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The fluorescence detector (FD) of the Pierre Auger Observatory is sensitive to upward-going
air showers with energies above 1017 eV. Given its operation time and wide field of view,
the FD has the potential to support or constrain the “anomalous” observations by the ANITA
detector, interpreted as upward-going air showers that would be indicative of Beyond Standard
Model (BSM) physics. To this end, a search for upward-going air showers with the FD has been
performed applying selection criteria that were optimized using 10% of FD data. Dedicated
background simulations (downward-going events) have been performed to estimate our capability
to distinguish candidates from false positives. Also dedicated signal simulations (upward-going
events) have been used to estimate our sensitivity to such showers with a focus on the energy
region close to the ANITA observations.
Improved and updated results of the Pierre Auger Observatory exposure to upward-going showers
will be presented after the unblinding of 14 years of FD data. Extensive simulations allow the
FD exposure to be obtained at lower energies which are particularly relevant for the comparison
with the ANITA results. A refinement of the method for signal discrimination and background
rejection has also been applied. The implications are discussed under the assumption that the
ANITA events were due to upward-going events.
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1. Introduction

The Fluorescence Detector (FD) of the Pierre Auger Observatory consists of multiple telescopes
that collect the fluorescence light emitted by the air as showers, induced by cosmic rays, develop in
the atmosphere. The FD is also sensitive to upward-going cosmic-ray-like air showers which are
of particular interest after the ANITA Collaboration reported the observation of two “anomalous”
events [1, 2]. During its first and third flight, the balloon experiment detected two events with
elevation angles of 27.4◦ ± 0.3◦ and 35.0◦ ± 0.3◦ respectively, and energies above ∼ 0.2 EeV [3].
The energies and elevation angles are hard to reconcile with the predictions of the standard model of
particle physics, so a confirmation or a constraint from a different experiment would be of particular
interest.
To this end, the Pierre Auger Collaboration has performed a search for cosmic-ray-like upward-going
air showers with the FD in 14 years of data collected between 2004 and 2018. Signal simulations
have been studied to estimate the FD sensitivity to upward-going air showers distributed in the energy
and zenith angle regions of interest. The potential background from downward-going cosmic rays,
erroneously reconstructed as upward-going, has been estimated with extensive simulations as well.
A 10% fraction of the available data has been used to identify and remove the background of untagged
upward-going lasers used by the Collaboration to monitor the atmosphere. These cuts together with
those defined using simulations have been applied to calculate the expected background in the full
data sample and to search for candidates in the data. The FD exposure has also been calculated and
the Auger result after the unblinding has been compared with the fluxes inferred from the ANITA
observations.

2. Signal simulation

Upward-going air showers could be produced as an outcome of an upward-going particle
emerging from the Earth crust and interacting or decaying in the atmosphere at a certain height or
just below the Earth crust. For zenith angles above the Earth skimming limit (𝜃 > 95◦), they are
unlikely to trigger the Surface Detector (SD) of the Pierre Auger Observatory, whereas the FD can
observe the shower development in the atmosphere. To calculate the FD exposure, upward-going air
showers have been simulated with CONEX [4] and reconstructed within the Offline Framework [5].
The FD has negligible detection efficiency below 1016.5 eV, therefore this analysis has been limited
to showers with log10(𝐸/eV) ∈ [16.5, 19]. Simulations have been made according to an energy
distribution of 𝐸−1 and assuming an isotropic distribution of events. The zenith angles have
been sampled within 𝜃 ∈ [110◦, 180◦] (elevation angles in [20◦, 90◦]). The impact points of the
particle trajectory on the ground, later referred as “exit points”, have been sampled in a square of
100 × 100 km2 centered at the SD station closest to the center of the SD array. The exit points
can also be located behind the field of view of a telescope, since the generation area extends up
to ∼20 km behind each FD site. The height of the first interaction point (ℎ) is also a relevant
parameter when simulating upward-going events as showers starting high in the atmosphere tend
to be further away and are less likely to trigger the data acquisition. Showers have been uniformly
generated with ℎ ∈ [0, 9] km above the ground altitude of the Observatory (∼1400 m a.s.l). A single
proton has been used as primary particle because it can be easily adapted to fit other interesting
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Figure 1: Event display of an upward-going proton induced shower simulated with CONEX and reconstructed
with the Offline. The top left panel shows the activated pixels on the camera, with their arrival time as a
function of their elevation on the top right panel. The reconstructed longitudinal profile of the shower is
displayed in the bottom left panel, while the parameters from the reconstruction are reported in the bottom
right panel with true simulated values within square brackets. The colors in the top left and top right panels
refer to the arrival time of the light (blue for early pixels, red for late pixels). The blue lines are for the Monte
Carlo truth.

scenarios [6]. Sibyll 2.3c [7, 8] and UrQMD 1.3 [9] have been used as hadronic models at high and
low energies, respectively. A time dependent detector simulation has been used to take into account
all the FD configurations and their time variability during the 14 years of operation used for the
analysis [10]. In total, 6.5 × 107 upward-going showers have been simulated in the aforementioned
energy range aiming in particular at increasing the number of simulated events below 1017.5 eV.
This represents an important step forward with respect to the previous analysis [11] as it allows
extending the calculation of the FD detection efficiency down to 1017 eV that is the most relevant
energy region for the comparison with ANITA. Figure 1 shows a simulated upward-going proton
as seen in the Offline event display [5]. The activated pixels on the camera are shown on the top left
panel, while their arrival times are plotted on the top right panel as a function of the elevation angle
in the plane containing both the detector and the shower axis (i.e. Shower Detector Plane, SDP).
The reconstructed longitudinal profile is displayed in the bottom left panel, while the reconstructed
parameters are reported in the bottom right panel. For reference, the true values are also reported
within square brackets.
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Figure 2: Event display of a simulated downward-going event with a zenith angle of 76.5◦ and reconstructed
as an upward-going shower (𝜃 = 115.5◦). The blue lines are for the Monte Carlo truth.

3. Background simulation

In this analysis no SD data is required, as upward-going air showers generally can not trigger the
stations. In absence of any signal from the SD, downward-going events with specific geometries can
be incorrectly reconstructed as upward-going and vice-versa. As seen in [11], for pure geometrical
reasons, the signal of an event whose impact point is located behind the telescope can mimic an
upward-going event. Therefore, dedicated and extensive simulations of downward-going events
have been used to study the cosmic ray background.

Helium, nitrogen an iron nuclei, as well as protons, have been considered as primary particles
with log10(𝐸/eV) ∈ [17, 20] and zenith angle 𝜃 ∈ [0◦, 90◦]. As for signal simulations, Sybill2.3c
and UrQMD 1.3 have been used as hadronic interaction models for high and low energies respec-
tively. The overall number of simulated shower for the background is ∼ 2.5 × 108. Signal and
background simulations along with data have been exploited to define selection criteria to distin-
guish signal events from false positives. Figure 2 shows an example of a downward-going event
simulated at 𝜃 ∼ 76◦ reconstructed as upward-going with an elevation angle of ∼ 25◦ (𝜃 ∼ 115◦).

4. Data cleaning and selection criteria

The FD observes the shower development in the atmosphere. Since any variation in temper-
ature, humidity, pressure or aerosol concentration may influence the shower evolution, it is very
important to have a continuous monitoring of the atmospheric conditions over the Observatory.
To this end, millions of laser pulses are fired from different positions during nights of data taking
[12]. These shots are usually recorded and stored so they can be easily removed during the analysis.
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Figure 3: Distribution of the exit point of the events in the burn sample before (left) and after (right) the
laser identification and rejection. The straight lines, related to laser events, are correctly removed and only
clusters of events remained close to each of the FD sites.

However some lasers may have not been properly labelled producing false positives. A sample of
10% of the available FD data (“burn sample”) has been used to identify and remove these events
by exploiting the firing frequencies and the known laser locations inside the array. Figure 3 left
shows the exit points for the events of the burn sample in which lasers tend to accumulate along
straight-line patterns. That is because lasers typically share the same SDP which is reconstructed
with high accuracy, unlike the reconstruction of the exit points witin the SDP which is less precise
and creates these patterns. The right panel shows the same distribution after their identification and
rejection. The colour scheme identifies which FD site triggered on each specific event.

To improve the discrimination between signal and background events, both data and simu-
lations have been reconstructed using a procedure named as Profile Constrained Geometry Fit
Reconstruction (PCGF) [13]. Unlike the standard reconstruction method, which finds the best
geometry and the shower longitudinal profile in two separate steps, the PCGF reconstruction uses a
single likelihood maximization to fit both the arrival time sequence and the light profile at the same
time. The PCGF can also run in two separate modes, referred as PCGFdown and PCGFup, with
zenith angle limited between [0◦, 90◦] and [90◦, 180◦] respectively. This results in two independent
values of the maximum likelihoods, 𝐿down and 𝐿up, that can be compared to discriminate between
events that are more likely to be downward-going (𝐿down > 𝐿up) and vice-versa. The most precise
geometrical reconstruction has been proven to be associated to a smooth maximum in the combined
likelihood. As an improvement to the previous analysis [11], this approach has been used for 𝐿up,
while, to be conservative, an absolute maximum in the likelihood is accepted for 𝐿down as done in
the past.

Quality selection criteria have been applied to guarantee a minimum reconstruction quality
while keeping enough statistics. This includes requiring 𝜃 > 110◦, clean atmosphere, low cloud
coverage, at least five pixels in a compact pattern and an observed longitudinal profile of at least
80 g cm−2. Moreover, all events without a successful upward reconstruction are excluded from this
analysis. Then a new variable has been defined as

𝑙 =
arctan(−2 log(𝐿down/max(𝐿down, 𝐿up))/50)

𝜋/2 . (1)
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Figure 4: Distribution of 𝑙 for background simulations (red), signal simulations (blue) and burn data sample
(black). Background simulations have been weighted and normalized to the cosmic ray spectrum and rescaled
to the burn sample fraction, while signal simulations have not been weighted.

According to this definition 𝑙 = 0 if 𝐿down > 𝐿up, 𝑙 → 1 if 𝐿up ≫ 𝐿down and 𝑙 = 1 if no downward
reconstruction is found for that specific event. Figure 4 shows the distribution of this variable for the
burn data sample (black), signal simulation (blue) and background simulation (red). Background
simulations have been weighted and normalized to the observed cosmic ray spectrum [14] and were
rescaled to the burn sample fraction.

The background distribution has been fitted with an exponential function and the cut value on
𝑙 has been chosen as the value that minimizes the integral upper limit which can be set in case
no candidates are found in the full data sample after the unblinding, according to the procedure
described in [11]. The cut value to discriminate between candidate and background events is set
at 𝑙 = 0.55 as in the previous analysis, but the expected background after the unblinding is now
𝑛bkg = 0.27 ± 0.12 as a result of the general refinement of the reconstruction described above.

5. Results

Following the steps described in [11], the FD exposure for upward-going air showers can be
calculated. Figure 5 left shows the double differential exposure as a function of the shower energy
and the height of first interaction, while the exposure integrated in height is shown as a function of
the energy in the right panel, calculated also for three different zenith sub-ranges. As a consequence
of the extended simulation campaign described in Section 2, the exposure extends now down to
1017 eV.

After the unblinding of data one event passes all the selection criteria, which is consistent
with the expected background. A preliminary integral upper limit to the flux of upward-going air
showers can be set at

𝐹95%
𝛾=1 (𝐸 > 1017 eV) = (7.2 ± 0.2) · 10−21 cm−2sr−1s−1

𝐹95%
𝛾=2 (𝐸 > 1017 eV) = (3.6 ± 0.2) · 10−20 cm−2sr−1s−1 (2)
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Figure 5: (Left) FD double differential exposure for upward-going air showers as a function of the shower
energy and the height of the first interaction point for 𝜃 ∈ [110◦, 180◦]. (Right) FD exposure as a function of
the energy calculated for the whole zenith range in black and for three different sub-ranges: 𝜃 ∈ [110◦, 124.2◦]
in blue, 𝜃 ∈ [124.2◦, 141.3◦] in red, 𝜃 ∈ [141.3◦, 180◦] in orange

at 95% CL by weighting the exposure with two different spectral indices 𝛾 = 1, 2. Given that the
exposure calculation has been extended at lower energies, the upper limits are now provided above
1017 eV.

In a joint effort with members of the ANITA Collaboration, it has been possible to analytically
evaluate the exposure of ANITA for the two “anomalous” events with 𝜃 ∈ [110◦, 130◦] and
log(𝐸/eV) ∈ [17, 18.5]. The events have been observed during the first (ANITA I) and the third
(ANITA III) flights with a lower threshold and an upgraded apparatus being used for the latter.
Therefore the Auger and ANITA results have been compared separately for the two events. Figure 6
shows a comparison of the Auger integral upper bound (in blue) with the ANITA inferred flux (in
red) or 95% CL upper limit (light red) for both ANITA I and ANITA III events on the left and right
side respectively. All the limits have been calculated within the same energy and zenith sub-ranges
given by ANITA. The comparison has been done for both 𝛾 = 1, 2 with the Auger limit being 2
orders of magnitude lower in case of an 𝐸−1 energy spectrum and at ∼ 30 times lower in case of a
𝐸−2 spectrum.

6. Conclusion

A search for upward-going air showers has been performed with the FD of the Pierre Auger
Observatory using data collected in 14 years of operation between 2004 and 2018. Signal and
background simulations have been used to study the FD potential to distinguish between signal
events and false positives. A 10% fraction of the data sample has been used to identify and reject
lasers from data. Further quality selection criteria have been applied and a new variable 𝑙 has been
defined to discriminate between upward and downward-going showers. After unblinding, only one
event has passed this cut, compatible with the expected background of 0.27 ± 0.12 events. Signal
simulations have been used to calculate the FD exposure for upward-going showers and an integral
upper limit has been set for two different spectral indices 𝛾 = 1, 2. An analytical evaluation of the
ANITA exposures for the two anomalous events has been used to compare the Auger upper limits
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Figure 6: (Left) Comparison of Auger upper limits with the inferred ANITA I flux in red and ANITA I
95% CL upper limit in case of 𝛾 = 1, 2. (Right) Comparison of Auger upper limits with ANITA III event.
All the limits have been calculated within the same zenith and energy sub-ranges (𝜃 ∈ [110◦, 130◦] and
log(𝐸/eV) ∈ [17, 18.5]).

with the inferred ANITA fluxes. For both events the Auger limits are found to be two orders of
magnitude lower than the ANITA flux in case of 𝛾 = 1 and about 30 times lower in case of 𝛾 = 2.
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