. Peculiar events, likely related to downward TGFs,
were detected at the Auger Observatory. Their experimental signature and time evolution are very
different from those of a shower produced by an ultrahigh-energy cosmic ray. They happen in
coincidence with low thunderclouds and lightning, and their large deposited energy at the ground
is compatible with that of a standard downward TGF with the source a few kilometers above the
ground. A new trigger algorithm to increase the TGF-like event statistics was installed in the
whole array. The study of the performance of the new trigger system during the lightning season
is ongoing and will provide a handle to develop improved algorithms to implement in the Auger
upgraded electronic boards. The available data sample, even if small, can give important clues
about the TGF production models, in particular, the shape of WCD signals. Moreover, the SD
allows us to observe more than one point in the TGF beam, providing information on the emission
angle.
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Downward TGFs at the Pierre Auger Observatory

1. The Pierre Auger Observatory and the atmospheric electricity

The fluorescence and surface detector of the Pierre Auger Observatory [1], designed to study
extensive air showers produced by the most energetic cosmic rays as they pass through the at-
mosphere, have a great potential for the detection of ELVES (Emission of Light and Very Low
Frequency perturbations due to Electromagnetic Pulse Sources) and halos [2] and downward Ter-
restrial Gamma-ray Flashes (TGFs), which are bright events produced by lightning.

TGFs are millisecond bursts of gamma-rays originating from within the Earth’s atmosphere
during thunderstorms [3]. TGFs were firstly observed by BATSE in 1994 [4], and since then
have been reported by many other satellites. Recently, the observation of downward TGFs and
our knowledge about them have been increasing [5, 6]. The Pierre Auger Observatory surface
detector (SD), consisting of 1600 Water Cherenkov Detectors (WCDs), has observed peculiar
events during thunderstorms [7], now associated with downward TGFs [8, 9]. When charged
particles, in particular electrons and muons, cross the SD station with speed greater than the speed
of light in water, Cherenkov light is produced and collected by three PMTs looking into the water
from the top. The height of 1.2 m makes WCDs also very sensitive to high energy photons, which
convert to electron–positron pairs in the water volume. A "standard" upward TGF produces about
1017 gamma rays of energy from 1 to 20 MeV in the primary beam. Therefore, WCDs, with a
threshold for gammas of few MeV, are perfect instruments for their detection. Downward TGFs
have an experimental signature and a time evolution very different from those of a shower produced
by an ultrahigh-energy cosmic ray. The multiplicity of triggered SD stations is much larger than
that due to extensive air showers, the footprint covers about 200 km2, as shown in figure 1, and the
signals observed in the WCDs last more than 10 𝜇s, one order of magnitude longer than the duration
of the signal produced by cosmic-ray showers.

Figure 1: Left: the large footprint of a TGF event. Long-signal stations are marked in blue, lightning stations
with stars, and muon stations with crosses. Center: a long signal read by the three PMTs which are in each
Water-Cherenkov detector. Right: a lightning signal due to high-frequency noise. The presence of at least a
lighting station in each event suggested that they happened during thunderstorms.

The TGF radiation hits the central stations first and reaches the external ones in tens of
microseconds. A single event can activate two or more consecutive triggers. Moreover, during
thunderstorms, the trigger rate massively increases. All these deviations from cosmic-ray shower
behaviour suggested that the low statistics of Auger downward TGFs (less than 2 events/year, while
at least 30 events/year are expected) and the lack of signals in the center of the footprint have not
a physical origin but are due to electronics, trigger, data acquisition, or post-acquisition processing
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of the Auger SD optimized for rate, shape and signals of cosmic-ray showers. This hypothesis was
verified as described in [8] and an ad-hoc trigger algorithm to identify TGFs was designed and
implemented in the electronic board of each WCD since November 2021 [10] without compromising
normal data taking. In the meantime, the installation of the new electronic boards for AugerPrime
[11], the Pierre Auger Observatory upgrade, has begun, and new work is now required to optimise
the surface detector for TGF studies exploiting the potential of new electronics and detectors and
the experience gained with the previous configuration.

In this proceeding, the data collected so far are analysed to increase the knowledge about
downward TGFs and constrain models on their production mechanisms.

2. Downward TGFs and production mechanisms

TGF photons are produced via the bremsstrahlung process when a cascade of energetic electrons
forms in coincidence with lightning. It has been debated so far which exact mechanism in lightning
discharges is responsible for the acceleration of electrons to relativistic energies. In fact, only if
electrons reach energies larger than approximately 150–200 eV, travelling in a thundercloud region
that contains a strong electric field, they can gain enough energy to compensate the ionization loss
and "runs away", activating the electron avalanches. For a long time, the "seed" electrons were
thought to be remnants of cosmic-ray showers, but the recent measurements done by the ASIM
experiment disfavour this idea [12], and two other models are now under debate. According to
the "Lightning Leader" model [12], low-energy electrons are accelerated in the high-field regions
localized in the vicinity of lightning leader tips, while the "Relativistic Feedback" model [13, 14]
assumes that backscattered positrons and photons produced during the development of the electron
avalanche can propagate to the start of the avalanche region and can produce additional runaway
electrons. The number of runaway electron avalanches increases exponentially on a timescale of
few microseconds. The available Auger data sample of downward TGFs can give important hints
to distinguish between these two TGF production models and can also help to understand if there
are differences between upward and downward TGFs. Moreover, thanks to the large number of SD
stations, very sensitive to photons, we can study the spatial and temporal development of the TGF
emission in detail. For upward TGFs, we expect gammas emitted within a cone with an angle of
about 30◦. From the first studies carried out, it was seen that the footprint at the ground produced
by a similar emission propagating in the opposite direction is too small. The deposited energy per
m2 of an Auger TGF as a function of the distance from the center of the footprint is compatible with
the expectation for a standard downward TGF with an isotropic emission into the lower hemisphere
and the source at 1 and 2 km above the ground [9]. This height is compatible with the source height
obtained fitting the signal arrival time in the Auger detectors assuming a spherical propagation [7].

3. Auger signals and the Relativistic Feedback Model

As explained in the previous section, the relativistic feedback mechanism predicts an expo-
nential runaway electron flux at the source, the zone where the avalanche starts. TGF photons are
produced via bremsstrahlung and then propagate through the atmosphere to reach the ground where
they are detected. Reasonably, the photon production and their propagation do not strongly change
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the time evolution, and we expect that also the arrival time of the photons in WCDs can be described
by an exponential function.
In figure 2, some "long signals" typical of Auger TGF events are shown. Assuming that energetic

Figure 2: The rising and falling edge of the Auger long signals produced by a downward TGF are described
by an exponential function as predicted by the relativistic feedback mechanism.

electrons are produced by the relativistic feedback mechanism, we foresee that the rising and falling
edge of long signals follow an exponential evolution. In the top panel of figure 2, we can see that the
rising edge of two long signals belonging to the same event are described by the same exponential
function, 𝑓 (𝑡) = 𝑒𝑥𝑝(𝑘 + 𝑡/𝜏), with 𝜏 ≈ 1.1 𝜇s. This is true for each signal of the event, while the
𝜏 value changes if we analyze a different event (see the signal in figure 3 belonging to a different
event). Each TGF has, in fact, a peculiar evolution, and this is probably related to the characteristics
of the thunderstorm that generated the TGF.
As it is evident observing the right plot in the upper panel of figure 2, only a part of the rising edge
can be described by the exponential function. Before reaching the maximum, the slope of the signal
changes. In figure 3, we divided the rising edge into two parts:

1. The red part, the exponential part, corresponds to the initial phase of the electron avalanche
development. The runaway electron flux is low and the intense thundercloud electric field is
not modified by the discharge current generated by the runaway electrons.

2. In the green part, the slope of the signal is changed, the runaway electron flux has grown
enough that the current is able to counteract the thunderstorm field, and the avalanche
generation starts slowing down and eventually stops.

In the falling edge, the runaway electron flux decreases, and the photon flux falls down exponentially.
The decrease of the signal is slower than the increase, and in fact, in the event we are considering,
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Figure 3: In the rising edge of the signal, after the first exponential part, a change in the signal evolution is
evident. It is a hint of the growth of the runaway electron avalanche, which reaches such an intensity that the
current produced by it counteracts the electric field of the thundercloud.
As expected, the exponential function describing this signal has a different 𝜏 respect to the signals shown in
2 belonging to another event.

the exponential has a tau approximately equal to -5.4 𝜇s.
In our data sample, there are events very close in time (tens of minutes). They are probably produced
by the same thunderstorm, and we expect similar characteristics. Their signals are described by
exponential functions with the same 𝜏 value. Further investigation on this aspect are in progress.

4. TGF producing-storms: meteorological studies

All the upward TGF observations, associated mainly with intracloud lightning, have been cor-
related with regions of intense lightning, and it has been estimated that the source regions are at the
altitudes of thunderstorm tops, typically 10–15 km above ground level. Instead, in the last years,
evidence of downward TGFs, occurring during strong initial breakdown pulses in the first few mil-
liseconds of negative cloud-to-ground and low-altitude intra-cloud flashes, has been reported [5, 6].
Thanks to the instruments for atmospheric monitoring available at the Pierre Auger Observatory, we
verified that at the time of some downward TGFs, there were clouds with a very low base and with
a large vertical development (see figure 4). Unfortunately, in Auger, most atmospheric monitoring
devices are operated when the fluorescence detector is taking data, and, in most cases, are turned
off when a thunderstorm is above the array. Therefore, our information is incomplete. Comparing
our available data with the data provided each hour by the station of the Argentinian "Servicio
Meteorológico Nacional" in Malargüe, we found a good agreement. A high cloud coverage was
confirmed together with the presence of clouds with a low base height (1000/1500 m). In addition,
also details about the cloud type are avalaible. For the event shown in figure 4, cumulonimbus
was observed. Their upper part is fibrous (cirriform) and anvil-shaped. These are the typical
characteristics of thunderstorm clouds.
In the previous section, we discussed the opened questions about the TGF production mechanisms,
but also the knowledge about the TGF producing-storm is poor. An important point for understand-
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Figure 4: Lidar measurement (range-corrected lidar signal vs altitude above sea level) [15] showing a cloud
with the base at about 2500 m above the Auger Observatory level, which develops vertically for about 2 km.
The measurement was taken 54 minutes before the TGF event.

ing the TGF origin is to know in which phase of a thunderstorm the TGF starts and, in particular,
at what stage in lightning development. Moreover, it is known that TGFs are produced by storms
of all shapes and sizes, but it is still unknown why some thunderstorms produce TGFs, and others
do not. It is possible that characteristics of thunderstorms themselves, such as seasonal conditions
or ground altitude, electric field intensity, and atmospheric conditions, make intrinsic differences
in the occurrence, brightness, and production mechanisms of downward TGFs. Last but not least,
present knowledge is for upward TGFs [16], and it is possible that thunderstorm characteristics
for downward TGFs are different as already verified for the cloud altitude. For these reasons, we
started to analyze the meteorological conditions at the time of Auger TGF events. Most of them
were collected before 2013, when a change in SD trigger conditions reduced our detection effi-
ciency. Public available databases from satellite and land instruments were not as comprehensive
as today, and we have to base on models to reproduce the weather conditions: therefore we use the
ERA5 data. ERA5 is the fifth-generation ECMWF (European Centre for Medium-Range Weather
Forecasts) atmospheric reanalysis of the global climate covering the period from January 1940 to
the present. ERA5 provides hourly estimates of a large number of atmospheric, land, and oceanic
climate variables. The data cover the Earth on a 30 km grid and resolve the atmosphere using 137
levels from the surface up to a height of 80 km.
So far, we analyzed two variables, the Convective Available Potential Energy (CAPE) and the Pre-
cipitable Water Vapor (PWV), which are shown in figure 5 for the 25th of December 2007. CAPE
is the amount of energy available to a developing thunderstorm. More specifically, it describes
the instability of the atmosphere and provides an approximation of updraft strength within a thun-
derstorm. A higher value of CAPE means the atmosphere is more unstable and would, therefore,
produce a stronger updraft. At the same time, PWV is related to the total atmospheric water vapor
contained in a vertical column of unit cross-sectional area extending between the Earth’s surface and
the "top" of the atmosphere. The amount of water in the atmosphere is an important factor that can,
along with other factors, determine the amount of rainfall and influence the dynamical evolution
of convective storms. When large amounts of PWV are observed, there is a greater probability of
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Figure 5: Convective Available Potential Energy (CAPE) -left- and Precipitable Water Vapor (PWV) -right-
at the Pierre Auger Observatory latitude and longitude for the 25th of December 2007. The time of the six
TGF events detected that day falls in the red band.

uplifting convection and cloud formation.
On the 25th of December 2007, six TGF events were detected. The red band in figure 5 represents
the time interval in which the events occurred and is in the growth stage of CAPE and PWV. Also for
other events, we observed they were detected in the growth stage of the two variables. This means
that downward TGF events detected at the Pierre Auger Observatory occurred in the first phase of
the storm. Obviously, we cannot exclude that other TGFs were produced during later stages of the
thunderstorm evolution, but the acquisition system of the Auger SD, optimized for cosmic rays,
may have prevented their recording.
In 2010, two E-field mills were installed at the Pierre Auger Observatory to measure the electric field
strength at ground level, and provide auxiliary information for AERA (Auger Engineering Radio
Array). AERA [17] can detect air showers studying the radio pulses in the MHz range emitted
during the propagation of the shower front through the atmosphere. The strength of the emitted
signal is highly influenced by large electric fields, in particular, amplified signals up to an order of
magnitude have been detected as an effect of thunderstorms. In fact, the intense electric fields in
thunderclouds induce strong electric fields at the ground, and the E-field mill signal can give a hint
about the evolution of the thunderstorm. We have E-field measurements only in coincidence with
a few TGF events. In figure 6, we can see the potential gradient measured by one of the two E-field
mills the 6th of February 2013. The red line is the time of a TGF event, and, also in this case, we
can see that the event occurs at the beginning of the thunderstorm. We showed the signal of the
E-field mill closest to the event, but new E-mills have now been installed at the Observatory since
radio antennas will be added to each WCD [11], so more punctual measurements will be possible
in the future.

Conclusion

Auger TGF events allow us to increase the knowledge about downward TGFs. The signals of
these events are compatible with the expectations of the relativistic feedback mechanism, one of
the two models that explain the TGF origin. Moreover, we verified that the deposited energy at the
ground of the Auger TGF events is compatible with the one of a standard TGFs with an isotropic
emission into the lower hemisphere and the source at 1 and 2 km above the ground. Further
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Figure 6: Left: potential gradient variations measured by one of the two E-field mills installed at the Pierre
Auger Observatory. A TGF event, indicated by the red line, occurs at the beginning of the thunderstorm.
Right: The two Campbell Scientific CS110 E-field mills installed at the Observatory.

studies are in progress to better understand the geometrical characteristics of gamma emission. The
extension of the Observatory and the high sensitivity of the WCDs to gammas are very important
to achieve this goal. Finally, we confirmed, thanks to the information provided by the station of
the Argentinian "Servicio Meteorológico Nacional" in Malargüe, that the Auger downward TGFs
occur in the presence of cumulonimbus with anvil, the typical thunderstorm clouds, and that the
base of these clouds is very low. Studying CAPE and PWV in coincidence with Auger events, we
observed that they occur at the beginning of a thunderstorm. Other variables are being investigated
to understand the characteristics of the storms that cause TGFs.
AugerPrime will give new opportunities for the detection of downward TGFs, and we are working
to improve the capabilities of the surface detector during lightning periods.
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