
P
o
S
(
I
C
R
C
2
0
2
3
)
4
6
9

Parallel processing of radio signals and detector arrays
in CORSIKA 8

A. Augusto Alves Jr,𝑎,∗ Nikolaos Karastathis𝑎 and Tim Huege𝑎,𝑏 for the CORSIKA
8 collaboration
𝑎Institute for Astroparticle Physics (IAP), Karlsruhe Institute of Technology, Karlsruhe, Germany
𝑏Astrophysical Institute, Vrĳe Universiteit Brussel, Belgium

E-mail: aalvesju@gmail.com

This contribution describes some recent advances in the parallelization of the generation and
processing of radio signals emitted by particle showers in CORSIKA 8. CORSIKA 8 is a Monte
Carlo simulation framework for modeling ultra-high energy particle cascades in astroparticle
physics. The aspects associated with the generation and processing of radio signals in antennas
arrays are reviewed, focusing on the key design opportunities and constraints for deployment of
multiple threads on such calculations. The audience is also introduced to Gyges, a lightweight,
header-only and flexible multithread self-adaptive scheduler written compliant with C++17 and
C++20, which is used to distribute and manage the worker computer threads during the parallel
calculations. Finally, performance and scalability measurements are provided and the integration
into CORSIKA 8 is commented.

38th International Cosmic Ray Conference (ICRC2023)
26 July - 3 August, 2023
Nagoya, Japan

∗Speaker

© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

mailto:aalvesju@gmail.com
https://pos.sissa.it/

P
o
S
(
I
C
R
C
2
0
2
3
)
4
6
9

Parallel processing of radio signals and detector arrays in CORSIKA 8 A. Augusto Alves Jr

1. Introduction

Over the past couple of decades of research on extensive particle showers, radio detection
has become a technique competitive with standard particle and fluorescence driven measurements.
Due to the complexity of extensive particle showers, in air and other media, detailed particle-level
simulations of the radio emissions are often needed to analyze experimental data and reconstruct
the properties of the primary particles.

In this context, the two standard software tools used for radio emission simulations are CoREAS
[1] as implemented in CORSIKA 7 and ZHAireS [2]. These tools implement two different for-
malisms for calculating the radio emission from the particle tracks in the extensive particle shower,
namely the “Endpoint” [3, 4] and the “ZHS” [5] formalisms, respectively. Both algorithms have
been recently implemented on CORSIKA 8 [6], which is a modern C++17 compiliant Monte Carlo
simulation framework for modeling ultra-high energy particle cascades in astroparticle physics.

Additionally, proposed next-generation experiments with growing array size and channel-
count pose significant challenges regarding the computational cost for calculating radio emissions,
especially for ultra high-energy showers and signals propagating in media with varying properties.
In order to mitigate such impacts, the radio emission module for the CORSIKA 8 (C8) framework
[7] has been reimplemented in multithread friendly fashion. This contribution discusses these
developments and is organized as the following. section 2 gives an overview of the radio module
of CORSIKA 8. section 3, Gyges, a C++17/20 library for distribution and management of tasks
on multithread systems, is presented. section 4 the parallelization strategy used of the radio
module calculations is covered, including the corresponding updates on the interfaces and codes
implementing the algorithms. Finally, section 5 presents the performance gains in function of the
number of threads for both formalisms, measured for array detectors with different sizes. section 6,
the conclusions and perspectives are drawn.

2. Overview of the radio module in CORSIKA 8

The top-level architecture of the radio process module is shown in Figure 1. All components
in the module can be independently configured and combined with either the CORSIKA 8 built-
in interface or custom C++ code, making possible construct multiple radio process instances for
different scenarios. The components of the modules have been extensively presented in [7, 8]. In
this contribution, the flow of the radio calculation is discussed and how performance is enhanced
using multithreading.

Once the radio process has received a particle track, the track is being checked according to
the track filter in order to be determined if this track is relevant for the radio calculation or not. The
track is then pushed forward to the formalism and the track needs to be looped over all antennas
existing in the antenna collection. A significant portion of the calculation happens after this step,
which needs to be repeated for every antenna available and for every single particle track provided.
This is precisely the part of the code we wish to accelerate with this work. Inside the loop, the
particle track is fed to the propagator, which calculates the valid emission paths from the particle
to the antenna. Hence, all the necessary information to calculate the electric field vector (or vector
potential) is present now, and finally this information is processed and stored in the antenna instance.

2

P
o
S
(
I
C
R
C
2
0
2
3
)
4
6
9

Parallel processing of radio signals and detector arrays in CORSIKA 8 A. Augusto Alves Jr

Figure 1: A schematic diagram of the radio process currently implemented in CORSIKA 8 and how it
integrates with the CORSIKA 8 framework

The load of this calculation is directly affected by the underlying complexity of the propagator used.
Naturally, the larger the number of antennas in the detector, the higher the runtime of the radio
simulation will be. By assigning different bunches of antennas to available threads, we expect to
observe a significant performance boost.

3. Gyges

Gyges is a lightweight C++17, or higher, header-only library to manage thread pooling, which
has been developed in the context of the ongoing effort to paralellize the CORSIKA 8 framework.
By deploying Gyges, the computational costs associated to creating and destroying a thread-pool,
a gyges::gang in the library’s jargon, can be paid just once in the program lifetime, with threads
of the pool picking-up tasks as they become available. If there are no tasks, the threads just go
sleeping. Additionally, tasks can be submitted from multiple threads, with the submitter getting a
std::future object to monitor the task in-place. On the task implementation side, developers get
access to a std::stop_token that can be used to interrupt the task execution, if a request to do so
arrives from gyges::gang via the gyges::gang::stop().

As default behavior, once a gyges::gang is created, it will promptly pick up and process any
submitted task. This behavior can be changed, putting the gyges::gang in a “hold-on” state. In that
case, the processing of the tasks will be postponed until it is put back on “unhold” status, while
the threads will be put to sleep until the gyges::gang::unhold() command is sent. Among other
features, Gyges provides two implementations of the gyges::for_each algorithm, with one of than
able to use an already existing gyges::gang object.

3

P
o
S
(
I
C
R
C
2
0
2
3
)
4
6
9

Parallel processing of radio signals and detector arrays in CORSIKA 8 A. Augusto Alves Jr

1 class gang

2 {

3 // constructor taking the

4 gang(unsigned int const thread_count=std::thread::hardware_concurrency(), bool release = true) ;

5 gang(gang const & other) = delete;

6 gang(gang && other) = delete;

7
8 //submit a task implementing void operator(void)

9 template<typename FunctionType>

10 inline std::future<void> submit_task(FunctionType f) requires gyges::Dispatchable<FunctionType>;

11 //notify the running tasks (request stop), interrupt picking up new tasks and destroys the gang

12 inline void stop(void);

13 //put the gang on ``hold'' status

14 inline void hold(void);

15 //revert the gang to ``processing'' status

16 inline void unhold(void);

17 //checks the gang status

18 inline bool on_hold(void);

19 //get the gang size

20 inline std::size_t size(void);

21 };

22
23 // for_each accepting a pre-created gang

24 template<typename Iterator, typename Predicate>

25 void for_each(Iterator begin, Iterator end, Predicate const& functor, gang& pool);

26
27 // for_each

28 template<typename Iterator, typename Predicate>

29 void for_each(Iterator begin, Iterator end, Predicate const& functor);

Listing 1: Interface of gyges::gang and gyges::for_each implementations.

Gyges is licensed under GPL version 3 and is currently in a stable release state. The code is
available at https://gitlab.iap.kit.edu/AAAlvesJr/Gyges.

4. Radio module parallelization strategy

The radio module calculates the signal corresponding to each particle, and the tracks that
describe its trajectory, for each antenna of the array detector, often running as one of the final
operations in the particle simulation process sequence. In order to parallelize the radio module,
the calculation of the signal over the array detector is processed using a gyges::gang containing a
specifiable number of threads, in a such way that, for each particle and its tracks, the response of
the antennas and the storing of information is calculated in parallel.

Since the signal processing corresponding to a single antenna is not intensive enough to
occupy efficiently a thread, each submitted task computes the response corresponding to a bunch of
antennas. As it will be detailed in section 5, the number of antennas in this bunch in comparison to
the Gyges gang size is a critical parameter for the overall efficiency of the radio module.

This logic is implemented with the introduction of a couple of classes, one per formalism,
to encapsulate the pulse calculated for each antenna in a callable object abstracting away the
implementation details of CoREAS and ZHAireS. This object is called runner, and it is the one to
be distributed, together with the antenna collection that describes the array detector, to the worker
threads managed by the gyges::gang instance, which is being held by the corsika::RadioProcess and
has the same life-time of it. These developments are complemented by changes in the user interfaces
easing to instate and to deploy the radio module. These changes are summarized in Listing 2.

4

https://gitlab.iap.kit.edu/AAAlvesJr/Gyges

P
o
S
(
I
C
R
C
2
0
2
3
)
4
6
9

Parallel processing of radio signals and detector arrays in CORSIKA 8 A. Augusto Alves Jr

1 //convenience function for creating a propagator, taking as parameter an environment object

2 auto propagator = make_simple_radio_propagator(environment);

3 //convenience functions for creating CoREAS and ZHS instances, taking as parameters detector

4 //and propagator objects, as well as the number of threads

5 auto coreas = make_radio_process_CoREAS(detector, propagator, nthreads);

6 auto zhs = make_radio_process_ZHS(detector, propagator, nthreads);

Listing 2: Improved interface of radio module.

Figure 2: Performance to process a single particle as a function of number of threads for an array detector
containing 200 antennas.

CORSIKA 8-wise, the expected overall speed-up depends hugely on the detector size, i.e.
number of antennas in the detector. For large array detectors, or computing intensive propagators,
the importance of radio module operations grows, tending to dominate the particle simulation
sequence. In such situations, the speed-up is larger.

5. Performance measurements and validation

The raw performance gains from parallelization of the radio module calculations over the
antennas of the array detector have been assessed measuring the time spent, and the corresponding
speed-up, to process the electromagnetic pulse from a single particle as a function of the array
detector size and number of threads. Array detectors with different sizes have been tested against
gyges::gang with up to 48 worker threads. The results are summarized in Figure 2, Figure 3 and
Figure 4

Figure 2 shows that for array detectors with 200 antennas, the speed-up peaks between 10 and
15 worker threads, beyond which the performance decreases due to computing tasks not being able
to occupy the CPU enough to hide the latency and costs associated to management of multiple
threads. As it is shown in Figure 3 and Figure 4, by increasing the number of antennas, the speed-up
scales mostly as predicted by Amdahl’s law. Similar results would be achieved, albeit leading
to performance peaking at different number of threads, when deploying propagators performing
heavier calculations.

The overall impact of the parallelization of the radio module on CORSIKA 8 has been measured
running a full electromagnetic shower simulation. In that scenario, due to the Gyges design, the

5

P
o
S
(
I
C
R
C
2
0
2
3
)
4
6
9

Parallel processing of radio signals and detector arrays in CORSIKA 8 A. Augusto Alves Jr

Figure 3: Performance to process a single particle as a function of number of threads for an array detector
containing 1000 antennas.

Figure 4: Performance to process a single particle as a function of number of threads for an array detector
containing 10,000 antennas.

overhead for creating, managing and submitting tasks to the thread pool is negligible in comparison
to the other initialization routines called up-front in the full shower simulation. The radio module
is currently the only component of the CORSIKA 8 sequence capable of performing its tasks in
parallel, meaning that the maximum speed-up is limited by the amount of code running sequentially,
in accordance with Amdhal’s law. The total time to run the full shower is limited below by not
deploying the radio module at all, and above by running this module in a single thread, that is
sequentially. Figure 5 summarizes the results and confirms the profiles performed for measuring
the single particle performance. In the same figure, we show for reference the runtime of the same
electron induced shower with the radio emission calculation turned off.

Finally, the numerical consistence of the predictions for each algorithm has been checked for
different numbers of threads. Figure 6 and Figure 7 show that there is no measurable impact of
the parallelism in numerical results provided by each algorithm. The signal pulses simulated with
both formalisms are identical regardless the number of threads, which confirms that the physics
calculations are done consistently and accurately.

6

P
o
S
(
I
C
R
C
2
0
2
3
)
4
6
9

Parallel processing of radio signals and detector arrays in CORSIKA 8 A. Augusto Alves Jr

Figure 5: The parallelized radio module running on an electron induced air shower processing a detector
array of 160 antennas. 2 formalism, namely CoREAS and ZHS are activated and use 160 antennas each.
The performance peaks at 10 worker threads, beyond which the performance degradates.

Figure 6: Pulse comparisons in all three polarizations using the CoREAS formalism. The pulses have been
simulated and processed on gyges::gangs of different sizes. Different number of threads produce identical
pulses for CoREAS, as expected.

Figure 7: Pulse comparisons in all three polarizations using the ZHS formalism. The pulses have been
simulated and processed on gyges::gangs of different sizes. Different number of threads produce identical
pulses for ZHS, as expected.

7

P
o
S
(
I
C
R
C
2
0
2
3
)
4
6
9

Parallel processing of radio signals and detector arrays in CORSIKA 8 A. Augusto Alves Jr

6. Conclusions

The status of the effort to parallelize the calculations of the radio module implemented in
CORSIKA 8 has been summarized. The implementation of the multithread dispatching mechanisms
and management, which is based in Gyges, is compliant with C++17 or higher standard and allows
specifying the number of worker threads without impacting any numerical result. The optimal
number of threads, in which the performance peaks, depends on of the size of the antenna array.
Under favorable, the performance gains are significant, with speeding-up reaching a factor 10 or
superior. The code is currently under final internal review and should be integrated into CORSIKA
8 main branch in near future.

References

[1] Huege T, Ludwig M and James C W 2013 AIP Conference Proceedings 1535 128–
132 ISSN 0094-243X (Preprint https://pubs.aip.org/aip/acp/article-pdf/1535/
1/128/11832917/128_1_online.pdf) URL https://doi.org/10.1063/1.4807534

[2] Alvarez-Muñiz J, Romero-Wolf A and Zas E 2010 Phys. Rev. D 81(12) 123009 URL https:
//link.aps.org/doi/10.1103/PhysRevD.81.123009

[3] James C W, Falcke H, Huege T and Ludwig M 2011 Phys. Rev. E 84(5) 056602 URL https:
//link.aps.org/doi/10.1103/PhysRevE.84.056602

[4] Ludwig M and Huege T 2011 Astroparticle Physics 34 438–446 ISSN 0927-6505 URL https:
//www.sciencedirect.com/science/article/pii/S0927650510002094

[5] Zas E, Halzen F and Stanev T 1992 Phys. Rev. D 45(1) 362–376 URL https://link.aps.
org/doi/10.1103/PhysRevD.45.362

[6] Engel R, Heck D, Huege T, Pierog T, Reininghaus M, Riehn F, Ulrich R, Unger M and
Veberič D 2018 Computing and Software for Big Science 3 URL https://doi.org/10.
1007%2Fs41781-018-0013-0

[7] Karastathis N, Prechelt R, Huege T and Ammerman-Yebra J 2021 PoS ICRC2021 427

[8] Karastathis N, Prechelt R, Ammerman-Yebra J and Huege T 2023 PoS ARENA2022 050

8

https://pubs.aip.org/aip/acp/article-pdf/1535/1/128/11832917/128_1_online.pdf
https://pubs.aip.org/aip/acp/article-pdf/1535/1/128/11832917/128_1_online.pdf
https://doi.org/10.1063/1.4807534
https://link.aps.org/doi/10.1103/PhysRevD.81.123009
https://link.aps.org/doi/10.1103/PhysRevD.81.123009
https://link.aps.org/doi/10.1103/PhysRevE.84.056602
https://link.aps.org/doi/10.1103/PhysRevE.84.056602
https://www.sciencedirect.com/science/article/pii/S0927650510002094
https://www.sciencedirect.com/science/article/pii/S0927650510002094
https://link.aps.org/doi/10.1103/PhysRevD.45.362
https://link.aps.org/doi/10.1103/PhysRevD.45.362
https://doi.org/10.1007%2Fs41781-018-0013-0
https://doi.org/10.1007%2Fs41781-018-0013-0

P
o
S
(
I
C
R
C
2
0
2
3
)
4
6
9

Parallel processing of radio signals and detector arrays in CORSIKA 8 A. Augusto Alves Jr

The CORSIKA 8 Collaboration

J.M. Alameddine1, J. Albrecht1, J. Alvarez-Muñiz2, J. Ammerman-Yebra2, L. Arrabito3, J. Augscheller4,
A.A. Alves Jr.4, D. Baack1, K. Bernlöhr5, M. Bleicher6, A. Coleman7, H. Dembinski1, D. Elsässer1, R. Engel4,
A. Ferrari4, C. Gaudu8, C. Glaser7, D. Heck4, F. Hu9, T. Huege4,10, K.H. Kampert8, N. Karastathis4,
U.A. Latif11, H. Mei12, L. Nellen13, T. Pierog4, R. Prechelt14, M. Reininghaus15, W. Rhode1, F. Riehn16,2,
M. Sackel1, P. Sala17, P. Sampathkumar4, A. Sandrock8, J. Soedingrekso1, R. Ulrich4, D. Xu12, E. Zas2

•

1 Technische Universität Dortmund (TU), Department of Physics, Dortmund, Germany
2 Universidade de Santiago de Compostela, Instituto Galego de Física de Altas Enerxías (IGFAE), Santiago de Com-

postela, Spain
3 Laboratoire Univers et Particules de Montpellier, Université de Montpellier, Montpellier, France
4 Karlsruhe Institute of Technology (KIT), Institute for Astroparticle Physics (IAP), Karlsruhe, Germany
5 Max Planck Institute for Nuclear Physics (MPIK), Heidelberg, Germany
6 Goethe-Universität Frankfurt am Main, Institut für Theoretische Physik, Frankfurt am Main, Germany
7 Uppsala University, Department of Physics and Astronomy, Uppsala, Sweden
8 Bergische Universität Wuppertal, Department of Physics, Wuppertal, Germany
9 Peking University (PKU), School of Physics, Beĳing, China

10 Vrĳe Universiteit Brussel, Astrophysical Institute, Brussels, Belgium
11 Vrĳe Universiteit Brussel, Dienst ELEM, Inter-University Institute for High Energies (IIHE), Brussels, Belgium
12 Tsung-Dao Lee Institute (TDLI), Shanghai Jiao Tong University, Shanghai, China
13 Universidad Nacional Autónoma de México (UNAM), Instituto de Ciencias Nucleares, México, D.F., México
14 University of Hawai’i at Manoa, Department of Physics and Astronomy, Honolulu, USA
15 Karlsruhe Institute of Technology (KIT), Institute of Experimental Particle Physics (ETP), Karlsruhe, Germany
16 Laboratório de Instrumentação e Física Experimental de Partículas (LIP), Lisboa, Portugal
17 Fluka collaboration

Acknowledgments

This research was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – Pro-
jektnummer 445154105. For the simulations presented, computing resources from KIT have been used.

9

	Introduction
	Overview of the radio module in CORSIKA 8
	Gyges
	Radio module parallelization strategy
	Performance measurements and validation
	Conclusions

