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Various hints for anisotropies in the distribution of arrival directions of ultra-high-energy cosmic
rays (UHECRs) have been reported. Still, our poor knowledge about extragalactic and Galactic
magnetic fields and about the UHECR mass composition makes it non-trivial to interpret such
results in terms of possible models of UHECR sources. In this work, we apply the same analyses
that have been performed on the Pierre Auger Observatory and the Telescope Array UHECR data
to a variety of Monte Carlo simulations generated according to many different combinations of
hypotheses about the sources, composition and magnetic deflections of UHECRs. We find that
only some of these models can yield results similar to those obtained with the real data.
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1. Introduction

Ultra-high energy cosmic rays (UHECR) are extraterrestrial particles with energies up to a few
1020 eV. The identification of sources of these particles is one of the key problems in cosmic ray
physics that has remained unsolved for many decades. While the arrival directions of incident cosmic
rays are reconstructed quite accurately, with the precision of ∼ 1◦, the directions to the UHECR
sources cannot be reconstructed with any precision because UHECRs are charged particles and
are thus deflected in cosmic magnetic fields by larger angles, possibly tens of degrees. These
deflections are uncertain because of both the unknown particle charge and and the poor knowledge
of the Galactic and extragalactic magnetic fields.

Because of their tiny flux and high energies, UHECRs are observed only indirectly through the
extensive air showers they produce in the atmosphere. Only a few thousand UHECRs have been
detected at energies above 10 EeV by the two largest detectors in more than a decade of observations.
These detectors are the Pierre Auger Observatory (Auger) [1], located in Argentina, with an area
of ∼ 3000 km2 and in operation since 2004, and the Telescope Array (TA) [2], located in the USA,
with an area of ∼ 700 km2 and in operation since 2008.

The UHECR data collected by Auger and TA appear quite isotropic, with no evident small-scale
clustering found so far. There is a dipolar modulation in R.A. of ∼ 6% reported at energies above 8
EeV with a significance above 5𝜎 by Auger [3–6] and further studied in a joint analysis of Auger and
TA [10]. At intermediate angular scales, TA has reported an excess of events — the “hot spot” at
energies above 57 EeV with the significance requiring further confirmation [7]. Auger has reported
an overdensity of events in the Centaurus region with an energy threshold of 38 EeV in an angular
window of 27◦, with a significance of 3.9𝜎 [11]. An indication of correlation with nearby starburst
galaxies (SBGs) has also been reported by Auger, with a significance of 4.0𝜎 [8, 11]. This result
was further supported by a joint Auger and TA study [9, 10]. The obtained anisotropic contribution
to the total UHECR flux is approximately 10% for this given class of potential candidate sources.

In this study, we are trying to interpret this result by searching for a realistic UHECR flux model
that would yield the observed correlation while being analysed with the same method as the data.
We perform detailed numerical simulations of the UHECR flux expected from various sources.

Figure 1: Examples of the maps of expected UHECR flux at 𝐸 > 40 EeV used for mock sets simulations,
in equatorial coordinates. In this example we inject pure oxygen and propagate the flux through the regular
GMF of the JF2012 model [21] and a non-uniform random Galactic component [23]. We do not take into
account the EGMF (see text for details). Each map is superimposed with a mock set generated from it. Left
panel: SGB-only source model. Right panel: LSS-only source model.
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We generate the respective Monte Carlo sets of events (mock sets) that whould be detected by the
joint TA and Auger observatories. We analyze these sets with the same procedure that was used in
our analysis of intermediate-scale anisotropy in the real TA plus Auger data [10]. By building the
distribution of the results over the reconstructed likelihood parameters and by comparing them with
that of the data, we estimate the confidence at which the data is compatible with each given flux
model. A similar approach to the study of the possible origin of the SBG correlation indications
was already used in several studies [12–14].

2. Searches for correlations with galaxy catalogs

In our recent [9] and previous [10, 15] searches for intermediate-scale anisotropy we performed
a targeted likelihood analysis using two different source catalogs: 2MRS and SBG. In this contri-
bution we focus on the SBG result as the most significant one. The construction of the SBG catalog
is described in Ref. [24].

Here we briefly describe the methodology of the search. It is based on a maximum likelihood
test to compare the observed distribution of events with the expected probability map generated
from a given source model. Anisotropic probability maps are created by modeling the contribution
of each source in the catalog with a von Mises–Fisher distribution with an angular width Θ. This
angular width serves as the first free parameter in the analysis, it is expected to account for the
unknown deflection of UHECR in magnetic fields. The contribution of each object is weighted
with its relative flux in the 1.4 GHz band. Additionally, an isotropic map is added, that is expected
to account for isotropized events either having large charge and magnetic deflections or originating
from similar faint sources not included in the catalog. The relative weight of the anisotropic map,
the signal fraction, 𝑓 , is the second free parameter of the test statistics. The likelihood function
L( 𝑓 ,Θ) is then calculated as a product of all the events over the described probability map. The test
statistics (TS) is defined by assuming an isotropic distribution of UHECR as the null hypothesis.

TS(Θ, 𝑓 ) = 2 ln
L(Θ, 𝑓 )
L( 𝑓 = 0) (1)

In this study we consider only the value 𝐸 = 38 EeV as the lower energy threshold,where the
recent result for SBGs has the largest TS value of TS = 31.1 [10]. The respective best-fit values of
the parameters are: 𝑓 = (12.1+4.5

−3.1)% and Θ = (15.1+4.6
−3.0)

◦
1.

3. Models and simulations

To perform the mock sets simulations we fix the parameters of the flux following the recent
results of the Auger–TA intermediate anisotropy search [10]. We consider two different source
catalogs to simulate the expected UHECR flux 2. First is the SBG catalog used for TS computation
that is described above. Second is the large scale structure (LSS) catalog: the flux-limited galaxy
sample with a high degree of completeness, derived from the 2MRS galaxy catalog [17] by cutting

1See also the updated result [9].
2We need to stress that in this study we always perform a likelihood analysis using SBG catalog and the flux model

described in Sec. 2. But the mock sets are generated using either SBG or LSS catalog and more detailed flux models.
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Figure 2: Results of the likelihood analysis for the SBG-only mock event sets compared with the result for
the data (black dot). Two characteristic injected mass composition mixes are considered: 50% O + 50% Si
(left) and 65% He + 35% Fe (right). Top: deflections in regular GMF + random GMF. Bottom: deflections in
regular GMF + random GMF + EGMF (see text for details).

out galaxies with mag > 12.5 and with distances below 5 Mpc and beyond 250 Mpc. We assign
a progressively larger flux to more distant galaxies to compensate for the observational selection
inherent in a flux-limited sample. The sources beyond 250 Mpc are assumed to be distributed
uniformly with the same mean density as those within this distance. Their contribution is added as
a properly normalized fraction of isotropic events. The exact procedure is described in Ref. [18]. 3

We consider the injected mass compositions of up to five different components: protons,
helium, oxygen, silicon and iron. We fix the injection spectrum for each nucleus by deriving it

3Note that the LSS catalog used in this study for mock sets simulation is different from the catalog used for the
intermediate anisotropy searches in our contributions [9, 10].

4



P
o
S
(
I
C
R
C
2
0
2
3
)
5
2
8

Auger + TA anisotropy interpretations Mikhail Kuznetsov

Figure 3: Results of the likelihood analysis for the SBG-LSS mock event sets compared with the result for
the data (black dot). Two characteristic injected mass composition mixes are considered: 50% O + 50% Si
(left) and 85% p + 15% Fe (right). Deflections in regular GMF + random GMF are assumed (see text for
details).

from the separate fit to the observed TA and Auger spectra [20]. Namely, the injected spectra are:
power law with the slopes −2.55, −2.20 and −2.10 and without the cut-off for protons, helium
and oxygen, respectively; power law with the slope −1.50 and with a sharp cut-off at 280 EeV for
silicon; power law with the slope −1.95 and with a sharp cut-off at 560 EeV for iron. For the flux
from the LSS we take into account the attenuation of the primary particles, which is computed
with the SimProp v2r4 code [19]. The secondary particles produced upon propagation of injected
primary nuclei through the interstellar medium are taken into account for helium and oxygen nuclei
and reasonably neglected for other primaries; the details are given in Ref. [20]. As the most bright
SBGs in the catalog lie within 5 Mpc from us, we neglect the attenuation for the flux coming from
SBGs (similarly as for the TS construction).

The deflections in the regular galactic magnetic field (GMF) are simulated using the backtrack-
ing technique with the PT’11 regular GMF model [22] or the JF’12 regular GMF model [21]. The
deflections in the random GMF are simulated as galactic-latitude-dependent smearing according to
the data-driven relation of Ref. [23]. The deflections in the extragalactic magnetic field (EGMF)
are also included in some of the flux models (see next Section). Finally, the event distribution is
modulated by the combined exposure of the TA and Auger as it is described in our anisotropy search
study [9]. The exposure ratio between Auger and TA is set to 123.7/17.2 and the number of events
in each set is 3030 above 𝐸 = 32 EeV 4. The energies of the events in the mock sets are generated
according to the observed Auger full-sky spectrum [25]. Note that we do not need to rescale the
energy inside the set as we did for the data — the assumptions of the energy spectrum and exposure
makes the simulations self-consistent. The examples of SBG and LSS maps used for mock sets
generation are given in Fig. 1 superimposed with mock sets generated from them.

4We do not use the events between 32 EeV and 38 EeV in the analysis.
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Figure 4: Results of the likelihood analysis for the LSS-only mock event sets compared with the result for the
data (black dot). Two characteristic injected mass composition mixes are considered: 50% O + 50% Si (left)
and 90% p + 10% Fe (right). Deflections in regular GMF of JF’12 model + random GMF are assumed (see
text for details). Note that the right plot has a larger y axis scale than the others presented in this proceedings.

For the overall calibration of our method, we simulate the mock sets using the same flux model
as for the TS calculation. We found that the TS is reconstructed properly and the distribution of
results over 𝑓 and Θ are indeed centered around their input values.

4. Results

Our main goal is to test several realistic UHECR flux models. The first is the model where all
the flux is coming from SBGs and the mass composition is mixed (“SBG-only” models later on):
in this case, we would expect the lighter part of the mix to account for the anisotropic fraction 𝑓

and the heavier part — to mimic the isotropic contribution. The second is the model where the
half of the flux is coming from SBGs and another half — from LSS (“SBG-LSS” models later
on). In this model, we would naively expect the more isotropic LSS part of the flux to mimic
the isotopic fraction measured by the TS. The third is the model with the total flux coming from
LSS (“LSS-only” models later on). As most of the SBGs are a part of our LSS catalog (though
with different weights) it is possible to expect, that for some mass compositions the signal from the
LSS would mimic the one we have from the SBGs with some specific values of Θ and 𝑓 . Note
that we consider deflection by regular and random components of the GMF in all flux models,
as it was described in Sec. 3. The deflections by EGMF are also considered for the SBG-only
flux model, while the LSS-only flux model yields quite isotropic event sets even without EGMF.
These deflections are simulated as a direction-independent smearing of the sources with the von
Mises-Fischer distribution. The parameters of the field follow the maximum allowed for a local
filament field from simulations of Ref. [26]: 𝐵 = 3 nG, 𝜆 = 1 Mpc, in a radius of 5 Mpc around
our Galaxy. This yields a deflection by 1.7◦ for the proton at 𝐸 = 1020 eV. The distance of 5 Mpc
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Composition
Sources model

SBG only SBG only (EGMF) SBG-LSS LSS only

Intermediate nuclei > 2𝜎 > 2𝜎 > 2𝜎 > 2𝜎
Light nuclei + iron 2𝜎 1𝜎 1𝜎 1𝜎

Table 1: Summary of degree of compatibility between given UHECR flux models and the data.

is chosen because most bright sources in the SBG catalog lie within this radius. Note that for this
distance the mentioned deflection is larger than the one maximally allowed by observational EGMF
limit of Ref. [27].

For each flux model we simulate 1000 event sets and compute the test statistics described in
Sec. 2 for each set. We present the results for SBG-only models in Figs. 2, for SBG-LSS models
in Figs. 3 and for LSS-only models in Figs. 4, all in comparison with TS computed for the data.
We should note that not only the presented mass compositions fractions were studied but larger
families of intermediate and light+heavy mixes. We are showing only characteristic examples that
are reflecting the behavior of the given composition family with respect to the data. In all these
flux models the JF’12 regular GMF model is used for simulations. The results for the PT’11 model
are quite similar. We also need to note that all the statistical effects are contained in the mock sets
distribution over Θ and 𝑓 parameters. Therefore we do not show the uncertainty for the data point
to avoid double counting. The results are summarised in a Table 1.

5. Discussion and conclusion

In this study we quantified the compatibility of the various UHECR flux models with the recent
measurement of the correlation between cosmic rays and starburst galaxies preformed by joint
Auger and TA collaborations. We found that the SBG-only flux model is incompatible with the
data at more than 2𝜎 level for the family of injected compositions of the intermediate nuclei only,
that we have considered, even if the deflections in the strong EGMF are assumed. Contrary, for the
studied mixed light+heavy composition the SBG-only model is compatible with the data at 2𝜎 level
without EGMF and at 1𝜎 level if the deflections in strong EGMF are assumed. Therefore the initial
hypothesis that the heavy admixture can mimic the isotropic component is supported, though the
input fraction of the light component is much larger than the reconstructed one. The results for the
SBG-LSS flux model are quite similar: it is incompatible with the data at more than 2𝜎 level for
the given family of intermediate injected compositions but compatible at 1𝜎 level for a light+heavy
mix. We also need to note that we did not test models with all the possible ratios between SBG
and LSS parts of the flux. Therefore we cannot exclude that there exist a specific ratio for which
an intermediate composition reproduces the data well. Finally, the LSS-only model is also more
than 2𝜎 incompatible with the data for the intermediate composition but 1𝜎 compatible — for the
light+heavy mix. All these conclusions are independent of the assumed regular GMF model. Note
that in this study we did not consider the composition mixes beyond two component approximation,
therefore the possibility to reconcile the data with any of the source models assuming intermediate
composition plus light or heavy admixture cannot be rejected.

7
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We can mention two implications of our results. First, the fact that some compositions are
incompatible with the UHECR-SBG correlation measured with the data, makes this measurement a
viable tool for injected compositions discrimination under the assumptions made (cf. Refs. [28, 29]).
In particular one could try to narrow down the window of allowed compositions by scanning over
them and simultaneously varying source models. Second, we found that the measured correlation
can be reproduced by physically different but observationally resembling source models, such as
SBG and LSS. This implies that it may be promising to introduce some additional parameters into
our likelihood analysis to discriminate between such scenarios.
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