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An improved mapping of ice layer undulations for the IceCube Neutrino Observatory

1. Introduction and previous ice layer undulation models

The IceCube collaboration has lowered a re-usable dust logger [1] in 8 of the drilled holes.
The device shone a fan-shaped horizontal beam of laser light which was recorded by a downward-
pointing Photo-Multiplier Tube (PMT) after scattering in the ice. Special baffles prevented the light
from going directly from the laser to the PMT. The logger produced a precise record of dust layers
in the ice with a resolution of ∼ 2 mm in depth, sufficient to resolve narrow bands corresponding
to prehistoric dust depositions. These features were matched between the 8 locations across the
detector, and it was found that the depth of the features can vary by as much as 60 m within the 1 km3

volume of IceCube. Henceforth we will refer to "ice layers" as layers with nearly identical optical
scattering and absorption, as well as ice crystal density and fabric. In the context of IceCube ice
models, the ice layers have so far been successfully described by averaging said properties in 10 m
depth increments at a lateral reference xy position. Thanks to the dust logger, it has long been clear
that a model of ice layer "undulations" is needed because the ice sheet is not horizontally uniform.
The layer undulations are understood to be a result of the bedrock topography only having been
gradually smoothed out as the glacier accumulated, as commonly mapped out on larger distance
scales using ground penetrating radar (i.e. [2]).

Initially, an ice layer "tilt model" was designed that described these undulations as a change in
ice layer depth along a single "gradient" direction (1D tilt model), running almost precisely from
NE to SW along the 45 degree grid North [3]. The 1D tilt model was deemed accurate enough to
be used for all analyses since 2013. The model linearly interpolates ice layer depths in between the
dust logger locations (as projected onto the "gradient" direction) and linearly extrapolates them out
into the space around the detector. Since 2013 we have discovered that the South Pole ice exhibits
an optical anisotropy that affects photon propagation depending on their direction with respect to
the "axis of anisotropy" that coincides to within ∼ 1◦ with the direction of the ice flow1 at the South
Pole. It appears that more light propagates along the anisotropy axis than any other direction. This
effect was first described in [4], and our understanding of it has recently significantly improved [5].
This more precise description of photon propagation has revealed that our simplified "gradient" tilt
model should become our next target for improvement.

In this report, we describe the development of a 2D tilt model. Nearly all of the 5,160
IceCube optical sensors have 12 working LEDs that were flashed individually (100-200 flashes per
LED), resulting in a set of more than 60,000 unique flasher patterns, each with hundreds of nearby
DOMs with recorded light. This rich calibration set provides enough data to calculate significantly
improved tilt corrections. The data reveal additional components to the tilt model beyond the 1D
gradient model.

2. New 2D model of ice layer undulations

We have built a fully-2D parameterization of the ice tilt as follows. We first define 80 locations
on a regular hexagonal grid in x and y to match 78 of the string locations of the IceCube detector as
best as possible (see Fig. 1). At each of the 80 xy locations we define a depth table of 125 ice layer
tilt corrections spaced out by 10 m in depth, covering the full depth range of the deployed IceCube

1Surface ice at the South Pole moves from SE to NW along 135 grid North direction at a rate of around 10 m/year.
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sensors and extending above it since we have dust logger measurements above the detector. We
define the reference point of the ice table of optical properties to be at the grid point closest to string
36 near the center of the IceCube detector. Here, by definition, the ice layers need no tilt correction
and the values in the tilt table are set to 0. This leaves at most (80-1)*125=9875 remaining tilt
corrections as free parameters in the tilt table.
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Figure 1: Lateral geometry of the IceCube
detector. Black squares denote the string
locations. Golden circles mark the grid lo-
cations of the new tilt parameterization.

To compute the tilt corrections at a given xy location
within the detector hexagon, we linearly interpolate be-
tween the closest 3 grid points (which form an equilateral
triangle) for each ice layer in the depth table. Then, for
a given depth, a linear interpolation between the nearby
depth points is performed. To extrapolate to xy locations
outside of the detector, the hexagon outline of the xy grid
is scaled radially out until it intersects with the given xy
point, matching the tilt correction to the value assumed
on the hexagon boundary. This results in tilt values out-
side the detector that are well-behaved (bounded). Such
construction results in tilt correction being a continuous
function of x, y, and z, albeit not necessarily smooth at the
boundaries between local grid triangles. However, since
the tilt varies slowly across the detector volume, this non-
smoothness has been deemed an acceptable compromise
in exchange for the simplicity and numerical speed of the tilt estimation.

Before embarking on a fit simultaneously deducing the tilt correction at each grid location as
well as the ice properties at the reference location, the sensitivity of the LED flasher data to small
tilt corrections was established in a simplified initial fit. For this the tilt correction local to each
individual DOM was deduced by globaly shifting the existing ice table of optical properties by
small amounts up and down until the best description of the calibration data of this DOM acting
as emitter was achieved. Since no correlation between neighboring DOMs is assumed, these initial
tilt corrections can fluctuate within their resolution of 1-2 m. The generate a smoother tilt map as
starting point for the full fit, the initial tilt corrections were 3D smoothed within a 150m radius
followed by a further Savitzky-Golay filter for all DOMs along each string. The tilt correction
values at tilt table grid points were then obtained by linear interpolation from the closest 3 strings,
usually influenced mainly by just the closest string. At this point the best-fit tilt corrections at the
reference xy grid point were nonzero. To ensure the tilt values are 0 at the reference xy grid point
we needed to re-sum the optical properties of the shifted table into the nominal depth table.

For the full fit, the ice parameters (scattering, absorption, and ice crystal density) in 171
ten-meter layers at grid point 36 were added to the pool of free parameters, raising the total to
125 · (80 − 1) + 3 · 171 = 10388. The fitting procedure was broken down into multiple iterations,
where sets of 100-1,000 random variations of either ice-only or both ice and tilt parameters were
simulated and compared to the LED calibration data. The ice parameters were sampled from a
uniform distribution of width ±10%, then ±5%, and finally ±3%. The tilt variations were also
drawn from a uniform distribution of width ±4 m, then ±2 m. These were then smoothed in two
steps since we expect ice layers to vary smoothly over a large area, rather than varying up and down

3



P
o
S
(
I
C
R
C
2
0
2
3
)
9
7
5

An improved mapping of ice layer undulations for the IceCube Neutrino Observatory

between nearby grid positions. First we minimized the square of the deviation of a grid point value
from the average of the closest (up to 8) neighbors, summed over all 10,000 grid points (including
the nominal points at the reference grid location). Second, we minimized the sum of the squares of
the differences between consecutive (in depth) tilt corrections along each lateral xy grid location to
make the layers vary smoothly in thickness, staying close to the nominal 10 m.

iteration step

h
(b

e
s
t)

44500

45000

45500

46000

46500

47000

2 4 6 8 10 12 14

Figure 2: Progression of the best fit values of
the comparison function versus fit iterations.

Each parameter variation was simulated with all
60,000 LED configurations available in our calibration
data set. For each configuration 100-250 individual
flashes are available in data. Due to computing time
constraints, for each configuration only 10 flashes were
simulated. The data and simulation were compared
using the approach of [6], which takes into account
Poisson fluctuations in both data and simulation, as
well as possible mis-modeling of data with simulation,
a difference that would persist even at the limit of
infinite statistics. Mis-modeling may occur due to
inaccuracies in our description of the calibration LED
events, or due to simulation simplification/acceleration
approximations, such as sensor oversizing; we estimate
this effect to be 10%. The value of the comparison function (which can be thought of as "distance"
between data and simulation) is denoted with ℎ𝑖 , where 𝑖 is an ice model realization.

We assume that we can describe resulting ℎ𝑖 from ice variations with a paraboloid (second-
order Taylor expansion) around the best solution. This paraboloid was fitted to the simulated ice
model variations at each iteration for a range of regularization parameters discussed in the next
paragraph, resulting in a set of "proposed" ice solutions. These were then re-simulated and added
to the ensemble of ice variations, allowing us to re-fit the paraboloid several times and improve the
best solution found at each iteration. The unknowns of the fit are the ice-only or ice+tilt parameters
𝑏𝑛, and the components of the (up to) 10513 by 10513 curvature matrix (second-order coefficients).

This is a highly under-constrained problem since we are trying to fit ≳ 108 unknown parameters
to ∼ 102 − 103 ice model variations. Thus, we had to impose some regularizations, further
simplifications, and other conditions. A standard approach to such an under-constrained problem
is to find a solution with the minimum norm of the solution. The solution can be chosen to make
the paraboloid go directly through the set of simulated models, or with additional regularizations,
reducing the problem to a matrix inversion. We tried a number of such "direct inversion" approaches
but found the fitted paraboloid is virtually never positive-definite, with the ice solution lying in a
saddle point rather than at the minimum. We thus explicitly enforce the positive-definite nature of
the curvature matrix. To do this, we represent the curvature matrix as a product of a matrix and
its transpose, 𝑐𝑛𝑚 = 𝑎𝑘𝑛𝑎𝑘𝑚2. Additionally, we add regularizations to require that the norm of the
curvature matrix be low (so the paraboloid is as flat as possible to avoid over-fitting), and terms that
describe the tilt map smoothing conditions. Similarly, we impose second derivative smoothness
conditions on scattering, absorption, and ice crystal density. Finally, in the initial few iterations we

2The convention that summation over the repeated index is implied is used throughout this report.
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also impose a regularization on the norm of the ice solution vector so that it is constrained to the
area in the parameter space sampled with the ice variations. Altogether, these conditions can be
written down as the following function, to be minimized:

𝐿 =

𝑁sim∑︁
𝑖=1

(𝑄𝑖 + 𝐶0 − ℎ𝑖)2 + 𝛼 · (
𝑁par∑︁
𝑘,𝑛=1

𝑎2
𝑘𝑛)

2 + 𝛽 · (
𝑁par∑︁
𝑘=1

(𝐷𝑘𝑛 (𝑏𝑛 + 𝑇𝑛))2)2 + 𝛾 · (
𝑁par∑︁
𝑛=1

𝑏4
𝑛) ,

where 𝑄𝑖 =

𝑁par∑︁
𝑘=1

(𝑎𝑘𝑛 (Δ𝑖
𝑛 − 𝑏𝑛))2 . (1)

Here 𝑖 indexes the ice variations (out of ∼ 102 − 103 realizations); ℎ𝑖 is the comparison function
(distance) between data and simulation for ice variation 𝑖; 𝑘, 𝑛 are the indices in the ice parameter
space (1...10513); Δ𝑖

𝑛 are the components of the ice variation 𝑖, measured either from the best fit of
the previous iteration, or from the initial solution; and 𝑏𝑛 is the best/fitted ice of this iteration, for
which 𝐿 reaches its minimum. 𝑄𝑖 + 𝐶0 describes the fitted paraboloid, with 𝐶0 being the constant
giving the best value of the paraboloid, and 𝑄𝑖 being the quadratic form.

The curvature regularization strength 𝛼 is optimized for each iteration. The three correlation
terms describing ice and tilt smoothness constraints are described with the term starting with
regularization strength 𝛽 (index running over 1,2,3 is omitted for brevity). 𝐷𝑘𝑛 describes the
specific regularization construction (such as the difference between consecutive tilt values at each
xy grid location), and 𝑇𝑛 describes the actual starting ice parameter values, which are necessary
to calculate the ice parameters 𝑏𝑛 + 𝑇𝑛 from the solution vector 𝑏𝑛 (which described the variation
from the starting ice model).

In order to make the values of the ice parameter solution vector 𝑏𝑛 commensurate between
the tilt and ice components, the tilt components were measured in hectometers (100 m), and ice
components were taken as natural log of their table values. This reduces the expected scale of
the components of the solution vector 𝑏𝑛 to the order of ∼ 0.01. We have eventually introduced
additional small correction to the tilt scale (factors ∼ 2), as it became clear that the matching
between the scale of the ice and tilt components could be improved further (as gauged by the speed
of convergence to the best solution).

Minimization of function 𝐿 in Eq. 1 was performed with a Newton-Rapson gradient descent
method. As a starting point we set 𝑏𝑛 = 0, 𝑎𝑘𝑛 = 𝜉𝛿𝑘𝑛, reducing 𝐿 to a function of just one
variable, 𝜉, which is easily solved for 𝜉. The gradients of 𝐿 with respect to 𝑏𝑛 and 𝑎𝑘𝑛 can be easily
calculated, and a search for the best solution along the gradient reduces to an 8th order polynomial
equation. We found that an efficient search can be performed by splitting the gradient descent into
two steps: first search along the gradient with respect to 𝑎𝑘𝑛, followed by 𝑏𝑛. The gradient search
with respect to 𝐶0 can be solved analytically. These steps are repeated ∼ 1000 − 5000 times until
the desired convergence is achieved. At every search along the gradient 𝜕𝐿/𝜕𝑏𝑛, components of
this gradient, which correspond to the tilt components at the reference location at grid point 36, are
set to 0, thus fixing these to their nominal zero values.

We next focus our attention on the calculation of the covariance matrix, which is related to
the matrix 𝑎𝑘𝑛 (it is the inverse of the curvature matrix 𝑐𝑛𝑚). We found that the off-diagonal
elements of the correlation matrix were not well constrained, and observed a "noise floor" in the
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off-diagonal elements that extended throughout the entire matrix, leading to non-physical long-
distance correlations such as between elements describing ice and tilt components at shallow vs.
deep locations in the detector. Thus, we decided to explicitly reduce the number of non-zero off-
diagonal elements in the matrix 𝑎𝑘𝑛 to a smaller set, which not only stabilized the matrix 𝑎𝑘𝑛 and
the resulting correlation matrix, but also accelerated the calculation by several orders of magnitude.
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Figure 3: Allowed elements of the matrix 𝑎𝑘𝑛.

The set of "allowed" elements of the matrix 𝑎𝑘𝑛

was defined as follows (see Fig. 3). First, all diag-
onal elements were included. Next, ice components
that relate any of the scattering, absorption, and ice
crystal density depth elements to the depth layers
above and below, and to each other, were also in-
cluded. The tilt components between tilt elements
immediately above or below, and immediately to the
(up to 6) side neighbors were included. Finally, the
tilt components were allowed to correlate to the ice
components in the layer (or nearby layers) for which
the tilt component defined the ice layer tilt. Be-
cause the curvature matrix is a product of 𝑎𝑘𝑛 and
its transpose, effectively all "allowed" correlations
are doubled in length, e.g., ice properties between
layers separated by one layer in between may result
in non-zero correlation values. We did observe that this model might be limiting to the optical
properties of the ice layers, and may add allowed (non-zero) elements in that part of the matrix in
the future. However, the elements involving tilt components (tilt-tilt or tilt-ice) allowed by the de-
scription above, appear to be more than sufficient. This is likely because tilt components are highly
constrained by smoothness regularizations, and thus correlations between neighboring elements
can absorb correlations with elements that are farther away.

3. Uncertainty estimation and ice model sampling

We have so far avoided calling the quantity ℎ𝑖 , comparing photon hits in data and simulation
for a specific ice model 𝑖, a likelihood function, because, at the very least, it is not a function of data
and the ice model. Every time it is evaluated, a new set of simulation is produced. When evaluated
several times it forms a distribution with a mean (∼ 44240) and a Root Mean Squared (RMS),
which we calculated for the best model to be ∼ 7.6. To estimate uncertainties on the ice parameters
we continue with this choice of likelihood-free inference. Here we describe our calculation based
on the Approximate Bayesian Computation (ABC) method. The idea is to sample ice models that
produce simulations which are sufficiently close to the data, gauging by the "distance" ℎ𝑖 . Ideally
we should be sampling possible data realizations, however we note that ℎ𝑖 is symmetric between
data and simulation, with one difference: we simulate fewer events than we have in data, thus our
calculation here will result in a conservative over-estimation of uncertainties.

Because the ice models that we will consider in the uncertainty calculation will result in ℎ𝑖 that
are not much higher than the values at the best model (44210 ± 7.6), and since ℎ𝑖 is a measure of
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a goodness-of-fit (calculated as a sum of ∼ 60, 000 LED configurations), we think it reasonable to
approximate the size of ℎ𝑖 fluctuations for all considered ice models with the same RMS value of
7.6. Furthermore, we approximate the distribution of ℎ𝑖 with a Gaussian 𝜇 + 𝐺 (𝜎) with 𝜎 = 7.6
and a mean of 𝜇 = 𝐶0 + (𝐴 · 𝛿𝑥)2, 𝐴 being the matrix form of 𝑎𝑘𝑛 and 𝛿𝑥 being the vector form of
the ice model deviation from the best fit 𝑏𝑛. The ABC method prescribes that we sample the space
of ice parameters and accept those that satisfy the condition

ℎ𝑖 ∼ 𝐺 (𝜎) + 𝐶0 + (𝐴 · 𝛿𝑥)2 < 𝐹 (2)

for some 𝐹, where 𝐹 should be small enough to only allow simulation instances that are sufficiently
similar to data. Setting 𝜉 = 𝐴 · 𝛿𝑥, we start by sampling the space of ice model parameters by
sampling 𝜉 from a scaled normal distribution 𝐺 (𝛼) for some 𝛼, determined below. This results in
the sum (𝐴 · 𝛿𝑥) = 𝛼2 ·∑𝑁 𝐺 (1)2 behaving as a 𝜒2 distribution with a mean of 𝛼2𝑁 and RMS of
𝛼2√2𝑁 . Since 𝑁 ≲ 10513 is very large, the value of this sum is close to just being 𝛼2𝑁 with a
small (∼ 1%) uncertainty. If we choose 𝐹 = 𝐶0, then we just need to sample the ice model space
such that (𝐴 · 𝛿𝑥)2 < |𝐺 (𝜎) |. Here we switched to the absolute value of the Gaussian, since the left
side is a sum of squares and as such cannot be negative. We now introduce the last approximation of
this calculation, which also can only lead to an over-estimation of the ice parameter uncertainties:
instead of the inequality we will sample the ice parameters to satisfy an equality (𝐴 · 𝛿𝑥)2 = |𝐺 (𝜎) |.
This can be achieved by sampling 𝛼 from the following function of the half-Gaussian distribution
|𝐺 (𝜎) |:

𝛼 =

√︂
𝜎 · |𝐺 (1) |

𝑁
. (3)

To sample the ice models from the parameter space so constructed, we first sample 𝛼 using
Eq. 3. Then we sample N variables 𝜉 from the Gaussian distributions 𝐺 (𝛼) = 𝛼 ·𝐺 (1). Finally we
invert the equation 𝜉 = 𝐴 · 𝛿𝑥 to obtain the variation vector of parameters of the ice model 𝛿𝑥. We
can simplify this procedure by first decomposing 𝐴𝑇𝐴 with a Cholesky transformation, obtaining
the curvature matrix representation where 𝐴 is upper triangular. This allows to solve the system of
equations 𝜉 = 𝐴 · 𝛿𝑥 by working backwards from the the highest components down (𝑥𝑁 = 𝜉𝑁/𝑎𝑁𝑁 ,
then 𝑥𝑁−1 = (𝜉𝑁−1 − 𝑎𝑁−1,𝑁 · 𝜉𝑁 )/𝑎𝑁−1,𝑁−1, etc.). Such an approach also simplifies fixing the
tilt components at the reference grid location to 0. To achieve this we shuffle the elements of the
curvature matrix to stack the components we want to keep fixed at the end, before performing the
Cholesky decomposition. Then, when solving the system of equations 𝜉 = 𝐴 ·𝛿𝑥 we set the elements
of 𝜉 with the highest indices to 0 (instead of sampling from scaled Gaussian distribution, which
we continue to do for the rest of the components), which necessarily results in the corresponding
elements of 𝛿𝑥 being 0s as well. Then we re-shuffle the components of 𝛿𝑥 back to to their original
order and we get the correct sampling of the ice model parameters while keeping the tilt components
at the grid point closest to string 36 fixed.

Finally, we note that in addition to calculating the covariance matrix from sampled ice models,
we can calculate it directly by inverting matrix 𝐴𝑇𝐴 (using the same Cholesky decomposition) and
scaling the result with the average

< 𝛼2 >=< |𝐺 (1) | > ·𝜎
𝑁

=

√︂
2
𝜋
· 𝜎
𝑁

. (4)
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When inverting smaller subsets of the curvature matrix 𝐴𝑇𝐴 (e.g., keeping all of the tilt components
fixed) we found that applying a Singular Value Decomposition (SVD) to matrix 𝐴 itself and
calculating the correlation matrix from there works just as well, and allows one to investigate
the singular values of the correlation matrix to better gauge its convergence. This allowed us
to discover that adding small amounts of regularization terms to the curvature matrix 𝐴𝑇𝐴 in
the form of 𝛽∗ · 𝐷𝑇𝐷 (𝐷 being the matrices from the regularization terms in Eq. 1) stabilized
the inversion process to where the sampling procedure described here could be used reliably.
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Figure 4: Example slice through the de-
duced volumetric map of ice layer undula-
tions. Shown is the elevation of an ice layer,
defined at a depth of 2248 m at the nominal
position close to the center.

Our first attempt at re-simulating the sampled ice mod-
els resulted in re-simulated values of ℎ𝑖 that were much
higher than predicted by the sampler. At that time we’ve
had around 4000 simulated ice model samples that were
used in the fit. Currently we are re-simulating proposed
(at 5𝜎 level) samples, and adding them into the fit. We
find that the disagreement between proposed and simu-
lated ℎ𝑖 values is shrinking, and expect to reach an ac-
ceptable agreement after adding another ∼2000 samples.

4. Result

The effort described in this report results in an im-
proved description of ice layer undulations to ∼ 0.2 m,
and ice layer properties (scattering, absorption, ice crys-
tal density) to ∼ 0.5% statistical-only uncertainties. The
full uncertainties including systematics remain to be re-
evaluated. As evident from the example in Fig. 4 the new
layer undulations show significant deviations from the previous 1-D gradient assumption. Depth-
averaged this in particular entails a 7 m slope along the flow direction over the extend of the detector.
Peculiarly the layer elevations are higher downstream, indicating that the flow locally follows an
uphill bedrock topology. This requires further investigations including available ground-penetrating
radar data. Our measure of the goodness of fit (see Fig. 2) for the full set of LED calibration data has
also improved by an amount commensurate with the improvement due to the recent re-interpretation
of the ice optical anisotropy [5].
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