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For about a decade the IceCube Neutrino Observatory has been observing a high-energy diffuse
astrophysical neutrino flux. At these energies, an important source of background are the prompt
atmospheric neutrinos produced in decays of charmed mesons that are part of cosmic-ray-induced
air showers. The production yield of charmed mesons in the very forward phase space of hadronic
interactions, and thus the flux of prompt neutrinos, is not well known and has not yet been
observed by IceCube. A measurement of the flux of prompt neutrinos will improve the modeling
of hadronic interactions in cosmic-ray induced air showers at high energies. Additionally, in the
context of astrophysical neutrino measurements, understanding this background flux will improve
the measurement precision of the spectral shape in the future. In particular, the analysis of up-
going muon neutrino-induced tracks in IceCube provides a large sample of atmospheric neutrinos
which likely includes prompt neutrinos. However, the measurement of a subdominant prompt
neutrino flux strongly depends on the hypothesis for the dominant astrophysical neutrino flux.
This makes the estimation of upper limits on the prompt neutrino flux challenging. We discuss
the extent of this model dependency on the astrophysical flux and propose a method to calculate
robust upper limits. Furthermore, a possible dedicated search of the prompt neutrino flux using
multiple IceCube detection channels is outlined.
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Prompt Neutrino Flux Search

1. Introduction

Atmospheric muon neutrinos are decay products of mesons in cosmic ray air-showers. These
mesons themselves are produced in early stages of the air-shower development. The parent mesons
of the so-called conventional part of the atmospheric muon neutrino flux are pions and kaons [1].
With increasing energy, kaons and pions are more likely to interact and heavy short-lived mesons,
such as D0 or D± become relevant. The flux of the neutrinos from these heavy meson decays is
called prompt atmospheric neutrino flux. Modeling of the production cross section of the heavy
mesons is challenging due to poor coverage by collider experiments in the relevant phase space
[2]. Therefore, the predicted flux of prompt atmospheric neutrinos can vary by almost an order of
magnitude as can be seen in Figure 1. Additionally, the uncertainty of the composition of primary
cosmic rays between the knee and ankle leads to variations as well.

So far, the flux of prompt atmospheric neutrinos has not been measured, but it is one of the
largest backgrounds in the search of astrophysical neutrinos with IceCube [3]. At the same time,
uncertainties about shape of the astrophysical spectrum make measuring the prompt atmospheric
neutrino flux difficult.

At first we introduce the IceCube Neutrino Observatory and its sensitivity to the prompt
neutrino flux. In Section 2 we then introduce the diffuse analysis of up-going muon tracks and our
method of estimating sensitivities. Finally, We discuss the impact of astrophysical neutrino flux
assumptions and a method to quantify potential biases in Section 3.
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Figure 1: Comparison of different models predicting the prompt atmospheric neutrino flux. This includes
SIBYLL 2.3c [4] (orange-solid), DPMJet III 19.1 [5] (orange-dashed) and BERSS [6] (yellow-solid) as well
as variations of the primary cosmic ray model (H4a [7] (orange-solid), GSF [8] (orange-dotted), GST [9]
(orange dash-dotted)). For comparison, the conventional neutrino flux between vertical (solid) and horizontal
(dashed) arrival directions is plotted in grey (based on SIBYLL 2.3c and H4a). Also the single power law
description of the astrophysical neutrino flux of the latest iteration of the up-going muon tracks analysis [3]
is shown for comparison in purple as well as the IceCube prompt neutrino limit from 2016 (yellow dashed)
[10] which is based on [11].
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Figure 2: In the center plot, the expected fraction of prompt atmospheric neutrinos for each analysis bins of
the up-going muon track analysis is shown. The plots to the top and to the right show the expected number
of events for each contributing class in dependence of reconstructed energy and zenith. The assumed prompt
(orange) and conventional (grey) atmospheric neutrino fluxes are based on SYBILL 2.3c model with H4a
as primary flux. The astrophysical (purple) neutrino flux is modeled by a single power law. The "muon
template" (light blue) models down-going atmospheric muon tracks, which were misrecontructed.

2. Prompt Atmospheric Neutrino Flux in IceCube

2.1 Analysing the Muon Neutrino Flux of IceCube

The IceCube Neutrino Observatory is a neutrino detector consisting of over 5000 photo-
multiplier tubes on 86 strings embedded in the Antarctic ice [12]. The main goal of the detector is
to measure astrophysical neutrinos based on several selections of neutrino events. These selections
have published multiple limits on the prompt atmospheric neutrino flux as well [10, 13, 14]. These
limits correspond to a flux of about 5 × 10−19 cm−2s−1sr−1GeV−1 at 100 TeV.

We use a sample of neutrino induced muon tracks [3], to find prompt atmospheric neutrinos.
The sample selects up-going tracks that originate from below the horizon, effectively excluding
most atmospheric muons and achieving a purity of 99.7%. In 8 years over 600,000 neutrino events
were observed with most of them being atmospheric neutrinos. A large number of these observed
neutrinos is expected to be a prompt atmospheric neutrino. As most muon tracks start outside the
detector volume, the energy of the primary neutrino can not be fully reconstructed. But due to the
km length of the muon tracks, the angular resolution is below 1◦ above energies of 1 TeV.

To analyze this sample, a parameter forward-folding fit is performed. We weight Monte-Carlo
(MC) events to a flux prediction and then compare it to data in bins of reconstructed energy and
zenith. To obtain the best-fit for all the model parameters, we maximize a Poisson Log-Likelihood
(LLH) based on the expected and measured event numbers in each analysis bin. The analysis
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binning as well as the expected number of prompt atmospheric neutrinos is depicted in Figure 2.
The largest sensitivity to the prompt atmospheric neutrino flux is expected at reconstructed energies
between 10 TeV and 1 PeV and at vertically up-going directions. The prompt atmospheric neutrino
flux (modeled by SIBYLL 2.3c [4]) is altered by a normalization factor Φ0

prompt. Variations in shape
are considered by a 𝛿𝛾 factor and the fit interpolates between the H4a [7] and GST [9] primary
cosmic ray models. These two factors model uncertainties of the primary cosmic ray flux and are
applied to the conventional neutrino flux as well.

The modeling of the detector systematics is done via the "snowstorm" method [15]. By varying
the detector systematics on a statistical basis, we get an ensemble of events which represent the
dependency on these systematic effects. We split the ensemble into equal parts and can estimate
gradients. This method saves computational effort compared to the discrete systematics used in [3].

2.2 Central Limit Construction

Using the MC as an Asimov dataset, the sensitivity on the prompt atmospheric neutrino flux
is estimated by scanning the normalization Φ0

prompt. Figure 3 shows the −2ΔLLH = −2(LLH(𝜇) −
LLH( �̃�)) between the bestfit point �̃� and fits with 𝜇 = Φ0

prompt. The Asimov dataset shown in
this case gives the median −2ΔLLH values. In an actual measurement, the test-statistic value
𝑡 = −2ΔLLH will fluctuate around this value depending on the true value of Φ0

prompt. Evaluating
the cumulative distribution at the measured 𝑡 value gives a probability. The 90% upper or central
limit can then be estimated by finding the Φ0

prompt value resulting in a probability of 90%.
For a parameter that follows a normal distribution and is unbound, the 𝑡 distribution would

correspond to a 𝜒2 distribution independently of the assumed parameter value. If a parameter is
bounded, the 𝑡 distribution has to be adjusted close to that boundary:

𝑡 (𝜇) =
{
−2(LLH(𝜇) − LLH( �̃�)) �̃� > 0
−2(LLH(𝜇) − LLH(0)) �̃� < 0,

(1)

The cumulative distribution of 𝑡 which takes such a boundary into account is given by [16]:

𝐹
(
𝑡𝜇 | 𝜇

)
=


G
(√︁

𝑡𝜇

)
𝑡𝜇 ≤ 𝜇2/𝜎2

G
(
𝑡𝜇+𝜇2/𝜎2

2𝜇/𝜎

)
𝑡𝜇 > 𝜇2/𝜎2,

(2)

with G(𝑥) being the cumulative normal distribution function and 𝜎 the expected uncertainty on
the parameter 𝜇, which can be estimated from inverting the hessian matrix of the negative likelihood
function (Fisher Information). This boundary excludes any upward fluctuations as it is defined for
pure one sided upper limits. This can lead to empty intervals in case of a downward fluctuation of
the parameter. To avoid such a behaviour the central limit construction by Feldman and Cousins
[17] can be used instead. The cumulative test-statistic distribution would then be given by [16]:

𝐹
(
𝑡𝜇 | 𝜇

)
=


2 G

(√︁
𝑡𝜇

)
− 1 𝑡𝜇 ≤ 𝜇2/𝜎2

G
(√︁

𝑡𝜇

)
+ G

(
𝑡𝜇+𝜇2/𝜎2

2𝜇/𝜎

)
− 1 𝑡𝜇 > 𝜇2/𝜎2.

(3)

The comparison of the 90% intervals depending on the assumed true normalization value is shown

4



P
o
S
(
I
C
R
C
2
0
2
3
)
1
0
6
8

Prompt Neutrino Flux Search

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Prompt normalization 0

prompt

0.0

0.5

1.0

1.5

2.0

2.5

3.0
2

LL
H/

cr
it.

 v
al

.
IceCube Preliminary

Back. Only Asimov Scan
Bounded 2 95% UL crit. value
F-C 90% CL crit. value

2 95% crit. value
2 90% crit. value

F-C CL 90% Sensitivity

Figure 3: Visualization of the sensitivity and upper limit construction. The solid purple line shows the
likelihood difference toward the background only hypothesis, setting Φ0

prompt to zero. As reference lines
the critical value lines of several test statistic distributions are shown as well. For a 𝜒2 distributed variable
the 90% (grey) and 95% (black) two sided critical values are drawn as straight lines. For a bounded 𝜒2

distribution the one sided (upper limit) 95% critical values (dark red) are drawn. For the Feldman-Cousins
ordering the 95% critical values are shown (light red). The crossing point between the Asimov scan and the
Feldman-Cousins 90% critical values marks the expected 90% central limit (yellow vertical line).

in Figure 3. The expected 90% sensitivity is given by the point the background only scan of Φ0
prompt

reaches the critical value given by the 90% lines of the different intervals. The large difference
between the upper limit construction and the Feldman-Cousins central limit stems from the effect
that the first is a purely one sided test and the second is two sided distribution which can be used
for lower limits as well. In both cases this depends strongly on the assumption of the astrophysical
model. We will discuss this dependency in the next section.

3. Consequences of the Assumption of an Astrophysical Neutrino Flux Model

Previous IceCube analyses [3, 13] show hints of structure in the astrophysical neutrino spectrum
deviating from the single powerlaw. These mostly refer to a cutoff above energies of 1 PeV, but these
results impact the spectrum below 10 TeV as well. This can be seen in Figure 4, where the results
of different spectral assumption are compared to each other for the analysis of the up-going muon
tracks [3]. The definitions of these spectral assumptions are shown in Table 1. The models agree
in the sensitive energy range between 15 TeV and 5 PeV, but outside of the sensitive energy range
the astrophysical flux varies between the assumed models by orders of magnitude. At the same
time the sensitive energy range on the prompt atmospheric flux extends to 300 GeV. In this energy
range the astrophysical flux has either similar strength or is well below the prompt atmospheric
neutrino flux depending on the assumed astrophysical model. Therefore, we expect the resulting
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Figure 4: Plot comparing different astrophysical neutrino flux models (blue lines) to the prompt atmospheric
neutrino flux (orange). Each of the astrophysical models is varied according to the uncertainties of the
published result (see Table 1). The solid part of the lines mark the sensitive energy range (estimated for
the single powerlaw model assumption), while the dashed part marks the extrapolated region. The grey
lines give the conventional atmospheric neutrino flux between vertical (solid) and horizontal (dashed) arrival
directions. The prompt and conventional fluxes have no uncertainties included in this plot.

Table 1: List of the different astrophysical models used in this analysis. The normalisation factor 𝐶0 in
the function definitions is set to 𝐶0 = 10−18/(cm2 s sr GeV). The factor 𝜒(𝐸) describes the borders of each
individual piece and is defined in [13]. The assumed uncertainties do not take correlations into account
and serve as upper boundaries of the true uncertainty. The sensitivities are given in terms of the prompt
normalization factor Φ0

prompt and are estimated using the F-C method introduced in Section 2.2.

Astrophysical
Model

Function Assumed Values <Φ0
prompt>

90%-CL
Powerlaw Φ0

astro/𝐶0( 𝐸
100 TeV )

−𝛾 Φ0
astro = 1.44 ± 0.26,

𝛾 = 2.37 ± 0.09
2.9

Log-Parabola Φ0
astro/𝐶0( 𝐸

100 TeV )
−𝛼−𝛽 log10 ( 𝐸

100 TeV ) Φ0
astro = 1.79 ± 0.4,

𝛼 = 2.03 ± 0.22,
𝛽 = 0.45 ± 0.29

2.45

Piecewise
∑5

𝑖 𝜒(𝐸) Φ0
𝑖
/𝐶0 ( 𝐸

100 TeV )
−2 Piecewise fit results in [3] 2.4

Cascades
∑13

𝑖 𝜒(𝐸) Φ0
𝑖
/𝐶0 ( 𝐸

100 TeV )
−2 Piecewise fit results as

prior [13]
1.45

Cutoff Φ0
astro/𝐶0( 𝐸

100 TeV )
−𝛾 𝑒

− 𝐸
𝐸cutoff Φ0

astro = 1.64 ± 0.39,
𝛾 = 2.0 ± 0.4,
log10(𝐸cutoff) = 6.1 ± 0.3

Astro BL-Lac ΦCutoff (𝐸) +ΦBL−Lac(𝐸) Adding the BL-Lac astro-
physical model [13, 18]
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prompt normalization to be biased by the choice of astrophysical model, as the true shape of the
astrophysical neutrino flux is not well known below 10 TeV.

To test the strength of this expected bias, an Asimov-like test can be used. As the true shape of
the astrophysical spectrum is unknown, several model assumptions are injected and varied inside
their measured uncertainties (see Table 1). A selection of astrophysical models are fitted to these
assumptions: a single powerlaw, a log parabola, five spectral pieces and finally 13 spectral pieces
with priors from the analysis of cascade like events in IceCube [13]. To test the full extend of the
bias on Φ0

prompt the boundary at zero is lifted and the default prompt model is injected. The rest of
the nuisance parameters are injected at their default values.

Figure 5: The bias on the prompt neutrino flux
normalization for variations of the injected and
fitted astrophysical neutrino flux. Each of the
astrophysical neutrino flux models is varied ac-
cording to uncertainties of previous fits. The me-
dian and standard deviation of the fitted (without
bound at 0) prompt normalization are given.

The result of this test can be seen in Fig-
ure 5, with the resulting average and stan-
dard deviation of the fitted Φ0

prompt. In the
case of fitting the same model as injected
the bias becomes small as well as the varia-
tion. The single powerlaw shows the largest
variation towards negative values (if different
flux assumptions are injected), while the log-
parabola and spectral pieces fits have smaller
biases. These astrophysical model assump-
tions have a varying number of fitted param-
eters. Therefore, such a behaviour would
be expected, but it highlights the shortcom-
ings of a single powerlaw assumption for the
analysis of the prompt neutrino flux. Ad-
ditionally, these models are expected to im-
pact the sensitivity on the prompt neutrino
flux. Using the methods introduced in Sec-
tion 2.2, we can estimate this sensitivity by
calculating the Fisher information and scan-
ning the Φ0

prompt parameter. The resulting
90% sensitivities are listed in Table 1. The
cascade pieces improve the sensitivity on the
prompt atmospheric neutrino flux substan-
tially, while the other model assumptions
have a comparable sensitivity.

4. Discussion and Outlook

The results presented here show that the observation of the prompt atmospheric neutrino flux
remains challenging using only the up-going muon track analysis. The example of IceCube’s
up-going muon track analysis shows that the assumption of a specific astrophysical model intro-
duces a bias on the measurement of the prompt astrophysical flux. This dependency makes the
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construction of upper limits from past measurements unreliable. It can also explain the consistent
under-fluctuation of the measured Φ0

prompt in several analyses published by IceCube. For further
investigations potential biases due to conventional atmospheric flux assumptions (e.g. primary flux
models) have to be investigated as well. The result of the cascade fit with prior shows the potential
of the global fit effort to combine the up-going tracks analysis with the cascades. In order to measure
the prompt atmospheric flux with a sufficient significance other analyses will have to be included
as well.
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