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The IceCube Neutrino Observatory deployed 5160 digital optical modules (DOMs) in a cubic
kilometer of deep, glacial ice below the geographic South Pole, recording the Cherenkov light
of passing charged particles. While the optical properties of the undisturbed ice are nowadays
well understood, the properties of the refrozen drill holes still pose a challenge. From camera
observations, we expect a central, strongly scattering column shadowing a part of the DOMs’
sensitive area. In MC simulation, this effect is commonly modeled as a modification to the
DOMs’ angular acceptance curve, reducing the forward sensitivity of the DOMs. The associated
uncertainty is a dominant detector systematic for neutrino oscillation studies as well as high-energy
cascade reconstructions. Over the years, several measurements and fits of the drill holes’ optical
properties and of the angular acceptance curve have been proposed, some of which are in tension.
Here, we present a principle component analysis, which allows us to interpolate between all
suggested scenarios, and thus provide a complete systematic variation within a unified framework
at analysis level.
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A model independent parametrization of the optical properties of the refrozen IceCube drill holes

1. Introduction

The IceCube Neutrino Observatory [1] is located in the deep glacial ice below the geographic
South Pole. It is comprised of 5160 Digital Optical Modules (DOMs) each incorporating a 10-inch,
downward facing photomultiplier tube to detect Cherenkov light produced by relativistic charged
particles traversing the detector. The DOMs were deployed along so called strings in 86 drill holes
of ∼60 cm diameter at depths spanning between 1450 m and 2450 m. While the dominant part of
the propagation of Cherenkov photons from their emission to an eventual detection happens in the
exceptionally clear, bulk glacial ice, each photon detected by a DOM also had to propagate through
the refrozen water in a drill hole, the so called hole ice. This hole ice is modeled as a variation of
the optical acceptance of DOMs as a function of the photon incident zenith angle.

While the calibration and modeling of the optical properties of the bulk glacial ice has contin-
uously improved over the years [2–4], the optical properties of the hole ice are less well understood.
Years ago the uncertainties in most IceCube analyses were dominated by statistics, today for example
the DeepCore oscillation analyses [5–7] are limited by uncertainties of detector effects such as bulk
ice properties and the overall optical efficiency of the modules, but also especially the angular ac-
ceptance of modules that is discussed here. Since optical effects have to be modeled in simulation by
altering the photon propagation and acceptance, incorporating such effects in analyses as nuisance
parameters is computationally costly. The usual approach is to either build interpolating functions
between discrete simulation sets (e.g. [8]) or using random sampling of simulation configurations
(e.g. [9]).

We lay out three properties a good model should fulfill:

1. Provide enough flexibility to cover a large enough range of scenarios to be able to describe
the data

2. Use as few parameters as possible to reduce computational burden on simulation and inference

3. Define a specified range of parameter values to inform the simulation to cover a useful space
of possibilities

These points are addressed in this work, and documented in the following sections: Section 2
summarizes several measurements and fits of the drill holes’ optical properties and of the angular
acceptance curve that have been proposed in the past. In Sec. 3 we introduce our new two-parameter
model that allows us to interpolate between all suggested scenarios, and thus provide a complete
systematic variation within a unified framework at analysis level. The parameters of this model
are fitted to LED calibration data in Sec. 4. Finally a comparative overview over input models, the
results from the LED fit as well as results from nuisance parameter fits in physics analyses using
the described model is provided.

2. Previous Models

Direct visual evidence for the existence and properties of the refrozen drill columns has been
provided by a pair of cameras situated at the bottom of a string [1]. As seen in Figure 1, the outer
regions of the drill hole are exceptionally clear, but the inner ∼16 cm appear diffuse white, as would
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A model independent parametrization of the optical properties of the refrozen IceCube drill holes

Figure 1: Sweden Camera image of the lower camera looking straight up at the upper camera, with the hole
ice fully developed in the right half of the image. [10]

be expected from strong scattering on air bubbles. This concurs with a model where the water
filled holes freeze cylindrically inwards with impurities, including air bubbles, being continuously
pushed ahead of the freezing boundary until they precipitate out in high concentration in the center
of the hole. This feature is commonly denoted the bubble column.

In simulation the bubble column can be included directly by physically modeling the photo-
cathode extend as well as an extended bubble column with assumed diameter, scattering properties
and position with respect to each DOM. This very precise approach has recently been pursued suc-
cessfully in [11] and [12], but is computationally expensive. Thus, the effect induced by the bubble
column is instead commonly modeled via an angular acceptance curve. In this approximation the
landing position of a photon on the surface of a DOM is disregarded when evaluating the detection
probability in simulation and instead the efficiency is only based on the cosine of the zenith angle
of the photon direction at the time of impact on the module (cos 𝜂).

Approximating a DOM to be homogeneously sensitive on its entire lower hemisphere, its bare
relative detection efficiency (𝑦) is then given as 𝑦ideal = 0.5 · (1 + cos 𝜂). The angular acceptance
curve resulting from a precise knowledge of the DOM’s hardware properties [2, 11] is denoted
Lab in Figure 2. Incorporating the effect of the hole ice into the angular acceptance generally
decreases the forward acceptance at cos 𝜂 = 1, as the hole ice effectively shadows off a part of the
photocathode.

The earliest, but still commonly used models, were derived for the IceCube predecessor
AMANDA [11, 13]. Here, lacking the later visual camera evidence, it was assumed that the entire
∼60 cm drill hole would have degraded optical properties with geometric scattering length in the
range between 50 cm and 100 cm.

Within IceCube the optical properties are most commonly deduced from fits to LED calibration
data, which have little direct sensitivity to the forward acceptance. For this reason, previous fits [11]
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Figure 2: DOM angular acceptance curves from previous modeling attempts, used as input for the Unified
Model described in this work. The acceptances are shown as functions of the PMT incident angle 𝜂, where
cos 𝜂 = 1 means photons coming head-on to the photocathode area. Lab denotes the DOM characteristics
without hole ice. AMANDA refers to measurements performed by a laser system in the IceCube predecessor
AMANDA. Flasher Unfolding refers to a constrained unfolding using IceCube LED calibration data. Ad
Hoc Extension is a parametric extension of this model used in previous neutrino oscillation fit. And Bubble
column Simulation is a set of curves derived from a first principle simulation of photon propagation through
allowed hole ice configurations. In each case the dotted line shows the original input model, while the solid
line shows the closest representation of this input within the two parameters of the Unified model.

used the following functional form for the angular acceptance

𝑦 = 0.34(1 + 1.5 cos 𝜂 − cos3 𝜂/2) + 𝑝 · cos 𝜂(cos2 𝜂 − 1)3. (1)

It is constrained to a reasonable value for the forward acceptance, roughly shading of 30% of the
photocathode area, and the free parameter 𝑝 only changes the shape for intermediate values of cos 𝜂.

Yet, as the forward acceptance is of primary importance as a systematic uncertainty for analyses,
this constraint was lifted in an ad-hoc parametric extension, which allows for an arbitrary forward
acceptance through a second parameter [14]:

𝑦 = 0.34(1 + 1.5 cos 𝜂 − cos3 𝜂/2) + 𝑝 · cos 𝜂(cos2 𝜂 − 1)3 + 𝑝2 · exp(10(cos 𝜂 − 1.2)). (2)

While the previously mentioned direct simulation of photon propagation through a bubble
column is conceptually different from the angular acceptance parametrization, the hole ice properties
(size and scattering length) deduced there can also be translated into angular acceptance curves
assuming the bubble column to be centered on all DOMs. These curves, with assumed diameters
ranging between 18 cm and 54 cm and effective scattering lengths ranging between 14 cm and
125 cm respectively are denoted as Bubble Column Simulation in the following. The allowed
parameters were derived in [11] and have since been superseded by [12]. As the update primarily
affected the per-DOM positions of the bubble column, but not the size and scattering length, the
curves are still assumed to represent the best knowledge at present.
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3. Unified Model

The aim of the unified model is to define a parameterization with as few parameters as possible
that can approximate all existing angular acceptance curves as discussed in the previous section
and shown in Fig. 3, as well as interpolate between those and extrapolate outside. Note that the
ad-hoc model presented in the previous section is also based on just two parameters, but it does
not offer enough flexibility to approximate other models and variations of its acceptance curves are
constrained to a small region.

We begin by approximating the existing curves using an interpolating B-spline of order 𝑘 = 3
(cubic). Seven support points for the spline are defined at:

𝑥 = cos 𝜂 = (−1,−0.5,−0.2, 0.35, 0.65, 0.95, 1.05), (3)

where the last point extends outside the physically allowed region. These values have been heuris-
tically determined to work well. The corresponding points in 𝑦 (= relative optical efficiency) are
free parameters except for the points at 𝑥 = −1 where the value is fixed to 𝑦 = 0, since photons
arriving from behind the PMT can not be detected. Furthermore, derivatives are fixed to zero
at either end of the spline. This means that with with the six parameters (degrees of freedom)
constituting 𝑦 we define B-splines that make up angular acceptance curves. In a fit to the original
twelve curves discussed in the previous section, the best values for 𝑦 are determined by minimizing
the mean-squared error between the original curves and their B-spline approximations. This means
that all models can be described by a matrix S of (12 × 6) values.

In order to facilitate the usage of the new model in physics analyses, we want to reduce the
dimensionality as much as possible, to end up with a minimal number of nuisance parameters to
vary in simulation and inference. We apply a singular value decomposition (SVD) to the matrix S
to express it in the form U𝚺V∗. This can then be interpreted as a set of six principal components 𝑝

per calibration curve collected in the matrix U𝚺 and six principal directions arranged in matrix V.
Reducing the number of principal components and accordingly the components of the direction

vectors is known as a principal component analysis (PCA) allowing to reduce dimensionality. It
turns out that by only using the first two components, henceforth referred to as 𝑝0 and 𝑝1, is
sufficient to reconstruct all input curves to a precision of < 5%. The fitted principal directions are
given below:

V∗ =

(
−0.0054533 0.0165525 −0.136688 −0.0782252 0.5139002 0.8430896
−0.4508718 −0.5179942 0.2407660 0.6061325 0.3092565 −0.0859777

)
(4)

and the original points 𝑦 needed for the B-spline can then be reconstructed as:

𝑦 − ⟨𝑦⟩ = (𝑝0, 𝑝1) · V∗ (5)

where the mean that was subtracted in the decomposition is equal to:

⟨𝑦⟩ = (0.14623077, 0.26576604, 0.4832101, 0.63038745, 0.57494938, 0.48991044). (6)

Having a vector 𝑦 at hand given a choice of parameters (𝑝0, 𝑝1) then allows to construct the
B-spline describing the angular acceptance curve. This curve is then in further processing steps
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clipped to be greater or equal to zero everywhere, and then normalized to equal area under the curve
such that all curves reflect the same total efficiency.

In summary, the outlined procedure defines a two-parameter unified model that can generate
an angular acceptance curve for a choice of input parameters (𝑝0, 𝑝1), and is able to approximate
all existing calibration curves as discussed in the previous section to an accuracy of < 5%.

Figure 3 shows some example curves for varying inputs of 𝑝0 and 𝑝1, respectively. It can be
noted that the first component 𝑝0 results in a modulation of only the head-on region of the PMT
(cos 𝜂 ⪆ 0), while component 𝑝1 affects mostly the shape around the waist of the PMT. Figure 2
shows the fidelity of the 2-parameter approximation of the unified model compared to the initial
calibration curves used as inputs. The maximum range of the parameters that produces sensible
curves is roughly −2 < 𝑝0 < 1 and −0.2 < 𝑝1 < 0.2.
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Figure 3: Example angular acceptance curves, resulting from variations of the 𝑝0 and 𝑝1 parameters of the
Unified model. 𝑝0 primarily suppresses the forward-acceptance and thus models the fraction of shadowed
photocathode area, while 𝑝1 primarily modifies the slope and thus isotropy of detection.

4. Flasher fit

While the parametrization has been derived from plausible models resulting from fits to muon
and LED calibration data, its parameters can also be fitted directly. This in particular allows to
constrain a sensible region for large-scale simulations to be conducted.

To this end a fit to LED calibration data, selecting data from DOMs on six standard IceCube
strings surrounding DeepCore and at depth exceeding 2100 m, each flashing their 12 LEDs [15] in
sequence, has been performed. The fit follows the methodology as described in [2, 11], comparing
the arrival time distributions in data to photon propagation simulation [16], with only the hole ice
parameters being varied in simulation. All other aspects and parameter values of the ice optical
modeling are taken from the so-called Spice3.2 ice model [11].

Figure 4 shows the resulting likelihood space, with each grid cell being intensity coded ac-
cording to the distance of the likelihood value of one simulated hole ice realization from the best-fit
realization. The employed likelihood (see [17]) accounts for the vastly smaller photon statistics in

6



P
o
S
(
I
C
R
C
2
0
2
3
)
1
0
3
4

A model independent parametrization of the optical properties of the refrozen IceCube drill holes

1.5 1.0 0.5 0.0 0.5 1.0
p0

0.25

0.20

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20
p 1

IceCube Preliminary

1

2

3

Lab
AMANDA

Bubble Column Sim
Flasher Unfolding

Ad Hoc Extension
Physics Analyses

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

LL
H

Figure 4: 𝑝0-𝑝1-parameter landscape of the Unified Model. Colored circles denote the parameter values of
the input models used to build the parametrization. The intensity coded grid cells show the delta likelihood
value of a flasher fit for the given simulated hole ice realization. The fit was performed using 120 light
emitting DOMs surrounding DeepCore at depths greater then 2100 m. The contours denote the statistical
error only and are dominated by the simulation statistics. The black crosses denote the preferred values as
resulting from nuisance parameter fits in several low- and high-energy physics analyses.

simulation compared to the experimental data. This induces fluctuations of the likelihood values
compared to the expected paraboloid. The statistics-only uncertainty contours as shown account for
this fluctuation by fitting a polynomial. As the likelihood does not conform to Wilk’s Theorem the
Δ𝐿𝐿𝐻 values for a given coverage have been calculated from the residuals around this polynomial.
The contour sizes primarily reflect the employed simulation statistics, but are representative of the
sensitivity of the analysis as a whole. The impact of other systematic detector uncertainties (such as
the bulk ice modeling) on the preferred hole ice parameters has not been evaluated in this context,
as it would require equivalent fits and thus vastly more simulation.

5. Results & Discussion

Figure 4 shows the values (black crosses) of the maximum likelihood estimators for 𝑝0 and 𝑝1

in three recent IceCube physics analyses that use our model. Interestingly, these values coincide
with the minimum of the fit to flasher data, drawing a consistent picture. The fit to flasher data
also can make some statements on previously used models, and strongly disfavors the scenario of
absence of hole ice, i.e. no altered optical properties in the refrozen drill holes corresponding to
the "Lab" curve. Furthermore, the AMANDA models do not seem to be able to correctly describe
the IceCube angular acceptance. The previous attempts using simple parametrizations ("Flasher
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unfolding" and its "Ad Hoc Extension") are also disfavored, albeit at a milder level. The only
compatible scenarios seem to be the those derived from the direct simulation of photon propagation
in the bubble column termed "Bubble column simulation" above.

Another important aspect is the range of useful parameters, that can also be read off from Fig. 4.
For a simple rectangular box, we propose the range of −1 < 𝑝0 < 0.4 and −0.14 < 𝑝1 < 0.04
roughly covering the 2𝜎 contour. Since the likelihood exhibits a negative correlation coefficient of
𝜌 = −0.72 a range of simulations more closely following the contour shape is recommended.

The IceCube Upgrade [18] will, among many more optical sensors, also deploy several new
calibration hardware. The Precision optical Calibration Module (POCAM) [19, 20], for example,
will allow to collect new calibration data of unprecedented quality. This data is expected to allow
us to better understand our detector, including the hole ice and associated angular acceptance.
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