
P
o
S
(
I
C
R
C
2
0
2
3
)
1
0
4
8

Exploring the Galactic neutrino flux origins using
IceCube datasets

The IceCube Collaboration
(a complete list of authors can be found at the end of the proceedings)

E-mail: adesai@icecube.wisc.edu

Astrophysical neutrinos detected by the IceCube observatory can be of Galactic or extragalactic
origin. The collective contribution of all the detected neutrinos allows us to measure the total
diffuse neutrino Galactic and extragalactic signal. In this work, we describe a simulation package
that makes use of this diffuse Galactic contribution information to simulate a population of
Galactic sources distributed in a manner similar to our own galaxy. This is then compared with
the sensitivities reported by different IceCube data samples to estimate the number of sources that
IceCube can detect. We provide the results of the simulation that allows us to make statements
about the nature of the sources contributing to the IceCube diffuse signal.
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Exploring the Galactic neutrino flux origins using IceCube datasets

1. Introduction

The Milky Way Galaxy is home to numerous objects and matter that can lead to the production of
neutrinos observable on Earth. Recently, [1] reported the observation of neutrino emission from
the Galactic plane by the IceCube Neutrino Observatory, with > 4𝜎 significance. A confirmation
of the exact nature of the sources producing these neutrinos was not found. However, speculations
exist about these neutrinos originating from sources like pulsar wind nebula (PWN) or supernova
remnants (SNR) or due to cosmic ray interactions (see, for example, [2–4]). Fortunately, because of
the kiloparsec scale distances of sources and matter distributed across the Galaxy, these speculations
can be tested and commented upon (see, for example, [5, 6]). In this work, we build upon the results
we reported in [6] using additional IceCube data to comment on the nature of these neutrino-
producing sources and the future of Galactic neutrino searches using IceCube.

The IceCube neutrino observatory classifies detected neutrino events into track-like or cascade-
like depending on the observed event signature [7]. Track-like events have better angular resolution
due to them being produced by long-lived muons that travel several kilometers in the ice. On the
other hand, cascade events are short-lived but have better energy resolution. Different IceCube
data samples are created using events of one of these types, along with improved reconstructions
using methods like cascades with neural network [1] or track events with boosted decision tree [8].
There also exist combined samples like [9], which include both track and cascade events. All these
datasets have different effective areas along with different energy and angular resolution, giving
them different sensitivities and discovery potentials required to make a detection. In this work, we
use the sensitivity and discovery potential curves of 4 different IceCube datasets, namely: 10-year
Point Source Tracks ("PST" from this point; see also [10]), DNN Cascades ("DNN" from this point;
see also [1]), Enhanced Starting Tracks Event Selection ("ESTES" from this point; see also [8, 11])
and a combined event selection made up of ESTES tracks, DNN cascades, and Northern tracks
("Combined sample" from this point; see also [9]). Note that the PS Tracks dataset used here is one
reported in [10] and cannot be directly compared with the Northern tracks dataset in the combined
sample by [9].

2. Neutrinos from the Galactic center

Following the procedure shown in [6], we first estimate simply the number of sources required
to make up the observed neutrino emission, provided that all the sources are concentrated at the
Galactic center. The observed neutrino emission is taken from the best-fit flux reported by [1] for
the KRA50

𝛾 template. This is because the reported signal using the KRA50
𝛾 template [12] is more

prominent at the center of the Galaxy. The best-fit flux for the KRA50
𝛾 template at 100 TeV is given

by ∼1.5×10−15 TeV−1cm−2s−1 (Fig. 5 of [1]). For each of the tested IceCube datasets, we use the
90% sensitivity and the 5𝜎 discovery potential curves (as reported by [9]) to determine the neutrino
flux of sources making up the background assuming all sources have equal flux (as all sources are
at the center the luminosities are also equal). "Flux" here denotes the differential neutrino number
flux in units of TeV−1cm−2s−1 at 100 TeV. As all the sources contribute to the total galactic neutrino
flux equally, the number of sources making up the signal is derived by taking the ratio of the total
flux and the per-source flux contribution.
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Sample Tested 𝐸−2.0 Flux at ∼ 28° 𝑁𝑠𝑟𝑐 (𝛾 = −2.0)

DNN sensitivity 1.07e-16 14

DNN 5𝜎 DP 4.68e-16 3

PST sensitivity 2.25e-16 7

PST 5𝜎 DP 7.97e-16 2

ESTES sensitivity 4.90e-16 3

ESTES 5𝜎 DP 1.41e-15 1

Combined sensitivity 8.54e-17 18

Combined 5𝜎 DP 4.08e-16 4

Table 1: Assuming that all point sources making up the observed Galactic neutrino signal are concentrated at
the center, we show for each dataset the per source flux and the number of sources (𝑁𝑠𝑟𝑐). The flux spectrum
(𝑑𝑁/𝑑𝐸) is taken to be a power law with an index of 2.0. Note that as no detected Galactic neutrino sources
exist, the flux estimates are taken from the sensitivity curve and treated as upper limits, while the number of
sources contributing to the signal should be treated as lower limits.

When compared directly to the results presented in [6], this work includes more information
in the form of the ESTES and Combined samples, along with 5𝜎 discovery potential curve (as
opposed to the 4𝜎 discovery potential) for the DNN sample(see [9] for more details). Note that in
the event that these sources are detected, they will all be clustered at the center leading to source
confusion.

3. Simulating neutrino sources

We now simulate the neutrino sources in the Galaxy and compare them to sensitivity and discovery
potential curves. Following the procedure described in [6], we use the "Simulation of the Neutrino
and Gamma-ray Galactic Yield" (SNuGGY 1) package. In this work, to simulate source positions,
we make use of a modified exponential spatial distribution given by

𝜌(𝑅, 𝑧) = 𝜌0

(
𝑅

𝑅⊙

)𝛼
𝑒𝑥𝑝

(
−𝛽 𝑅 − 𝑅0

𝑅⊙

)
𝑒𝑥𝑝

(
− |𝑧 |

ℎ

)
, (1)

where 𝑅 and 𝑧 are the horizontal and vertical scaling lengths respectively, and 𝛼 = 2, 𝛽 = 3.53, and
ℎ = 0.181 are parameters for the distribution given by [13, 14]. The Jacobian factor is included
while estimating the source positions, causing a shift away from the Galactic center for the 𝑅 values.

The neutrino fluxes are simulated using a log-normal luminosity function where the luminosity
is defined as the integrated value over an energy range of 10 TeV-10 PeV, and has units of erg/s. The

1https://github.com/adesai90/SNuGGY
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Figure 1: One simulation of 104 sources derived using the SNuGGY framework is shown here. The source
coordinates in Galactic coordinates are shown on the left while the distribution of the scale height 𝑧 and
length 𝑅 from equation Eq. 1 is shown on the right. Note the shift in the peak away from 𝑅 = 0 due to the
inclusion of the Jacobian factor.

luminosity distribution is given by

𝑃𝐿𝑁 (𝐿) = 𝑙𝑜𝑔10𝑒

𝜎𝐿𝐿
√

2𝜋
𝑒𝑥𝑝

(
−(𝑙𝑜𝑔10𝐿 − 𝑙𝑜𝑔10𝐿0)2

2𝜎2
𝐿

)
, (2)

where the 𝐿0 is the mean luminosity while the 𝜎𝐿 parameter controls the width of the distribution.
The mean luminosity is calculated using

𝐿𝑆𝐶 =
𝜙𝐺𝑎𝑙𝑎𝑐𝑡𝑖𝑐

𝑁∑
𝑖=1

1
4𝜋𝑑2

𝑖

, (3)

where 𝜙𝐺𝑎𝑙𝑎𝑐𝑡𝑖𝑐 is the total diffuse flux and 𝑁 is the number of simulated sources at a distance
𝑑𝑖 . Note that giving a very low value of 𝜎𝐿 will reduce the width of the distribution and result in
simulated luminosities equal to the mean luminosity (with slight deviations), mimicking a standard
candle approach. For more details regarding how the source positions and neutrino fluxes are
simulated, see [6].

For each simulated test case, we fix the number of simulated sources. The SNuGGY simulation
ensures that the sources have a spatial distribution as shown in Fig. 1 along with a log-normal
luminosity distribution. The simulated differential fluxes at 100 TeV are then used to compare
with the sensitivity and discovery potential curves of the IceCube datasets. Two hypotheses are
tested here: (1) All sources are close to the center of the Galaxy and (2) sources follow a PWN
distribution. The latter will allow us to make assumptions about Galactic neutrino source classes
as a whole, as the spatial distribution of galactic sources is similar to each other.

While a simple comparison of the simulated fluxes with the sensitivity or discovery potential
fluxes is possible, actual detection of neutrinos from a source is subject to Eddington bias [16]. This
bias is particularly seen for the "large number of dim sources" case, as it is seen as upward Poisson
fluctuations in the number of detected neutrinos. We account for this by estimating the number of
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Figure 2: Comparison of simulated sources with the 90% CL sensitivity curves from the four IceCube
data samples. Blue points show 104 simulated sources with fluxes derived using a log-normal luminosity
distribution with 𝜎𝐿=0.01 (similar to a SC scenario). If a simulated source flux is above the sensitivity curve,
the source is counted as detected. The 10yr PST sensitivity is taken from [15], DNN from [1] and ESTES
and Combined from [9].

energy-integrated neutrino events over a period of 10 years using the simulated neutrino flux and
IceCube effective area and adding Poisson fluctuations to the simulated data. The effective area
measurements are taken from references [10] and [9]. If the number of Poisson fluctuated neutrino
events are higher than the threshold number of events derived using the sensitivity or discovery
potential, the source is considered to be "detected". This calculation is repeated multiple times in
the form of a Monte Carlo simulation to derive the mean number of detected sources along with a
1𝜎 standard deviation.

Figure 3: Special case for sources simulated at the Galactic center: The number of detected neutrino sources
at the Galactic center for different sensitivity and discovery potential curves (taken from [1, 9, 15]) while
using a 𝜎𝐿=0.01 TeV−1cm−2s−1. The left plot makes use of sensitivity curves, while the right plot makes
use of discovery potential curves. The shaded regions show the ±1𝜎 uncertainty. Note that, in this analysis,
the PS Tracks dataset used is taken from [15] and cannot be directly compared with the Northern Tracks
dataset in the combined sample, which uses track-like events in the northern hemisphere with an updated
reconstruction.
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The results for the sources close to the center of the Galaxy are given in Fig. 3. The results
for this case match the numbers shown in Table. 1, which is expected. One can see that because of
the dependence on the IceCube datasets as a function of declination, the PS tracks sample cannot
detect any sources (above 𝑁𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 ∼ 3 for the DP curves) while the other samples can (up to
𝑁𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 ∼8). This is because of the better sensitivity of the DNN and Combined datasets in the
Southern Hemisphere.

Next, we show the case for a simulation using a 𝜎𝐿 of 0.01 and 0.5, which simulates the
luminosity distribution as a standard candle or log-normal distribution.

Figure 4: Case for sources simulated with a realistic geometric distribution and a standard candle approach
for fluxes: Number of detected neutrino sources using a 𝜎𝐿=0.01 and total diffuse flux equals 2.18×10−15

TeV−1cm−2s−1 is compared with different IceCube sensitivity (left) and discovery potential (right) curves,
taken from [1, 9, 15]. The 2.18×10−15 is obtained using the best-fit neutrino flux derived for the DNN
cascade sample using the 𝜋0 template [1] The shaded regions show the 1𝜎 uncertainty.

Figure 5: Case for sources simulated with a realistic geometric distribution and a log-normal approach
for fluxes: Number of detected neutrino sources using a 𝜎𝐿=0.5 and total diffuse flux equals 2.18×10−15

TeV−1cm−2s−1 is compared with different IceCube sensitivity (left) and discovery potential (right) curves,
taken from [1, 9, 15]. The shaded regions show the 1𝜎 uncertainty.
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Dataset Quantity SC LN Sources at
(𝜎𝐿 = 0.01) (𝜎𝐿 = 0.5) center

DNN 𝑁𝑠𝑟𝑐 8 0 6
𝐿𝑚𝑒𝑎𝑛 1.4×1035 - 3.5×1035

ESTES 𝑁𝑠𝑟𝑐 1 0 1
𝐿𝑚𝑒𝑎𝑛 2.0×1036 - 2×1036

Combined 𝑁𝑠𝑟𝑐 1.2×105 235 6
𝐿𝑚𝑒𝑎𝑛 6.04×1030 1.08×1033 3.5×1035

Table 2: Lower limit on the approximate number of sources (along with the upper limit on the luminosities)
detected by each of the datasets based on the simulations. The spectral index used is fixed to 2.0. Note that
the results shown in [6] use the 4𝜎 discovery potential curves while this work makes use of the 5𝜎 discovery
potential curve for the DNN cascades sample giving a different limit.

4. Angular Resolution (source confusion)

The above simulations estimate the number of detected sources after accounting for Eddington bias
and do not take into account the different angular resolutions of the IceCube datasets. As shown in
[6], the resolving power of the PS tracks dataset is the best, being able to resolve ∼ 26 sources at 100
TeV close to the center, while ESTES and DNN samples are able to resolve ∼ 13 and ∼ 5 sources
respectively. However, because of the improved sensitivity of the DNN sample in the southern
hemisphere, sources at the center of the Galaxy are more likely to be detected by DNN cascades.
Finally, as the combined sample is a culmination of DNN cascades, ESTES and Northern Tracks,
if a source is detected by the combined sample and DNN or ESTES samples, the combined sample
will have an equal or better resolving power due to the increased statistics.

5. Discussion

In this work, we simulate Galactic source populations to understand the results presented by [1].
While the ESTES and Combined samples are being used in similar studies (to [1]), we can already
use our simulations to explore science cases based on different outcomes of the two studies.

Reference [1] was not able to detect any Galactic sources but detected a neutrino signal from
the Galactic Plane. Our simulation shows that if ≲ 5 sources were making up the total neutrino
signal, the DNN cascades sample will be able to detect and resolve them. We could extend this
calculation to put an upper limit on the number of sources that can be detected by the dataset.
This is done by finding the point where the mean number of detected simulated sources, shown
in Figs. 3-5, reaches ∼ 1. We report this lower limit in Table. 2 along with calculations using the
ESTES and Combined sample datasets.

Our simulation shows that the Combined Sample has the best chance of detecting sources.
Based on the combined estimates from Table 1 and 2, we find that the increase in the number of
detected sources comes mostly from better sensitivity in the Northern Hemisphere (similar to what
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is seen using the PS tracks sample). The simulations using DP curves shown in Figs. 3-5 (right)
show that the combined sample outperforms PST in the Northern hemisphere too (seen for larger
𝑁𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 values where flux per source is lower). This is because the combined sample makes
use of the Northern Tracks IceCube dataset along with the additional data from DNN and ESTES,
which improves the sensitivity. However, we already know that [1] and [15] were not able to detect
any sources. Using that fact, if we assume that no sources are detected by the combined sample, we
could put a limit of 105 SC sources or a limit of ∼ 235 sources following a LN distribution. We can
also put an upper limit on the luminosity of the source population to be of the order of 1033 erg/s.
This limit is more constraining because of the improvements in the sensitivity of the combined
sample due to the combination of the cascades and tracks datasets, which makes it most sensitive
in both the Northern and Southern hemispheres. We can see that from the results depicted here,
along with theoretical studies like [5, 6, 17], future improvements and measurements from IceCube
are key to understanding exactly how many sources or points of neutrino emission contribute to the
Galactic neutrino flux and their nature.
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